1
|
Cao J, Gao X, Zhang S, Wei Z, Chen X, Ma N, Li C, Zhao X. Migration patterns of phthalic acid esters from mulch plastic film in the soil-plant-atmosphere continuum system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136353. [PMID: 39486324 DOI: 10.1016/j.jhazmat.2024.136353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Plastic film mulching is an important agricultural practice, but its release of phthalic acid esters (PAEs) poses threats to soil and human health. However, the migration patterns of PAEs during the lifecycle of mulch plastic film (MPF) remain unclear. This study aims to explore the temporal patterns of release of PAEs during the MPF's lifecycle and evaluate the migration patterns of PAEs from MPF in the soil-plant-atmosphere continuum (SPAC) system through pot experiments and model simulations. The results reveal that during the mulching period, 44.90-56.71 % of the PAEs released went into the atmosphere and 14.97-18.90 % into the soil, while during the residual film period, 24.39-40.13 % were slowly released into the soil. Elevated soil water content increased maize transpiration rates, leading to higher concentrations of PAEs in roots, stems, and fruits, but lower concentrations in leaves. In 2020, the estimated total release of PAEs from MPF in northwest China amounted to 35.42 tons. Notably, PAEs predominantly accumulated in the soil, with minimal accumulation in plant tissues. Moreover, PAEs were primarily removed through degradation. Our results elucidate the migration patterns of PAEs from MPF in the SPAC system, facilitating the evaluation of PAE pathways into the human food chain.
Collapse
Affiliation(s)
- Junhao Cao
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaodong Gao
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shaoqi Zhang
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zhenhao Wei
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Chen
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
| | - Nanfang Ma
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
| | - Changjian Li
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Xining Zhao
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Pan J, Li X, Ding P, Luo H, Cai S, Ge Q, Zhang L, Hu G. Levels, sources, and health risk assessment of phthalate acid esters in indoor dust of various microenvironments in university. CHEMOSPHERE 2024; 364:143182. [PMID: 39182730 DOI: 10.1016/j.chemosphere.2024.143182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Phthalate acid esters (PAEs), as a common group of plasticizers, are widely present in indoor environments and pose a risk to human health. Indoor dust samples collected from dormitory, classroom, laboratory, and office in several universities in China, were analyzed for seven types of PAEs. The total concentrations of seven PAEs (Σ7PAEs) ranged from 4.87 to 360 μg/g, with a median concentration of 51 μg/g, which is lower than that reported by other studies. Using the median concentration of Σ7PAEs as a metric, we assessed the levels of contamination in different microenvironments, resulting in the following ranking: dormitory > classroom > laboratory > office. There are significant differences in the levels of individual PAEs in different microenvironments. Radiation from sunlight, ventilation rates, cleaning frequency, and sprays were influential factors for the concentrations of individual PAEs in indoor dust. The indoor environmental conditions and consumption patterns profoundly affect PAEs levels. The sources of PAEs in classroom and office were more complex than in dormitory and laboratory. Daily intakes of PAEs were used to calculate carcinogenic and non-carcinogenic human risk for males and females, indicating a low health risk to humans. This is the first study to assess the risk of PAEs in university microenvironments and provides a valuable reference for further research.
Collapse
Affiliation(s)
- Jun Pan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haojie Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Sha Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Qing Ge
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liuyi Zhang
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404130, China.
| |
Collapse
|
3
|
Li Y, Cheng S, Fang H, Yang Y, Guo Y, Zhou Y, Shi F. Composition, distribution, health risks, and drivers of phthalates in typical red paddy soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94814-94826. [PMID: 37537413 DOI: 10.1007/s11356-023-28815-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
The accelerated accumulation of phthalate esters (PAEs) in paddy soils poses a serious threat to human health. However, related studies mainly focus on facility vegetable fields, drylands, and orchards, and little is known about paddy soils. In this study, 125 samples were collected from typical red paddy fields to investigate the pollution characteristics, sources, health risks, and main drivers of PAEs. Soil physicochemical properties, enzyme activity, and bacterial community composition were also measured simultaneously. The results showed that eight PAE congeners were detected ranging from 0.17 to 1.97 mg kg-1. Di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and di-isobutyl phthalate (DIBP) were the most abundant PAE congeners, accounting for 81% of the total PAEs. DEHP exhibited a potential carcinogenic risk to humans through the intake route. The main PAEs were positively correlated with soil organic matter (SOM) and soil water content (SWC) contents. Low levels of PAEs increased bacterial abundance. Furthermore, most PAE congeners were positively correlated with hydrolase activity. Soil acidity and nutrient dynamics played a dominant role in the bacterial community composition, with PAE congeners playing a secondary role. These findings suggest that there may be a threshold response between PAEs and organic matter and nutrient transformation in red paddy soils, and that microbial community should be the key driver. Overall, this study deepens the understanding of ecological risks and microbial mechanisms of PAEs in red paddy soils.
Collapse
Affiliation(s)
- Yuna Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulan Cheng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huajun Fang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
- The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, 343000, China.
| | - Yan Yang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yifan Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangying Shi
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Li X, Wang Q, Jiang N, Lv H, Liang C, Yang H, Yao X, Wang J. Occurrence, source, ecological risk, and mitigation of phthalates (PAEs) in agricultural soils and the environment: A review. ENVIRONMENTAL RESEARCH 2023; 220:115196. [PMID: 36592811 DOI: 10.1016/j.envres.2022.115196] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The widespread distribution of phthalates (PAEs) in agricultural soils is increasing drastically; however, the environmental occurrence and potential risk of PAEs in agricultural systems remain largely unreviewed. In this study, the occurrence, sources, ecotoxicity, exposure risks, and control measures of PAEs contaminants in agricultural soils are summarized, and it is concluded that PAEs have been widely detected and persist in the soil at concentrations ranging from a few μg/kg to tens of mg/kg, with spatial and vertical variations in China. Agrochemicals and atmospheric deposition have largely contributed to the elevated contamination status of PAEs in soils. In addition, PAEs cause multi-level hazards to soil organisms (survival, oxidative damage, genetic and molecular levels, etc.) and further disrupt the normal ecological functions of soil. The health hazards of PAEs to humans are mainly generated through dietary and non-dietary pathways, and children may be at a higher risk of exposure than adults. Improving the soil microenvironment and promoting biochemical reactions and metabolic processes of PAEs are the main mechanisms for mitigating contamination. Based on these reviews, this study provides a valuable framework for determining future study objectives to reveal environmental risks and reduce the resistance control of PAEs in agricultural soils.
