1
|
Ammar A, Nouira A, El Mouridi Z, Boughribil S. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. CHEMOSPHERE 2024; 359:142273. [PMID: 38750727 DOI: 10.1016/j.chemosphere.2024.142273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.
Collapse
Affiliation(s)
- Ayyoub Ammar
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco; National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco; Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco.
| | - Asmae Nouira
- National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - Zineb El Mouridi
- Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco
| | - Said Boughribil
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco
| |
Collapse
|
2
|
Alicja K, Grzegorz C. Strontium leaching from municipal waste subjected to incineration. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:220. [PMID: 38849607 PMCID: PMC11161431 DOI: 10.1007/s10653-024-01998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/14/2024] [Indexed: 06/09/2024]
Abstract
The aim of the study was to determine the content and leachability of Sr in ashes obtained through combusting municipal waste in household furnaces. The waste had been collected as a mixed stream and as separate fractions (i.e. furniture, sponges, waste paper, PCV packaging, plastic-coated paper cartons, imitation leather, rubber, textiles and polystyrene). Using single-step chemical extractions, (HCl + HNO3, H2O, 0.01 M CaCl2, 0.1 M CH3COOH), we determined the total content of Sr (TC) and proportions of the following fractions: water-leachable, phytoavailable and easily soluble and bound to carbonates. We also analyzed the effect of reducing pH in the extraction solutions on St leachability from the study material. The study showed that Sr concentration in ash generated from the combustion of conventional fuels, alternative fuels and municipal waste ranged from 114 to 1006 mg/kg. The largest amounts of Sr were found in ash generated from the combustion of alternative fuels (coal pellets 488-1006 mg/kg), conventional fuels (hard coal 430-670 mg/kg) and mixed waste (237-825 mg/kg). The most mobile fraction of Sr (water-leachable) comprised from 1.3% to nearly 91% TC; the phytoavailable fraction and the ion-exchange and carbonate-bound fraction comprised 3-92% TC and 9-72% TC, respectively. We also found that the greatest pH reductions do not always entail the greatest amounts of extracted Sr. A much more significant factor in this respect is the mineral and chemical composition of primary materials, which can buffer changes in pH. The Risk Assessment Code (RAC) values pointed to a varied environmental risk and the highest RAC values (> 70) were found for coal pellets, wood pellets, straw, rubber and plastic containers for mixed oils.
Collapse
Affiliation(s)
- Kicińska Alicja
- Department of Environmental Protection, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Kraków, Mickiewicza 30 Av., 30-059, Kraków, Poland.
| | - Caba Grzegorz
- Department of Environmental Protection, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Kraków, Mickiewicza 30 Av., 30-059, Kraków, Poland
| |
Collapse
|
3
|
Ali S, Baloch SB, Bernas J, Konvalina P, Onyebuchi EF, Naveed M, Ali H, Jamali ZH, Nezhad MTK, Mustafa A. Phytotoxicity of radionuclides: A review of sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2024; 240:117479. [PMID: 37884073 DOI: 10.1016/j.envres.2023.117479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Various anthropogenic activities and natural sources contribute to the presence of radioactive materials in the environment, posing a serious threat to phytotoxicity. Contamination of soil and water by radioactive isotopes degrades the environmental quality and biodiversity. They persist in soils for a considerable amount of time and disturb the fauna and flora of any affected area. Hence, their removal from the contaminated medium is inevitable to prevent their entry into the food chain and the organisms at higher levels of the food chain. Physicochemical methods for radioactive element remediation are effective; however, they are not eco-friendly, can be expensive and impractical for large-scale remediation. Contrastingly, different bioremediation approaches, such as phytoremediation using appropriate plant species for removing the radionuclides from the polluted sites, and microbe-based remediation, represent promising alternatives for cleanup. In this review, sources of radionuclides in soil as well as their hazardous impacts on plants are discussed. Moreover, various conventional physicochemical approaches used for remediation discussed in detail. Similarly, the effectiveness and superiority of various bioremediation approaches, such as phytoremediation and microbe-based remediation, over traditional approaches have been explained in detail. In the end, future perspectives related to enhancing the efficiency of the phytoremediation process have been elaborated.
