1
|
Shamskilani M, Masojídek J, Abbasiniasar M, Ganji A, Shayegane J, Babaei A. Microalgae cultivation trials in a membrane bioreactor operated in heterotrophic, mixotrophic, and phototrophic modes using ammonium-rich wastewater: The study of fouling. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2732-2745. [PMID: 38822611 DOI: 10.2166/wst.2024.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
In this work, microalgae cultivation trials were carried out in a membrane bioreactor to investigate fouling when the cultures of Chlorellavulgaris were grown under mixotrophic, heterotrophic, and phototrophic cultivation regimes. The Chlorella cultures were cultivated in wastewater as a source of nutrients that contained a high concentration of ammonium. In mixotrophic cultivation trials, the results showed that the elevated contents of carbohydrates in the soluble microbial product and proteins in extracellular polymeric substances probably initiated membrane fouling. In this case, the highest protein content was also found in extracellular polymeric substances due to the high nitrogen removal rate. Consequently, transmembrane pressure significantly increased compared to the phototrophic and heterotrophic regimes. The data indicated that cake resistance was the main cause of fouling in all cultivations. Higher protein content in the cake layer made the membrane surface more hydrophobic, while carbohydrates had the opposite effect. Compared to a mixotrophic culture, a phototrophic culture had a larger cell size and higher hydrophobicity, leading to less membrane fouling. Based on our previous data, the highest ammonia removal rate was reached in the mixotrophic cultures; nevertheless, membrane fouling appeared to be the fundamental problem.
Collapse
Affiliation(s)
- Mehrdad Shamskilani
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Jiří Masojídek
- Laboratory of Algal Biotechnology, Centre ALGATECH, Institute of Microbiology AV ČR, v.v.i., Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mahdi Abbasiniasar
- Department of Plant Breeding and Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Ganji
- Chemical and Petroleum Engineering Department, Sharif University of Technology, P.O. Box 11365-8639, Tehran, Iran
| | - Jalal Shayegane
- Chemical and Petroleum Engineering Department, Sharif University of Technology, P.O. Box 11365-8639, Tehran, Iran
| | - Azadeh Babaei
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran E-mail:
| |
Collapse
|
2
|
Kim SY, Curko J, Matosic M, Herrera A, Lopez-Vazquez CM, Brdjanovic D, Garcia HA. Effects of a sidestream concentrated oxygen supply system on the membrane filtration performance of a high-loaded membrane bioreactor. ENVIRONMENTAL RESEARCH 2023; 237:116914. [PMID: 37597824 DOI: 10.1016/j.envres.2023.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/27/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
To investigate the influence of high-pressure and shear effects introduced by a concentrated oxygen supply system on the membrane filtration performance, a laboratory-scale membrane bioreactor (MBR) fed artificial municipal wastewater was operated continuously for 80 days in four phases equipped with different aerations systems: (P1) bubble diffusers (days 0-40), (P2) concentrated oxygen supply system, the supersaturated dissolved oxygen (SDOX) (days 41-56), (P3) bubble diffusers (days 57-74), and (P4) SDOX (days 75-80). Various sludge physical-chemical parameters, visual inspection of the membrane, and permeability evaluations were performed. Results showed that the high-pressure effects contributed to fouling of the membranes compared to the bubble diffuser aeration system. Biofouling by microorganisms appeared to be the main contributor to the cake layer when bubble diffusers were used, while fouling by organic matter seemed to be the main contributor to the cake layer when SDOX was used. Small particle size distribution (PSD) (ranging from 1 to 10 and 1-50 μm in size) fractions are a main parameter affecting the intense fouling of membranes (e.g., formation of a dense and thin cake layer). However, PSD alone cannot explain the worsened membrane fouling tendency. Therefore, it can be assumed that a combination of several factors (which certainly includes PSD) led to the severe membrane fouling caused by the high-pressure and shear.
