1
|
Chohra H, Lee KA, Choe H, Cho JY, Kantharaj V, Cheong MS, Kim YN, Lee YB. Dose-Dependent Physiological Response to Transient Bioaccumulation of Tetracycline in Kimchi Cabbage ( Brassica campestris L.). Antibiotics (Basel) 2025; 14:501. [PMID: 40426567 PMCID: PMC12108208 DOI: 10.3390/antibiotics14050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/01/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Globally, antibiotic contamination has become an emerging issue in agricultural lands. The presence of antibiotic residues in farmlands, especially through the application of manure fertilizers containing veterinary antibiotics, e.g., tetracycline (TC), can cause severe toxicity, which inhibits crop growth and performance, subsequently threatening human health via consumption of contaminated products. This study was conducted to evaluate the phytotoxicity of TC on Kimchi cabbage (Brassica campestris L.) during seed germination, seedling, and vegetative growth stages, along with its physiological responses and bioaccumulation under TC stress. METHODS The responses of cabbage plants to TC stress were assessed through a germination test and a pot experiment, conducted for three days and six weeks, respectively, under different doses of TC (0, 5, 10, 25, and 50 mg/L). RESULTS As a result of the germination test, higher TC doses (25 and 50 mg/L) tended to delay seed germination, but all treatments achieved a 100% germination percentage by Day 3 after sowing. Eight days after sowing, the length of shoots and roots of seedlings exhibited a TC dose-dependent decline, specifically under 50 mg TC/L, showing a considerable decrease of 24% and 77%, respectively, compared to control. Similar results were observed in the plants transitioning from the seedling to vegetative stages in the pot experiment. Four and six weeks after sowing, the 50 mg TC/L dose showed the strongest phytotoxicity in cabbage plants with physiological parameters, such as the maximum photosystem II quantum yield (Fv/Fm), pigment content (chlorophyll and carotenoid), biomass, and leaf number, significantly reduced by 26 to 60% compared to control. Interestingly, at lower TC doses (5 and 10 mg/L), a hormesis effect was observed in the phenotype and biomass of the plants. In addition, the degree of TC accumulation in the plants was highly dose-dependent at Week 4 and Week 6, but a temporal decline in TC accumulation was noted between these time points in all TC treatments. This phenomenon might affect the value of the bio-concentration factor (BCF) as an indicator of the plant's tendency to uptake TC. That is, in Week 6, the dose-dependent reduction in BCF for TC in the plants was likely attributed to a dilution effect caused by plant biomass increase or a degradation mechanism within the plant. CONCLUSIONS Overall, our findings suggest that tetracycline toxicity induces seed germination delay and influences seedling elongation and photosynthetic functions, ultimately impairing crop growth and performance. Also, the antibiotic dynamics related to accumulation and degradation in plants were identified. These results will not only suggest the toxicity threshold of TC for cabbage but also provide insights into effective soil management strategies for food production safety and agroecosystem sustainability in antibiotic-contaminated soils.
Collapse
Affiliation(s)
- Hadjer Chohra
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.C.)
| | - Keum-Ah Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea; (K.-A.L.)
| | - Hyeonji Choe
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.C.)
| | - Ju Young Cho
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.C.)
| | - Vimalraj Kantharaj
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea; (K.-A.L.)
| | - Mi Sun Cheong
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea; (K.-A.L.)
| | - Young-Nam Kim
- Department of Crop Science, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Yong Bok Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea; (H.C.)
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea; (K.-A.L.)
| |
Collapse
|
2
|
Kummerová M, Zezulka Š, Babula P. Response of crop seed germination and primary root elongation to a binary mixture of diclofenac and naproxen. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1039-1046. [PMID: 39259420 DOI: 10.1007/s10646-024-02797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Non-steroidal anti-inflammatory drugs, diclofenac (DCF) and naproxen (NPX), represent a group of environmental contaminants often detected in various water and soil samples. This work aimed to assess possible phytotoxic effects of DCF and NPX in concentrations 0.1, 1 and 10 mg/L, both individually and in binary mixtures, on the seed germination and primary root elongation of crops, monocots Allium porrum and Zea mays, and dicots Lactuca sativa and Pisum sativum. Results proved that the seed germination was affected by neither individual drugs nor their mixture. The response of primary root length in monocot and dicot species to the same treatment was different. The Inhibition index (%) comparing the root length of drug-treated plants to controls proved to be approximately 10% inhibition in the case of dicots lettuce and pea, and nearly 20% inhibition in monocot leek, but almost 20% stimulation in monocot maize. Assessment of the binary mixture effect confirmed neither synergistic nor antagonistic interaction of DCF and NPX on early plant development in the applied concentration range.
