1
|
Askar ME, Abdel-Maksoud YT, Shaheen MA, Eissa RG. Ameliorating monosodium glutamate-induced testicular dysfunction by modulating steroidogenesis, oxidative stress, inflammation, and apoptosis: therapeutic role of hesperidin. Biochem Biophys Res Commun 2025; 771:152032. [PMID: 40393155 DOI: 10.1016/j.bbrc.2025.152032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/15/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
Monosodium glutamate (MSG), a commonly used food ingredient, has been reported to induce testicular dysfunction. This study aimed to evaluate the therapeutic potential of hesperidin (HESP), a citrus flavonoid, against MSG-induced testicular dysfunction, comparing it to sildenafil citrate (Sc). This investigation focused on oxidative stress, inflammation, apoptosis, histological alterations, spermatogenesis, steroidogenic enzyme expression, and reproductive hormone levels. Twenty-four adult male rats were divided into four groups: a negative control group (n = 6) and three MSG-treated groups (n = 18) that received MSG (1 g/kg/day) for four weeks, followed by either no treatment (positive control), HESP (200 mg/kg/day), or Sc (5 mg/kg/day) for another four weeks. Oral MSG exhibited significant reductions in gonadosomatic index, sperm parameters, and reproductive hormones, accompanied by downregulation of steroidogenic genes, severe histological damage to testicular tissues, and marked elevation in oxidative stress, inflammation, and apoptosis markers. HESP significantly improved sperm count (88 %) and motility (59 %), while reducing sperm abnormalities (34 %), outperforming Sc, which decreased sperm abnormalities by 15 %. Further, HESP significantly reduced inflammatory markers, including nuclear factor-kappa B, TNF-α, interleukin-1β, and interleukin-6 compared to MSG, outperforming Sc. HESP also demonstrated superior efficacy in reducing Bax by 41 % and increasing Bcl-2 by 68 %, while Sc reduced both by 27 % and 28 %, respectively. However, Sc also demonstrated superior efficacy in reducing malondialdehyde levels (67 %) and increasing catalase activity by 645 %, exceeding the effects of HESP (34 and 413 %, respectively). Overall, HESP outperformed Sc by reducing oxidative damage, inflammation, and apoptosis, while enhancing steroidogenesis, spermatogenesis, and reproductive hormones in MSG-treated rats.
Collapse
Affiliation(s)
- Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | | | - Mohamed A Shaheen
- Department of Histology & Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Rana G Eissa
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Nicy V, Gurusubramanian G, Roy VK. Impact of copper nanoparticles (CuNPs) on hypothalamic GnRH and pituitary gonadotropins secretions in a male mouse: An immunohistochemical study. J Steroid Biochem Mol Biol 2025; 248:106700. [PMID: 39954793 DOI: 10.1016/j.jsbmb.2025.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The copper nanoparticles (CuNPs) have widely been used for human welfare in the various applications. Despite its uses for beneficial purposes, CuNPs has been known to cause toxicity in the various organ based on the size, dose and duration. Both male and female reproductive functions have been to be compromised under CuNPs toxicity. The aim of this study is to investigate the effects of CuNPs after prolonged duration on the hypothalamus and pituitary in relation to the neuroendocrine regulation of reproduction in male mice since it has not been done before. Due to which the mice were orally treated with three doses of CuNPs viz. 10,100 and 200 mg/kg for 70 consecutive days to examines its adverse effects. The circulating GnRH levels and its abundance in the median eminence did not change in the CuNPs treated groups. However, circulating FSH showed significant decline in all the CuNPs treated groups, while LH was decline only in higher doses of CuNPs. The immunolocalization of LH and FSH also showed decreased abundance in the pituitary. Thus, pituitary function showed severely affected by CuNPs; the architecture of anterior pituitary also showed sign of degeneration such a presence of vacuoles and it was also shown that CuNPs treated groups have higher level of MDA which is an oxidative stress marker as indicated by the MDA staining. Moreover, the abundance of GnRHR and AR exhibited less abundance in the pituitary of higher dose of CuNPs treated groups. Thus, it can be concluded that pituitary becomes less responsive for hypothalamic GnRH and gonadal steroid, which could be reason of suppressed gonadotropin in the CuNPs treated mice.