Collapse
Affiliation(s)
- Sang Yeob Kim
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands; Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
| | - Josip Curko
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Marin Matosic
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Aridai Herrera
- HAC Group, LLC, 8111 Hicckman Mills Dr, Kansas City, MO, 64132, United States
| | - Carlos M Lopez-Vazquez
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Damir Brdjanovic
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Hector A Garcia
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| |
Collapse
|
3
|
Jiang Y, Li C, Hou Z, Shi X, Zhang X, Gao Y, Deng SH. Pollutants removal and connections among sludge properties, metabolism potential and microbial characteristics in aerobic granular sequencing batch reactor for petrochemical wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118715. [PMID: 37562254 DOI: 10.1016/j.jenvman.2023.118715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023]
Abstract
Petrochemical wastewater contains inhibitory compounds such as aromatics that are toxic to microorganisms during biological treatment. The compact and layered structure and the high amount of extracellular polymeric substances (EPS) in aerobic granular sludge (AGS) can contribute to protecting microorganisms from the harsh environment. This study evaluated the changes in the granule properties, pollutants removal, microbial metabolic potential and molecular microbial characteristics of the AGS process for petrochemical wastewater treatment. Granules treating petrochemical wastewater had a higher SVI30/SVI5 value (0.94) than that treating synthetic wastewater. An increase in bioactivity and EPS secretion with higher bio-polymer composition, specifically the functional groups such as hydroxyl, alkoxy and amino in protein, was observed, which promoted biomass aggregation. The granules also had more than 2-fold higher specific oxygen utilization rate. The AGS-SBR process obtained an average COD removal of 93% during petrochemical wastewater treatment and an effluent bCOD of below 1 mg L-1. No obvious inhibition of nitrification and denitrification activity was observed in the processes attributed to the layered structure of AGS. The average effluent NH4+-N of 5.0 mg L-1 was obtained and TN removal efficiencies of over 80.0% was achieved. Molecular microbial analysis showed that abundant functional genera Stenotrophomonas and Pseudoxanthomonas contributed to the degradation of aromatics and other petroleum organic pollutants. They were enriched with the variation of group behavior while metabolisms of amino acids and carboxylic acids by the relevant functional genera (e.g., Cytophagia) were significantly inhibited. The enrichment of Flavobacterium and Thermomonas promoted nitrification and denitrification, respectively. This research revealed the rapid start-up, enhanced granule structural strength, high inhibition resistance and considerable performance of AGS-SBR for petrochemical wastewater treatment.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Chaoyu Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhaozhi Hou
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Yaohuan Gao
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Shi-Hai Deng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
4
|
Díaz O, Vera L, González E. Optimization of the operating parameters in a membrane bioreactor operated in direct-flow mode by assessing threshold flux for compressibility. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Díaz O, González E, Vera L, Fernández LJ, Díaz-Marrero AR, Fernández JJ. Recirculating packed-bed biofilm photobioreactor combined with membrane ultrafiltration as advanced wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27309-2. [PMID: 37140860 DOI: 10.1007/s11356-023-27309-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Packed-bed biofilm photobioreactor combined with ultrafiltration membrane was investigated for intensifying the process for secondary wastewater effluent treatment. Cylindrical glass carriers were used as supporting material for the microalgal-bacterial biofilm, which developed from indigenous microbial consortium. Glass carriers allowed adequate growth of the biofilm with limited suspended biomass. Stable operation was achieved after a start-up period of 1000 h, where supernatant biopolymer clusters were minimized and complete nitrification was observed. After that time, biomass productivity was 54 ± 18 mg·L-1·day-1. Green microalgae Tetradesmus obliquus and several strains of heterotrophic nitrification-aerobic denitrification bacteria and fungi were identified. Combined process exhibited COD, nitrogen and phosphorus removal rates of 56 ± 5%, 12 ± 2% and 20 ± 6%, respectively. Membrane fouling was mainly caused by biofilm formation, which was not effectively mitigated by air-scouring aided backwashing.
Collapse
Affiliation(s)
- Oliver Díaz
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Spain.