Collapse
Affiliation(s)
- Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China
| | - Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, China
| | - Huijuan Lv
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China
| | - Chunliu Liang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China
| | - Huiyan Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China.
| |
Collapse
|
5
|
Wang H, He H, Wei Y, Gao X, Zhang T, Zhai J. Do phthalates and their metabolites cause poor semen quality? A systematic review and meta-analysis of epidemiological studies on risk of decline in sperm quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34214-34228. [PMID: 36504299 DOI: 10.1007/s11356-022-24215-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
A systematic review and meta-analysis were conducted to understand the association of phthalates and their metabolites with sperm quality in humans. By June 30, 2022, relevant literature on the effects of phthalates and their metabolites on sperm quality were searched and collected using three English-language databases including PubMed, EMbase, and Web of Science. Two researchers independently screened literature, extracted data, and assessed risk of bias. Stata 11 and RevMan 5.3 were used to conduct meta-analysis, test publication bias, and sensitivity analysis. A total of 12 literature were included for meta-analysis, excluding literature with different effect sizes. The results of meta-analysis indicated that monobutyl phthalate (MBP) and monobenzyl phthalate (MBzP) in urine were negatively correlated with semen concentration, and the results were statistically significant (MBP, pooled odds ratio (OR), 95% confidence interval (CI): 2.186 (1.471, 3.248), P < 0.05) and (MBzP, pooled OR (95%CI): 1.882 (1.471, 3.248), P < 0.05). Furthermore, the level of Di-(2-ethylhexyl) phthalate (DEHP) in semen was negatively correlated with semen concentration and the combined effect size was (pooled correlation coefficients (r) (95%CI): -0.225 (-0.319, -0.192), P < 0.05). However, the associations between MBP and MBzP with sperm motility and sperm morphology were not statistically significant (P > 0.05). And there was also no significant correlation between monoethyl phthalate (MEP), monomethyl phthalate (MMP), and mono-2-ethylhexyl phthalate (MEHP) and semen parameters, including semen concentration, sperm motility, and sperm morphology (P > 0.05). In summary, this current study provides moderate-certainty evidence for the data demonstrated that is a negative correlation between urine MBP levels, urine MBzP levels, and semen DEHP levels with semen concentration. In the future, more longitudinal cohort studies are needed to help elucidate the overall association.
Collapse
Affiliation(s)
- Houpeng Wang
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Huan He
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Yu Wei
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Xin Gao
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Taifa Zhang
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
6
|
Xiang L, Wang F, Bian Y, Harindintwali JD, Wang Z, Wang Y, Dong J, Chen H, Schaeffer A, Jiang X, Cai Z. Visualizing the Distribution of Phthalate Esters and Plant Metabolites in Carrot by Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15311-15320. [PMID: 36442135 DOI: 10.1021/acs.jafc.2c06995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation of organic pollutants in vegetables is a major global food safety issue. The concentrations of pollutants in vegetables usually differ across different tissues because of different transport and accumulation pathways. However, owing to the limitations of conventional methods, in situ localization of typical organic pollutants such as phthalate esters (PAEs) in plant tissues has not yet been studied. Here, we developed a quick and efficient method for in situ detection and imaging of the spatial distribution of PAEs in a typical root vegetable, carrot, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). The use of a 2,5-dihydroxybenzoic acid matrix with a spray-sublimation coating method led to the successful identification of PAEs ion signals. The IMS results showed that a typical PAE-di-(2-ethylhexyl)phthalate (DEHP) was broadly distributed in the cortex, phloem, and metaxylem, but was barely detectable in the cambium and protoxylem. Interestingly, MALDI-IMS data also revealed for the first time the spatial distribution of sugars and β-carotene in carrots. In summary, the developed method offers a new and practical methodology for the in situ analysis of PAEs and plant metabolites in plant tissues. As a result, it could provide a more intuitive understanding of the movement and transformation of organic pollutants in soil-plant systems.