Collapse
Affiliation(s)
- Vanrohlu Nicy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India.
| |
Collapse
|
3
|
Kundu S, Kues WA, Rehbock C, Barcikowski S. Inorganic Metal Nanoparticles in Reproductive Biology: Applications, Toxicities and Future Prospects. Chempluschem 2025:e202400554. [PMID: 39913862 DOI: 10.1002/cplu.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/31/2025] [Indexed: 04/26/2025]
Abstract
The development of inorganic metal and metal oxide nanoparticles (MNPs) has attracted significant attention in diverse biomedical and biotechnological fields including bio-detection, drug delivery, imaging, and theranostics. An emerging field in this context is the use of MNPs for applications in reproductive biology. In this article, we offer a rational review of the development of MNPs employed in the field of reproductive biology by focusing on their interactions with highly delicate and specialized germ cells like spermatozoa, oocytes, and developing embryos. By their unique physicochemical properties, MNPs are versatile and strong candidates for targeted imaging and delivery of various therapeutic molecules to the specific sites of the gametes and reproductive cells. Functionalized MNPs can serve as transfection vectors for the generation of transgenic animals by spermatozoon-supported gene transfer. In addition, MNPs have shown great promise in application fields such as semen collection, nano-purification, cryopreservation, and sex sorting of sperm in the livestock industry. Recently, the potential toxicity of MNPs on maturing oocytes has been investigated, as well as the use of MNPs to preserve fertility by improving cryopreservation and reducing oxidative stress in oocytes. The article further elaborates on the uptake, translocation mechanism, and biocompatibility issues of the MNPs to reproduction-relevant sites on cellular and molecular levels. Based on these promising achievements, the current challenges and prospects for the development of these functionalized MNPs for clinical research in conjunction with the reproductive system will be discussed.
Collapse
Affiliation(s)
- Sangita Kundu
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| | - Wilfried A Kues
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Biotechnology/Stem Cell Unit, 31535, Neustadt Rbge, Germany
| | - Christoph Rehbock
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen (CENIDE), 45141, Essen, Germany
| |
Collapse
|
4
|
Alhegaili AS, Bafail DA, Bawahab AA, Alsubaie N, Abd-Elhakim YM, Mohamed AAR, Khamis T, Khalifa NE, Elhamouly M, Dahran N, El Shetry ES. The interplay of oxidative stress, apoptotic signaling, and impaired mitochondrial function in the pyrethroid-induced cardiac injury: Alleviative role of curcumin-loaded chitosan nanoparticle. Food Chem Toxicol 2024; 194:115095. [PMID: 39515510 DOI: 10.1016/j.fct.2024.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
This study assessed the consequence of exposure to a pyrethroid insecticide, fenpropathrin (FPN), on the heart and the probable underlying mechanisms in rats. Moreover, the probable protective effect of curcumin-loaded chitosan nanoparticles (CMN-CNP) was evaluated. Forty male Sprague Dawley rats were distributed into four groups orally given corn oil, CMN-CNP (50 mg/kg b.wt), FPN (15 mg/kg b.wt), or CMN-CNP + FPN for 60 days. The results revealed that FPN exposure increased serum cardiac damage indicators. In addition, a substantial increase in the reactive oxygen species and malondialdehyde content but reduced enzymatic and non-enzymatic antioxidants and altered architecture was recorded in the cardiac tissue of FPN-exposed rats. Additionally, a significant down-regulation of expression of the mitochondrial complexes I-V, mitochondrial dynamics, and antioxidants-related genes but up-regulation of apoptosis-related genes was detected in the FPN-exposed group. Immunofluorescence analyses revealed higher amounts of the harmful protein 4-hydroxynonenal in the heart tissue of FPN-exposed rats. Nevertheless, the earlier disturbances were significantly rescued in the FPN + CMN-CNP treated group. Conclusively, our findings reported the cardiotoxic activity of FPN and the involvement of several mitochondrial imbalances as a probable underlying mechanism. Also, the study findings proved the efficacy of CMN-CNP in combating FPN cardiotoxic effects.