Collapse
Affiliation(s)
- Marie Kummerová
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Brno, Czechia
| | - Štěpán Zezulka
- Section of Experimental Plant Biology, Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Brno, Czechia.
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University Brno, Brno, Czechia
| |
Collapse
|
3
|
Pawłowska B, Biczak R. Drugs in the environment - Impact on plants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104557. [PMID: 39245245 DOI: 10.1016/j.etap.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Medicines, like food, are necessities. Many of the commonly used pharmaceuticals, especially antibiotics and NSAIDs end up in the environment and are detected in it (especially in water) at concentrations in the ng·L-1- μg·L-1 range. Although the concentrations of individual drugs in the environment are low, their high biological activity can cause them to be toxic to the environment. This review analyzes and summarizes the effects of drugs, primarily antibiotics and NSAIDs on photosynthesizing organisms, i.e., algae, aquatic and terrestrial plants. Acute drug toxicity to algae and plants occurs most often at high, often non-existent environmental concentrations, while sublethal effects occur at low drug concentrations. The review also points out the problems associated with ecotoxicological studies and the lack of systemic solutions to better assess the risks associated with the presence of drugs in the environment.
Collapse
Affiliation(s)
- Barbara Pawłowska
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland.
| | - Robert Biczak
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland
| |
Collapse
|
4
|
Ranucci E, Treccani S, Ferruti P, Alongi J. The Seed Germination Test as a Valuable Tool for the Short-Term Phytotoxicity Screening of Water-Soluble Polyamidoamines. Polymers (Basel) 2024; 16:1744. [PMID: 38932092 PMCID: PMC11207469 DOI: 10.3390/polym16121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Six differently charged amphoteric polyamidoamines, synthesized by the polyaddition of N,N'-methylenebisacrylamide to alanine, leucine, serine, arginine (M-ARG), glutamic acid (M-GLU) and a glycine/cystine mixture, were screened for their short-term phytotoxicity using a seed germination test. Lepidium sativum L. seeds were incubated in polyamidoamine water solutions with concentrations ranging from 0.156 to 2.5 mg mL-1 at 25 ± 1 °C for 120 h. The seed germination percentage (SG%), an indicator of acute toxicity, and both root and shoot elongation, related to plant maturation, were the considered endpoints. The germination index (GI) was calculated as the product of relative seed germination times relative radical growth. The SG% values were in all cases comparable to those obtained in water, indicating no detectable acute phytotoxicity of the polyamidoamines. In the short term, the predominantly positively charged M-ARG proved to be phytotoxic at all concentrations (GI < 0.8), whereas the predominantly negatively charged M-GLU proved to be biostimulating at intermediate concentrations (GI > 1) and slightly inhibitory at 2.5 mg mL-1 (0.8 < GI < 1). Overall, polyamidoamine phytotoxicity could be correlated to charge distribution, demonstrating the potential of the test for predicting and interpreting the eco-toxicological behavior of water-soluble polyelectrolytes.
Collapse
Affiliation(s)
| | | | | | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (E.R.); (S.T.); (P.F.)
| |
Collapse
|
5
|
Pino-Otín MR, Valenzuela A, Gan C, Lorca G, Ferrando N, Langa E, Ballestero D. Ecotoxicity of five veterinary antibiotics on indicator organisms and water and soil communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116185. [PMID: 38489906 DOI: 10.1016/j.ecoenv.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/15/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
This study explores the environmental effects of five common veterinary antibiotics widely detected in the environment, (chlortetracycline,CTC; oxytetracycline,OTC; florfenicol,FF; neomycin, NMC; and sulfadiazine, SDZ) on four bioindicators: Daphnia magna, Vibrio fischeri, Eisenia fetida, and Allium cepa, representing aquatic and soil environments. Additionally, microbial communities characterized through 16 S rRNA gene sequencing from a river and natural soil were exposed to the antibiotics to assess changes in population growth and metabolic profiles using Biolog EcoPlates™. Tetracyclines are harmful to Vibrio fisheri (LC50 ranges of 15-25 µg/mL), and the other three antibiotics seem to only affect D. magna, especially, SDZ. None of the antibiotics produced mortality in E. fetida at concentrations below 1000 mg/kg. NMC and CTC had the highest phytotoxicities in A. cepa (LC50 = 97-174 µg/mL, respectively). Antibiotics significantly reduced bacterial metabolism at 0.1-10 µg/mL. From the highest to the lowest toxicity on aquatic communities: OTC > FF > SDZ ≈ CTC > NMC and on edaphic communities: CTC ≈ OTC > FF > SDZ > NMC. In river communities, OTC and FF caused substantial decreases in bacterial metabolism at low concentrations (0.1 µg/mL), impacting carbohydrates, amino acids (OTC), and polymers (FF). At 10 µg/mL and above, OTC, CTC, and FF significantly decreased metabolizing all tested metabolites. In soil communities, a more pronounced decrease in metabolizing ability, detectable at 0.1 µg/mL, particularly affected amines/amides and carboxylic and ketonic acids (p < 0.05). These new ecotoxicity findings underscore that the concentrations of these antibiotics in the environment can significantly impact both aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | | | - Cristina Gan
