1
|
Li Y, Zhang K, Yin Y, Kong X, Zhang R, Wang H, Zhang Z. Amino-functionalized graphene oxide affects bacteria-phage interactions in aquatic environments. WATER RESEARCH 2024; 259:121840. [PMID: 38820731 DOI: 10.1016/j.watres.2024.121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The widespread use of graphene family nanomaterials (GFNs) in mass production has resulted in their release into the atmosphere, soil and water environment through various processes. Among these, the water environment is particularly affected by GFN pollution. Our previous study has demonstrated the impact of graphene oxide (GO) on bacteria-phage interactions in natural systems. However, the effects of amino-functionalized GO with a positive charge on bacteria-phage interactions in aquatic environments remain unclear. In the present study, we found that amino-functionalized graphene oxide (AGO) (0.05 mg/mL) inhibited the growth of Pseudomonas aeruginosa Y12. Furthermore, treating P. aeruginosa Y12 and phage with AGO (0.05 mg/mL) led to a reduced ratio of phage to bacteria, indicating that AGO can inhibit phage infection of bacteria. Additionally, the acidic environment exacerbated this effect by promoting electrostatic adsorption between the positively charged AGO and the negatively charged phage. Finally, a field water body intervention experiment showed that the richness and diversity of bacterial communities in six water samples changed due to AGO exposure, as revealed by Illumina analysis based on the bacterial 16S rRNA gene. These findings offer valuable insights into the environmental impacts of GFNs.
Collapse
Affiliation(s)
- Ying Li
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, PR China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China
| | - Kexin Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Ji'nan, PR China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Ji'nan, PR China
| | - Yansong Yin
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, PR China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China
| | - Xinxin Kong
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, PR China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China
| | - Ruiling Zhang
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, PR China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China.
| | - Haijun Wang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China; School of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China.
| | - Zhong Zhang
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, PR China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, PR China; Shandong Second Medical University, Weifang 261021, PR China; The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, PR China.
| |
Collapse
|
2
|
Kumar Y, Thomas T, Pérez-Tijerina E, Bogireddy NKR, Agarwal V. Exfoliated MXene-AuNPs hybrid in sensing and multiple catalytic hydrogenation reactions. NANOTECHNOLOGY 2024; 35:205703. [PMID: 38320322 DOI: 10.1088/1361-6528/ad26da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
The increasing use of nanomaterials in consumer products is expected to lead to environmental contamination sometime soon. As water pollution is a pressing issue that threatens human survival and impedes the promotion of human health, the search for adsorbents for removing newly identified contaminants from water has become a topic of intensive research. The challenges in the recyclability of contaminated water continue to campaign the development of highly reusable catalysts. Although exfoliated 2D MXene sheets have demonstrated the capability towards water purification, a significant challenge for removing some toxic organic molecules remains a challenge due to a need for metal-based catalytic properties owing to their rapid response. In the present study, we demonstrate the formation of hybrid structure AuNPs@MXene (Mo2CTx) during the sensitive detection of Au nanoparticle through MXene sheets without any surface modification, and subsequently its applications as an efficient catalyst for the degradation of 4-nitrophenol (4-NP), methyl orange (MO), and methylene blue (MB). The hybrid structure (AuNPs@MXene) reveals remarkable reusability for up to eight consecutive cycles, with minimal reduction in catalytic efficiency and comparable apparent reaction rate constant (Kapp) values for 4-NP, MB, and MO, compared to other catalysts reported in the literature.
Collapse
Affiliation(s)
- Yogesh Kumar
- Investigation Center for Engineering and Applied Sciences (CIICAp-IICBA), Autonomous State University of Morelos (UAEM), Av. Univ. 1001, Col. Chamilpa, Cuernavaca 62209 Mor., Mexico
- Faculty of Physics and Mathematics (FCFM-UANL), Autonomous University of Nuevo Leon, Cd. Universitaria, San Nicolás de los Garza, N.L. 66451, Mexico
| | - Tijin Thomas
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - E Pérez-Tijerina
- Faculty of Physics and Mathematics (FCFM-UANL), Autonomous University of Nuevo Leon, Cd. Universitaria, San Nicolás de los Garza, N.L. 66451, Mexico
| | - N K R Bogireddy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, C.P 62210 Cuernavaca, Morelos, Mexico
| | - V Agarwal
- Investigation Center for Engineering and Applied Sciences (CIICAp-IICBA), Autonomous State University of Morelos (UAEM), Av. Univ. 1001, Col. Chamilpa, Cuernavaca 62209 Mor., Mexico
| |
Collapse
|
3
|
Ibne Shoukani H, Nisa S, Bibi Y, Zia M, Sajjad A, Ishfaq A, Ali H. Ciprofloxacin loaded PEG coated ZnO nanoparticles with enhanced antibacterial and wound healing effects. Sci Rep 2024; 14:4689. [PMID: 38409460 PMCID: PMC11322433 DOI: 10.1038/s41598-024-55306-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Antimicrobial resistance is a worldwide health problem that demands alternative antibacterial strategies. Modified nano-composites can be an effective strategy as compared to traditional medicine. The current study was designed to develop a biocompatible nano-drug delivery system with increased efficacy of current therapeutics for biomedical applications. Zinc oxide nanoparticles (ZnO-NPs) were synthesized by chemical and green methods by mediating with Moringa olifera root extract. The ZnO-NPs were further modified by drug conjugation and coating with PEG (CIP-PEG-ZnO-NPs) to enhance their therapeutic potential. PEGylated ZnO-ciprofloxacin nano-conjugates were characterized by Fourier Transform Infrared spectroscopy, X-ray diffractometry, and Scanning Electron Microscopy. During antibacterial screenings chemically and green synthesized CIP-PEG-ZnO-NPs revealed significant activity against clinically isolated Gram-positive and Gram-negative bacterial strains. The sustainable and prolonged release of antibiotics was noted from the CIP-PEG conjugated ZnO-NPs. The synthesized nanoparticles were found compatible with RBCs and Baby hamster kidney cell lines (BHK21) during hemolytic and MTT assays respectively. Based on initial findings a broad-spectrum nano-material was developed and tested for biomedical applications that eradicated Staphylococcus aureus from the infectious site and showed wound-healing effects during in vivo applications. ZnO-based nano-drug carrier can offer targeted drug delivery, and improved drug stability and efficacy resulting in better drug penetration.
Collapse
Affiliation(s)
| | - Sobia Nisa
- Department of Microbiology, The University of Haripur, Haripur, KPK, Pakistan.
| | - Yamin Bibi
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-E-Azam University Islamabad, Islamabad, Pakistan
| | - Anila Sajjad
- Department of Biotechnology, Quaid-E-Azam University Islamabad, Islamabad, Pakistan
| | - Afsheen Ishfaq
- Department of Medicine, FRPMC/PAF Hospital Faisal, Karachi, Pakistan
| | - Hussain Ali
- National Institute of Health, Islamabad, Pakistan
| |
Collapse
|
4
|
Li M, Liu Y, Gong Y, Yan X, Wang L, Zheng W, Ai H, Zhao Y. Recent advances in nanoantibiotics against multidrug-resistant bacteria. NANOSCALE ADVANCES 2023; 5:6278-6317. [PMID: 38024316 PMCID: PMC10662204 DOI: 10.1039/d3na00530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023]
Abstract
Multidrug-resistant (MDR) bacteria-caused infections have been a major threat to human health. The abuse of conventional antibiotics accelerates the generation of MDR bacteria and makes the situation worse. The emergence of nanomaterials holds great promise for solving this tricky problem due to their multiple antibacterial mechanisms, tunable antibacterial spectra, and low probabilities of inducing drug resistance. In this review, we summarize the mechanism of the generation of drug resistance, and introduce the recently developed nanomaterials for dealing with MDR bacteria via various antibacterial mechanisms. Considering that biosafety and mass production are the major bottlenecks hurdling the commercialization of nanoantibiotics, we introduce the related development in these two aspects. We discuss urgent challenges in this field and future perspectives to promote the development and translation of nanoantibiotics as alternatives against MDR pathogens to traditional antibiotics-based approaches.
Collapse
Affiliation(s)
- Mulan Li
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Ying Liu
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Youhuan Gong
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Xiaojie Yan
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Le Wang
- Cancer Research Center, Jiangxi University of Chinese Medicine No. 1688 Meiling Avenue, Xinjian District Nanchang Jiangxi 330004 P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- Cannano Tefei Technology, Co. LTD Room 1013, Building D, No. 136 Kaiyuan Avenue, Huangpu District Guangzhou Guangdong Province 510535 P. R. China
| | - Hao Ai
- Key Laboratory of Follicular Development and Reproductive Health in Liaoning Province, Third Affiliated Hospital of Jinzhou Medical University No. 2, Section 5, Heping Road Jin Zhou Liaoning 121000 P. R. China
| | - Yuliang Zhao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
- The University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences 19B Yuquan Road, Shijingshan District Beijing 100049 P. R. China
| |
Collapse
|
5
|
Shen Y, Sun J, Sun X. Intraocular nano-microscale drug delivery systems for glaucoma treatment: design strategies and recent progress. J Nanobiotechnology 2023; 21:84. [PMID: 36899348 PMCID: PMC9999627 DOI: 10.1186/s12951-023-01838-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Glaucoma is a leading cause of irreversible visual impairment and blindness, affecting over 76.0 million people worldwide in 2020, with a predicted increase to 111.8 million by 2040. Hypotensive eye drops remain the gold standard for glaucoma treatment, while inadequate patient adherence to medication regimens and poor bioavailability of drugs to target tissues are major obstacles to effective treatment outcomes. Nano/micro-pharmaceuticals, with diverse spectra and abilities, may represent a hope of removing these obstacles. This review describes a set of intraocular nano/micro drug delivery systems involved in glaucoma treatment. Particularly, it investigates the structures, properties, and preclinical evidence supporting the use of these systems in glaucoma, followed by discussing the route of administration, the design of systems, and factors affecting in vivo performance. Finally, it concludes by highlighting the emerging notion as an attractive approach to address the unmet needs for managing glaucoma.
Collapse
Affiliation(s)
- Yuening Shen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Jianguo Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China. .,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China. .,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
6
|
Candreva A, De Rose R, Perrotta ID, Guglielmelli A, La Deda M. Light-Induced Clusterization of Gold Nanoparticles: A New Photo-Triggered Antibacterial against E. coli Proliferation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040746. [PMID: 36839113 PMCID: PMC9967119 DOI: 10.3390/nano13040746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 05/14/2023]
Abstract
Metallic nanoparticles show plasmon resonance phenomena when irradiated with electromagnetic radiation of a suitable wavelength, whose value depends on their composition, size, and shape. The damping of the surface electron oscillation causes a release of heat, which causes a large increase in local temperature. Furthermore, this increase is enhanced when nanoparticle aggregation phenomena occur. Local temperature increase is extensively exploited in photothermal therapy, where light is used to induce cellular damage. To activate the plasmon in the visible range, we synthesized 50 nm diameter spherical gold nanoparticles (AuNP) coated with polyethylene glycol and administered them to an E. coli culture. The experiments were carried out, at different gold nanoparticle concentrations, in the dark and under irradiation. In both cases, the nanoparticles penetrated the bacterial wall, but a different toxic effect was observed; while in the dark we observed an inhibition of bacterial growth of 46%, at the same concentration, under irradiation, we observed a bactericidal effect (99% growth inhibition). Photothermal measurements and SEM observations allowed us to conclude that the extraordinary effect is due to the formation, at low concentrations, of a light-induced cluster of gold nanoparticles, which does not form in the absence of bacteria, leading us to the conclusion that the bacterium wall catalyzes the formation of these clusters which are ultimately responsible for the significant increase in the measured temperature and cause of the bactericidal effect. This photothermal effect is achieved by low-power irradiation and only in the presence of the pathogen: in its absence, the lack of gold nanoparticles clustering does not lead to any phototoxic effect. Therefore, it may represent a proof of concept of an innovative nanoscale pathogen responsive system against bacterial infections.