Collapse
Affiliation(s)
- Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Sadia Babar Baloch
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Jaroslav Bernas
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic.
| | - Petr Konvalina
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Eze Festus Onyebuchi
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zameer Hussain Jamali
- College of Environmental Science, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Mohammad Tahsin Karimi Nezhad
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental 13 Gardening, Lidicka, 25/27, Brno, 60200, Czech Republic
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences Guangzhou, 510650, China.
| |
Collapse
|
4
|
Saba B, Bharathidasan AK, Ezeji TC, Cornish K. Characterization and potential valorization of industrial food processing wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161550. [PMID: 36652966 DOI: 10.1016/j.scitotenv.2023.161550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Valorization and utilization of industrial food processing waste as value added products, platform chemicals and biofuels, are needed to improve sustainability and reduce waste management costs. Various industrial food waste stream samples were characterized with respect to their physico-chemical characteristics and elemental composition. A subset of starchy food wastes and milk dust powder were evaluated in batch fermentation to acetone, a useful platform chemical. Production levels were similar to acetone produced from glucose but were achieved more quickly. Lactose concentration negatively affected fermentation and led to 50 % lower acetone concentration from milk dust powder than from starchy wastes. Uncooked starch waste can produce 20 % more acetone than cooked and modified starch waste. Fatty waste and mineral waste can be digested anaerobically generating biogas. Calorific value of soybean waste was 40 MJ/kg sufficiently high for biodiesel production. Low C/N ratios of wastewater and solids from food processing waste makes them unsuitable for anaerobic digestion but these waste types can be converted thermochemically to hydrochar and used as soil amendments. Low calorific content (10-15 MJ/kg) vegetable wastes also are not ideal for energy production, but are rich in flavonoids, antioxidants and pigments which can be extracted as valuable products. A model mapping food waste characteristics to best valorization pathway was developed to guide waste management and future cost and environmental impact analyses. These findings will help advance food industry knowledge and improve sustainable food production through valorized processing waste management.
Collapse
Affiliation(s)
- Beenish Saba
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
| | - Ashok K Bharathidasan
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA
| | - Thaddeus C Ezeji
- Department of Animal Science, Ohio Agricultural Research and Development Center, CFAES Wooster Campus, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Katrina Cornish
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, 590 Woody Hayes Drive, Columbus, OH 43210, USA; Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA; Department of Food, Agricultural and Biological Engineering, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA.
| |
Collapse
|
5
|
Ren H, Huang R, Li Y, Li W, Zheng L, Lei Y, Chen K. Photosynthetic regulation in response to strontium stress in moss Racomitrium japonicum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20923-20933. [PMID: 36264468 DOI: 10.1007/s11356-022-23684-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Strontium (Sr2+) pollution and its biological effects are of great concern including photosynthetic regulation, which is fundamental to environmental responses, especially for bryophytes during their terrestrial adaptation. Alternative electron flows mediated by flavodiiron proteins (FLVs) and cyclic electron flow (CEF) in photosystem I (PSI) are crucial to abiotic stresses moss responses; however, little is known about the moss photosynthesis regulation under nuclide treatment. We measured chlorophyll fluorescence parameters in PSI, photosystem II (PSII) and the P700 redox state, oxidative stress in the moss Racomitrium japonicum under low (5 mg/L), moderate (50 mg/L) and high (500 mg/L) Sr2+ stress level. Moderate and high Sr2+ stress triggered H2O2 and malondialdehyde (MDA) generation, and catalase (CAT) activity increases, which are involved in reactive oxygen species regulation. The significant PSII photochemistry (Fv/Fm), Chla/chlb, Y(I)/Y(II), Y(NA), Y(ND) and ETRI-ETRII decreases at moderate and high Sr2+, and the Y(I), Y(II) decreases at high Sr2+ revealed the photo-inhibition and photo-damage in PSI and PSII by moderate and high Sr2+ stress. The nonphotochemical quenching (NPQ) increased significantly at moderate and high Sr2+ stress, reflecting a heat-dissipation-related photo-protective mechanism in antenna system and reaction centers. Moreover, rapid re-oxidation of P700 indicated that FLV-dependent flows significantly regulated PSI redox state under moderate and high Sr2+ stress. and CEF upregulation was found at low Sr2+. Finally, photosynthetic acclimation to Sr2+ stress in R. japonicum was linked to FLVs and CEF adjustments.