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Guillermo Lorca
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Natalia Ferrando
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Elisa Langa
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| |
Collapse
|
6
|
Gautam K, Seth M, Dwivedi S, Jain V, Vamadevan B, Singh D, Roy SK, Downs CA, Anbumani S. Soil degradation kinetics of oxybenzone (Benzophenone-3) and toxicopathological assessment in the earthworm, Eisenia fetida. ENVIRONMENTAL RESEARCH 2022; 213:113689. [PMID: 35718163 DOI: 10.1016/j.envres.2022.113689] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
A preponderance of recent evidence indicates that oxybenzone and other personal-care product chemicals threaten the biota inhabiting various ecological niches. What is understudied is the ecotoxicological impact of oxybenzone, a UV filter in sunscreens and anti-aging products, to terrestrial/soil organisms that are keystone species in these habitats. In the present study, acute exposure (14-day) to oxybenzone resulted in earthworm mortality (LC50 of 364 mg/kg) and growth rate inhibition. Environmentally relevant concentration of oxybenzone (3.64, 7.28 and 36.4 mg/kg) at exposures of 7-day, 14-day, 28-day induced oxidative stress and neurotoxicity followed by perturbations in reproduction processes and changes in vital organs. Decreased levels of superoxide dismutase (SOD) and catalase (CAT) activity were statistically lower than controls (p < 0.05) on day 14 for all three concentrations, while glutathione-s-transferase (GST) activity was significantly elevated from controls on days 7 and 14. On day 28, SOD and CAT activities were either not significantly different from the control or were higher, demonstrating a temporal multiphasic response of anti-oxidant enzymes. GST activity on day 28 was significantly reduced compared to controls. Acetylcholinesterase levels across the three-time points exhibited a complicated behaviour, with every exposure concentration being significantly different from the control. Chronic exposure negatively influences earthworm health status with elevated biomarker values analysed using IBRv2 index. This, in turn, impacted higher levels of hierarchical organization, significantly impairing reproduction and organismal homeostasis at the histological level and manifesting as decreasing cocoon formation and successful hatching events. Thus, the overall findings demonstrate that oxybenzone is toxic to Eisenia fetida at low-level, long-term exposure. Based on the concentration verification analysis and application of the EPA PestDF tool, oxybenzone undergoes single first-order kinetics degradation in OECD soil with DT50 and DT90 as 8.7-28.9 days, respectively.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Monika Seth
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shreya Dwivedi
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Beena Vamadevan
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu K Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C A Downs
- Haereticus Environmental Laboratory, Clifford, VA, 24522, USA
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Alongi J, Costantini A, Ferruti P, Ranucci E. Evaluation of the eco-compatibility of polyamidoamines by means of seed germination test. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Chemometric Evaluation of WWTPs’ Wastewaters and Receiving Surface Waters in Bulgaria. WATER 2022. [DOI: 10.3390/w14040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Wastewater treatment plant (WWTP) installations are designed and operated to reduce the quantity of pollutants emitted to surface waters receiving treated wastewaters. In this work, we used classical instrumental studies (to determine chemicals and parameters under obligations put with Directive 91/271/EEC), ecotoxicological tools (Sinapis alba root growth inhibition (SA-RG) and Heterocypris incongruens mortality (MORT) and growth inhibition (GRINH)) and multivariate statistical analysis to gain information on feature profiles of WWTPs’ effluents and the possible burden of surface water bodies receiving treated wastewaters in eleven locations of Bulgaria. Initial screening of results has shown that only phosphorus content exceeds the admissible level in 5 out 11 WWTP effluents, while As, Cr, Cu, Mn, and Zn show exceedance at several locations. The multivariate statistical analysis reveals the discriminating water quality parameters and outlines the ability of Heterocypris incongruens to evaluate the ecotoxicological potential of different groups of waters.