Collapse
Affiliation(s)
- Angela Candreva
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
| | - Renata De Rose
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis (CM2), University of Calabria, 87036 Rende, Italy
| | - Alexa Guglielmelli
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
- Department of Physics, NLHT-Lab, University of Calabria, 87036 Rende, Italy
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
- Correspondence:
| |
Collapse
|
7
|
Saxena P, Gupta AK, Saharan V. Toxicity of boron nitride nanoparticles influencing bio-physicochemical responses in freshwater green algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23646-23654. [PMID: 36327076 DOI: 10.1007/s11356-022-23912-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Boron nanoparticles have emerged as promising nanomaterials with a wide array of applications in the biomedical, industrial, and environmental fields. However, the potential impact of these nanoparticles on aquatic organisms is not yet known. In the present study, the comparative impact of boron nitride nanoparticles and its bulk form is investigated on two freshwater algae. For this purpose, the effect on the physiological index, cellular morphology, and biochemistry profiles are examined. In Chlorella vulgaris, nano form of boron nitride is found to reduce the growth more (40%) than its bulk form (with ~ 25% growth reduction) at 50 mgl-1 treatment level. While in case of Coelastrella terrestris, 40% reduction under nano form and 33.33% reduction under bulk form is observed at 100 mgl-1 of boron nitride. Chlorophyll and carotenoid levels were also reduced under nanoparticles compared to the bulk. Proline, lactate dehydrogenase, and malondialdehyde assay were found significantly high under nanoparticle exposure. Additionally, increased catalase and superoxide dismutase enzyme activity under nanoparticle exposure revealed that the antioxidant system was activated in both the algae to eliminate the adverse influence of reactive oxygen species. The shading effect and aggregation of nanoparticles over the surface of algal cells are also important factors in attributing toxicity which are confirmed through the compound, TEM, and SEM micrographs. The study suggests that the nano form is more toxic than the bulk form and toxicity is concentration-dependent.
Collapse
Affiliation(s)
- Pallavi Saxena
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Amit Kumar Gupta
- Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Vinod Saharan
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313 001, Rajasthan, India
| |
Collapse
|
8
|
Usman M, Sarwar Y, Abbasi R, Ishaq HM, Iftikhar M, Hussain I, Demirdogen RE, Ihsan A. Nanogold morphologies with the same surface chemistry provoke a different innate immune response: An in-vitro and in-vivo study. NANOIMPACT 2022; 28:100419. [PMID: 36038134 DOI: 10.1016/j.impact.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Gold nanomaterials (GNMs) have unique optical properties with less antigenicity, and their physicochemical properties have strong relation with an immunological response at bio-interface including antigenicity. An interpretation of this correlation would significantly impact on the clinical and theranostic applications of GNMs. Herein, we studied the effect of GNMs morphology on the cytotoxicity (in-vitro), innate immune responses, hepatotoxicity, and nephrotoxicity (in-vivo studies) using gold nano-cups (GNCs), porous gold nanospheres (PGNSs) and solid gold nano particles (SGNPs) coated with the same ligand to ensure similar surface chemistry. The cytotoxicity was assessed via sulfo-rhodamine B (SRB) assay, and the cytotoxicity data showed that morphological features at nanoscale dimensions like surface roughness and hollowness etc. have a significant impact on cellular viability. The biochemical and histopathological study of liver and kidney tissues also showed that all GNMs did not show any toxicity even at high concentration (100 μL). The relative quantification of cytokine gene expression of TNF-α, IFN-γ, IL-4, 1L-6, and 1L-17 (against each morphology) was checked after in-vivo activation in mice. Among the different nanogold morphologies, PVP stabilized GNCs (PVP-GNCs) showed the highest release of pro-inflammatory cytokines, which might be due to their high surface energy and large surface area for exposure as compared to other nanogold morphologies studied. The pro-inflammatory cytokine release could be suppressed by coating with some anti-inflammatory polymer, i.e., inulin. The in-vitro results of pro-inflammatory (TNF-α, IL-1) cytokines also suggested that all GNMs may induce activation of macrophages and Th1 immune response. The in-vivo activation results showed a decrease in mRNA expression of the cytokines (TNF-α, IFN-γ, IL-4, 1L-6 and 1L-17). Based on these findings, we proposed that the shape and morphology of GNMs control their immune response at nano-bio interface, and it must be considered while designing their role for different biomedical applications like immuno-stimulation and bio-imaging.
Collapse
Affiliation(s)
- Muhammad Usman
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan; Department of Biochemistry and Biotechnology, Faculty of Veterinary and Animal Sciences, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Yasra Sarwar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering, G-9/1, Islamabad, Pakistan
| | - Hafiz Muhammad Ishaq
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, MNS-University of Agriculture, Multan 66000, Pakistan
| | - Maryam Iftikhar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SBA-SSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Ruken Esra Demirdogen
- Faculty of Science, Department of Chemistry, Çankırı Karatekin University, Çankırı 18100, Turkey
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan.
| |
Collapse
|
9
|
Vineeth Kumar CM, Karthick V, Kumar VG, Inbakandan D, Rene ER, Suganya KSU, Embrandiri A, Dhas TS, Ravi M, Sowmiya P. The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation. ENVIRONMENTAL RESEARCH 2022; 212:113202. [PMID: 35398077 DOI: 10.1016/j.envres.2022.113202] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The presence and longevity of nanomaterials in the ecosystem, as well as their properties, account for environmental toxicity. When nanomaterials in terrestrial and aquatic systems are exposed to the prevailing environmental conditions, they undergo various transformations such as dissociation, dissolution, and aggregation, which affects the food chain. The toxicity of nanomaterials is influenced by a variety of factors, including environmental factors and its physico-chemical characteristics. Bioaccumulation, biotransformation, and biomagnification are the mechanisms that have been identified for determining the fate of nanomaterials. The route taken by nanomaterials to reach living cells provides us with information about their toxicity profile. This review discusses the recent advances in the transport, transformation, and fate of nanomaterials after they are released into the environment. The review also discusses how nanoparticles affect lower trophic organisms through direct contact, the impact of nanoparticles on higher trophic organisms, and the possible options for remediation.
Collapse
Affiliation(s)
- C M Vineeth Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - V Karthick
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India.
| | - V Ganesh Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - D Inbakandan
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram, 695018, Kerala, India
| | - Asha Embrandiri
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Amhara, Ethiopia
| | - T Stalin Dhas
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - M Ravi
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - P Sowmiya
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| |
Collapse
|
10
|
Gupta A, Singh S. Multimodal Potentials of Gold Nanoparticles for Bone Tissue Engineering and Regenerative Medicine: Avenues and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201462. [PMID: 35758545 DOI: 10.1002/smll.202201462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Osseous tissue repair has advanced due to the introduction of tissue engineering. The key elements required while engineering new tissues involve scaffolds, cells, and bioactive cues. The macrostructural to the nanostructural framework of such complex tissue has engrossed the intervention of nanotechnology for efficient neo-bone formation. Gold nanoparticles (GNPs) have recently gained interest in bone tissue regeneration due to their multimodal functionality. They are proven to modulate the properties of scaffolds and the osteogenic cells significantly. GNPs also influence different metabolic functions within the body, which directly or indirectly govern the mechanism of bone regeneration. Therefore, this review highlights nanoparticle-mediated osteogenic development, focusing on different aspects of GNPs ranging from scaffold modulation to cellular stimulation. The toxic aspects of gold nanoparticles studied so far are critically explicated, while further insight into the advancements and prospects of these nanoparticles in bone regeneration is also highlighted.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
11
|
Progress, Opportunities, and Challenges of Magneto-Plasmonic Nanoparticles under Remote Magnetic and Light Stimulation for Brain-Tissue and Cellular Regeneration. NANOMATERIALS 2022; 12:nano12132242. [PMID: 35808077 PMCID: PMC9268050 DOI: 10.3390/nano12132242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023]
Abstract
Finding curable therapies for neurodegenerative disease (ND) is still a worldwide medical and clinical challenge. Recently, investigations have been made into the development of novel therapeutic techniques, and examples include the remote stimulation of nanocarriers to deliver neuroprotective drugs, genes, growth factors, and antibodies using a magnetic field and/or low-power lights. Among these potential nanocarriers, magneto-plasmonic nanoparticles possess obvious advantages, such as the functional restoration of ND models, due to their unique nanostructure and physiochemical properties. In this review, we provide an overview of the latest advances in magneto-plasmonic nanoparticles, and the associated therapeutic approaches to repair and restore brain tissues. We have reviewed their potential as smart nanocarriers, including their unique responsivity under remote magnetic and light stimulation for the controlled and sustained drug delivery for reversing neurodegenerations, as well as the utilization of brain organoids in studying the interaction between NPs and neuronal tissue. This review aims to provide a comprehensive summary of the current progress, opportunities, and challenges of using these smart nanocarriers for programmable therapeutics to treat ND, and predict the mechanism and future directions.
Collapse
|
12
|
Wang T, Liu W. Emerging investigator series: metal nanoparticles in freshwater: transformation, bioavailability and effects on invertebrates. ENVIRONMENTAL SCIENCE: NANO 2022; 9:2237-2263. [PMID: 35923327 PMCID: PMC9282172 DOI: 10.1039/d2en00052k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
MNPs may undergo different environmental transformations in aquatic systems, consequently changing their mobility, bioavailability and toxicity to freshwater invertebrates.