Collapse
Affiliation(s)
- Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Environmental Research, RWTH Aachen University, WorringerWeg 1, Aachen 52074, Germany
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yu Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Dong
- Shimadzu China Innovation Center, Beijing 100000, China
| | - Hong Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, WorringerWeg 1, Aachen 52074, Germany
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, China
| |
Collapse
|
7
|
Liu A, Wang W, Chen X, Zheng X, Fu W, Wang G, Ji J, Guan C. Phytoremediation of DEHP and heavy metals co-contaminated soil by rice assisted with a PGPR consortium: Insights into the regulation of ion homeostasis, improvement of photosynthesis and enrichment of beneficial bacteria in rhizosphere soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120303. [PMID: 36181940 DOI: 10.1016/j.envpol.2022.120303] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The coexistence of di (2-ethylhexyl) phthalate (DEHP), Cd, and Zn poses a serious challenge to soil ecosystems. This study aimed to evaluate the phytoremediation potential of rice assisted with a plant growth promoting rhizobacteria (PGPR) consortium for the remediation of DEHP, Cd, and Zn co-contaminated soil. The consortium consisted of four bacterial strains, all of which exhibited Cd-Zn resistance and DEHP degradability. The results showed that the rice assisted by the bacterial consortium dissipated 86.1% DEHP while removing 76.0% Cd2+ and 92.2% Zn2+ from soil within 30 d. The presence of the PGPR consortium promoted plant growth and improved soil enzymatic activity, which may have helped enhance the removal of DEHP and heavy metals from the soil. Moreover, the application of the consortium modified the bacterial community and increased the relative abundance of bacteria related to DEHP degradation (Sphingomonas, Xanthobacteraceae), heavy metal immobilization (Massilia), and soil nutrient cycling (Nitrospira, Vicinamibacterales), which promoted plant growth and the removal of DEHP and heavy metals from soil. Notably, the DEHP and heavy metal contents in rice decreased substantially during the phytoremediation process. Therefore, the PGPR consortium could be beneficial for enhancing the removal of DEHP and heavy metals from the soil, without inducing the accumulation of these pollutants in rice. In general, this study confirmed that the combined use of rice and the PGPR consortium could remedy DEHP and heavy metal co-contaminated soil economically and ecologically without simultaneously posing risks for rice consumption.
Collapse
Affiliation(s)
- Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenting Fu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
8
|
Mondal T, Mondal S, Ghosh SK, Pal P, Soren T, Pandey S, Maiti TK. Phthalates - A family of plasticizers, their health risks, phytotoxic effects, and microbial bioaugmentation approaches. ENVIRONMENTAL RESEARCH 2022; 214:114059. [PMID: 35961545 DOI: 10.1016/j.envres.2022.114059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are a family of reprotoxicant compounds, predominantly used as a plasticizer to improve the flexibility and longevity of consumable plastic goods. After their use these plastic products find their way to the waste disposal sites where they leach out the hazardous phthalates present within them, into the surrounding environment, contaminating soil, groundwater resources, and the nearby water bodies. Subsequently, phthalates move into the living system through the food chain and exhibit the well-known phenomenon of biological magnification. Phthalates as a primary pollutant have been classified as 1B reprotoxicants and teratogens by different government authorities and they have thus imposed restrictions on their use. Nevertheless, the release of these compounds in the environment is unabated. Bioremediation has been suggested as one of the ways of mitigating this menace, but studies regarding the field applications of phthalate utilizing microbes for this purpose are limited. Through this review, we endeavor to make a deeper understanding of the cause and concern of the problem and to find out a possible solution to it. The review critically emphasizes the various aspects of phthalates toxicity, including their chemical nature, human health risks, phytoaccumulation and entry into the food chain, microbial role in phthalate degradation processes, and future challenges.
Collapse
Affiliation(s)
- Tanushree Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sanjeev Pandey
- Department of Botany, Banwarilal Bhalotia College, Asansol, 713303, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| |
Collapse
|
9
|
Huang F, Guan R, Wang J, Wang L, Zhang Y, Wang S, Wang L, Qu J, Dong M, Rong S. Interference between di(2-ethylhexyl) phthalate and heavy metals (Cd and Cu) in a Mollisol during aging and mobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155635. [PMID: 35513158 DOI: 10.1016/j.scitotenv.2022.155635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Diffuse pollution of the soil by phthalates and heavy metals causes numerous concerns. Their respective fates when coexisting require further investigation. In this study, di(2-ethylhexyl) phthalate (DEHP) and Cd/Cu were used as subjects, focusing on their behavior in Mollisols under combined pollution based on their concentration, fractionation, and leaching. The results indicated that when the two pollutants coexist, the dissipation rate of DEHP in the soil decreased, and its half-life was extended from 30.81 to 40.53 (Cd) and 35.40 d (Cu). DEHP altered the distribution of Cd and Cu in the soil, and this effect persisted after most of the DEHP had degraded. Leaching tests showed that the interaction of DEHP with Cd and Cu hindered leaching during the first rainfall event, but as DEHP degraded and Cd/Cu stabilized, the trapped pollutants were gradually released in subsequent rainfall events. Additionally, to investigate the partitioning of pollutants between soil water and solid surfaces, a diffusion model of DEHP and metal ions on the surface of montmorillonite (high specific surface area adsorbents abundant in soils) was built using molecular dynamics simulations. Simulations revealed their density distribution on the clay surface increased synergistically, whereas their diffusion was antagonistic. This study provides basic data and theoretical support concerning the ecological risk assessment of combined phthalate and heavy metals pollution in soil.
Collapse
Affiliation(s)
- Fuxin Huang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui Guan
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingyi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shiyu Wang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Shaowen Rong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
10
|
Lian Z, Gu X, Liu L, Zhao X. Diffuse phthalate acid esters losses induced from large amount of agricultural plastic film residues caused low risks for water quality in China during 1991-2017. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128644. [PMID: 35359115 DOI: 10.1016/j.jhazmat.2022.128644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Extensive application of agricultural plastic films has resulted in abundant film residues in farmlands. Phthalate acid esters (PAEs) are vital additives of the agricultural plastic film and are easily emitted into soils. However, spatio-temporal variations of diffuse PAEs loss to water bodies have not been explored in China. This study used an integrated estimation framework and high-resolution activity data to conduct a comprehensive inventory of diffuse PAEs loss associated with plastic films of six main crop types in China for 1991-2017. We found that the diffuse PAEs loss induced from agricultural plastic films increased 10.57-46.30 kg over the same time. Di-butyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) accounted for ~75% of the national total loss. High PAEs loss regions are mainly located in Eastern China, the Middle-Lower Yangtze Plain, and eastern Yunnan and Sichuan provinces. We proved that PAEs emission, agricultural film residues, surface runoff, precipitation, and soil organic carbon explained 19.64%, 17.50%, 15.45%, 12.88%, and 9.83% of the total variation, respectively. The potential ecological risks to the various aquatic species were assessed to be low. Overall, our results are valuable for addressing severe agricultural plastic film residues and associated pollutant emissions and losses in China.