Collapse
Affiliation(s)
- Alaa S Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Duaa Abdullah Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Abdulwahab Bawahab
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Moustafa Elhamouly
- Department of Histology and Cytology Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Naief Dahran
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Eman S El Shetry
- Department of Anatomy, College of Medicine, University of Hail, Hail, Saudi Arabia; Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
5
|
Singh G, Thakur N, Kumar R. Nanoparticles in drinking water: Assessing health risks and regulatory challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174940. [PMID: 39047836 DOI: 10.1016/j.scitotenv.2024.174940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Nanoparticles (NPs) pose a significant concern in drinking water due to their potential health risks and environmental impact. This review provides a comprehensive analysis of the current understanding of NP sources and contamination in drinking water, focusing on health concerns, mitigation strategies, regulatory frameworks, and future perspectives. This review highlights the importance of nano-specific pathways, fate processes, health risks & toxicity, and the need for realistic toxicity assessments. Different NPs like titanium dioxide, silver, nanoplastics, nanoscale liquid crystal monomers, copper oxide, and others pose potential health risks through ingestion, inhalation, or dermal exposure, impacting organs and potentially leading to oxidative stress, inflammatory responses, DNA damage, cytotoxicity, disrupt intracellular energetic mechanisms, reactive oxygen species generation, respiratory and immune toxicity, and genotoxicity in humans. Utilizing case studies and literature reviews, we investigate the health risks associated with NPs in freshwater environments, emphasizing their relevance to drinking water quality. Various mitigation and treatment strategies, including filtration systems (e.g., reverse osmosis, and ultra/nano-filtration), adsorption processes, coagulation/flocculation, electrocoagulation, advanced oxidation processes, membrane distillation, and ultraviolet treatment, all of which demonstrate high removal efficiencies for NPs from drinking water. Regulatory frameworks and challenges for the production, applications, and disposal of NPs at both national and international levels are discussed, emphasizing the need for tailored regulations to address NP contamination and standardize safety testing and risk assessment practices. Looking ahead, this review underscores the necessity of advancing detection methods and nanomaterial-based treatment technologies while stressing the pivotal role of public awareness and tailored regulatory guidelines in upholding drinking water quality standards. This review emphasizes the urgency of addressing NP contamination in drinking water and provides insights into potential solutions and future research directions. Lastly, this review worth concluded with future recommendations on advanced analytical techniques and sensitive sensors for NP detection for safeguarding public health and policy implementations.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Ludhiana, Punjab 140413, India
| | - Neelam Thakur
- Department of Zoology, Sardar Patel University, Vallabh Government College, Campus, Mandi, Himachal Pradesh 175001, India.
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
6
|
Yan Y, Cai H, Yang M. The Application of Nanotechnology for the Diagnosis and Treatment of Endocrine Disorders: A Review of Current Trends, Toxicology and Future Perspective. Int J Nanomedicine 2024; 19:9921-9942. [PMID: 39345911 PMCID: PMC11439355 DOI: 10.2147/ijn.s477835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
The endocrine system regulates many biological systems, and disruptions may result in disorders, such as diabetes, thyroid dysfunction, Cushing's syndrome, and obesity. The total incidence of endocrine illnesses was found to be 47.4%, excluding type 2 diabetes mellitus, with a significant frequency of newly diagnosed endocrine disorders. Nanotechnology manipulates particles at the atomic and molecular levels, opening up new paths for studying disease etiology and therapeutic alternatives. The goal of using nanomaterials in the treatment of endocrine illnesses is to create endogenous nano-biosensors that can detect even modest changes in hormone levels and react spontaneously to restore normal function. The size and surface characteristics of nanoparticles enhances the sensitivity in nano-sensors and are functionalized for targeted drug delivery. Nano-sized carriers composed of lipids, polymers, carbon, or metals have been shown to work much better than standard drug delivery methods. Nanoparticles (NPs) offer various advantages over current methods for diagnosing and treating endocrine disorders, acting as hydrogels for insulin delivery and wound healing. Incorporating selenium NPs into inorganic nanoparticles enhances their bioactivity and targeted delivery. Gold NPs show a promising precise insulin delivery. Mesoporous silica NPs maintain glycemic level effectively and lipid and polymeric NPs protect drugs from degradation in the gastrointestinal tract. Carbon nanotubes (CNTs) have become popular in thyroid surgeries. These characteristics make nanoparticles valuable for developing effective diagnostic and therapeutic systems. NP-based medicines have been thoroughly researched in order to identify the beginning point for the creation of theranostics, which may function in two ways: as imaging agents or therapeutics. The study posits that nanotechnology bridges diagnostics and therapies, potentially revolutionizing endocrine disorder treatments. This review delves into nanotechnology techniques, emphasizing their applications in diagnosing and treating diabetes mellitus.