Collapse
Affiliation(s)
- Ting Wang
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| | - Wei Liu
- Department F.-A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, Earth and Environment Sciences, University of Geneva, Uni Carl Vogt, 66 Blvd Carl-Vogt, CH 1211 Geneva, Switzerland
| |
Collapse
|
13
|
Joseph C, Daniels A, Singh S, Singh M. Histidine-Tagged Folate-Targeted Gold Nanoparticles for Enhanced Transgene Expression in Breast Cancer Cells In Vitro. Pharmaceutics 2021; 14:53. [PMID: 35056949 PMCID: PMC8781941 DOI: 10.3390/pharmaceutics14010053] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Nanotechnology has emerged as a promising treatment strategy in gene therapy, especially against diseases such as cancer. Gold nanoparticles (AuNPs) are regarded as favorable gene delivery vehicles due to their low toxicity, ease of synthesis and ability to be functionalized. This study aimed to prepare functionalized AuNPs (FAuNPs) and evaluate their folate-targeted and nontargeted pCMV-Luc-DNA delivery in breast cancer cells in vitro. CS was added to induce stability and positive charges to the AuNPs (Au-CS), histidine (Au-CS-His) to enhance endosomal escape and folic acid for folate-receptor targeting (Au-CS-FA-His). The FAuNP:pDNA nanocomplexes possessed favorable sizes (<135 nm) and zeta potentials (<-20 mV), strong compaction efficiency and were capable of pDNA protection against nuclease degradation. These nanocomplexes showed minimal cytotoxicity (>73% cell viability) and enhanced transgene activity. The influence of His was notable in the HER2 overexpressing SKBR3 cells, which produced higher gene expression. Furthermore, the FA-targeted nanocomplexes enhanced receptor-mediated endocytosis, especially in MCF-7 cells, as confirmed by the receptor competition assay. While the role of His may need further optimization, the results achieved suggest that these FAuNPs may be suitable gene delivery vehicles for breast cancer therapeutics.
Collapse
Affiliation(s)
- Calrin Joseph
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| | - Sooboo Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| |
Collapse
|
14
|
Mahaye N, Thwala M, Musee N. Interactions of Coated-Gold Engineered Nanoparticles with Aquatic Higher Plant Salvinia minima Baker. NANOMATERIALS 2021; 11:nano11123178. [PMID: 34947527 PMCID: PMC8704737 DOI: 10.3390/nano11123178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022]
Abstract
The study investigated the interactions of coated-gold engineered nanoparticles (nAu) with the aquatic higher plant Salvinia minima Baker in 2,7, and 14 d. Herein, the nAu concentration of 1000 µg/L was used; as in lower concentrations, analytical limitations persisted but >1000 µg/L were deemed too high and unlikely to be present in the environment. Exposure of S. minima to 1000 µg/L of citrate (cit)- and branched polyethyleneimine (BPEI)-coated nAu (5, 20, and 40 nm) in 10% Hoagland’s medium (10 HM) had marginal effect on biomass and growth rate irrespective of nAu size, coating type, or exposure duration. Further, results demonstrated that nAu were adsorbed on the plants’ roots irrespective of their size or coating variant; however, no evidence of internalization was apparent, and this was attributed to high agglomeration of nAu in 10 HM. Hence, adsorption was concluded as the basic mechanism of nAu accumulation by S. minima. Overall, the long-term exposure of S. minima to nAu did not inhibit plant biomass and growth rate but agglomerates on plant roots may block cell wall pores, and, in turn, alter uptake of essential macronutrients in plants, thus potentially affecting the overall ecological function.
Collapse
Affiliation(s)
- Ntombikayise Mahaye
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Melusi Thwala
- Water Centre, Council for Scientific and Industrial Research, Pretoria 0184, South Africa;
| | - Ndeke Musee
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
- Correspondence: or
| |
Collapse
|
15
|
Abstract
Many important discoveries have been made in the field of nanotechnology in the last 40 years. Since then, nanoparticles became nearly ubiquitous. With their spreading use, safety concerns have warranted extensive research of nanotoxicity. This paper offers information about the occurrence, transport, and behaviour of metallic nanoparticles in the aquatic environment. It further summarizes details about parameters that dictate the toxicity of nanoparticles and discusses the general/common mechanisms of their toxicity. This review also focuses on fish exposure to nanoparticles, including the possibility of trophic transport through the food chain. Information on some of the most frequently used metallic nanoparticles, such as silver, gold, and titanium dioxide, is further elaborated on.
Collapse
|
16
|
Khandker SS, Shakil MS, Hossen MS. Gold Nanoparticles; Potential Nanotheranostic Agent in Breast Cancer: A Comprehensive Review with Systematic Search Strategy. Curr Drug Metab 2021; 21:579-598. [PMID: 32520684 DOI: 10.2174/1389200221666200610173724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Breast cancer is a heterogeneous disease typically prevalent among women and is the second-largest cause of death worldwide. Early diagnosis is the key to minimize the cancer-induced complication, however, the conventional diagnostic strategies have been sluggish, complex, and, to some extent, non-specific. Therapeutic tools are not so convenient and side effects of current therapies offer the development of novel theranostic tool to combat this deadly disease. OBJECTIVE This article aims to summarize the advances in the diagnosis and treatment of breast cancer with gold nanoparticles (GNP or AuNP). METHODS A systematic search was conducted in the three popular electronic online databases including PubMed, Google Scholar, and Web of Science, regarding GNP as breast cancer theranostics. RESULTS Published literature demonstrated that GNPs tuned with photosensitive moieties, nanomaterials, drugs, peptides, nucleotide, peptides, antibodies, aptamer, and other biomolecules improve the conventional diagnostic and therapeutic strategies of breast cancer management with minimum cytotoxic effect. GNP derived diagnosis system assures reproducibility, reliability, and accuracy cost-effectively. Additionally, surface-modified GNP displayed theranostic potential even in the metastatic stage of breast cancer. CONCLUSION Divergent strategies have shown the theranostic potential of surface tuned GNPs against breast cancer even in the metastatic stage with minimum cytotoxic effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Shahad Saif Khandker
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Salman Shakil
- Department of Pharmacology & Toxicology, University of Otago, 362 Leith St., North Dunedin, Dunedin 9016, New Zealand
| | - Md Sakib Hossen
- Department of Biochemistry, Primeasia University, Banani, Dhaka, Bangladesh
| |
Collapse
|
17
|
Mahaye N, Leareng SK, Musee N. Cytotoxicity and genotoxicity of coated-gold nanoparticles on freshwater algae Pseudokirchneriella subcapitata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105865. [PMID: 34034204 DOI: 10.1016/j.aquatox.2021.105865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Gold engineered nanoparticles (nAu) are increasingly detected in ecosystems, and this raises the need to establish their potential effects on aquatic organisms. Herein, cytotoxic and genotoxic effects of branched polyethylenimine (BPEI)- and citrate (cit)-coated nAu (5, 20, and 40 nm) on algae Pseudokirchneriella subcapitata were evaluated. The apical biological endpoints: growth inhibition and chlorophyll a (Chl a) content were investigated at 62.5-1000 µg/L over 168 h. In addition, the apurinic/apyrimidinic (AP) sites, randomly amplified polymorphic deoxyribonucleic acid (RAPD) profiles, and genomic template stability (GTS) were assessed to determine the genotoxic effects of nAu. The results show algal growth inhibition at 5 nm BPEI-nAu up to 96 h, and thereafter cell recovery except at the highest concentration of 1000 µg/L. Insignificant growth reduction for cit-nAu (all sizes), as well as 20 and 40 nm BPEI-nAu, was observed over 96 h, but growth promotion was apparent at all exposures thereafter except for 40 nm BPEI-nAu at 250 µg/L. A decrease in Chl a content following exposure to 5 nm BPEI-nAu at 1000 µg/L corresponded to significant algal growth reduction. In genotoxicity studies, a significant increase in AP sites content was observed relative to the control - an indication of nAu ability to induce genotoxic effects irrespective of their size and coating type. For 5 nm- and 20 nm-sized nAu for both coating types and exposure concentrations no differences in AP sites content were observed after 72 and 168 h. However, a significant reduction in AP sites was observed following algae exposure to 40 nm-sized nAu (irrespective of coating type and exposure concentration) at 168 h compared to 72 h. Thus, AP sites results at 40 nm-size suggest likely DNA damage recovery over a longer exposure period. The findings on AP sites content showed a good correlation with an increase in genome template stability and growth promotion observed after 168 h. In addition, RAPD profiles demonstrated that nAu can induce DNA damage and/or DNA mutation to P. subcapitata as evidenced by the appearance and/or disappearance of normal bands compared to the controls. Therefore, genotoxicity results revealed significant toxicity of nAu to algae at the molecular level although no apparent effects were detectable at the morphological level. Overall, findings herein indicate that long-term exposure of P. subcapitata to low concentrations of nAu may cause undesirable sub-lethal ecological effects.
Collapse
Affiliation(s)
- Ntombikayise Mahaye
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Samuel K Leareng
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Ndeke Musee
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa.
| |
Collapse
|
18
|
Shahen SM, Mohamed MR, Ali MRK, Samaka RM, Hamdy GM, Talaat RM. Therapeutic potential of targeted-gold nanospheres on collagen-induced arthritis in rats. Clin Exp Pharmacol Physiol 2021; 48:1346-1357. [PMID: 34060659 DOI: 10.1111/1440-1681.13531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that causes functional disability due to bone destruction and severe joint pain. Current anti-rheumatic treatments develop severe complications and do not provide complete remission. Gold nanoparticles (AuNPs) have garnered attention because of their unique physical and chemical properties. In this study, we have evaluated the therapeutic effects of gold nanospheres (AuNSs) with two different ligands (targeted-nanoparticles) against collagen-induced arthritis (CIA) and compared the outcomes with conventional methotrexate (MTX) and biological (infliximab) treatments. Clinical evaluation was performed by radiographic and histological examinations. The bioaccumulation of AuNSs in vital organs was assessed. The mechanistic studies targeting pro-inflammatory/anti-inflammatory and angiogenic mediators' expressions were performed. Radiographic examination showed that the targeted AuNSs reduced joint space narrowing and bone erosion. Moreover, histopathological examination of rat ankle joints demonstrated that targeted AuNSs reduce bone and cartilage degeneration/inflammation. Gold nanospheres-conjugated with nucleus localized peptide (nuclear membrane-targeted) (AuNSs@NLS) has resolved bone destruction and inflammation compared to gold nanospheres-conjugated at polyethylene glycol (AuNSs@PEG). Although the AuNSs accumulated in different organs in both cases, they did not induce any toxicity or tissue damage. The two different targeted AuNSs significantly suppress inflammatory and angiogenic mediators' expression and induced anti-inflammatory cytokine production, but the AuNSs@NLS had superior therapeutic efficacy. In conclusion, these results suggested that nuclear membrane-targeted AuNSs effectively attenuated arthritis progression without systemic side effects.