Collapse
Affiliation(s)
- Hui Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Renhua Huang
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, 448000, Hubei, China
| | - Ying Li
- Administration Bureau of Jiuzhaigou National Nature Reserve, Jiuzhaigou, 623402, China
| | - Wanting Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Liuliu Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yanbao Lei
- China-Croatia "Belt and Road" Joint Laboratory On Biodiversity and Ecosystem Services, CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
6
|
Chen X, Zhong N, Luo Y, Ni Y, Liu Z, Wu G, Zheng T, Dang Y, Chen H, Li W. Effects of strontium on the morphological and photosynthetic physiological characteristics of Vicia faba seedlings. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:811-821. [PMID: 35961092 DOI: 10.1080/15226514.2022.2110037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The adaptation of plants to strontium (Sr) stress requires a more systematic understanding. In the present study, the morphological and photosynthetic physiological characteristics of Vicia faba seedlings under Sr stress (88Sr, 0-1,000 mg·L-1) were analyzed in solution culture. The results showed that Sr treatment decreased the biomass and root activity of V. faba seedlings significantly, but fortunately, there was almost no root necrosis. In plant morphology, the taproot length, lateral root number, plant height, branching number and internodes number of V. faba were significantly inhibited, thus the apical dominance of taproot and terminal bud was more obvious. The accumulation of Sr resulted in the decrease of leaf area, dry weight, stomatal density and stomatal aperture, while the guard cell length increased, and the specific leaf weight (SLW) increased first and then decreased. These changes in stomatal morphology may be a positive regulation to reduce water loss. In addition, V. faba increased the non-photochemical quenching (NPQ) and the activities of peroxidase (POD) and ascorbate peroxidase (APX) to protect the photosynthetic structure. Low concentration of Sr (250 mg·L-1) promoted the photochemical efficiency and electron transfer of PSII (e.g., increased Fv/Fm, ΦPSII, qP and ETR). However, Sr (250-1,000 mg·L-1) inhibited the net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (Gs) in leaves. In general, the Pn was affected by both stomatal and non-stomatal factors. Since Sr did not cause significant damage to the PSII function, the non-stomatal factor may be the dark reaction in photosynthesis affected, but this needs to be proved by further studies.
Collapse
Affiliation(s)
- Xi Chen
- Life Science College, Sichuan Normal University, Chengdu, China
| | - Ningying Zhong
- Life Science College, Sichuan Normal University, Chengdu, China
| | - Yayun Luo
- Life Science College, Sichuan Normal University, Chengdu, China
| | - Yinfeng Ni
- Life Science College, Sichuan Normal University, Chengdu, China
| | - Ziyi Liu
- Life Science College, Sichuan Normal University, Chengdu, China
| | - Guo Wu
- Life Science College, Sichuan Normal University, Chengdu, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, China
| | - Ting Zheng
- Life Science College, Sichuan Normal University, Chengdu, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, China
| | - Yuxi Dang
- Life Science College, Sichuan Normal University, Chengdu, China
| | - Huiling Chen
- Life Science College, Sichuan Normal University, Chengdu, China
| | - Wei Li
- Life Science College, Sichuan Normal University, Chengdu, China
| |
Collapse
|
7
|
Cheng X, Chen C, Hu Y, Guo X, Wang J. Photosynthesis and growth of Amaranthus tricolor under strontium stress. CHEMOSPHERE 2022; 308:136234. [PMID: 36041533 DOI: 10.1016/j.chemosphere.2022.136234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Amaranthaceae are effective plants for cleaning soil contaminated by heavy metals and radionuclides. In this paper, Amaranthus tricolor was used to investigate the response of the plant photosynthesis to various concentration of strontium ions (0.2, 0.6, 3 and 6 mM), in order to determine the possibility of A. tricolor to remediate strontium contamination. The results showed that strontium ions (0.2-6 mM) had effect on light energy conversion and utilization in A. tricolor. Low level of strontium (0.2 mM) promoted the energy utilization in A. tricolor, while higher Sr concentration (3 mM or higher) increased the excess light energy in the plants. Under strontium stress of 6 mM, the acceptor side of PSII in A. tricolor leaves was more vulnerable to strontium stress than the donor side. Furthermore, strontium stress led to accumulation of QA- and block in QB downstream of the electron transfer chain in PSII of A. tricolor leaves. The tolerance ability of A. tricolor to strontium and remediation is also reflected in its biomass and strontium content in plants. Strontium at 3 mM or below promoted the growth of A. tricolor, while higher concentration inhibited the plant growth, but without obvious wilting or curling of leaves. The maximal dry weight increased by 36.29% in shoots, and 60.14% in roots when the spiked-strontium concentration reached 0.2 mM. The maximal strontium content achieved 8.75 mg/g dry wt in shoots, and 1.71 mg/g dry wt in roots respectively, when strontium concentration was 6 mM. Transfer factors (TFs: ratio of Sr content in shoots to that in roots) of strontium in A. tricolor ranged from 2.85 to 5.93, while bio-concentration factors (BCFs: ratio of Sr content in shoots to that in solutions) ranged from 22.57 to 49.66. In summary, A. tricolor showed the excellent potential to remediate strontium contamination.