Collapse
Affiliation(s)
- Zhongmin Lian
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Xiang Gu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Lianhua Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xumao Zhao
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Zhou M, Li Y. Modification of PAE-degrading Esterase(CarEW) for Higher Degradation Efficiency Through Integrated Homology Modeling, Molecular Docking, and Molecular Dynamics Simulation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Zhang QQ, Ma ZR, Cai YY, Li HR, Ying GG. Agricultural Plastic Pollution in China: Generation of Plastic Debris and Emission of Phthalic Acid Esters from Agricultural Films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12459-12470. [PMID: 34514800 DOI: 10.1021/acs.est.1c04369] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Agricultural plastic films have been proven highly advantageous, but they also cause pollution of plastic debris and associated chemicals. Phthalates (phthalic acid esters, PAEs), an important additive of agricultural films, can be released and contaminate the environment. Here, we analyzed the agricultural plastic usage and assessed plastic debris in China and developed a method to estimate PAE emissions from agricultural films. Additionally, the environmental fate of PAEs was evaluated using a fugacity-based multimedia model. The agricultural plastic film usage in China in 2017 was 2,528,600 tons. After agricultural film recycling and water erosion, the plastic debris amount was estimated as 465,016 tons. The water erosion process carried 4329 tons of plastic debris into the aquatic environment. During its lifetime, the agricultural film released a total of 91.5 tons of two typical types of PAEs. PAEs from the mulching film would mostly be removed through degradation, while those from the greenhouse film accumulate in vegetables. Populated regions exhibited more serious PAE pollution in vegetables but with no immediate health risks. The model was well evaluated using comparable measured concentrations and uncertainty analysis based on the Monte Carlo method. The findings from this study demonstrate the serious agricultural plastic pollution problem and associated PAE contamination in China.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhao-Rong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Ya-Ya Cai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hui-Ru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
13
|
Yu PF, Li YW, Zou LJ, Liu BL, Xiang L, Zhao HM, Li H, Cai QY, Hou XW, Mo CH, Wong MH, Li QX. Variety-Selective Rhizospheric Activation, Uptake, and Subcellular Distribution of Perfluorooctanesulfonate (PFOS) in Lettuce ( Lactuca sativa L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8730-8741. [PMID: 34169723 DOI: 10.1021/acs.est.1c01175] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perfluorooctanesulfonate (PFOS) as an accumulative emerging persistent organic pollutant in crops poses severe threats to human health. Lettuce varieties that accumulate a lower amount of PFOS (low-accumulating crop variety, LACV) have been identified, but the regarding mechanisms remain unsolved. Here, rhizospheric activation, uptake, translocation, and compartmentalization of PFOS in LACV were investigated in comparison with those of high-accumulating crop variety (HACV) in terms of rhizospheric forms, transporters, and subcellular distributions of PFOS. The enhanced PFOS desorption from the rhizosphere soils by dissolved organic matter from root exudates was observed with weaker effect in LACV than in HACV. PFOS root uptake was controlled by a transporter-mediated passive process in which low activities of aquaporins and rapid-type anion channels were corrected with low expression levels of PIPs (PIP1-1 and PIP2-2) and ALMTs (ALMT10 and ALMT13) genes in LACV roots. Higher PFOS proportions in root cell walls and trophoplasts caused lower root-to-shoot transport in LACV. The ability to cope with PFOS toxicity to shoot cells was poorer in LACV relative to HACV since PFOS proportions were higher in chloroplasts but lower in vacuoles. Our findings provide novel insights into PFOS accumulation in lettuce and further understanding of multiprocess mechanisms of LACV.
Collapse
Affiliation(s)
- Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Long-Jun Zou
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Xue-Wen Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
| | - Ming Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, P. R. China
- Consortium on Environment, Health, Education and Research (CHEER), The Education University of Hong Kong, Hong Kong, P. R. China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
14
|
Mustafa AEZMA, Alkahtani J, Elshikh MS, Al Shaqhaa MM, Alwahibi MS. Enhanced uptake of di-(2-ethylhexyl) phthalate by the influence of citric acid in Helianthus annuus cultivated in artificially contaminated soil. CHEMOSPHERE 2021; 264:128485. [PMID: 33032222 DOI: 10.1016/j.chemosphere.2020.128485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Di-(2-ethylhexyl) phthalic acid (DEHP) is the most extensively practiced plasticizer compound and a representative endocrine disrupting pollutant. Recently, the environmental impact and toxicological causes of DHEP on human health have been extensively investigated. DEHP uptake by plants is most significant biotransformation process of DEHP in environment. In this study, Helianthus annuus (H.annuus), vastly efficient in phytoremediation of polluted soil was selected to study the uptake and phytoremediation of DEHP in contaminated soil. In addition, the effect of citric acid on enhanced uptake and removal of DEHP was also investigated. The orders of biomass concentrations showed in the CA treatments were 200 mM (60.5 g) ˃ 150 mM (54.5) ˃ 100 mM (50.2 g) ˃ 50 mM (46.5 g). The maximum shoot accumulation of DHEP (20 mg/kg) was observed at 200 mM citric acid treatment compared to all other treatments (50, 100, and 150 mM). Significant difference of the antioxidant enzymes activity (CAT, 25.7, POD, 22.5 (μmol H2O2/min/g FW) and COD 5.6 U/g FW) was observed between control and CA treatments as well as different concentrations of CA treated plants. The maximum ALP (0.17 mg.g-1soil.24 h-1) and urease activities (1.65 mg.g-1soil.24 h-1) were observed at 200 mM CA amended soils. The application of citric acid was significantly enhanced the H.annuus growth as well as uptake of DEHP. The results explored that the citric acid has excellent potential for the enhanced uptake of DEHP in contaminated soil.