Collapse
Affiliation(s)
- Samar M Shahen
- Genetic Engineering and Biotechnology Research Institute (GEBRI), Molecular Biology Department, University of Sadat City (USC, Sadat City, Egypt.,Faculty of Science, Biochemistry Department, Ain shams University, Cairo, Egypt
| | - Mohamed R Mohamed
- Faculty of Science, Biochemistry Department, Ain shams University, Cairo, Egypt
| | - Moustafa R K Ali
- Massachusetts Institute of Technology, Biological Engineering Department, Cambridge, MA, USA
| | - Rehab M Samaka
- Faculty of Medicine, Pathology Department, Menoufia University, Shebin El Kom, Egypt
| | - Germine M Hamdy
- Faculty of Science, Biochemistry Department, Ain shams University, Cairo, Egypt
| | - Roba M Talaat
- Genetic Engineering and Biotechnology Research Institute (GEBRI), Molecular Biology Department, University of Sadat City (USC, Sadat City, Egypt
| |
Collapse
|
19
|
Souza JP, Mansano AS, Venturini FP, Marangoni VS, Lins PMP, Silva BPC, Dressler B, Zucolotto V. Toxicity of gold nanorods on Ceriodaphnia dubia and Danio rerio after sub-lethal exposure and recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25316-25326. [PMID: 33453024 DOI: 10.1007/s11356-021-12423-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Gold nanorods (AuNRs) are rod-shaped nanoparticles (NPs) with special optical properties that allow their application in several areas including photothermal therapy, diagnosis, drug and gene delivery, cellular imaging, and biosensors. Their high potential for many applications increases the possibility of release in aquatic environments, which can cause risks to organisms. In this study, we evaluated toxic effects of AuNRs on cladoceran and fish (Ceriodaphnia dubia and Danio rerio) and their recovery after post-exposure periods. The EC50 of 0.03 mg L-1 was found for C. dubia in the acute exposure. There was a significant decrease in the number of neonates produced and in the filtration rate of C. dubia after sub-lethal exposure to AuNRs. The toxic mechanism of these NPs to cladocerans was attributed to increases in the reactive oxygen species (ROS) generation. After 4 h of recovery in clean medium, C. dubia were able to reestablish the filtration rate. Enzymatic biomarkers for D. rerio showed significant increases in the activity of superoxide dismutase, catalase, and lipid peroxidation after sub-lethal exposure to AuNRs. These biomarkers were recovered after 168 h in clean water. These results are pivotal on the comprehension of AuNR toxicity to aquatic organisms and are useful in assessing this novel nanomaterial impacts on aquatic biota.
Collapse
Affiliation(s)
- Jaqueline P Souza
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil.
| | - Adrislaine S Mansano
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Francine P Venturini
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Valéria S Marangoni
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Paula M P Lins
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Barbara P C Silva
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Bárbara Dressler
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC), University of São Paulo (USP), Avenida Trabalhador Sãocarlense, 400, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
20
|
Al Saqr A, Khafagy ES, Alalaiwe A, Aldawsari MF, Alshahrani SM, Anwer MK, Khan S, Lila ASA, Arab HH, Hegazy WAH. Synthesis of Gold Nanoparticles by Using Green Machinery: Characterization and In Vitro Toxicity. NANOMATERIALS 2021; 11:nano11030808. [PMID: 33809859 PMCID: PMC8004202 DOI: 10.3390/nano11030808] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Green synthesis of gold nanoparticles (GNPs) with plant extracts has gained considerable interest in the field of biomedicine. Recently, the bioreduction nature of herbal extracts has helped to synthesize spherical GNPs of different potential from gold salt. In this study, a fast ecofriendly method was adopted for the synthesis of GNPs using fresh peel (aqueous) extracts of Benincasa hispida, which acted as reducing and stabilizing agents. The biosynthesized GNPs were characterized by UV–VIS and Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering. In addition, the in vitro antibacterial and anticancer activities of synthesized GNPs were investigated. The formation of gold nanoparticles was confirmed by the existence of a sharp absorption peak at 520 nm, corresponding to the surface plasmon resonance (SPR) band of the GNPs. TEM analysis revealed that the prepared GNPs were spherical in shape and had an average particle size of 22.18 ± 2 nm. Most importantly, the synthesized GNPs exhibited considerable antibacterial activity against different Gram-positive and Gram-negative bacteria. Furthermore, the biosynthesized GNPs exerted remarkable in vitro cytotoxicity against human cervical cancer cell line, while sparing normal human primary osteoblast cells. Such cytotoxic effect was attributed to the increased production of reactive oxygen species (ROS) that contributed to the damage of HeLa cells. Collectively, peel extracts of B. hispida can be efficiently used for the synthesis of GNPs, which can be adopted as a natural source of antimicrobial and anticancer agent.
Collapse
Affiliation(s)
- Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +966-533-564-286
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - Saad M. Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - Salman Khan
- Department of Biosciences, Integral University, Lucknow 226026, India;
| | - Amr S. Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
21
|
Guo B, Alivio TEG, Fleer NA, Feng M, Li Y, Banerjee S, Sharma VK. Elucidating the Role of Dissolved Organic Matter and Sunlight in Mediating the Formation of Ag-Au Bimetallic Alloy Nanoparticles in the Aquatic Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1710-1720. [PMID: 33426890 DOI: 10.1021/acs.est.0c06351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Elucidating the interactions between metal ions and dissolved organic matter and deciphering mechanisms for their mineralization in the aquatic environment are central to understanding the speciation, transport, and toxicity of nanoparticles (NPs). Herein, we examine the interactions between Ag+ and Au3+ ions in mixed solutions (χAg = 0.2, 0.5, and 0.8) in the presence of humic acids (HAs) under simulated sunlight; these conditions result in the formation of bimetallic Ag-Au NPs. A key distinction is that the obtained alloy NPs are compositionally and morphologically rather different from NPs obtained from thermally activated dark processes. Photoillumination triggers a distinctive plasmon-mediated process for HA-assisted reductive mineralization of ions to bimetallic alloy NPs which is not observed in its dark thermal reduction counterpart. The initial nucleation of bimetallic NPs is dominated by differences in the cohesive energies of Ag and Au crystal lattices, whereas the growth mechanisms are governed by the strongly preferred incorporation of Ag ions, which stems from their greater photoreactivity. The bimetallic NPs crystallize in shapes governed by the countervailing influence of minimizing free energy through the adoption of Wulff constructions and the energetic penalties associated with twin faults. As such, assessments of the stability and the potential toxic effects of bimetallic NPs arising from their possible existence in aquatic environments will depend sensitively on the origins of their formation.
Collapse
Affiliation(s)
- Binglin Guo
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843-8371, United States
| | - Theodore E G Alivio
- Department of Chemistry & Physical Sciences, Nicholls State University, Thibodaux, Louisiana 70301-6701, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3012, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Nathan A Fleer
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3012, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Mingbao Feng
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843-8371, United States
| | - Ying Li
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3127, United States
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3012, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843-8371, United States
| |
Collapse
|
22
|
Enea M, Pereira E, Costa J, Soares ME, Dias da Silva D, Bastos MDL, Carmo HF. Cellular uptake and toxicity of gold nanoparticles on two distinct hepatic cell models. Toxicol In Vitro 2021; 70:105046. [PMID: 33147519 DOI: 10.1016/j.tiv.2020.105046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/28/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) have huge potential for various biomedical applications, but their successful use depends on their uptake and possible toxicity in the liver, their main site for accumulation. Therefore, in this work we compared the cytotoxic effects induced by AuNPs with different size (~ 15 nm and 60 nm), shape (nanospheres and nanostars) and capping [citrate- or 11-mercaptoundecanoic acid (MUA)], in human HepaRG cells or primary rat hepatocytes (PRH) cultivated with serum-free or Foetal Bovine Serum (FBS)-supplemented media. The safety assessment of the AuNPs demonstrated that overall they present low toxicity towards hepatic cells. Among all the tested AuNPs, the smaller 15 nm spheres displayed the highest toxicity. The toxicological effect was capping, size and cell-type dependent with citrate-capping more toxic than MUA (PRH with FBS), the 15 nm AuNPs more toxic than 60 nm counterparts and PRH more sensitive, as compared to the HepaRG cells. The incubation with FBS-free media produced aggregation of AuNPs while its presence greatly influenced the toxicity outcomes. The cellular uptake of AuNPs was shape, size and capping dependent in PRH cultivated in FBS-supplemented media, and significantly different between the two types of cells with extensively higher internalization of AuNPs in PRH, as compared to the HepaRG cells. These data show that the physical-chemical properties of AuNPs, including size and shape, as well as the type of cellular model, greatly influence the interaction of the AuNPs with the biological environment and consequently, their toxicological effects.
Collapse
Affiliation(s)
- Maria Enea
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal; REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, Porto 4169-007, Portugal.
| | - Eulália Pereira
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, Porto 4169-007, Portugal
| | - Joana Costa
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Maria Elisa Soares
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Diana Dias da Silva
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Maria de Lourdes Bastos
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Helena Ferreira Carmo
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| |
Collapse
|
23
|
El Hoffy NM, Abdel Azim EA, Hathout RM, Fouly MA, Elkheshen SA. Glaucoma: Management and Future Perspectives for Nanotechnology-Based Treatment Modalities. Eur J Pharm Sci 2020; 158:105648. [PMID: 33227347 DOI: 10.1016/j.ejps.2020.105648] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/12/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Glaucoma, being asymptomatic for relatively late stage, is recognized as a worldwide cause of irreversible vision loss. The eye is an impervious organ that exhibits natural anatomical and physiological barriers which renders the design of an efficient ocular delivery system a formidable task and challenge scientists to find alternative formulation approaches. In the field of glaucoma treatment, smart delivery systems for targeting have aroused interest in the topical ocular delivery field owing to its potentiality to oppress many treatment challenges associated with many of glaucoma types. The current momentum of nano-pharmaceuticals, in the development of advanced drug delivery systems, hold promises for much improved therapies for glaucoma to reduce its impact on vision loss. In this review, a brief about glaucoma; its etiology, predisposing factors and different treatment modalities has been reviewed. The diverse ocular drug delivery systems currently available or under investigations have been presented. Additionally, future foreseeing of new drug delivery systems that may represent potential means for more efficient glaucoma management are overviewed. Finally, a gab-analysis for the required investigation to pave the road for commercialization of ocular novel-delivery systems based on the nano-technology are discussed.
Collapse
Affiliation(s)
- Nada M El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt
| | - Engy A Abdel Azim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
24
|
Barreto A, Carvalho A, Silva D, Pinto E, Almeida A, Paíga P, Correira-Sá L, Delerue-Matos C, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M. Effects of single and combined exposures of gold (nano versus ionic form) and gemfibrozil in a liver organ culture of Sparus aurata. MARINE POLLUTION BULLETIN 2020; 160:111665. [PMID: 33181940 DOI: 10.1016/j.marpolbul.2020.111665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/15/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
In vitro methods have gained rising importance in ecotoxicology due to ethical concerns. The aim of this study was to assess the single and combined in vitro effects of gold, as nanoparticle (AuNPs) and ionic (Au+) form, and the pharmaceutical gemfibrozil (GEM). Sparus aurata liver organ culture was exposed to gold (4 to 7200 μg·L-1), GEM (1.5 to 15,000 μg·L-1) and combination 80 μg·L-1 gold +150 μg·L-1 GEM for 24 h. Endpoints related with antioxidant status, peroxidative/genetic damage were assessed. AuNPs caused more effects than Au+, increasing catalase and glutathione reductase activities and damaging DNA and cellular membranes. Effects were dependent on AuNPs size, coating and concentration. GEM damaged DNA at an environmentally relevant concentration, 1.5 μg·L-1. Overall, the effects of the combined exposures were higher than the predicted, based on single exposures. This study showed that liver culture can be a useful model to study contaminants effects.