Collapse
Affiliation(s)
- Xuening Cheng
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Can Chen
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China
| | - Yuming Hu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Xiliang Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; China Institute for Radiation Protection, Taiyuan, 030006, Shanxi, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
8
|
Cheng X, Chen C, Hu Y, Wang J. Response of Amaranthus tricolor to cesium stress in hydroponic system: Growth, photosynthesis and cesium accumulation. CHEMOSPHERE 2022; 307:135754. [PMID: 35863419 DOI: 10.1016/j.chemosphere.2022.135754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Remediation of the cesium-contaminated environment is of paramount importance, and phytoremediation is a cost-effective and green technique. In this paper, the response of Amaranthus tricolor to cesium ions in hydroponic solution was investigated at various cesium concentration (0, 0.05, 0.2, 0.4 and 0.6 mM), in terms of the growth weight, height and photosynthesis. The maximal Cs content in stems and leaves of A. tricolor was 13.05 mg/g dry wt under spiked Cs level of 0.4 mM in solution. The maximal transfer factor (TF) and bioconcentration factor (BCF) were 1.87 and 181.25 respectively, when the corresponding Cs content in roots and shoots was 7.04 mg/g and 13.05 mg/g dry wt respectively. TFs are higher than 1 in the conditions of normal plant growth. The growth of A. tricolor was enhanced after the treatment of Cs at low concentrations (0.05 and 0.2 mM), while it was inhibited at 0.4 and 0.6 mM. The leaf number and dry weight of stem, leaf parts and root parts were maximum at the spiked cesium level of 0.2 mM, which significantly increased by 19.19%, 47.56% and 94.56% respectively, compared with the control samples. Under 0.6 mM cesium stress, curl and withering of the leaves occurred, and the plant growth and cesium accumulation dropped to the minimum. Cs at the spiked level of 0.6 mM in solution inhibited the performance of PSII, especially in terms of blockage in electron transfer process beyond QA and restraint of P700 reduction. On contrast, the performance of PSII was enhanced by the spiked Cs at level of 0.2 mM, leading to the growing density of reaction centers per excited cross-section and increasing electron transfer process beyond QA. In summary, A. tricolor has potential for remediating the Cs-contaminated environment.
Collapse
Affiliation(s)
- Xuening Cheng
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Can Chen
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China
| | - Yuming Hu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
9
|
Near-infrared spectroscopy for prediction of potentially toxic elements in soil and sediments from a semiarid and coastal humid tropical transitional river basin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Sasmaz M, Uslu Senel G, Obek E. Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewaters (Elazig, Turkey). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2257-2270. [PMID: 32728950 DOI: 10.1007/s10653-020-00629-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The mining and municipal wastewaters in the study area are located around Elazig, Turkey. This study investigated the translocation and accumulation of Sr into 9 terrestrial-aquatic plants from the Elazig municipal wastewater, Keban Pb-Zn and Maden Cu wastewaters. Plants and their soil samples were collected from the stream/rivers on the municipal and mining areas, and Sr values in both plant parts and their soils were analyzed by ICP-MS. The mean Sr concentrations in the soil, root and shoot of the terrestrial-aquatic plants were 101, 48.2 and 80.5 ppm, respectively (on the dried weight basis). The enrichment coefficients of root (ECR) and shoots (ECS) and translocation factors of studied plants were calculated and, then, divided into several groups as a candidate, bioaccumulator and hyperaccumulator plants according to their ECR and ECSs. These groups indicated the candidate plants: Salix sp. and Tamarix tetrandra; bioaccumulator plants: Pragmites sp. and Xanthium, and hyperaccumulator plants: Typha latifolia, Bolboscholnus ascbersus and Lythnium salicaria for Sr. These results showed that both bioaccumulator and hyperaccumulator plant groups had very high ability to accumulate strontium to plant parts from their soil. Therefore, these studied plants may be helpful/useful for the rehabilitation studies of municipal and mining soils contaminated by Sr.