| | - Enrique González
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Spain
| | - Luisa Vera
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Spain
| | - Luis Javier Fernández
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38206, La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología (IPNA)-CSIC, Avenida Astrofísico Francisco Sánchez 3, 38206, La Laguna, Spain
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| | - José J Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
- Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| |
Collapse
|
6
|
He Q, Yan X, Fu Z, Zhang Y, Bi P, Mo X, Xu P, Ma J. Rapid start-up and stable operation of an aerobic/oxic/anoxic simultaneous nitrification, denitrification, and phosphorus removal reactor with no sludge discharge. BIORESOURCE TECHNOLOGY 2022; 362:127777. [PMID: 35985464 DOI: 10.1016/j.biortech.2022.127777] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
An anaerobic/aerobic/anoxic mode simultaneous nitrification, denitrification, and phosphorus removal system was visited for enhanced low-strength wastewater treatment and dramatic in situ sludge reduction. Results showed that rapid start-up was achieved with conventional activated sludge after 15 days, with effluent ammonia nitrogen, total nitrogen, total phosphorus, and chemical oxygen demand being 0.25, 7.89, 0.12, 24.37 mg/L, respectively. A two-stage biomass growth rate was observed with the sludge yield of 0.285 (day 1-50) and 0.017 g MLSS/g COD (day 51-110) without sludge discharge. Dynamics of bacterial community has been identified with outstanding accumulation of Candidatus_Competibacter up to 29.06 %, which contributed to both simultaneous nutrients removal and sludge reduction. Further analysis via PICRUSt2 revealed the main pathway of nitrogen metabolism, while proposed mechanism for phosphorus removal with no sludge discharge was analyzed from the intracellular and extracellular perspectives. Overall, this study provided guidance and reference for the development and application of A/O/A-SNDPR technology.
Collapse
Affiliation(s)
- Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Xiaohui Yan
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Zhidong Fu
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Yihang Zhang
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Peng Bi
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Xingliang Mo
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
7
|
Wang C, Ng TCA, Ding M, Ng HY. Insights on fouling development and characteristics during different fouling stages between a novel vibrating MBR and an air-sparging MBR for domestic wastewater treatment. WATER RESEARCH 2022; 212:118098. [PMID: 35114533 DOI: 10.1016/j.watres.2022.118098] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Membrane fouling remains a major hindrance to a prevalent application of membrane bioreactor (MBR) for wastewater treatment. Vibrating membrane technology has recently attracted increasing attention in energy-efficient fouling control in MBR compared to air sparging. However, little is known about its fundamental fouling control mechanism and whether the vibrating MBR (VMBR) is a highly effective strategy to control fouling constitutions and fouling sources compared to the conventional air-sparging MBR (ASMBR). This study operated two parallel MBRs with vibrating or air-sparging membrane modules for long-term (215 d) real domestic wastewater treatment. Effects of air sparging and vibration rates on fouling control, fouling development and fouling sources across three fouling stages were comprehensively evaluated. Results showed that the VMBR achieved 70% lower fouling rates compared to the ASMBR due to a remarkable retardation in each fouling stage by membrane vibration. The VMBR significantly reduced over 62.7% of colloidCL and SMPCL within the cake layer (CL) to simultaneously alleviate the reversible and irreversible fouling compared to the ASMBR. The comparatively lower dissolved organic matter (DOM) and biopolymer contents in the cake layer of the VMBR resulted in a slower TMP rise. The main DOMs in the foulants of both MBRs were found in the following order: aromatic protein > soluble microbial by-products > other organics. EPSML from mixed liquor (ML) contributed more DOMs to form membrane foulant than the SMPML in both MBRs. Aromatic proteins and soluble microbial products in the EPSML were markedly reduced in the VMBR but increased in the ASMBR in high-shear phase, demonstrating higher effectiveness in fouling control by membrane vibration. This study provided insights into understanding fouling control, fouling development characteristics and fouling mechanisms between the VMBR and ASMBR, which might guide the researchers and engineers to apply novel vibrating MBRs to better control membrane fouling for holistic wastewater treatment in full scale.
Collapse
Affiliation(s)
- Chuansheng Wang
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 3, 117580 Singapore
| | - Tze Chiang Albert Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 3, 117580 Singapore; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore.
| | - Meiyue Ding
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 3, 117580 Singapore; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 3, 117580 Singapore; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411 Singapore.