Collapse
Affiliation(s)
- A Barreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - A Carvalho
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - D Silva
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - E Pinto
- Departamento de Saúde Ambiental, Escola Superior de Saúde, P. Porto. CISA/Centro de Investigação em saúde e Ambiente, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - A Almeida
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - L Correira-Sá
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - C Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - T Trindade
- Departamento de Química & CICECO - Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316 Oslo, Norway
| | - S Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
25
|
Hlavkova D, Caloudova H, Palikova P, Kopel P, Plhalova L, Beklova M, Havelkova B. Effect of Gold Nanoparticles and Ions Exposure on the Aquatic Organisms. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:530-537. [PMID: 32940716 DOI: 10.1007/s00128-020-02988-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
An increase in the production and usage of gold nanoparticles (AuNPs) triggers the necessity to focus on their impact on ecosystems. Therefore, the purpose of this study was to investigate the acute toxicity of AuNPs and ionic gold (Au (III)) to organisms representing all trophic levels of the aquatic ecosystem, namely producers (duckweed Lemna minor), consumers (crustacean Daphnia magna, embryos of Danio rerio) and decomposers (bacteria Vibrio fischeri). The organisms were exposed according to a standardized protocol for each species and endpoints. The AuNPs (1.16 and 11.6 d.nm) were synthesized using citrate (CIT) and polyvinylpyrrolidone (PVP) as capping agents, respectively. It was found, that Au (III) was significantly more toxic than AuNPs PVP and AuNPs CIT. AuNPs showed significant toxicity only at high concentrations (mg/L), which are not environmentally relevant in the present time, but a cautious approach is advised, due to the possibility of interactions with other contaminants.
Collapse
Affiliation(s)
- Daniela Hlavkova
- Department of Ecology and Diseases of Zooanimals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic.
| | - Hana Caloudova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Pavla Palikova
- Department of Ecology and Diseases of Zooanimals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Lucie Plhalova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Miroslava Beklova
- Department of Ecology and Diseases of Zooanimals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Barbora Havelkova
- Department of Ecology and Diseases of Zooanimals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
26
|
Nguyen MK, Moon JY, Lee YC. Microalgal ecotoxicity of nanoparticles: An updated review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110781. [PMID: 32497816 DOI: 10.1016/j.ecoenv.2020.110781] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, nanotechnology and its related industries are becoming a rapidly explosive industry that offers many benefits to human life. However, along with the increased production and use of nanoparticles (NPs), their presence in the environment creates a high risk of increasing toxic effects on aquatic organisms. Therefore, a large number of studies focusing on the toxicity of these NPs to the aquatic organisms are carried out which used algal species as a common biological model. In this review, the influences of the physio-chemical properties of NPs and the response mechanisms of the algae on the toxicity of the NPs were discussed focusing on the "assay" studies. Besides, the specific algal toxicities of each type of NPs along with the NP-induced changes in algal cells of these NPs are also assessed. Almost all commonly-used NPs exhibit algal toxicity. Although the algae have similarities in the symptoms under NP exposure, the sensitivity and variability of each algae species to the inherent properties of each NPs are quite different. They depend strongly on the concentration, size, characteristics of NPs, and biochemical nature of algae. Through the assessment, the review identifies several gaps that need to be further studied to make an explicit understanding. The findings in the majority of studies are mostly in laboratory conditions and there are still uncertainties and contradictory/inconsistent results about the behavioral effects of NPs under field conditions. Besides, there remains unsureness about NP-uptake pathways of microalgae. Finally, the toxicity mechanisms of NPs need to be thoughtfully understood which is essential in risk assessment.
Collapse
Affiliation(s)
- Minh Kim Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116 Samseongyoro-16 gil, Seoul, 02876, Republic of Korea.
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
27
|
De A, Ghosh S, Chakrabarti M, Ghosh I, Banerjee R, Mukherjee A. Effect of low-dose exposure of aluminium oxide nanoparticles in Swiss albino mice: Histopathological changes and oxidative damage. Toxicol Ind Health 2020; 36:567-579. [PMID: 32757906 DOI: 10.1177/0748233720936828] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rapid growth in the use of aluminium oxide nanoparticles (Al2O3 NPs) in various fields such as medicine, pharmacy, cosmetic industries, and engineering creates concerns since the literature is replete with data regarding their toxicity in living organisms. The objective of the present study was to demonstrate the potential toxicological manifestations of repeated exposure to Al2O3 NP at low doses in vivo. In the present study, Al2O3 NP was orally administered at 15, 30 or 60 mg kg−1 body weight for 5 days to Swiss albino male mice. A battery of well-defined assays was undertaken to evaluate aluminium (Al) bioaccumulation, haematological and histological changes, oxidative damage and genotoxicity. Physico-chemical characterisation demonstrated increases in hydrodynamic diameter along the concentration gradient of Al2O3 NP dispersed in MilliQ water. Brain, liver, spleen, kidney and testes showed high Al retention levels. Histopathological lesions were prominent in the brain and liver. Al2O3 NP treatment increased levels of lipid peroxidation and decreased glutathione content in the test organs at all dose levels. The enzyme activities of catalase and superoxide dismutase were also significantly altered. DNA damage quantified using the comet assay was markedly increased in all the soft organs studied. Anatomical abnormalities, redox imbalance and DNA damage were positively correlated with Al retention in the respective organs. Size, zeta potential and colloidal state might have contributed to the bio-physico-chemical interactions of the NPs in vivo and were responsible for the non-linear dose response. The overall data indicate that Al2O3 NP exposure may result in adverse health consequences, inclusive of but not limited to disturbed redox homeostasis, hepatocellular toxicity, neurodegeneration and DNA damage.
Collapse
Affiliation(s)
- Arpita De
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Swarupa Ghosh
- Department of Microbiology, Adamas University, Kolkata, West Bengal, India
| | - Manoswini Chakrabarti
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Ilika Ghosh
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ritesh Banerjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
28
|
Barreto A, Dias A, Duarte B, Pinto E, Almeida A, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M. Biological effects and bioaccumulation of gold in gilthead seabream (Sparus aurata) - Nano versus ionic form. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137026. [PMID: 32036137 DOI: 10.1016/j.scitotenv.2020.137026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The question of whether gold (Au) is more toxic as nanoparticles or in its ionic form remains unclear and controversial. The present work aimed to clarify the effects of 96 h exposure to 4, 80 and 1600 μg·L-1 of 7 nm gold nanoparticles (AuNPs) - (citrate coated (cAuNPs) or polyvinylpyrrolidone coated (PVP-AuNPs)) - and ionic Au (iAu) on gilthead seabream (Sparus aurata). Effects at different levels of biological organization (behaviour, neurotransmission, biotransformation, oxidative stress/damage and genotoxicity) were assessed. cAuNPs induced oxidative stress and damage (lipid peroxidation increase), even at 4 μg·L-1, and reduced the ability of S. aurata to swim against a water flow at 1600 μg·L-1. Exposure to cAuNPs induced more adverse effects than exposure to PVP-AuNPs. All tested concentrations of Au (nano or ionic form) induced DNA breaks and cytogenetic damage in erythrocytes of S. aurata. Generally, iAu induced significantly more effects in fish than the nano form, probably associated with the significantly higher accumulation in the fish tissues. No fish mortality was observed following exposure to AuNPs, but mortality was observed in the group exposed to 1600 μg·L-1 of iAu.
Collapse
Affiliation(s)
- A Barreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - A Dias
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - B Duarte
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - E Pinto
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; Department of Environmental Health, School of Health, P.Porto. CISA/Research Center in Environment and Health, 4200-072 Porto, Portugal
| | - A Almeida
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - T Trindade
- Departamento de Química & CICECO, Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316 Oslo, Norway
| | - S Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
29
|
Carneiro MFH, Machado ART, Antunes LMG, Souza TE, Freitas VA, Oliveira LCA, Rodrigues JL, Pereira MC, Barbosa F. Gold-Coated Superparamagnetic Iron Oxide Nanoparticles Attenuate Collagen-Induced Arthritis after Magnetic Targeting. Biol Trace Elem Res 2020; 194:502-513. [PMID: 31313244 DOI: 10.1007/s12011-019-01799-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 01/15/2023]
Abstract
The aim of the study was to evaluate if gold-coated superparamagnetic iron oxide nanoparticles (AuSPION) magnetic-targeted to the arthritic articulation of collagen induced arthritis (CIA) rats are able to ameliorate rheumatoid arthritis without producing significant biological adverse effects in comparison to colloidal Au nanoparticles (AuC) and metotrexate (MTX). Male Wistar rats were divided into control; arthritic; AuSPION (150 μg kg-1); AuC (150 μg kg-1) and MTX (2.5 μg kg-1). Treatments were administered thrice every other day by the intraperitoneal route 15 min after all groups had a neodymium magnet coupled to the right ankle joint (kept for 1 h). Paw edema and body weight were measured weekly. Joint sections were evaluated by Haematoxylin & Eosin and immunohistochemistry (TNF-α, IL-1β). Biomarkers of oxidative stress were used to evaluate toxicity. Among the evaluated treatments, AuSPION led to significant clinical improvements (decreased edema and infiltration by leukocytes as well as less positively immunostained cells for both TNF-α and IL-1β in synovium) accompanied by a lack of toxicity as indicated by redox state and genotoxicity assays. Our results clearly indicate that the magnetic targeting of AuSPION suppresses joint edema and inflammation, cytokine expression as well as the redox imbalance, thereby contributing to an amelioration of arthritis severity in CIA rats. The results demonstrate for the first time the potentiality of AuSPION administration under a magnetic field as an attractive alternative for future treatments of rheumatic diseases.
Collapse
Affiliation(s)
| | - Ana Rita T Machado
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lusânia M G Antunes
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Talita E Souza
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG,, Brazil
| | - Victor A Freitas
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG,, Brazil
| | - Luiz C A Oliveira
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG,, Brazil
| | - Jairo L Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG,, Brazil
| | - Marcio C Pereira
- Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Teófilo Otoni, MG,, Brazil
| | - Fernando Barbosa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
30
|
Barreto A, Carvalho A, Campos A, Osório H, Pinto E, Almeida A, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M. Effects of gold nanoparticles in gilthead seabream-A proteomic approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105445. [PMID: 32078886 DOI: 10.1016/j.aquatox.2020.105445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Despite the widespread use of nanoparticles (NPs), there are still major gaps of knowledge regarding the impact of nanomaterials in the environment and aquatic animals. The present work aimed to study the effects of 7 and 40 nm gold nanoparticles (AuNPs) - citrate and polyvinylpyrrolidone (PVP) coated - on the liver proteome of the estuarine/marine fish gilthead seabream (Sparus aurata). After 96 h, exposure to AuNP elicited alterations on the abundance of 26 proteins, when compared to the control group. AuNPs differentially affected several metabolic pathways in S. aurata liver cells. Among the affected proteins were those related to cytoskeleton and cell structure, gluconeogenesis, amino acids metabolism and several processes related to protein activity (protein synthesis, catabolism, folding and transport). The increased abundance of proteins associated with energy metabolism (ATP synthase subunit beta), stress response (94 kDa glucose-regulated protein) and cytoskeleton structure (actins and tubulins) may represent the first signs of cellular oxidative stress induced by AuNPs. Although higher gold accumulation was found in the liver of S. aurata exposed to 7 nm PVP-AuNPs, the 7 nm cAuNPs were more bioactive, inducing more effects in liver proteome. Gold accumulated more in the spleen than in the other assessed tissues of S. aurata exposed to AuNPs, highlighting its potential role on the elimination of these NPs.