Collapse
Affiliation(s)
- Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Manal M Al Shaqhaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
15
|
Zhang Y, Sun R, Wang L, Zhu Y, Tuyiringire D, Yang Y, Li K, Han W, Wang Y, Yan L. Physiological responses of Arthrobacter sp. JQ-1 cell interfaces to co-existed di-(2-ethylhexyl) phthalate (DEHP) and copper. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111163. [PMID: 32836159 DOI: 10.1016/j.ecoenv.2020.111163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Arthrobacter sp. JQ-1 can completely degrade 500 mg/L of DEHP within 3 days. The minimum inhibitory concentrations (MICs) of Cu2+ could reach 1.56 mM, however, 5.0 mg/L Cu2+ apparently inhibited DEHP degradation and bacterial growth. Consequently, JQ-1 was exposed to the DEHP-copper environment to verify the toxicity mechanism based on the physiological responses of cellular multiple interfaces (cellular surface, membrane and intracellular characteristics). The results showed the combination of 500 mg/L DEHP and 5.0 mg/L Cu2+ significantly decreased cell surface hydrophobicity (CSH) and the absolute value of zeta potential, which implied the bioavailability of DEHP was decreased. The cellular surface changes were mainly due to the interaction between Cu2+ and some functional groups (CH2, CH3, aromatic rings, and amide). The weakened proton-motive force (PMF) across the plasma membrane may interfere the formation and utilization of energy, which is not conducive to the repair process of cellular damages. In this study, Non-invasive micro-test technology (NMT) was applied to the research of combined toxicity of DEHP and heavy metal ions for the first time. DEHP-copper intensified K+ efflux and Ca2+ influx across the plasma membrane, which disturbed ion homeostasis of K+ and Ca2+ and might induce apoptosis and further inhibit DEHP degradation. The decline of intracellular esterase activity indicated that the metabolic capacity is apparently restrained. This study enhances our understanding of cellular different interface processes responding to combined pollutants.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Ruixue Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Diogene Tuyiringire
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ying Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kuimin Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Han
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lilong Yan
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
16
|
Zeng LJ, Huang YH, Chen XT, Chen XH, Mo CH, Feng YX, Lü H, Xiang L, Li YW, Li H, Cai QY, Wong MH. Prevalent phthalates in air-soil-vegetable systems of plastic greenhouses in a subtropical city and health risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140755. [PMID: 32758841 DOI: 10.1016/j.scitotenv.2020.140755] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Wide use of plastic greenhouses for vegetable production increases human exposure to phthalate (PAEs) through vegetable intake. However, little information is available about distribution of PAEs in air-soil-vegetable systems of plastic greenhouses and PAE estrogenic effects. This study was designed to investigate PAE distributions and corresponding health risk in plastic greenhouses in Guangzhou, a subtropical city in South China. PAEs were prevalent in plastic greenhouses, with sum concentrations of 16 PAE compounds (∑16PAEs) up to 5.76 mg/kg in soils, 5.27 mg/kg in vegetables and 4393 ng/m3 in air. Di (2-ethylhexyl) phthalate, di-isobutyl phthalate, and dibutyl phthalate were predominant compounds. Average concentrations and bioconcentration factor of ∑16PAEs and the predominant PAE compounds in vegetables of greenhouses were higher than those of open fields. Plastic greenhouses exhibited significantly higher air PAE levels than those of open fields due to higher indoor temperature, which enhanced PAE accumulation by vegetables. Both carcinogenic and non-carcinogenic risks of PAEs via dietary and non-dietary exposures for farmers decreased with an order of vegetable > air > soil. Consumption of vegetables from greenhouses resulted in significantly higher estrogenic effects compared to those from open field cultivation. This study emphasizes highly potential health risks of PAEs in air-soil-vegetable systems of plastic greenhouses.
Collapse
Affiliation(s)
- Li-Juan Zeng
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Ting Chen
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Xi Feng
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environmental Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
17
|
Bai N, Li S, Zhang J, Zhang H, Zhang H, Zheng X, Lv W. Efficient biodegradation of DEHP by CM9 consortium and shifts in the bacterial community structure during bioremediation of contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115112. [PMID: 32634694 DOI: 10.1016/j.envpol.2020.115112] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), the most extensively used plasticizer in plastic formulations, is categorized as a priority environmental contaminant with carcinogenic, teratogenic, and mutagenic toxicities. Many isolated microorganisms exhibit outstanding performance as pure cultures in the laboratory but are unable to cope with harsh environmental conditions in the field. In the present study, a microbial consortium (CM9) with efficient functionality was isolated from contaminated farmland soil. CM9 could consistently degrade 94.85% and 100.00% of DEHP (1000 mg/L) within 24 h and 72 h, respectively, a higher efficiency than those of other reported pure and mixed microorganism cultures. The degradation efficiencies of DEHP and di-n-butyl phthalate were significantly higher than those of dimethyl phthalate and diethyl phthalate (p < 0.05). The primary members of the CM9 consortium were identified as Rhodococcus, Niabella, Sphingopyxis, Achromobacter, Tahibacter, and Xenophilus. The degradation pathway was hypothesized to include both de-esterification and β-oxidation. In contaminated soil, bioaugmentation with CM9 and biochar markedly enhanced the DEHP removal rate to 87.53% within 42 d, compared to that observed by the indigenous microbes (49.31%) (p < 0.05). During simulated bioaugmentation, the dominant genera in the CM9 consortium changed significantly over time, indicating their high adaptability to soil conditions and contribution to DEHP degradation. Rhodococcus, Pigmentiphaga and Sphingopyxis sharply decreased, whereas Tahibacter, Terrimonas, Niabella, Unclassified_f_Caulobacteraceae, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium showed considerable increases. These results provide a theoretical framework for the development of in situ bioremediation of phthalate (PAE)-contaminated soil by composite microbial inocula.