Collapse
Affiliation(s)
- Merve Sasmaz
- Department of Environmental Engineering, Firat University, 23119, Elazig, Turkey.
| | - Gülsad Uslu Senel
- Department of Environmental Engineering, Firat University, 23119, Elazig, Turkey
| | - Erdal Obek
- Department of Bio-engineering, Firat University, 23119, Elazig, Turkey
| |
Collapse
|
11
|
Mishra D, Kumar S, Mishra BN. An Overview of Morpho-Physiological, Biochemical, and Molecular Responses of Sorghum Towards Heavy Metal Stress. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 256:155-177. [PMID: 33866418 DOI: 10.1007/398_2020_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heavy metal (HM) contamination is a serious global environmental crisis. Over the past decade, industrial effluents, modern agricultural practices, and other anthropogenic activities have significantly depleted the soil environment. In plants, metal toxicity leads to compromised growth, development, productivity, and yield. Also, HMs negatively affect human health due to food chain contamination. Thus, it is imperative to reduce metal accumulation and toxicity. In nature, certain plant species exhibit an inherent capacity of amassing large amounts of HMs with remarkable tolerance. These plants with unique characteristics can be employed for the remediation of contaminated soil and water. Among different plant species, Sorghum bicolor has the potential of accumulating huge amounts of HMs, thus could be regarded as a hyperaccumulator. This means that it is a metal tolerant, high biomass producing energy crop, and thus can be utilized for phytoremediation. However, high concentrations of HMs hamper plant height, root hair density, shoot biomass, number of leaves, chlorophyll, carotenoid, and carbohydrate content. Thus, understanding the response of Sorghum towards different HMs holds considerable importance. Considering this, we have uncovered the basic information about the metal uptake, translocation, and accumulation in Sorghum. Plants respond to different HMs via sensing, signaling, and modulations in physico-chemical processes. Therefore, in this review, a glimpse of HM toxicity and the response of Sorghum at the morphological, physiological, biochemical, and molecular levels has been provided. The review highlights the future research needs and emphasizes the extensive molecular dissection of Sorghum to explore its genetic adaptability towards different abiotic stresses that can be exploited to develop resilient crop varieties.
Collapse
Affiliation(s)
- Dewanshi Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Smita Kumar
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India.
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
12
|
Jalali J, Gaudin P, Ammar E, Lebeau T. Bioaugmentation coupled with phytoextraction for the treatment of Cd and Sr, and reuse opportunities for phosphogypsum rare earth elements. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122821. [PMID: 32516651 DOI: 10.1016/j.jhazmat.2020.122821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/18/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The environmental and health impacts caused by phosphogypsum (PG) make it necessary to carefully manage these wastes. Bioaugmentation of a PG-compost mix with Bacillus cereus was associated with Trifolium pratense or Helianthus annuus for the phytoextraction of metal trace elements (MTE). In hydroponics, MTE concentrations in sunflower shoots are higher than in clover; however, as opposed to clover, it regulates their accumulation. The MTE accumulation levels by plants cultivated in pots with the PG-compost mix are much lower than in hydroponics due to lower concentration in available MTE. The bacteria-plant coupling has served to raise MTE concentrations, especially for rare earth elements (REE), i.e., Ce, La, Nd, Y, in the AP of sunflower, by factors of 4.4, 38.3, 3.4 and 21, respectively, compared to non-bioaugmented control. The translocation factor was also increased for all MTE and is ranged between 1.1 for Sr and 6.8 for Y. Moreover, the presence of bacteria raises plant biomass by a factor of 3.7 for shoots and 2.9 for the roots as regards clover. Results showed that in addition to phytoextraction of REE elements, all providing the promise of some kind of economic opportunity, the dispersion of PG stockpiles dust and erosion should be reduced.
Collapse
Affiliation(s)
- Jihen Jalali
- Laboratory of Planetology and Geodynamics of Nantes, UMR 6112 CNRS, Faculty of Sciences and Technology of Nantes, BP 92208, 44322, Nantes Cedex 3, France; Laboratory of Environmental Sciences and Sustainable Development (LASED), University of Sfax, National Engineering School of Sfax, BP 1173, 3038, Sfax, Tunisia; Tunisian Chemical Group, Mdhilla-Gafsa facility, B.P. 215, 2100, Gafsa, Tunisia
| | - Pierre Gaudin
- Laboratory of Planetology and Geodynamics of Nantes, UMR 6112 CNRS, Faculty of Sciences and Technology of Nantes, BP 92208, 44322, Nantes Cedex 3, France
| | - Emna Ammar
- Laboratory of Environmental Sciences and Sustainable Development (LASED), University of Sfax, National Engineering School of Sfax, BP 1173, 3038, Sfax, Tunisia
| | - Thierry Lebeau
- Laboratory of Planetology and Geodynamics of Nantes, UMR 6112 CNRS, Faculty of Sciences and Technology of Nantes, BP 92208, 44322, Nantes Cedex 3, France.