Collapse
Affiliation(s)
- A Barreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - A Carvalho
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - A Campos
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208, Matosinhos, Portugal
| | - H Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto, IPATIMUP, Porto, Portugal; Faculdade de Medicina, Universidade do Porto, Portugal
| | - E Pinto
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Departamento de Saúde Ambiental, Escola Superior de Saúde, P. Porto. CISA/Centro de Investigação em Saúde e Ambiente, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - A Almeida
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - T Trindade
- Departamento de Química & CICECO - Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316, Oslo, Norway
| | - S Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - M Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
31
|
Dose-dependent cell necrosis induced by silica nanoparticles. Toxicol In Vitro 2020; 63:104723. [DOI: 10.1016/j.tiv.2019.104723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/30/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022]
|
32
|
Lekamge S, Miranda AF, Pham B, Ball AS, Shukla R, Nugegoda D. The toxicity of non-aged and aged coated silver nanoparticles to the freshwater shrimp Paratya australiensis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 82:1207-1222. [PMID: 31900064 DOI: 10.1080/15287394.2019.1710887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles (NPs) transform in the environment which result in alterations to their physicochemical properties. However, the effects of aging on the toxicity of NPs to aquatic organisms remain to be determined. Further the reports that have been published present contradictory results. The aim of this study was to examine the stability of differently coated silver nanoparticles (AgNPs) in media and the influence of aging of these NP on potential toxicity to freshwater shrimp Paratya australiensis. Coating-dependent changes in the stability of AgNP were observed with aging. Curcumin (C) coated AgNPs were stable, while tyrosine (T) coated AgNPs and epigallocatechin gallate (E) coated AgNPs aggregated in the P. australiensis medium. Increased lipid peroxidation and catalase activity was noted in P. australiensis exposed to AgNPs, suggesting oxidative stress was associated with NP exposure. The enhanced oxidative stress initiated by aged C-AgNPs suggests that aging of these NPs produced different toxicological responses. In summary, data suggest that coating-dependent alterations in NPs, together with aging affect both persistence and subsequent toxicity of NPs to freshwater organisms. Thus, the coating-dependent fate and toxicity of AgNPs together with the effect of their aging need to be considered in assessing the environmental risk of AgNPs to aquatic organisms.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| | - Ana F Miranda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
| | - Ben Pham
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory, RMIT University, Melbourne, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| |
Collapse
|
33
|
Kumar A, Das N, Satija NK, Mandrah K, Roy SK, Rayavarapu RG. A Novel Approach towards Synthesis and Characterization of Non-Cytotoxic Gold Nanoparticles Using Taurine as Capping Agent. NANOMATERIALS 2019; 10:nano10010045. [PMID: 31878144 PMCID: PMC7023053 DOI: 10.3390/nano10010045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022]
Abstract
Metal gold nanoparticles are of great interest due to their unique physico-chemical properties and their potential to be used as nano-probes in biosensors, drug delivery, and therapeutic applications. Currently, many capping agents are used for metal gold nanoparticles, such as cetyltrimethylammonium bromide (CTAB) and tri-sodium citrate that have been reported to be toxic and hinders biological applications. To address this issue, we report, for the first time, the use of taurine as a stable non-cytotoxic capping agent for synthesizing gold nanoparticles by using an in situ wet-chemical method. This facile method resulted in monodisperse gold nanospheres with a high yield and stability. Monodisperse gold nanospheres with average diameters of 6.9 nm and 46 nm were synthesized at a high yield with controlled morphology. Temperature played a critical role in determining the size of the taurine-capped gold nanoparticles. The subtle changes in the reaction parameters had a tremendous effect on the final size of nanoparticles and their stability. The synthesized nanoparticles were characterized by using optical spectroscopy, a ZetaSizer, a NanoSight, Fourier Transform Infrared (FTIR) spectroscopy, X-ray Diffraction (XRD), X-ray Photon Spectroscopy (XPS) and Electron Microscopy to understand their physico-chemical properties. Taurine was explored as a capping and stabilizing agent for gold nanospheres, which were evaluated for their toxicity responses towards human liver carcinoma cells (HepG2) via MTT assay.
Collapse
Affiliation(s)
- Akash Kumar
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nabojit Das
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar Satija
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Somendu Kumar Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Raja Gopal Rayavarapu
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
34
|
A Metabolomic Approach for the In Vivo Study of Gold Nanospheres and Nanostars after a Single-Dose Intravenous Administration to Wistar Rats. NANOMATERIALS 2019; 9:nano9111606. [PMID: 31726761 PMCID: PMC6915599 DOI: 10.3390/nano9111606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
Gold nanoparticles (AuNPs) are promising nanoplatforms for drug therapy, diagnostic and imaging. However, biological comparison studies for different types of AuNPs fail in consistency due to the lack of sensitive methods to detect subtle differences in the expression of toxicity. Therefore, innovative and sensitive approaches such as metabolomics are much needed to discriminate toxicity, specially at low doses. The current work aims to compare the in vivo toxicological effects of gold nanospheres versus gold nanostars (of similar ~40 nm diameter and coated with 11-mercaptoundecanoic acid) 24 h after an intravenous administration of a single dose (1.33 × 1011 AuNPs/kg) to Wistar rats. The biodistribution of both types of AuNPs was determined by graphite furnace atomic absorption spectroscopy. The metabolic effects of the AuNPs on their main target organ, the liver, were analyzed using a GC-MS-based metabolomic approach. Conventional toxicological endpoints, including the levels of ATP and reduced and oxidized glutathione, were also investigated. The results show that AuNPs preferentially accumulate in the liver and, to a lesser extent, in the spleen and lungs. In other organs (kidney, heart, brain), Au content was below the limit of quantification. Reduced glutathione levels increased for both nanospheres and nanostars in the liver, but ATP levels were unaltered. Multivariate analysis showed a good discrimination between the two types of AuNPs (sphere- versus star-shaped nanoparticles) and compared to control group. The metabolic pathways involved in the discrimination were associated with the metabolism of fatty acids, pyrimidine and purine, arachidonic acid, biotin, glycine and synthesis of amino acids. In conclusion, the biodistribution, toxicological, and metabolic profiles of gold nanospheres and gold nanostars were described. Metabolomics proved to be a very useful tool for the comparative study of different types of AuNPs and raised awareness about the pathways associated to their distinct biological effects.
Collapse
|
35
|
Davarpanah E, Guilhermino L. Are gold nanoparticles and microplastics mixtures more toxic to the marine microalgae Tetraselmis chuii than the substances individually? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:60-68. [PMID: 31174108 DOI: 10.1016/j.ecoenv.2019.05.078] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
The widespread use of microplastics and nanomaterials resulting in environmental contamination is of high concern. Microplastics have been found to modulate the toxicity of other environmental contaminants. Thus, the hypothesis that microplastics increase the toxicity of gold nanoparticles to the marine microalgae Tetraselmis chuii was tested. In a laboratory bioassay, T. chuii cultures were exposed for 96 h to ∼5 nm diameter gold nanoparticles (AuNP) and to virgin 1-5 μm diameter microplastics (MP), alone and in mixture. The treatments were: control; citrate-control; AuNP alone (0.1, 0.3 and 3 mg/L); MP alone (0.3, 0.9 and 4 mg/L) and mixture of the two substances in three different concentrations (0.1 mg/L AuNP + 0.3 mg/L MP; 0.3 mg/L AuNP + 0.9 mg/L MP; 3 mg/l AuNP + 4 mg/L MP). The effect criterion was the inhibition of the average specific growth rate. AuNP alone and MP alone did not cause significant decrease of T. chui average specific growth rate up to 3 mg/L and 4 mg/L, respectively. The mixture containing 3 mg/L AuNP + 4 mg/L MP significantly reduced the average specific growth rate of the microalgae. Therefore, this mixture was more toxic to T. chuii than its components individually. Overall, the results of the present study indicated that the MP and AuNP tested have a relatively low toxicity to T. chuii, but the toxicity increases when they are in mixtures containing high concentrations of both substances. These proof-of-concept findings stress the need of more research on the toxicity of mixtures containing microplastics and nanomaterials.
Collapse
Affiliation(s)
- Elham Davarpanah
- ICBAS - Institute of Biomedical Sciences of Abel Salazar, University of Porto, Department of Populations Studies, Laboratory of Ecotoxicology (ECOTOX), Rua de Jorge Viterbo Ferreira, 225, 4050-313 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Portugal.
| | - Lúcia Guilhermino
- ICBAS - Institute of Biomedical Sciences of Abel Salazar, University of Porto, Department of Populations Studies, Laboratory of Ecotoxicology (ECOTOX), Rua de Jorge Viterbo Ferreira, 225, 4050-313 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health (ECOTOX), Portugal.
| |
Collapse
|
36
|
Green gold nanoparticles from plant-derived materials: an overview of the reaction synthesis types, conditions, and applications. REV CHEM ENG 2019. [DOI: 10.1515/revce-2018-0051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Many studies have examined metallic nanoparticles (NPs) produced according to the principles of green chemistry. Gold NPs have drawn much more attention than other metallic NPs in recent years. Moreover, among all gold NP synthesis studies, using plant-derived molecules is one of the commonly used reductants in studies on NP synthesis because of its convenience in terms of shape, size control advantage, and nontoxic specifications. The present review focused on studies of the synthesis of gold NP types, including single gold atom NPs, alloyed AU NPs, and core-shell Au NPs as well as their conditions and applications. The effect of those structures on application fields such as catalysis, antifungal action, antibacterial activities, sensors and so on are also summarized. Furthermore, the morphology and synthesis conditions of the primer and secondary NP were discussed. In addition to synthesis methods, characterization methods were analyzed in the context of the considerable diversity of the reducing agents used. As the reducing agents used in most studies, polyphenols and proteins usually play an active role. Finally, the challenges and drawbacks in plant-derived agent usage for the preparation of Au NPs at various industries were also discussed.