Collapse
|
9
|
Carballo M, Rodríguez A, de la Torre A. Phytotoxic Effects of Antibiotics on Terrestrial Crop Plants and Wild Plants: A Systematic Review. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:48-61. [PMID: 34671816 PMCID: PMC8732949 DOI: 10.1007/s00244-021-00893-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
This review examines the state of knowledge on the phytotoxic effects of antibiotics on terrestrial crop plants and wild (non-crop) plants with the goal of evaluating differences in their sensitivity. This is important because environmental risk assessments of antibiotics currently consider their potential effects only on crop species but not wild species. Overall, we analysed 275 datasets consisting of antibiotic-plant species-endpoint combinations for germination (mg/L) and 169 datasets for plant growth (elongation and biomass) (mg/kg). EC10 and EC50 of each parameter were compared using a quotient approach, in which the geometric mean and the 5th percentile of the crop data were divided by wild data. Quotients were > 1 for elongation growth, suggesting that wild species were more sensitive than crops, while they were < 1 for biomass growth, suggesting quite the contrary. However, < 1% of the data in each dataset came from wild species, preventing definitive conclusions. Merging crop and wild data to evaluate differences in sensitivity among classes of antibiotics and plant families, we found using a linear mixed effect model and post hoc test that plants were most sensitive to phenicol and least sensitive to macrolides and tetracyclines. Further work must be conducted to gain a better understanding of the phytotoxic effects of antibiotics on terrestrial wild plants and subsequently assess whether the current approach to environmental risk assessment of antibiotics is sufficient to protect plant biodiversity.
Collapse
Affiliation(s)
- Matilde Carballo
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA), Valdeolmos, Madrid, Spain
| | - Antonio Rodríguez
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA), Valdeolmos, Madrid, Spain
| | - Ana de la Torre
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
10
|
Luo Y, Liang J, Zeng G, Zhang Y, Cheng X, Jiang L, Xing W, Tang N. Revealing the active period and type of tetracycline stress on Chinese cabbage (Brassica rapa L.) during seed germination and post-germination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11443-11449. [PMID: 32086732 DOI: 10.1007/s11356-020-08119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Stresses of antibiotics can cause strains (i.e. effects) on seed at germination and post-germination stages. But there is a lack of research on the period and type of the effects at present. In this study, Chinese cabbage (Brassica rapa L.), a commonly used crop, was selected to investigate the effect of tetracycline (TC), a major-use antibiotic, on its seed during different periods of the stages. Results showed that there were no significant differences among the germination energy (GE) of control (CK) and treatments, but radicle length (RL) of the treatments, the exposure to TC at post-germination stage (i.e. radicle elongation stage), was all significantly less than that of CK. The initial stage of radicle elongation was the earliest and most sensitive period at which the stress of TC caused the plastic effect on seed. Moreover, the action of TC stress on seed did not have a delayed characteristic. The result of RL was identical to the leakage of intracellular substances at radicle fast elongation stage, but not the Evan's blue trapped by radicle. We concluded that TC inhibited the elongation of radicle through weakening the cellular metabolic activity rather than leading to the loss of cellular membrane integrity. It should be paid more attention to the phytotoxicity of TC in the field due to its active characteristics revealed in our study.
Collapse
Affiliation(s)
- Yuan Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Yafei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaojuan Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
11
|
Rogowska J, Cieszynska-Semenowicz M, Ratajczyk W, Wolska L. Micropollutants in treated wastewater. AMBIO 2020; 49:487-503. [PMID: 31292910 PMCID: PMC6965340 DOI: 10.1007/s13280-019-01219-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 05/19/2023]
Abstract
Compounds such as pharmaceuticals, or personal care products are only partially removed in wastewater treatment processes. Large number of these compounds and their degradation products is out of any control. A small number of compounds are covered by legal regulations. Among the compounds non-regulated by law, the target compounds, as well as non-target compounds can be distinguished. In the scientific literature, number of reports on various target compounds' determination is increasingly growing. This paper provides an up-to-date review on micropollutants present in treated wastewater and their concentrations found in literature in the years 2015-2019. Because the obtained results of chemical analyses do not adequately reflect the risks to ecosystems and consequently humans, the results of chemical analyses have been supplemented by a review of ecotoxicological studies. In addition, legal issues linked to contamination of treated wastewater and research related to identification of non-target compounds in treated effluents have been discussed.