Collapse
Affiliation(s)
- Yan Yan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Hanqing Cai
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| | - Maoguang Yang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, 13000, People’s Republic of China
| |
Collapse
|
7
|
Farag MR, El-Naseery NI, El Behery EI, Nouh DS, El-Mleeh A, Mostafa IMA, Alagawany M, Di Cerbo A, Azzam MM, Mawed SA. The Role of Chlorella vulgaris in Attenuating Infertility Induced by Cadmium Chloride via Suppressing Oxidative Stress and Modulating Spermatogenesis and Steroidogenesis in Male Rats. Biol Trace Elem Res 2024; 202:4007-4020. [PMID: 38114777 DOI: 10.1007/s12011-023-03971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Cadmium (Cd) is an environmental pollutant known as endocrine disruptor . Cd has been reported to induce perturbations of the testicular functions and the subsequent decline of the male fertility of both animals and humans. Chlorella vulgaris (ChV) a species of green microalga has been reported to have multiple beneficial activities such as anti-inflammatory, antioxidant, and antiapoptotic effects. Thus, this work was conducted to declare the benefits of Chlorella vulgaris (ChV) (500 mg/kg doses) against cadmium chloride CdCl2 (2 mg/kg doses) toxicity on the main and accessory reproductive organs' weight, structure, and function of male rats. Briefly, 40 adult male rats in 4 groups (n = 10) were used as follows; control, ChV, CdCl2, and CdCl2+ChV. (i) The 1st group was kept as control fed on pellet chow and water ad libitum. (ii) The second group is Chlorella vulgaris (ChV) group fed with C. vulgaris alga for 10 days (500 mg/kg BW). (iii) The third group was administrated CdCl2 (2mg/kg BW) via subcutaneous injection (S/C) daily for 10 days. (iv) The fourth group administered both CdCl2 and ChV with the abovementioned doses daily for successive 10 days. Our observations declared that cadmium exhibited an adverse influence on the testes and prostate gland architecture indicated by seminiferous tubule destruction, testicular edema, degeneration of Leydig cells, and prostate acini damage. All together affect the epididymal semen quality and quantity including sperm viability, motility, and count. Interestingly, ChV could restore the testicular architecture and spermatozoa regeneration accompanied by semen quality improvement and increased reproductive hormones including testosterone. On the other side, ChV suppresses reactive oxygen species (ROS) formation via enhancement the antioxidant-related genes in the testicular tissue including SOD, CAT, GSH, and MDA and maintaining spermatocyte survival via suppression of apoptotic related genes including caspase3 and activating steroidogenic related genes including StAR and HSD17β3 in the cadmium-treated testes. In this study, ChV could enhance male fertility under normal or stressful conditions and ameliorate the adverse effects of hazardous heavy metals that are widely distributed in our environment.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Nesma I El-Naseery
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Eman I El Behery
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt
| | - Doaa S Nouh
- Anatomy and Embryology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44519, Egypt
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum, 32511, Egypt
| | - Ismail M A Mostafa
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Mahmoud M Azzam
- Department of Animal Production College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suzan A Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
8
|
Tijani AS, Daba TM, Ubong IA, Olufunke O, Ani EJ, Farombi EO. Co-administration of thymol and sulfoxaflor impedes the expression of reproductive toxicity in male rats. Drug Chem Toxicol 2024; 47:618-632. [PMID: 37403475 DOI: 10.1080/01480545.2023.2232564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