Collapse
|
37
|
Iswarya V, Palanivel A, Chandrasekaran N, Mukherjee A. Toxic effect of different types of titanium dioxide nanoparticles on Ceriodaphnia dubia in a freshwater system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11998-12013. [PMID: 30827021 DOI: 10.1007/s11356-019-04652-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
In the current study, the effect of different types of titanium dioxide (TiO2) nanoparticles (NPs) (rutile, anatase, and mixture) was analyzed on Ceriodaphnia dubia in the presence of algae under distinct irradiation conditions such as visible and UV-A. The toxicity experiments were performed in sterile freshwater to mimic the chemical composition of the freshwater system. In addition, the oxidative stress biomarkers such as MDA, catalase, and GSH were analyzed to elucidate the stress induced by the NPs on daphnids. Individually, both rutile and anatase NPs induced similar mortality under both visible and UV-A irradiations at all the test concentrations except 600 and 1200 μM where rutile induced higher mortality under UV-A. Upon visible irradiation, the binary mixture exhibited a synergistic effect at their lower concentration and an additive effect at higher concentrations. In contrast, UV-A irradiation demonstrated the additive effect of mixture except for 1200 μM which elucidated antagonistic effect. Mathematical model confirmed the effects of the binary mixture. The surface interaction between the individual NPs in the form of aggregation played a pivotal role in the induction of specific effects exhibited by the binary mixture. Oxidative stress biomarkers were highly increased upon NPs exposure especially under visible irradiation. These observations elucidated that the irradiation and crystallinity effect of TiO2 NPs were noted only on certain biomarkers and not on the mortality.
Collapse
Affiliation(s)
- Velu Iswarya
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Abirami Palanivel
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
38
|
Barreto A, Luis LG, Pinto E, Almeida A, Paíga P, Santos LHMLM, Delerue-Matos C, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M. Genotoxicity of gold nanoparticles in the gilthead seabream (Sparus aurata) after single exposure and combined with the pharmaceutical gemfibrozil. CHEMOSPHERE 2019; 220:11-19. [PMID: 30576896 DOI: 10.1016/j.chemosphere.2018.12.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Due to their diverse applications, gold nanoparticles (AuNPs) are expected to increase of in the environment, although few studies are available on their mode of action in aquatic organisms. The genotoxicity of AuNPs, alone or combined with the human pharmaceutical gemfibrozil (GEM), an environmental contaminant frequently detected in aquatic systems, including in marine ecosystems, was examined using gilthead seabream erythrocytes as a model system. Fish were exposed for 96 h to 4, 80 and 1600 μg L-1 of 40 nm AuNPs with two coatings - citrate or polyvinylpyrrolidone; GEM (150 μg L-1); and a combination of AuNPs and GEM (80 μg L-1 AuNPs + 150 μg L-1 GEM). AuNPs induced DNA damage and increased nuclear abnormalities levels, with coating showing an important role in the toxicity of AuNPs to fish. The combined exposures of AuNPs and GEM produced an antagonistic response, with observed toxic effects in the mixtures being lower than the predicted. The results raise concern about the safety of AuNPs and demonstrate interactions between them and other contaminants.
Collapse
Affiliation(s)
- A Barreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - L G Luis
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - E Pinto
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - A Almeida
- LAQV-REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - L H M L M Santos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - C Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - T Trindade
- Departamento de Química & CICECO - Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316 Oslo, Norway
| | - S Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
39
|
Meng CY, Han YF, Liu YL, Gao HX, Ren YY, Qian QZ, Wang Q, Li QZ. Resveratrol alleviate the injury of mice liver induced by cadmium sulfide nanoparticles. Kaohsiung J Med Sci 2019; 35:297-302. [PMID: 30913377 DOI: 10.1002/kjm2.12056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/25/2019] [Indexed: 01/12/2023] Open
Abstract
Cadmium sulfide nanoparticle (Nano-CdS) is a kind of important semiconductor material with special photochemistry property. With the Nano-CdS being widely used, the security problems it caused have been catching more and more attention. This study aims to explore the possible mechanism of liver injury induced by Nano-CdS and whether resveratrol can reduce the damage. In this study, male BALB/C mice were treated with Nano-CdS with a diameter of 20 to 30 nm and a length of 80 to 100 nm. It turned out that the mice liver inflammatory cells infiltrated, the liver tissue and the ultrastructure changed; The activities of T-AOC and GSH were suppressed (n = 6, P < 0.05) and the content of lipid peroxide (MDA) increased (n = 6, P < 0.05). Besides, Nano-CdS decreased the mRNA expression level of Sirt1 and FoxO1 genes in liver tissue (n = 3, P < 0.05). All the changes in the index were reversed by resveratrol. The mRNA expression level of FoxO3a showed no significant difference between the control group and the Nano-CdS group. But under the protection of resveratrol, the mRNA expression level of FoxO3a was higher than that in the control and Nano-CdS groups (n = 3, P < 0.05). Results suggest that Nano-CdS can cause oxidative damages to liver tissues in mice, in which process that the Sirt1 and FoxO1 genes may participate, and the damage can be reversed by resveratrol which may be a potential cure for oxidative damage to nanomaterials.
Collapse
Affiliation(s)
- Chun-Yan Meng
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Ya-Feng Han
- The section of Infectious Disease Control, Tianjin Hebei District Center for Disease Control and Prevention, Tianjin, PR China
| | - Ying-Li Liu
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Hong-Xia Gao
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Yi-Yi Ren
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Qing-Zeng Qian
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Qian Wang
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Qing-Zhao Li
- Laboratory of Coal Mine Health and Safety, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| |
Collapse
|
40
|
Toxicity of gold nanoparticles in a commercial dietary supplement drink on connective tissue fibroblast cells. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0354-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
41
|
Barreto A, Luis LG, Pinto E, Almeida A, Paíga P, Santos LHMLM, Delerue-Matos C, Trindade T, Soares AMVM, Hylland K, Loureiro S, Oliveira M. Effects and bioaccumulation of gold nanoparticles in the gilthead seabream (Sparus aurata) - Single and combined exposures with gemfibrozil. CHEMOSPHERE 2019; 215:248-260. [PMID: 30317096 DOI: 10.1016/j.chemosphere.2018.09.175] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles (AuNPs) are found in a wide range of applications and therefore expected to present increasing levels in the environment. There is however limited knowledge concerning the potential toxicity of AuNPs as well as their combined effects with other pollutants. Hence, the present study aimed to investigate the effects of AuNPs alone and combined with the pharmaceutical gemfibrozil (GEM) on different biological responses (behaviour, neurotransmission, biotransformation and oxidative stress) in one of the most consumed fish in southern Europe, the seabream Sparus aurata. Fish were exposed for 96 h to waterborne 40 nm AuNPs with two coatings - citrate and polyvinylpyrrolidone (PVP), alone or combined with GEM. Antioxidant defences were induced in liver and gills upon both AuNPs exposure. Decreased swimming performance (1600 μg.L-1) and oxidative damage in gills (4 and 80 μg.L-1) were observed following exposure to polyvinylpyrrolidone coated gold nanoparticles (PVP-AuNPs). Generally, accumulation of gold in fish tissues and deleterious effects in S. aurata were higher for PVP-AuNPs than for cAuNPs exposures. Although AuNPs and GEM combined effects in gills were generally low, in liver, they were higher than the predicted. The accumulation and effects of AuNPs showed to be dependent on the size, coating, surface charge and aggregation/agglomeration state of nanoparticles. Additionally, it was tissue' specific and dependent on the presence of other contaminants. Although, gold intake by humans is expected to not exceed the estimated tolerable daily intake, it is highly recommended to keep it on track due to the increasing use of AuNPs.
Collapse
Affiliation(s)
- A Barreto
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - L G Luis
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - E Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - A Almeida
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P Paíga
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - L H M L M Santos
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - C Delerue-Matos
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - T Trindade
- Departamento de Química & CICECO - Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316 Oslo, Norway
| | - S Loureiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - M Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
42
|
Tao C. Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects. Lett Appl Microbiol 2018; 67:537-543. [PMID: 30269338 DOI: 10.1111/lam.13082] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
Abstract
Gold nanoparticles are emerging materials that exhibit characteristics distinct from those of traditional materials and that have promising potential for application in the fields of chemistry, physics, biology and medicine. During the past decades, numerous studies on the antimicrobial activity and toxicity of gold nanoparticles have been published. With respect to antimicrobial activity, gold nanoparticles conjugated with small molecules, such as antibiotics, drugs, vaccines and antibodies, are more efficient than individual nanoparticles and molecules. Regarding the toxicity effects, results are often unclear and conflicting because of the lack of a standard experimental method; various studies have used different approaches, administration routes and doses, and similar experiments may lead to different conclusions. To provide a systematic overview of and insight in the current knowledge for researchers committed to this filed, we discuss the recent research advances related to the antimicrobial activity and toxicity of gold nanoparticles, both in vitro and in vivo, and identify major issues that require further study. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper discusses the recent research progress on antimicrobial activity and toxicity of gold nanoparticles and provides general insights into the field for researchers committed to this field.
Collapse
Affiliation(s)
- C Tao
- Center for Disease Prevention and Control of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
43
|
Ibrahim KE, Al-Mutary MG, Bakhiet AO, Khan HA. Histopathology of the Liver, Kidney, and Spleen of Mice Exposed to Gold Nanoparticles. Molecules 2018; 23:1848. [PMID: 30044410 PMCID: PMC6222535 DOI: 10.3390/molecules23081848] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 02/05/2023] Open
Abstract
Gold nanoparticles (GNPs) are biocompatible nanomaterials that are currently researched for biomedical applications such as imaging and targeted drug delivery. In this investigation, we studied the effects of a single dose (injected on day 1) as well as a priming dose (two injections with a gap of one week) of 5 nm, 20 nm, and 50 nm diameter GNPs on the structural and biochemical changes in the liver, kidney, and spleen of mice. The results showed that small sized GNPs (5 nm) produced significant pathological changes in the liver on day 2 that gradually reduced on day 8. The medium (20 nm) and large (50 nm) sized GNPs preferentially targeted the spleen and caused significant pathological changes to the spleen architecture on day 2 that persisted on day 8 as well. There were minimal and insignificant pathological changes to the kidneys irrespective of the GNPs size. The animals that were primed with the pre-exposure of GNPs did not show any aggravation of histological changes after the second dose of the same GNPs. None of the dose regimens of the GNPs were able to significantly affect the markers of oxidative stress including glutathione (GSH) and malondialdehyde (MDA) in all of the organs that were studied. In conclusion, the size of GNPs plays an important role in their pathological effects on different organs of mice. Moreover, the primed animals become refractory to further pathological changes after the second dose of GNPs, suggesting the importance of a priming dose in medical applications of GNPs.
Collapse
Affiliation(s)
- Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohsen Ghaleb Al-Mutary
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Amel Omer Bakhiet
- Deanship of Scientific Research, Sudan University of Science and Technology, Khartoum 11111, Sudan.
| | - Haseeb Ahmad Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
44
|
Alivio TEG, Fleer NA, Singh J, Nadadur G, Feng M, Banerjee S, Sharma VK. Stabilization of Ag-Au Bimetallic Nanocrystals in Aquatic Environments Mediated by Dissolved Organic Matter: A Mechanistic Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7269-7278. [PMID: 29864275 DOI: 10.1021/acs.est.8b01003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gold and silver nanoparticles can be stabilized endogenously within aquatic environments from dissolved ionic species as a result of mineralization induced by dissolved organic matter. However, the ability of fulvic and humic acids to stabilize bimetallic nanoparticles is entirely unexplored. Elucidating the formation of such particles is imperative given their potential ecological toxicity. Herein, we demonstrate the nucleation, growth, and stabilization of bimetallic Ag-Au nanocrystals from the interactions of Ag+ and Au3+ with Suwannee River fulvic and humic acids. The mechanisms underpinning the stabilization of Ag-Au alloy NPs at different pH (6.0-9.0) values are studied by UV-vis spectrophotometry, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). Complexation of free Ag+ and Au3+ ions with the Lewis basic groups (carbonyls, carboxyls, and thiols) of FA and HA, followed by electron-transfer from redox-active moieties present in dissolved organic matter initiates the nucleation of the NPs. Alloy formation and interdiffusion of Au and Ag atoms are further facilitated by a galvanic replacement reaction between AuCl4- and Ag. Charge-transfer from Au to Ag stabilizes the formed bimetallic NPs. A more pronounced agglomeration of the Ag-Au NPs is observed when HA is used compared to FA as the reducing agent. The bimetallic NPs are stable for greater than four months, which suggests the possible persistence and dispersion of these materials in aquatic environments. The mechanistic ideas have broad generalizability to reductive mineralization processes mediated by dissolved organic matter.