| |
Collapse
|
13
|
Chen C, Wang X, Wang J. Phytoremediation of cadmium-contaminated soil by Sorghum bicolor and the variation of microbial community. CHEMOSPHERE 2019; 235:985-994. [PMID: 31561315 DOI: 10.1016/j.chemosphere.2019.07.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
In this paper, the growth of S. bicolor in Cd-polluted sandy clay loam soil in north China, Cd accumulation in plant and the corresponding soil microbial community were characterized when the plant matured (140 d of growth). Cadmium promoted the growth of mature S. bicolor with higher height and heavier dry mass, especially at the spiked level of 1 mg kg-1 soil (P < 0.05). The higher microbial diversity was found under Cd stress at the spiked level of 15 mg kg-1, which basically corresponded with its influence on the plant growth. High-throughput sequencing data demonstrated that the predominant bacterial phyla include Proteobacteria (35.99% for Cd-polluted soil and 35.22% for the control soil), Chloroflexi (21.33% and 20.58%), Actinobacteria (12.00% and 12.89%), Acidobacteria (7.47% and 11.14%), Bacteroidetes (7.37% and 6.96%), Gemmatimonadetes (5.60% and 6.65%), Firmicutes (2.82% and 1.86%), Planctomycetes (2.47% and 0.95%), Saccharibacteria (1.26% and 1.11%). The predominant fungal phyla was Ascomycota, with the relative abundance of 89.96% for the control soil and 86.2% for the Cd-polluted soil. S. bicolor could grow well in sandy clay loam soil in northern China at low Cd lvel, but it could not accumulate cadmium at higher cadmium level. S. bicolor could be used for phytoextraction of cadmium from the lightly Cd-polluted soil.
Collapse
Affiliation(s)
- Can Chen
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China.
| | - Xu Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China.
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
14
|
Hanaka A, Dresler S, Wójciak-Kosior M, Strzemski M, Kováčik J, Latalski M, Zawiślak G, Sowa I. The Impact of Long-and Short-Term Strontium Treatment on Metabolites and Minerals in Glycine max. Molecules 2019; 24:E3825. [PMID: 31652846 PMCID: PMC6864967 DOI: 10.3390/molecules24213825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
The impact of long-term exposure to Sr2+ (LTE, four doses, 43.5 mg Sr2+ per pot, with a total of 174 mg Sr2+ per pot during the entire period of cultivation) and short-term exposure to Sr2+ (STE, one dose, 870 mg Sr2+ per pot four days before harvest) on the content of phytoestrogens and allantoin in soybeans were compared. Sr2+ accumulation, the effect on the concentration of macroelements, and basic physiology were also analyzed. LTE reduced the content of malonyldaidzin and malonylgenistin in the roots (58% and 50% compared to the control, respectively). STE increased the amount of all isoflavones in the stem and genistein in the leaves and decreased the content of malonyldaidzin and malonylgenistin in the leaves (55% and 48% compared to the control, respectively) and roots (69% and 62% of the control, respectively) as well as genistein and coumestrol in the roots (both 50% compared to the control). Sr2+ presence stimulated the accumulation of allantoin in the roots (three-fold higher than in the control), but only STE had similar effects on the shoots. In contrast to LTE, Sr2+ was transported extensively from the roots to the leaves under STE. In comparison to the control, LTE resulted in an increase in the Ca content in the stem by 36%, whereas Ca2+ accumulation in the leaves, stems, and roots increased by 60%, 80%, and 36%, respectively, under STE. Additionally, a significant accumulation of K was found only in the roots of the LTE group. The chlorophyll content did not differ between the treatments. Overall, the production of phytoestrogens and Sr accumulation were affected by both the applied dose and the duration of exposure to Sr.
Collapse
Affiliation(s)
- Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Sławomir Dresler
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovakia.
| | - Michał Latalski
- Children's Orthopedics Department, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland.
| | - Grażyna Zawiślak
- Department of Vegetable and Herbal Crop, University of Life Sciences, Akademicka 15, 20-950 Lublin, Poland.