| |
Collapse
|
8
|
Wang H, Ding K. Effect of Self-Made TiO2 Nanoparticle Size on the Performance of the PVDF Composite Membrane in MBR for Landfill Leachate Treatment. MEMBRANES 2022; 12:membranes12020216. [PMID: 35207137 PMCID: PMC8879202 DOI: 10.3390/membranes12020216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022]
Abstract
The pollutant composition of landfill leachate is complex, and pollutant concentrations change greatly. Moreover, landfill leachates can easily penetrate into the soil and eventually pollute the ground water, which can cause environmental pollution and threaten human health. At present, landfill leachate treatment technology is still not mature. In this paper, the A/O-MBR (Anoxic–Aerobic Membrane Bioreactor) process is proposed to treat landfill leachate. To increase the hydrophilicity of the membranes and reduce the pollution of the membranes, the self-made TiO2 nanoparticles were used to modify the ultrafiltration membranes (PVDF-2). Meanwhile, PVDF-2 composite membranes showed the best separation performance. The optimum operating parameters were determined by changing the concentration of the pollutants in the reactor and selecting the dissolved oxygen, pH, and hydraulic residence time. The results show that the optimum operating conditions of MBR are mixed liquor suspended solids (MLSS) = 3200 mg/L, DO = 1.5–2.5 mg/L in a nitrifying tank, DO = 0–0.5 mg/L in a denitrifying tank, pH = 7–8, and a hydraulic retention time (HRT) = 5 h. To reach the “Discharge Standard of Pollutants for Municipal Wastewater Treatment Plants” (GB18918-2002), the effluent of the MBR system further enters into the RO system. This work presents an environmentally friendly synthesis of TiO2 nanoparticles and added into PVDF. The addition of self-made TiO2 in PVDF membrane has improved the antifouling performance significantly, which has the potential for the treatment of landfill leachate.
Collapse
Affiliation(s)
| | - Keqiang Ding
- Correspondence: ; Tel.: +86-25-8611-8972; Fax: +86-25-8611-8974
| |
Collapse
|
9
|
He Q, Xie Z, Tang M, Fu Z, Ma J, Wang H, Zhang W, Zhang H, Wang M, Hu J, Xu P. Insights into the simultaneous nitrification, denitrification and phosphorus removal process for in situ sludge reduction and potential phosphorus recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149569. [PMID: 34416609 DOI: 10.1016/j.scitotenv.2021.149569] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
A simultaneous nitrification-denitrification and phosphorus removal (SNDPR) system operated in an alternating anaerobic/aerobic/anoxic (A/O/A) mode was revisited from new perspectives of sludge reduction and potential phosphorus recovery. Reliable and robust removal performance was obtained even under winter temperatures, with average removal efficiency of COD, TP, NH4+-N and TIN being 89.68%, 93.60%, 92.15% and 79.01% at steady state, respectively. Inoculated sludge got enhanced in biomass density, settleability, and bioactivity. And relatively stable amounts of extracellular polymeric substances (EPS) with a stable protein/ polysaccharide (PN/PS) ratio were observed over operation. Meanwhile, a low observed sludge yield (Yobs) of 0.083 g MLSS/g COD (0.082 g MLVSS/g COD) was obtained. A maximum anaerobic phosphorus release up to 43.54 mg/L was found, thus providing phosphorus-rich and low-turbidity stream for further phosphorus recovery. Overall, the SNDPR system deserved attention for in situ sludge reduction and potential phosphorus recovery, beyond reliable and stable wastewater treatment.
Collapse
Affiliation(s)
- Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zhiyi Xie
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Meiyi Tang
- China West Construction Hunan Group Co., Ltd., Changsha 410114, China
| | - Zhidong Fu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Jingwei Ma
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Wei Zhang
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Huining Zhang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Meng Wang
- Jinan Municipal Engineering Design & Research Institute (Group) Co., Ltd., Jinan 250003, China
| | - Junxian Hu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Peng Xu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
10
|
Taoufik N, Boumya W, Achak M, Sillanpää M, Barka N. Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112404. [PMID: 33780817 DOI: 10.1016/j.jenvman.2021.112404] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/26/2021] [Accepted: 03/13/2021] [Indexed: 05/12/2023]
Abstract
Nowadays, pharmaceuticals are the center of significant environmental research due to their complex and highly stable bioactivity, increasing concentration in the water streams and high persistence in aquatic environments. Conventional wastewater treatment techniques are generally inadequate to remove these pollutants. Aiming to tackle this issue effectively, various methods have been developed and investigated on the light of chemical, physical and biological procedures. Increasing attention has recently been paid to the advanced oxidation processes (AOPs) as efficient methods for the complete mineralization of pharmaceuticals. Their high operating costs compared to other processes, however, remain a challenge. Hence, this review summarizes the current and state of art related to AOPs, biological treatment and their effective exploitation for the degradation of various pharmaceuticals and other emerging molecules present in wastewater. The review covers the last decade with a particular focus on the previous five years. It is further envisioned that this review of advanced oxidation methods and biological treatments, discussed herein, will help readers to better understand the mechanisms and limitations of these methods for the removal of pharmaceuticals from the environment. In addition, we compared AOPs and biological treatments for the disposal of pharmaceuticals from the point of view of cost, effectiveness, and popularity of their use. The exploitation of coupling AOPs and biological procedures for the degradation of pharmaceuticals in wastewater was also presented. It is worthy of note that an integrated AOPs/biological system is essential to reach the complete degradation of pharmaceuticals; other advantages of this hybrid technique involve low energy cost, an efficient degradation process and generation of non-toxic by-products.