Collapse
Affiliation(s)
- Justyna Rogowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204 Gdansk, Poland
| | - Monika Cieszynska-Semenowicz
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204 Gdansk, Poland
| | - Wojciech Ratajczyk
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204 Gdansk, Poland
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204 Gdansk, Poland
| |
Collapse
|
12
|
Yotova G, Lazarova S, Kudłak B, Zlateva B, Mihaylova V, Wieczerzak M, Venelinov T, Tsakovski S. Assessment of the Bulgarian Wastewater Treatment Plants' Impact on the Receiving Water Bodies. Molecules 2019; 24:molecules24122274. [PMID: 31216784 PMCID: PMC6630423 DOI: 10.3390/molecules24122274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Deterioration of water quality is a major problem world widely according to many international non-governmental organizations (NGO). As one of the European Union (EU) countries, Bulgaria is also obliged by EU legislation to maintain best practices in assessing surface water quality and the efficiency of wastewater treatment processes. For these reasons studies were undertaken to utilize ecotoxicological (Microtox®, Phytotoxkit FTM, Daphtoxkit FTM), instrumental (to determine pH, electrical conductivity (EC), chemical oxygen demand, total suspended solids (TSS), total nitrogen (N) and phosphorus (P), chlorides, sulphates, Cr, Co, Cu, Cd, Ba, V, Mn, Fe, Ni, Zn, Se, Pb), as well as advanced chemometric methods (partial least squares-discriminant analysis (PLS-DA)) in data evaluation to comprehensively assess wastewater treatment plants' (WWTPs) effluents and surface waters quality around 21 major Bulgarian cities. The PLS-DA classification model for the physicochemical parameters gave excellent discrimination between WWTP effluents and surface waters with 93.65% correct predictions (with significant contribution of EC, TSS, P, N, Cl, Fe, Zn, and Se). The classification model based on ecotoxicological data identifies the plant test endpoints as having a greater impact on the classification model efficiency than bacterial, or crustaceans' endpoints studied.
Collapse
Affiliation(s)
- Galina Yotova
- Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, Chair of Analytical Chemistry, 1164 Sofia, Bulgaria.
| | - Svetlana Lazarova
- University of Architecture, Civil Engineering and Geodesy, Faculty of Hydraulic Engineering, Chair of Water Supply, Water and Wastewater Treatment, 1046 Sofia, Bulgaria.
| | - Błażej Kudłak
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 11/12 Naturowicza, 80-952 Gdańsk, Poland.
| | - Boika Zlateva
- Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, Chair of Analytical Chemistry, 1164 Sofia, Bulgaria.
| | - Veronika Mihaylova
- Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, Chair of Analytical Chemistry, 1164 Sofia, Bulgaria.
| | - Monika Wieczerzak
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 11/12 Naturowicza, 80-952 Gdańsk, Poland.
| | - Tony Venelinov
- University of Architecture, Civil Engineering and Geodesy, Faculty of Hydraulic Engineering, Chair of Water Supply, Water and Wastewater Treatment, 1046 Sofia, Bulgaria.
| | - Stefan Tsakovski
- Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, Chair of Analytical Chemistry, 1164 Sofia, Bulgaria.
| |
Collapse
|
13
|
Wieczerzak M, Namieśnik J, Kudłak B. Genotoxicity of selected pharmaceuticals, their binary mixtures, and varying environmental conditions - study with human adenocarcinoma cancer HT29 cell line. Drug Chem Toxicol 2019; 44:113-123. [PMID: 30607992 DOI: 10.1080/01480545.2018.1529783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pharmaceutical residues are present in the environment in mixtures and their adverse effects may also result from interactions that occur between compounds. Studies presented in this work focus on genotoxicity of pharmaceuticals from different therapeutic groups in mixtures and in individual solutions impacted with different environmental conditions assessed using comet assay (alkaline approach). Binary mixtures of pharmaceuticals (in different concentration ratios) and in individual solutions impacted with pH change (range from 5.5 to 8.5) or addition of inorganic ions, were incubated with HT29 cells and after 24 h time period cells were tested for the presence of DNA damage. To estimate whether mixtures act more (synergistic) or less (antagonistic) efficiently Concentrations Addition (CA) and Independent Action (IA) approaches were applied followed by a calculation of the Model Deviation Ratio (MDR) to determine deviation from the predicted values. Addition of inorganic ions mainly reduced their genotoxicity. Diclofenac s. was the most susceptible to potassium, fluoride, and bromide ions. Change of the pH of pharmaceutical solutions had significant impact on genotoxicity of diclofenac s. and fluoxetine h. Among mixtures, more commonly observed interactions were synergistic ones, exactly twenty-five cases (ten pairs containing chloramphenicol or oxytetracycline h.) and ten cases of antagonism (four for pairs containing chloramphenicol or fluoxetine h.). The results obtained indicate that interactions between tested compounds occur frequently and can lead to DNA damage. This topic especially concerning in vitro tests using cells is still rare, however, it should not be neglected.
Collapse
Affiliation(s)
- Monika Wieczerzak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|