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
15
|
Yan D, Wang S, Ding K, He Y, Fan L, Ding L, Jiang X. Strontium Uptake and Effect in Lettuce and Radish Cultivated Under Hydroponic Conditions. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:453-460. [PMID: 31183504 DOI: 10.1007/s00128-019-02647-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The accumulation of strontium (Sr) in lettuce and radish under 0 (control), 0.5, 1, 2.5, 5, and 10 mM Sr treatments in hydroponic solution at 16, 23 and 30 days and the effects of Sr stress on six nutrient elements in plants were investigated. The results showed that Sr concentrations in plant aerial and underground parts increased in low-Sr treatments (0.5, 1 and 2.5 mM) and fluctuated in high-Sr treatments (5 and 10 mM) throughout the three sampling periods. Sr concentrations were higher in roots than in leaves, reaching 108.8 ± 14.7 and 134.1 ± 1.2 mg/g in lettuce and radish roots, respectively, after 10 mM Sr treatment. Translocation factor (TF) values (ratio of the Sr concentrations in aerial parts to that in roots) were inversely related to the Sr content in the hydroponic solution, and reached 1.45 ± 0.17 to 0.15 ± 0.03 and 1.06 ± 0.20 to 0.12 ± 0.004 for lettuce and radish. The variation in chlorophyll content was consistent with that in plant biomass.
Collapse
Affiliation(s)
- Dong Yan
- Department of Radiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| | - Shuifeng Wang
- Analytical and Testing Center, Beijing Normal University, Beijing, 100875, China
| | - Kuke Ding
- Department of Radiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| | - Yingxue He
- Department of Radiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| | - Li Fan
- Department of Radiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| | - Lixing Ding
- Department of Radiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| | - Xiaoyan Jiang
- Department of Radiology, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China.
| |
Collapse
|
16
|
Qi L, Zhao W. Strontium uptake and antioxidant capacity comparisons of low accumulator and high accumulator oat ( Avena sativa L.) genotypes. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:227-235. [PMID: 31468984 DOI: 10.1080/15226514.2019.1658704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The main object of the present study is to investigate genotypic differences in strontium (Sr) resistance of two oat varieties, including Neimengkeyi-1 (high accumulator) and Bayou-3 (low accumulator). The growth and antioxidant enzyme responses to five Sr concentrations (0, 25, 100, 500, and 1000 mg kg-1) were compared after 30-day Sr treatment. The shoot-Sr concentrations of Neimengkeyi-1 were higher than those of Bayou-3 in all treatments. The translocation factors of Neimengkeyi-1 in all treatments were greater than 1 and significantly higher than those of Bayou-3. Sr ions did not affect the growth of Neimengkeyi-1. The H2O2 contents and the leaf malondialdehyde contents of Neimengkeyi-1 were lower than those of Bayou-3. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase of Neimengkeyi-1 were significantly higher than those of Bayou-3. Significant negative correlations were found between H2O2 contents and SOD and CAT activities in Neimengkeyi-1. The results of this study suggest that Sr accumulation patterns have significant genotypic differences, and SOD and CAT may play a pivotal role in the detoxification mechanism of Sr.
Collapse
Affiliation(s)
- Lin Qi
- Agricultural College, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- Agricultural College, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
17
|
Bonari G, Monaci F, Nannoni F, Angiolini C, Protano G. Trace Element Uptake and Accumulation in the Medicinal Herb Hypericum perforatum L. Across Different Geolithological Settings. Biol Trace Elem Res 2019; 189:267-276. [PMID: 30043286 DOI: 10.1007/s12011-018-1453-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/18/2018] [Indexed: 11/29/2022]
Abstract
The worldwide growing interest in traditional medicines, including herbal medicines and herbal dietary supplements, has recently been accompanied by concerns on quality and safety of this type of health care. The content of nutritional and potentially toxic elements in medicinal plants is of paramount interest as it may vary remarkably according to different environmental and ecophysiological factors. In this study, the concentrations of essential and non-essential trace elements-Co, Cr, Cu, Ni, Sr, and Zn-were determined in the roots and aerial parts of the worldwide distributed and economically important medicinal herb Hypericum perforatum L. (St. John's wort) and in its growing substrate. Most of the analyzed trace elements varied considerably in the plant parts according to edaphic conditions and soil geochemistry. However, uptake and retention in H. perforatum compartments of Co, Cr, and Ni, which markedly differentiated the investigated soils, were controlled by excluding mechanisms of the plant. Despite this, the Ni concentrations in the aerial parts, commonly used in herbal preparations, of H. perforatum plants from serpentine soils were not insignificant in relation to eventual human consumption. Good practice to assure the herbal product quality of H. perforatum collected from the wild cannot ignore the thorough understanding of the geolithological and geochemical features of the harvesting areas.