Collapse
Affiliation(s)
- Nawal Taoufik
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco.
| | - Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco
| | - Mounia Achak
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco; Chemical & Biochemical Sciences, Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Research Group in Environmental Sciences and Applied Materials (SEMA), FP Khouribga, Morocco.
| |
Collapse
|
11
|
Zhu M, Li N, Lu Y, Hu Z, Chen S, Zeng RJ. The performance and microbial communities of an anaerobic membrane bioreactor for treating fluctuating 2-chlorophenol wastewater. BIORESOURCE TECHNOLOGY 2020; 317:124001. [PMID: 32805483 DOI: 10.1016/j.biortech.2020.124001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
An anaerobic membrane bioreactor (AnMBR) was used to treat low to high (5-200 mg/L) concentrations of 2-chlorophenol (2-CP) wastewater. The AnMBR achieved high and stable chemical oxygen demand removal and 2-CP removal with an average value of 93.2% and 94.2% under long hydraulic retention times (HRTs, 48-96 h), respectively. 2-CP removal efficiency of 98.6 mg/L/d was achieved with 2-CP concentration of 200 mg/L, which was much higher than that of other anaerobic bioreactors. Furthermore, volatile fatty acids didn't accumulate under high 2-CP loading. Long HRTs significantly reduced the membrane fouling as the fouling rate (0.90 × 109-5.44 × 109 m-1h-1) was low. Spirochaetaceae and Methanosaeta were the dominant microbes responsible for dechlorination, methanogenesis, and shock resistance. All these results demonstrate that this AnMBR operated under long HRTs is good and robust for fluctuating chlorophenols wastewater treatment, which has high potential for treating fluctuating refractory organics wastewater with the low membrane fouling rate.
Collapse
Affiliation(s)
- Mingchao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Na Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yongze Lu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Zhaoxia Hu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shouwen Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
12
|
Enhancement of anti-fouling and contaminant removal in an electro-membrane bioreactor: Significance of electrocoagulation and electric field. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Kivi MA, Alinia H, Jafarzadeh Y, Yegani R. High‐density polyethylene membranes embedded with carboxylated and polyethylene glycol‐grafted nanodiamond to be used in membrane bioreactors. J Appl Polym Sci 2019. [DOI: 10.1002/app.47914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Masoud Azimian Kivi
- Faculty of Chemical EngineeringSahand University of Technology Tabriz Iran
- Membrane Technology Research CenterSahand University of Technology Tabriz Iran
| | - Hossein Alinia
- Faculty of Chemical EngineeringSahand University of Technology Tabriz Iran
- Membrane Technology Research CenterSahand University of Technology Tabriz Iran
| | - Yoones Jafarzadeh
- Faculty of Chemical EngineeringSahand University of Technology Tabriz Iran
- Membrane Technology Research CenterSahand University of Technology Tabriz Iran
| | - Reza Yegani
- Faculty of Chemical EngineeringSahand University of Technology Tabriz Iran
- Membrane Technology Research CenterSahand University of Technology Tabriz Iran
| |
Collapse
|
14
|
Teng J, Zhang M, Leung KT, Chen J, Hong H, Lin H, Liao BQ. A unified thermodynamic mechanism underlying fouling behaviors of soluble microbial products (SMPs) in a membrane bioreactor. WATER RESEARCH 2019; 149:477-487. [PMID: 30476776 DOI: 10.1016/j.watres.2018.11.043] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/15/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Soluble microbial products (SMPs) are the predominate foulants determining fouling extent in membrane bioreactors (MBRs). However, exact mechanism underlying their typical fouling behaviors remains unrevealed. In this study, the typical fouling behaviors of SMPs during initial operational period of a MBR were characterized. It was found that, although being low content, SMPs rather than sludge particulates preferentially adhered to membrane surface to accumulate a gel layer, and moreover, specific filtration resistance (SFR) of SMPs was approximately 700 times larger than that of the sludge particulates at operational day 3. According to energy balance principle, a unified thermodynamic mechanism underlying these fouling behaviors of SMPs was proposed. Thermodynamic analyses demonstrated that, the attractive interaction energy strength in contact between SMPs and membrane was larger by around 3700 times than that between sludge particulates and membrane, well explaining the extremely high adhesive ability of SMPs over sludge particlulates. Meanwhile, filtration through a SMPs layer was modelled and simulated as a thermodynamic process. Simulation on an agar gel showed that, about 92.6% of SFR was originated from mixing free energy change during filtration. Such a result satisfactorily interpreted the extremely high SFR of SMPs layer over sludge cake layer. The revealed thermodynamic mechanism underlying SMPs fouling behaviors significantly deepened understanding of fouling, and facilitated to development of effective fouling control strategies.