Collapse
Affiliation(s)
- Theodore E G Alivio
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , United States
- Department of Materials Science and Engineering , Texas A&M University , College Station , Texas 77843-3003 , United States
| | - Nathan A Fleer
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , United States
- Department of Materials Science and Engineering , Texas A&M University , College Station , Texas 77843-3003 , United States
| | - Jashanpreet Singh
- Department of Environmental and Occupational Health, School of Public Health , Texas A&M University , College Station , Texas 77843-8371 , United States
| | - Govind Nadadur
- Department of Environmental and Occupational Health, School of Public Health , Texas A&M University , College Station , Texas 77843-8371 , United States
| | - Mingbao Feng
- Department of Environmental and Occupational Health, School of Public Health , Texas A&M University , College Station , Texas 77843-8371 , United States
| | - Sarbajit Banerjee
- Department of Chemistry , Texas A&M University , College Station , Texas 77842-3012 , United States
- Department of Materials Science and Engineering , Texas A&M University , College Station , Texas 77843-3003 , United States
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health , Texas A&M University , College Station , Texas 77843-8371 , United States
| |
Collapse
|
45
|
Nguyen NHA, Padil VVT, Slaveykova VI, Černík M, Ševců A. Green Synthesis of Metal and Metal Oxide Nanoparticles and Their Effect on the Unicellular Alga Chlamydomonas reinhardtii. NANOSCALE RESEARCH LETTERS 2018; 13:159. [PMID: 29796771 PMCID: PMC5966349 DOI: 10.1186/s11671-018-2575-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/10/2018] [Indexed: 05/20/2023]
Abstract
Recently, the green synthesis of metal nanoparticles has attracted wide attention due to its feasibility and very low environmental impact. This approach was applied in this study to synthesise nanoscale gold (Au), platinum (Pt), palladium (Pd), silver (Ag) and copper oxide (CuO) materials in simple aqueous media using the natural polymer gum karaya as a reducing and stabilising agent. The nanoparticles' (NPs) zeta-potential, stability and size were characterised by Zetasizer Nano, UV-Vis spectroscopy and by electron microscopy. Moreover, the biological effect of the NPs (concentration range 1.0-20.0 mg/L) on a unicellular green alga (Chlamydomonas reinhardtii) was investigated by assessing algal growth, membrane integrity, oxidative stress, chlorophyll (Chl) fluorescence and photosystem II photosynthetic efficiency. The resulting NPs had a mean size of 42 (Au), 12 (Pt), 1.5 (Pd), 5 (Ag) and 180 (CuO) nm and showed high stability over 6 months. At concentrations of 5 mg/L, Au and Pt NPs only slightly reduced algal growth, while Pd, Ag and CuO NPs completely inhibited growth. Ag, Pd and CuO NPs showed strong biocidal properties and can be used for algae prevention in swimming pools (CuO) or in other antimicrobial applications (Pd, Ag), whereas Au and Pt lack these properties and can be ranked as harmless to green alga.
Collapse
Affiliation(s)
- Nhung H. A. Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Vinod Vellora Thekkae Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Vera I. Slaveykova
- Faculty of Sciences, Earth and Environmental Sciences, Institute F.-A. Forel, University of Geneva, Uni Carl Vogt, 66 Bvd Carl-Vogt, 1211 Geneva, Switzerland
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec, Czech Republic
| |
Collapse
|
46
|
Madhav MR, David SEM, Kumar RSS, Swathy JS, Bhuvaneshwari M, Mukherjee A, Chandrasekaran N. Toxicity and accumulation of Copper oxide (CuO) nanoparticles in different life stages of Artemia salina. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:227-238. [PMID: 28454023 DOI: 10.1016/j.etap.2017.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 05/23/2023]
Abstract
Metal nanoparticles production rate and its applications have raised concerns about their release and toxicity to the aquatic and terrestrial organisms. The primary size of Copper Oxide nanoparticles (CuO NP's) was found to be 114±36nm using Scanning Electron Microscopy (SEM) and a significant increase in the hydrodynamic diameter of CuO NP was seen within 1h of interaction. The median lethal concentration (LC50) values obtained from the acute toxicity studies on different life stages of Artemia salina was found to be 61.4, 35, 12.2 and 175.2mg/L for 1d, 2d, 7d old and adult, respectively. The toxicity associated changes in biochemical markers such as Catalase, Reduced glutathione and Glutathione-S-Transferase were evident. The accumulation of Cu nanoparticles into the gut of Artemia salina was the major reason for toxicity. This study demonstrate the toxicity of CuO NPs to Artemia salina, and the obtained results necessitate the detailed investigation on the possible eco-toxicological implication of these nanomaterials.
Collapse
Affiliation(s)
- M R Madhav
- Center for Nanobiotechnology, VIT University, Vellore, Tamilnadu 632014, India
| | | | - R S Suresh Kumar
- Center for Nanobiotechnology, VIT University, Vellore, Tamilnadu 632014, India
| | - J S Swathy
- Center for Nanobiotechnology, VIT University, Vellore, Tamilnadu 632014, India
| | - M Bhuvaneshwari
- Center for Nanobiotechnology, VIT University, Vellore, Tamilnadu 632014, India
| | - Amitava Mukherjee
- Center for Nanobiotechnology, VIT University, Vellore, Tamilnadu 632014, India
| | - N Chandrasekaran
- Center for Nanobiotechnology, VIT University, Vellore, Tamilnadu 632014, India.
| |
Collapse
|
47
|
Buchtelova H, Dostalova S, Michalek P, Krizkova S, Strmiska V, Kopel P, Hynek D, Richtera L, Ridoskova A, Adam P, Kynicky J, Brtnicky M, Heger Z, Adam V. Size-related cytotoxicological aspects of polyvinylpyrrolidone-capped platinum nanoparticles. Food Chem Toxicol 2017; 105:337-346. [PMID: 28465190 DOI: 10.1016/j.fct.2017.04.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/21/2017] [Accepted: 04/29/2017] [Indexed: 11/16/2022]
Abstract
The nanotechnological concept is based on size-dependent properties of particles in the 1-100 nm range. Nevertheless, the connection between their size and effect is still not clear. Thus, we focused on reductive colloidal synthesis, characterization and biological testing of Pt nanoparticles (PtNPs) capped with biocompatible polymer polyvinylpyrrolidone (PVP). Synthesized PtNPs were of 3 different primary sizes (approx. ∼10; ∼14 and > 20 nm) and demonstrated exceptional haemocompatibility. In vitro treatment of three different types of malignant cells (prostate - LNCaP, breast - MDA-MB-231 and neuroblastoma - GI-ME-N) revealed that even marginal differences in PtNPs diameter resulted in changes in their cytotoxicity. The highest cytotoxicity was observed using the smallest PtNPs-10, where 24IC50 was lower (3.1-6.2 μg/mL) than for cisplatin (8.1-19.8 μg/mL). In contrast to MDA-MB-231 and LNCaP cells, in GI-ME-N cells PtNPs caused noticeable changes in their cellular structure without influencing their viability. Post-exposure analyses revealed that PtNPs-29 and PtNPs-40 were capable of forming considerably higher amount of reactive oxygen species with consequent stimulation of expression of metallothionein (MT1/2 and MT3), at both mRNA and protein level. Overall, our pilot study demonstrates that in the nanoscaled world even the smallest differences can have crucial biological effect.
Collapse
Affiliation(s)
- Hana Buchtelova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Vladislav Strmiska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Pavlina Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Jindrich Kynicky
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Geology and Pedology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Martin Brtnicky
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Geology and Pedology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
48
|
|
49
|
The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation. Biomaterials 2017; 123:77-91. [PMID: 28161683 DOI: 10.1016/j.biomaterials.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
Abstract
The discovery of adult neurogenesis drastically changed the therapeutic approaches of central nervous system regenerative medicine. The stimulation of this physiologic process can increase memory and motor performances in patients affected by neurodegenerative diseases. Neural stem cells contribute to the neurogenesis process through their differentiation into specialized neuronal cells. In this review, we describe the most important methods developed to restore neurological functions via neural stem cell differentiation. In particular, we focused on the role of nanomedicine. The application of nanostructured scaffolds, nanoparticulate drug delivery systems, and nanotechnology-based real-time imaging has significantly improved the safety and the efficacy of neural stem cell-based treatments. This review provides a comprehensive background on the contribution of nanomedicine to the modulation of neurogenesis via neural stem cell differentiation.
Collapse
|
50
|
Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:1089-1102. [PMID: 27639594 DOI: 10.1016/j.scitotenv.2016.08.120] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 04/15/2023]
Abstract
Application of nanotechnology in agriculture is moving towards to improve the cultivation and growth of crop plants. The present study is the first attempt to propose a simple, yet cost-effective and ecofriendly synthesis of phytochemicals-capped GNPs using rhizome extract of galanga plant at room temperature. The synthesized GNPs were characterized by various characterization techniques. To promote the green nanotechnology applications in agriculture, GNPs solution at environmentally realistic dose (5 to 15ppm) as nanopriming agent was used to activate the germination and early seedling growth of maize aged seeds. Priming with 5ppm GNPs showed the best effects on promoting emergence percentage (83%) compared to unprimed control (43%) and hydroprimed groups (56%). Seed priming at both 5 and 10ppm GNPs also enhanced seedling vigor index by 3 times over the control. Priming with GNPs at 10ppm was found to enhance the best physiological and biochemical properties of maize seedlings. Internalization studies by inductively coupled plasma atomic emission spectroscopy (ICP-OES) and transmission electron microscopy (TEM) strongly supported that GNPs can internalize into seeds. However, ICP-OES analysis revealed that GNPs were not present in both shoot and root parts, suggesting that nanopriming approach minimizes the Au translocation from seeds into plant vegetative organs. Phytosynthesized GNPs were found to be less toxic than chemically synthesized GNPs. This is the first report showing phytochemicals-capped GNPs as a promising nanopriming agent for activating the germination of naturally aged seeds of crop plant.
Collapse
Affiliation(s)
- Wuttipong Mahakham
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Piyada Theerakulpisut
- Salt-tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Santi Maensiri
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Santi Phumying
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|