This study investigated the capability of a co-delivery system of thymol (THY) and sulfoxaflor that can serve to minimize the development of epididymal and testicular injury arise from SFX exposures alone. Forty-eight adult male rats were orally treated by gavage for 28 consecutive days. The rats were divided into six groups comprising control, THY alone (30 mg/kg), low SFX alone (79.4 mg/kg), high SFX alone (205 mg/kg) and co-exposure groups. After euthanasia, the rats epididymal and testicular damage and antioxidant status markers, myeloperoxidase (MPO) activity, levels of nitric oxide, total antioxidant capacity (TAC), total oxidative stress (TOS) and lipid peroxidation (LPO) were analyzed. Levels of tumor necrosis factor alpha (TNF-α), interleukin-1 b (IL-1β) and caspase-3 activity were assessed using ELISA kits. The results revealed that SFX exposure caused a significant (p < 0.05) decrease in the body weight, sperm functional parameters, serum testosterone level with widespread histological abnormalities in a dose-dependent manner. Increased relative organ weights, serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were observed in low SFX-treated rats. Similarly, the epididymal and testicular myeloperoxidase activity, malondialdehyde (MDA), reactive oxygen species (RONS), tumor necrosis-α, interleukin-1β levels and caspase-3 activity were significant (p < 0.05) increased and a significant (p < 0.05) reduction in antioxidant enzyme activities and reduced glutathione (GSH) were revealed in SFX-treated rats. However, co-treatment of THY with SFX prevented SFX-induced epididymal and testicular toxicities. Thus, thymol protected against potential epididymis and testes alterations elicited by oxido-inflammatory mediators and up regulated antioxidant status.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Tolessa M Daba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Ime A Ubong
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Onaadepo Olufunke
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Elemi J Ani
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Oczkowski M, Dziendzikowska K, Gromadzka-Ostrowska J, Kruszewski M, Grzelak A. Intragastric exposure of rats to silver nanoparticles modulates the redox balance and expression of steroid receptors in testes. Food Chem Toxicol 2024; 191:114841. [PMID: 38944145 DOI: 10.1016/j.fct.2024.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Nanosilver (AgNPs) is popular nanomaterials used in food industry that makes gastrointestinal tract an essential route of its uptake. The aim of the presented study was to assess the effects of intragastric exposure to AgNPs on redox balance and steroid receptors in the testes of adult Fisher 344 rats. The animals were exposed to 20 nm AgNPs (30 mg/kg bw/day, by gavage) for 7 and 28 days compared to saline (control groups). It was demonstrated that 7-day AgNPs administration resulted in increased level of total antioxidant status (TAS), glutathione reductase (GR) activity, lower superoxide dismutase activity (SOD), decreased glutathione (GSH) level and GSH/GSSG ratio, as well as higher estrogen receptor (ESR2) and aromatase (Aro) protein expression in Leydig cells compared to the 28-day AgNPs esposure. The longer-time effects of AgNPs exposition were associated with increased lipid hydroperoxidation (LOOHs) and decreased SOD activity and androgen receptor protein level. In conclusion, the present study demonstrated the adverse gastrointestinally-mediated AgNPs effects in male gonads. In particular, the short-term AgNPs exposure impaired antioxidant defence with concurrent effects on the stimulation of estrogen signaling, while the sub-chronic AgNPs exposition revealed the increased testicle oxidative stress that attenuated androgens signaling.
Collapse
Affiliation(s)
- Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland.