Collapse
Affiliation(s)
- Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Meijia Zhang
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Kam-Tin Leung
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada.
| | - Bao-Qiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada.
| |
Collapse
|
15
|
Ensano BMB, Borea L, Naddeo V, de Luna MDG, Belgiorno V. Control of emerging contaminants by the combination of electrochemical processes and membrane bioreactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1103-1112. [PMID: 28477257 DOI: 10.1007/s11356-017-9097-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
This study investigates the removal of selected pharmaceuticals, as recalcitrant organic compounds, from synthetic wastewater using an electro-membrane bioreactor (eMBR). Diclofenac (DCF), carbamazepine (CBZ), and amoxicillin (AMX) were selected as representative drugs from three different therapeutic groups such as anti-inflammatory, anti-epileptic, and antibiotic, respectively. An environmentally relevant concentration (10 μg/L) of each compound was spiked into the synthetic wastewater, and then, the impact of appending electric field on the control of membrane fouling and the removal of conventional contaminants and pharmaceutical micropollutants were assessed. A conventional membrane bioreactor (MBR) was operated as a control test. A reduction of membrane fouling was observed in the eMBR with a 44% decrease of the fouling rate and a reduction of membrane fouling precursors. Humic substances (UV254), ammonia nitrogen (NH4-N), and orthophosphate (PO4-P) showed in eMBR removal efficiencies up to 90.68 ± 4.37, 72.10 ± 13.06, and 100%, respectively, higher than those observed in the MBR. A reduction of DCF, CBZ, and AMX equal to 75.25 ± 8.79, 73.84 ± 9.24, and 72.12 ± 10.11%, respectively, was found in the eMBR due to the enhanced effects brought by electrochemical processes, such as electrocoagulation, electrophoresis, and electrooxidation.
Collapse
Affiliation(s)
- Benny Marie B Ensano
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Laura Borea
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy.
| | - Mark Daniel G de Luna
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
- Department of Chemical Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, SA, Italy
| |
Collapse
|
16
|
Aslam M, Kim J. Investigating membrane fouling associated with GAC fluidization on membrane with effluent from anaerobic fluidized bed bioreactor in domestic wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1170-1180. [PMID: 28785947 DOI: 10.1007/s11356-017-9815-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Effect of mechanical scouring driven by granular activated carbon (GAC) fluidization on membrane fouling was investigated using a laboratory-scaled, fluidized membrane reactor filtering the effluent from anaerobic fluidized bed bioreactor (AFBR) in domestic wastewater treatment. The GAC particles were fluidized by recirculating a bulk solution only through the membrane reactor to control membrane fouling. The membrane fouling was compared with two different feed solutions, effluent taken from a pilot-scaled, AFBR treating domestic wastewater and its filtrate through 0.1-μm membrane pore size. The GAC fluidization driven by bulk recirculation through the membrane reactor was very effective to reduce membrane fouling. Membrane scouring under GAC fluidization decreased reversible fouling resistance effectively. Fouling mitigation was more pronounced with bigger GAC particles than smaller ones as fluidized media. Regardless of the fluidized GAC sizes, however, there was limited effect on controlling irreversible fouling caused by colloidal materials which is smaller than 0.1 μm. In addition, the deposit of GAC particles that ranged from 180 to 500 μm in size on membrane surface was very significant and accelerated fouling rate. Biopolymers rejected by the membranes were thought to play a role as binding these small GAC particles on membrane surface strongly.