Collapse
Affiliation(s)
- Gianmaria Bonari
- Department of Botany and Zoology, Masaryk University Kotlarska 2, CZ-611 37, Brno, Czech Republic
| | - Fabrizio Monaci
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Francesco Nannoni
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via del Laterino 8, 53100, Siena, Italy
| | - Claudia Angiolini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Giuseppe Protano
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via del Laterino 8, 53100, Siena, Italy.
| |
Collapse
|
18
|
Scotti A, Silvani VA, Cerioni J, Visciglia M, Benavidez M, Godeas A. Pilot testing of a bioremediation system for water and soils contaminated with heavy metals: vegetable depuration module. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:899-907. [PMID: 30907107 DOI: 10.1080/15226514.2019.1583634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a novel constructed wetland called a vegetable depuration module (VDM) as a pilot test of a bioremediation system (BS) for decontaminating water and soil polluted with heavy metals. The VDM consisted of a pool filled with stones of different granulometry and a substrate top layer composed of a mixture of soil and volcanic ash (50:50, v/v) supplemented with 350 ppm Zn. The BS of sunflower plants colonized by the arbuscular mycorrhizal fungus Rhizophagus intraradices was planted in the VDM. Initially, the substrate registered high concentrations of Zn, Cr, Mn, Cu, and Sr, and had Eh > +500 mV and pH 8.4. Irrigation with a Cu solution by vertical flow was carried out. After 3 months, bioaccumulation factors ranged from 1.00 to 8.90, and translocation rates were >1 for Sr and Cu. Total metals extracted by the BS and percolation were 31%, 34%, 50%, 45%, and 57% for Zn, Cu, Mn, Cr, and Sr, respectively. Only the BS was capable of extracting 94% of Cu and 38% of Zn. VDM allowed us to calibrate the extractive performance of the studied elements in BS. This biotechnological development holds great potential for phytoremediation of polluted areas.
Collapse
Affiliation(s)
- Adalgisa Scotti
- a Comisión Nacional de Energía Atómica , International Center for Earth Sciences , Complejo Minero Fabril San Rafael CMFSR-CNEA , San Rafael , Argentina
- b Facultad de Ciencias Exactas y Naturales , Universidad Nacional de Cuyo , Mendoza , Argentina
| | - Vanesa Analia Silvani
- c Instituto de Biodiversidad y Biología Experimental y Aplicada, IBBEA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Juan Cerioni
- d Facultad Regional San Rafael , Universidad Tecnológica Nacional , San Rafael , Argentina
| | | | - Matías Benavidez
- c Instituto de Biodiversidad y Biología Experimental y Aplicada, IBBEA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Alicia Godeas
- c Instituto de Biodiversidad y Biología Experimental y Aplicada, IBBEA (UBA-CONICET), Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
19
|
Dresler S, Wójciak-Kosior M, Sowa I, Strzemski M, Sawicki J, Kováčik J, Blicharski T. Effect of Long-Term Strontium Exposure on the Content of Phytoestrogens and Allantoin in Soybean. Int J Mol Sci 2018; 19:E3864. [PMID: 30518039 PMCID: PMC6321324 DOI: 10.3390/ijms19123864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/28/2022] Open
Abstract
Abiotic stress, including metal excess, can modify plant metabolism. Here we investigated the influence of long-term strontium exposure (12 weeks, 0.5⁻4.0 mM Sr) on the content of phytoestrogens and allantoin as well as the mineral composition in soybean. Seven phytoestrogens were identified in the soybean: daidzin, glycitin, genistin, malonyldaidzin, malonylgenistin, daidzein, and coumestrol. The results showed that both malonyldaidzin and malonylgenistin were dominant phytoestrogens; however, the roots contained a relatively high amount of daidzein. It was found that strontium reduced the phytoestrogen content and decreased the antioxidant capacity. Strontium evoked depletion of the sum of all phytoestrogens by 40⁻70% in the leaves, 25⁻50% in the stems and in the seeds, depending on the strontium concentration. In the roots, 0.5 and 4.0 mM of strontium decreased the total phytoestrogen content by 25 and 55%, respectively, while 2.0 mM of strontium did not exert an effect on their accumulation. On the other hand, strontium ions induced allantoin accumulation mainly in the roots. Strontium was preferentially accumulated in the leaves, with a slight impact on macro- and micro-nutrients. Our research showed strontium-secondary metabolites interaction in the soybean, which can be useful for obtaining a natural pharmaceutical product containing both strontium and phytoestrogens for remediation of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Sławomir Dresler
- Department of Plant Physiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Jan Sawicki
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic.
| | - Tomasz Blicharski
- Orthopaedics and Rehabilitation Clinic, Medical University Lublin, Chodźki 4a, Lublin 20-093, Poland.
| |
Collapse
|