Collapse
Affiliation(s)
- Naling Bai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Shuangxi Li
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China
| | - Juanqin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China
| | - Hanlin Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Haiyun Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xianqing Zheng
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Weiguang Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai, 201403, China; Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China.
| |
Collapse
|
18
|
Ren W, Wang Y, Huang Y, Liu F, Teng Y. Uptake, translocation and metabolism of di-n-butyl phthalate in alfalfa (Medicago sativa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138974. [PMID: 32413654 DOI: 10.1016/j.scitotenv.2020.138974] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 05/22/2023]
Abstract
Uptake and metabolism by plants are important biotransformation processes of organic pollutants in ecosystems. However, very limited information is currently available on the metabolism of phthalic acid esters (PAEs) in plants. In this study, alfalfa, highly efficient in phytoremediation of PAE contaminated soil, was chosen as the model to understand the fate of di-n-butyl phthalate (DnBP) in remediation plant. The results of hydroponic experiments indicated that DnBP accumulated mainly in alfalfa roots and adsorption to root epidermis might be the primary uptake mechanism. A large proportion of DnBP was subjected to apparent metabolism. De-esterification could be specified to be the predominant metabolism pathway. Mono-n-butyl phthalate (MnBP) and phthalic acid (PA) were detected as DnBP metabolites in all alfalfa roots and shoots throughout the entire exposure period. Around >90% of MnBP were distributed in cell soluble components and organelles, and MnBP gradually transferred from organelles and cell walls to soluble components as the exposure time extended. Similar to MnBP, PA located mainly in soluble components and organelles as well, while no PA existed in alfalfa cell walls. Exposure to DnBP ultimately resulted in the coexistence of DnBP and MnBP for a long term in interior plants, raising concerns on their combined potential toxicity on plant health or even ecosystem.
Collapse
Affiliation(s)
- Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuting Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025,China
| | - Yiwen Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; School of Environment and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Fang Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025,China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
19
|
Wang Q, Jiang L, Fang C, Chen L. Effects of di-n-butyl phthalate and di-2-ethylhexyl phthalate on pollutant removal and microbial community during wastewater treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110665. [PMID: 32353604 DOI: 10.1016/j.ecoenv.2020.110665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Due to the wide use of plastic products and the releasability of plasticizer into surrounding environment, the hazards, residues and effects of phthalic acid esters (PAEs) in ecosystems have been paid more and more attention. Little information is available about the effects of PAEs on the normal wastewater treatment, although the distribution of PAEs in soil and other ecosystems is closely related to the discharge of sewage. In this study, the effects of high concentrations of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) on pollutant removal and the microbial community during landfill leachate treatment was investigated. After domestication, the activated sludge was used in the co-treatment of landfill leachate and simulated domestic wastewater. We verified that this process reduced the toxicity of landfill leachate. However, high concentrations of added DBP and DEHP were removed first, while the removal of these pollutants from raw landfill leachate was limited. The results of high-throughput sequencing revealed that the bacterial diversity was diminished and the microbial community structure was significantly affected by the addition of DBP and DEHP. The DBP and DEHP samples had 79.05% and 82.25% operational taxonomic units (OTU), respectively, in common with the raw activated sludge. Many genera of PAE-degrading bacteria that had no significant evolutionary relationship were found in the raw activated sludge. And the widespread presence of PAE-degrading bacteria could effectively keep the concentrations of PAEs low during the wastewater treatment.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Lanhui Jiang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Chengran Fang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Liang Chen
- Zhejiang Gongshang University, School of Food Science and Biotechnology, Hangzhou, 310018, China
| |
Collapse
|
20
|
Du PP, Huang YH, Lü H, Xiang L, Li YW, Li H, Mo CH, Cai QY, Li QX. Rice root exudates enhance desorption and bioavailability of phthalic acid esters (PAEs) in soil associating with cultivar variation in PAE accumulation. ENVIRONMENTAL RESEARCH 2020; 186:109611. [PMID: 32668551 DOI: 10.1016/j.envres.2020.109611] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Phthalic acid esters (PAEs) is a class of prevalent pollutants in agricultural soil, threating food safety through crop uptake and accumulation of PAEs. Accumulation of PAEs varies largely among crop species and cultivars. Nevertheless, how root exudates affect PAE bioavailability, dissipation, uptake and accumulation is still not well understood. In the present study, desorption and pot experiments were designed to investigate how root exudates from high-(Peizataifeng) and low-(Fengyousimiao) PAE accumulating rice cultivars affect soil PAE bioavailability, dissipation, and accumulation variation. Rice root exudates including low molecular weight organic acids (LMWOAs) of Peizataifeng and Fengyousimiao could enhance desorption of two typical PAE compounds, di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), from aged soil to their available fractions by increasing soil dissolved organic carbon (DOC), thus improving their bioavailability in soil. Peizataifeng produced twice higher amounts of oxalic acid, critic acid and malonic acid in root exudates, and exhibited stronger effects on enhancing desorption and bioavailability of DBP and DEHP than Fengyousimiao. Higher (by about 50%) total organic carbon contents of root exudates from Peizataifeng led to higher (by 10-30%) soil microbial biomass carbon and nitrogen than Fengyousimiao, and thus promoted more PAE dissipation from soil than Fengyousimiao. Nevertheless, higher (by 20-50%) soil DOC and significantly higher PAE bioavailability in the soils planted Peizataifeng resulted in greater (by 53-93%) PAE accumulation in roots and shoots of Peizataifeng than Fengyousimiao, confirming by higher (by 1.82-3.48 folds) shoot and root bioconcentration factors of Peizataifeng than Fengyousimiao. This study reveals that the difference in root exudate extent and LMWOAs between Peizataifeng and Fengyousimiao differentiates PAE accumulation.