Collapse
Affiliation(s)
- Muhammad Aslam
- Department of Environmental Engineering, Inha University, 100 Inha-ro, Namgu, Incheon, Republic of Korea
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, 100 Inha-ro, Namgu, Incheon, Republic of Korea.
| |
Collapse
|
17
|
Aslam M, Charfi A, Kim J. Membrane scouring to control fouling under fluidization of non-adsorbing media for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1061-1071. [PMID: 28190230 DOI: 10.1007/s11356-017-8527-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/30/2017] [Indexed: 06/06/2023]
Abstract
Gas sparging is used as a traditional way to control membrane fouling in submerged membrane bioreactors (MBRs) in wastewater treatment. However, the gas sparging accounts for the largest fraction in operational cost to run the MBR systems. In this study, membrane fouling was controlled by integrating scouring media with gas sparging to reduce fouling rate at relatively low operational energy. Comparative study was performed using a fluidized membrane reactor treating synthetic feed solutions between polyethylene terephthalate (PET) scouring media (SM) fluidized by gas sparging (GS), liquid recirculation (LR), and combination of them to control membrane fouling. Addition of PET scouring media reduced the gas flow rate by 67% more with 30% less in fouling rate than gas sparing only. Combined usage of gas sparging and liquid recirculation to fluidize the PET scouring media (LR + GS + SM) showed 37% lower in fouling rate than that obtained by the scouring media fluidized by liquid recirculation (LR + SM) only through the reactor. The LR + GS + SM configuration reduced energy consumption by 90% more than that required by gas sparging alone. Mechanical cleaning driven by fluidizing PET scouring media could reduce membrane fouling due to removing deposit of inorganic particles from membrane surface effectively. However, the PET scouring media was not very effective to reduce membrane fouling caused by organic colloids which are expected to contribute pore fouling significantly.
Collapse
Affiliation(s)
- Muhammad Aslam
- Department of Environmental Engineering, Inha University, 100 Inha-ro, Namgu, Incheon, Republic of Korea
| | - Amine Charfi
- Department of Environmental Engineering, Inha University, 100 Inha-ro, Namgu, Incheon, Republic of Korea
| | - Jeonghwan Kim
- Department of Environmental Engineering, Inha University, 100 Inha-ro, Namgu, Incheon, Republic of Korea.
| |
Collapse
|
18
|
González E, Díaz O, Segredo-Morales E, Rodríguez-Gómez LE, Vera L. Enhancement of Peak Flux Capacity in Membrane Bioreactors for Wastewater Reuse by Controlling the Backwashing Strategy. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b05650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Enrique González
- Departamento de Ingeniería Química y T.F. Universidad de La Laguna Av. Astrof. Fco. Sánchez s/n. 38200 La Laguna, España
| | - Oliver Díaz
- Departamento de Ingeniería Química y T.F. Universidad de La Laguna Av. Astrof. Fco. Sánchez s/n. 38200 La Laguna, España
| | - Elisabet Segredo-Morales
- Departamento de Ingeniería Química y T.F. Universidad de La Laguna Av. Astrof. Fco. Sánchez s/n. 38200 La Laguna, España
| | - Luis E. Rodríguez-Gómez
- Departamento de Ingeniería Química y T.F. Universidad de La Laguna Av. Astrof. Fco. Sánchez s/n. 38200 La Laguna, España
| | - Luisa Vera
- Departamento de Ingeniería Química y T.F. Universidad de La Laguna Av. Astrof. Fco. Sánchez s/n. 38200 La Laguna, España
| |
Collapse
|
19
|
Wang J, Xin C, Li J, Song L, Jia H. Micro-bubbles enhanced breakage warning for hollow fiber membrane integrity with a low-cost real-time monitoring device. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24639-24652. [PMID: 29916146 DOI: 10.1007/s11356-018-2415-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
A low-cost device was developed to monitor the integrity of hollow fiber membrane by real-time online detecting and measuring air bubbles in the permeate flow. When a breakage occurs in the fiber membrane system, air bubbles will find their ways to enter the permeate flow. The monitoring device consists of two pairs of platinum probes attached to a pipe, along which the permeate flows. Membrane's breakage was identified by the voltage changes between the two pairs of probes when air bubbles in the permeate touch them. There was no addition of any other chemicals or materials into the system that would jeopardize final products of the membrane process. Experimental results showed that the voltage signal changes before and after a breach of membrane were obvious in the normal operation conditions. The smallest diameter of the bubbles that can be detected by the monitoring device was 50 μm, which was captured and identified with a high-speed camera. Furthermore, the sensitivity of device with two pairs of probes improved by 5~9% over that with one pair of probes. Finally, cost of the proposed device was roughly estimated only about 70 US dollars and the detection result was highly consistent with that obtained with the prevailing particle counters of several thousand US dollars.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China.
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Changchun Xin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Jinzhao Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Lianfa Song
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, 70409, USA
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin, 300387, China
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China
| |
Collapse
|
20
|
Jeong Y, Kim Y, Jin Y, Hong S, Park C. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
González E, Díaz O, Vera L, Rodríguez-Gómez LE, Rodríguez-Sevilla J. Feedback control system for filtration optimisation based on a simple fouling model dynamically applied to membrane bioreactors. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Maqbool T, Cho J, Hur J. Dynamic changes of dissolved organic matter in membrane bioreactors at different organic loading rates: Evidence from spectroscopic and chromatographic methods. BIORESOURCE TECHNOLOGY 2017; 234:131-139. [PMID: 28319761 DOI: 10.1016/j.biortech.2017.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/26/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
Excitation emission matrix-parallel factor analysis (EEM-PARAFAC) and size exclusion chromatography (SEC) were utilized to explore the dynamics in extracellular polymeric substances (EPS), soluble microbial products (SMP), and effluent for the membrane bioreactors at two different organic loading rates (OLRs). Combination of three different fluorescent components explained the compositional changes of dissolved organic matter. The lower OLR resulted in a higher production of tryptophan-like component (C1) in EPS, while the opposite trends were found for the other two components (humic-like C2 and tyrosine-like C3), signifying the role of C1 in the endogenous condition. Larger sized molecules were more greatly produced in EPS at the lower OLR. Meanwhile, all the size fractions of SMP were more abundant at the higher OLR particular for the early phase of the operation. Irrespective of the OLR, the higher degrees of the membrane retention were found for relatively large sized and protein-like molecules.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
23
|
Díaz O, González E, Vera L, Macías-Hernández JJ, Rodríguez-Sevilla J. Fouling analysis and mitigation in a tertiary MBR operated under restricted aeration. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Borea L, Naddeo V, Belgiorno V. Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:321-333. [PMID: 27718113 DOI: 10.1007/s11356-016-7786-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Membrane bioreactor (MBR) technology is becoming increasingly popular as wastewater treatment due to the unique advantages it offers. However, membrane fouling is being given a great deal of attention so as to improve the performance of this type of technology. Recent studies have proven that the application of electrochemical processes to MBR represents a promising technological approach for membrane fouling control. In this work, two intermittent voltage gradients of 1 and 3 V/cm were applied between two cylindrical perforated electrodes, immersed around a membrane module, at laboratory scale with the aim of investigating the treatment performance and membrane fouling formation. For comparison purposes, the reactor also operated as a conventional MBR. Mechanisms of nutrient removal were studied and membrane fouling formation evaluated in terms of transmembrane pressure variation over time and sludge relative hydrophobicity. Furthermore, the impact of electrochemical processes on transparent exopolymeric particles (TEP), proposed as a new membrane fouling precursor, was investigated in addition to conventional fouling precursors such as bound extracellular polymeric substances (bEPS) and soluble microbial products (SMP). All the results indicate that the integration of electrochemical processes into a MBR has the advantage of improving the treatment performance especially in terms of nutrient removal, with an enhancement of orthophosphate (PO4-P) and ammonia nitrogen (NH4-N) removal efficiencies up to 96.06 and 69.34 %, respectively. A reduction of membrane fouling was also observed with an increase of floc hydrophobicity to 71.72 %, a decrease of membrane fouling precursor concentrations, and, thus, of membrane fouling rates up to 54.33 %. The relationship found between TEP concentration and membrane fouling rate after the application of electrochemical processes confirms the applicability of this parameter as a new membrane fouling indicator.
Collapse
Affiliation(s)
- Laura Borea
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|