Collapse
Affiliation(s)
- Pei-Pei Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
21
|
Xiang L, Zeng LJ, Du PP, Wang XD, Wu XL, Sarkar B, Lü H, Li YW, Li H, Mo CH, Wang H, Cai QY. Effects of rice straw biochar on sorption and desorption of di-n-butyl phthalate in different soil particle-size fractions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134878. [PMID: 31726350 DOI: 10.1016/j.scitotenv.2019.134878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Sorption of organic contaminants by biochar greatly affects their bioavailability and fate in soils. Nevertheless, very little information is available regarding the effects of biochar on sorption and desorption of organic contaminants in different soil particle-size fractions. In this study, di-n-butyl phthalate (DBP), a prevalent organic contaminant in agricultural soils, was taken as a model contaminant. The effects of biochar on DBP sorption and desorption in six particle-size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, clay, and humic acid fractions) of paddy soil were investigated using batch sorption-desorption experiments. A straw-derived biochar with high specific surface area (116 m2/g) and high content of organic matter (OM) rich in aromatic carbon (67%) was prepared. Addition of this biochar (1% and 5%) significantly promoted the sorption and retention of DBP in all the paddy soil particle-size fractions at environmentally relevant DBP concentrations (2-12 mg/L) with 1.2-132-fold increase of the Kd values. With increasing addition rates of biochar, DBP retention by the biochar enhanced. The biochar's effectiveness was remarkably influenced by the physicochemical properties of the soil particle-size fractions, especially, the OM contents and pore size showed the most striking effects. A parameter (rkd) reflecting the biochar's effectiveness showed negative and positive correlations with OM contents and pore size of the soil particle-size fractions, respectively. Accordingly, strong effect of the biochar was found in the soil fractions with low OM contents and high pore size. The findings of this study gave insight into the effects and influencing factors of biochar on sorption and desorption of organic contaminants in soils at scale of various particle-size factions.
Collapse
Affiliation(s)
- Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Juan Zeng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pei-Pei Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Dan Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Lian Wu
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Binoy Sarkar
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Li Y, Yan HQ, Yu XY. Uptake and accumulation of di-n-butyl phthalate in six leafy vegetables under hydroponic conditions. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0009-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract
The uptake and accumulation of di-n-butyl phthalate (DBP) in six leafy vegetables was investigated under hydroponic conditions. The test vegetables were six varieties of Brassica campestris ssp., including Kangresijiqing (KRSJQ), Xiadiqing (XDQ), Ziyoucai (ZYC), Aijiaohuang (AJH), Shanghaiqing (SHQ) and Gaogengbai (GGB). The root concentration factor (RCF), translocation factor (TF) and transpiration stream concentration factor (TSCF) were calculated in order to compare the difference of uptake and accumulation behaviours of DBP in vegetable varieties. The results showed that DBP was easily concentrated in vegetable roots, but was poorly translocated from the roots to the shoots. Among the six vegetables, the ability of concentrating DBP from the solution to shoots was the highest in GGB, followed by ZYC, KRSJQ, AJH, SHQ and XDQ. High concentrations of DBP (5.0 mg/L) seem to inhibit normal physiological activity in the vegetables, which resulted in a higher RCF and a lower TF and TSCF than in low-concentration treatment. The results will help to evaluate the safety of agricultural products and to provide evidence for screening DBP pollution-safe vegetable cultivars.
Graphical abstract
Collapse
|
23
|
Zhu TK, Du PP, Zeng LJ, Lü H, Zhao HM, Li YW, Mo CH, Cai QY. Variation in metabolism and degradation of di-n-butyl phthalate (DBP) by high- and low-DBP accumulating cultivars of rice (Oryza sativa L.) and crude enzyme extracts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:1117-1127. [PMID: 31018452 DOI: 10.1016/j.scitotenv.2019.03.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Crops can take up and accumulate di-n-butyl phthalate (DBP), an extensively used plasticizer with endocrine disrupting effect, which poses potential risk to human health. Our previous study found the genotype variation in accumulation of DBP by different cultivars of rice (Oryza sativa L.). Nevertheless, the effect of DBP metabolism in vivo on the accumulation variation among different plant cultivars remains unknown. In this study, metabolism variation of DBP by low (Fengyousimiao) and high (Peizataifeng) DBP-accumulating cultivars of rice and the key enzymes involving in DBP metabolism in rice plants were investigated using in vivo exposure of rice plants and in vitro exposure of root crude enzyme extracts. Both mono-n-butyl phthalate (MBP) and phthalic acid (PA) were detected as DBP metabolites in all rice tissues (i.e., roots, stems, leaves) and crude enzyme extracts with MBP predominance. DBP metabolism occurred simultaneously when DBP uptake with the highest metabolism in roots in vivo. Degradation of DBP in root crude enzyme extracts fitted well with the first order kinetics (R2 = 0.49-0.76, P < 0.05). The activity of carboxylesterase (CXE) in root crude enzyme extracts was significantly positively correlated with DBP degradation rates. CXE played an important role in DBP metabolism of rice plants, confirming by the fact that triphenyl phosphate of CXE inhibitor could inhibit DBP metabolism of in vivo and in vitro exposure. This result was further confirmed by in vitro degradation of DBP with the commercial pure CXE. The crude enzyme solution from roots of Fengyousimiao with higher CXE activity had significantly higher DBP degradation rates than that of Peizataifeng. However, Fengyousimiao with lower tolerance to DBP stress and higher inhibition by triphenyl phosphate displayed lower DBP metabolism ability in vivo than Peizataifeng.
Collapse
Affiliation(s)
- Ting-Kai Zhu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pei-Pei Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Juan Zeng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
24
|
Ma S, Jing F, Sohi SP, Chen J. New insights into contrasting mechanisms for PAE adsorption on millimeter, micron- and nano-scale biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18636-18650. [PMID: 31054059 DOI: 10.1007/s11356-019-05181-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Biochar is being examined as a potential sorbent for organic pollutants in the environment including phthalate esters (PAEs). It has been noted that nano-scale biochar particles displayed stronger migration potential than other particles, which poses the potential risk of pollutant transfer through the environment. In this present study, we examined the influence of sub-millimeter (200-600 μm), micron-scale (10-60 μm), and nano-scale (0.1-0.6 μm) biochar on diethyl phthalate (DEP, as a model) adsorption using particles derived from corn straw and rice husk biochar. Meanwhile, the interaction between adsorption capacity and initial pH was also considered. Our results showed that the adsorption capacity of biochar for DEP increased with decreasing particle size, and was considerably higher for nano-scale biochar than for other particles. This was attributable to its developed pore structure and higher specific surface area (SSA), especially the dominant micropore (292.73 m2/g), suggesting that the adsorption of DEP to nano-scale biochar was dominated by pore-filling rather than π-π EDA and H bonding that was applied to biochar of larger, more typical dimensions. The adsorption capacity of nano-scale biochar for DEP was markedly decreased when initial pH was decreased from 9.0 to 3.0. Because an acid environment could reduce the absolute surface charge on nano-scale biochar, it was easier for the particles to agglomerate. Nano-scale biochar therefore have higher activity in alkaline conditions, which could pose certain risks through their application into the environment.
Collapse
Affiliation(s)
- Shaoqiang Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, People's Republic of China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Fanqi Jing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, People's Republic of China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China
| | - Saran P Sohi
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, People's Republic of China.
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China.
| |
Collapse
|
25
|
Xiang L, Wang XD, Chen XH, Mo CH, Li YW, Li H, Cai QY, Zhou DM, Wong MH, Li QX. Sorption Mechanism, Kinetics, and Isotherms of Di- n-butyl Phthalate to Different Soil Particle-Size Fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4734-4745. [PMID: 30957994 DOI: 10.1021/acs.jafc.8b06357] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Di- n-butyl phthalate (DBP) is a prevalent pollutant in agricultural soils due to use of plastic film. This study focused on sorption mechanism, kinetics, and isotherms of DBP to six paddy soil particle-size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, clay, and humic acid fractions). DBP sorption involved in both boundary layer diffusion and intraparticle diffusion, following pseudo-second-order kinetics. DBP sorption was a spontaneous physical process, which fit the Freundlich model. Hydrophobic and ionic interaction relevant to the organic matter content, cation exchange capacity, surface area, and pore volume of soil fractions played key roles in DBP sorption. DBP was strongly adsorbed to humic acid and the sorption was reversely associated with soil particle sizes. DBP may exhibit higher mobility and bioavailability in a soil-crop system at lower temperature (15 °C), due to the lower log Koc values.
Collapse
Affiliation(s)
- Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Xiao-Dan Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Dong-Mei Zhou
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , P. R. China
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies , The University of Hong Kong , Tai Po , Hong Kong, SAR , China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
26
|
Ma T, Zhou W, Chen L, Wu L, Christie P, Liu W. Toxicity of phthalate esters to lettuce (Lactuca sativa) and the soil microbial community under different soil conditions. PLoS One 2018; 13:e0208111. [PMID: 30571793 PMCID: PMC6301558 DOI: 10.1371/journal.pone.0208111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 01/22/2023] Open
Abstract
Phthalate esters (PAEs) are globally used plasticizers and typical endocrine disruptors that can readily accumulate in agricultural products and represent a substantial risk to human health via the food chain. The range of soil properties has an important influence on the expression of PAE toxicity, and the mechanisms by which soil physical and chemical properties affect the expression of toxicity of target PAEs to plants and microorganisms requires further investigation. Important soil factors affecting the eco-toxicological effects of two typical PAEs, di-n-butyl phthalate (DnBP) and bis (2-ethylhexyl) phthalate (DEHP), on lettuce (Lactuca sativa) in a spiked soil were investigated in the present study. Soil at various pH values was spiked with three PAE concentrations (1, 5 and 20 mg DnBP or DEHP kg-1 soil), organic matter contents and water holding contents to simulate the greenhouse soil environment for 30 days. Their influence on the biomass, photosynthetic pigment contents, various physiological changes and soil microbial communities was determined as endpoints. The toxicity to lettuce of DnBP was higher than that of DEHP in the soil and soil pH was the most important factor affecting their single toxicity, followed by soil organic matter content and soil moisture content in agreement with the Biolog test results. Under different soil conditions total protein, total soluble sugar and free amino acid contents were positively correlated with concentrations of the target PAEs, but leaf area, biomass, •O2- activity, vitamin C content and soil microbial diversity indices showed the opposite trend. Chlorophyll a and carotenoid contents were more inhibited by DnBP together with impacts on indices of soil microbial diversity. The results suggest that soil conditions in greenhouses directly explain the patterns of pollutant toxicity displayed and impact the quantity, quality and food safety of vegetables produced using highly intensive production systems.
Collapse
Affiliation(s)
- Tingting Ma
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture / Tianjin Key Laboratory of Agro-environment and Safe-product, Tianjin, China
- Institute of Hanjiang, Hubei University of Arts and Science, Xiangyang, China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wei Zhou
- School of Civil Engineering and Architecture, Hubei University of Arts and Science, Xiangyang, China
| | - Like Chen
- Shanghai Research Institute of Chemical Industry, Shanghai, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|