| | - Agnieszka Grzelak
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
10
|
El-Sayied Ali S, El-Ghannam G, Hashish MES, Elsayed H, Ali AK, Marzouk WM, Khattaby AM, El-Wahab AMA, Abdel-Hafez SH, Attia Attia Y. Exploring bee venom and silver nanoparticles for controlling foulbrood pathogen and enhancing lifespan of honeybees. Sci Rep 2024; 14:19013. [PMID: 39152125 PMCID: PMC11329661 DOI: 10.1038/s41598-024-67515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/11/2024] [Indexed: 08/19/2024] Open
Abstract
The beekeeping industry plays a crucial role in local economies, contributing significantly to their growth. However, bee colonies often face the threat of American foulbrood (AFB), a dangerous disease caused by the Gram-positive bacterium Paenibacillus larvae (P. l.). While the antibiotic Tylosin has been suggested as a treatment, its bacterial resistance necessitates the search for more effective alternatives. This investigation focused on evaluating the potential of bee venom (BV) and silver nanoparticles (Ag NPs) as antibacterial agents against AFB. In vitro treatments were conducted using isolated AFB bacterial samples, with various concentrations of BV and Ag NPs (average size: 25nm) applied individually and in combination. The treatments were administered under both light and dark conditions. The viability of the treatments was assessed by monitoring the lifespans of treated bees and evaluating the treatment's efficiency within bee populations. Promising results were obtained with the use of Ag NPs, which effectively inhibited the progression of AFB. Moreover, the combination of BV and Ag NPs, known as bee venom/silver nanocomposites (BV/Ag NCs), significantly extended the natural lifespan of bees from 27 to 40 days. Notably, oral administration of BV in varying concentrations (1.53, 3.12, and 6.25 mg/mL) through sugary syrup doubled the bees' lifespan compared to the control group. The study established a significant correlation between the concentration of each treatment and the extent of bacterial inhibition. BV/Ag NCs demonstrated 1.4 times greater bactericidal efficiency under photo-stimulation with visible light compared to darkness, suggesting that light exposure enhances the effectiveness of BV/Ag NCs. The combination of BV and Ag NPs demonstrated enhanced antibacterial efficacy and prolonged honeybee lifespan. These results offer insights that can contribute to the development of safer and more efficient antibacterial agents for maintaining honeybee health.
Collapse
Affiliation(s)
- Sawsan El-Sayied Ali
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
- Bee Research Department (BRD), Agriculture Research Center (ARC), Plant Protection Research Institute (PPRI), Giza, 12619, Egypt
| | - Gamal El-Ghannam
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt
| | - Mohamed El-Sayied Hashish
- Bee Research Department (BRD), Agriculture Research Center (ARC), Plant Protection Research Institute (PPRI), Giza, 12619, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Kamel Ali
- Bee Research Department (BRD), Agriculture Research Center (ARC), Plant Protection Research Institute (PPRI), Giza, 12619, Egypt
| | - Wael Mahmoud Marzouk
- Bee Research Department (BRD), Agriculture Research Center (ARC), Plant Protection Research Institute (PPRI), Giza, 12619, Egypt
| | - Ahmed Mahmoud Khattaby
- Bee Research Department (BRD), Agriculture Research Center (ARC), Plant Protection Research Institute (PPRI), Giza, 12619, Egypt
| | | | - Shams H Abdel-Hafez
- Department of Chemistry, College of Science, Taif University, 21944, Taif, Saudi Arabia
| | - Yasser Attia Attia
- National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
11
|
Attia SH, Saadawy SF, El-Mahroky SM, Nageeb MM. Alleviation of pulmonary fibrosis by the dual PPAR agonist saroglitazar and breast milk mesenchymal stem cells via modulating TGFß/SMAD pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5953-5974. [PMID: 38376539 PMCID: PMC11329427 DOI: 10.1007/s00210-024-03004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Pulmonary fibrosis (PF) is a complex disorder with high morbidity and mortality. Limited efficacies of the available drugs drive researchers to seek for new therapies. Saroglitazar (Saro), a full (PPAR α/γ) agonist, is devoid of known PPAR-mediated adverse effects. Breast milk mesenchymal stem cells (BrMSCs) are contemplated to be the ideal cell type harboring differentiation/anti-inflammatory/immunosuppressive properties. Accordingly, our aims were to investigate the potential roles of Saro and/or BrMSCs in PF and to spot their underlying protective mechanisms. In this study, PF was induced by bleomycin (BLM) via intratracheal instillation. Treatment started 14 days later. Animals were treated with oral saroglitazar (3 mg/kg daily) or intraperitoneal single BrMSCs injection (0.5 ml phosphate buffer saline (PBS) containing 2 × 107 cells) or their combination with same previous doses. At the work end, 24 h following the 6 weeks of treatment period, the levels of oxidative (MDA, SOD), inflammatory (IL-1ß, IL-10), and profibrotic markers (TGF-ß, αSMA) were assessed. The autophagy-related genes (LC3, Beclin) and the expression of PPAR-α/γ and SMAD-3/7 were evaluated. Furthermore, immunohistochemical and histological work were evaluated. Our study revealed marked lung injury influenced by BLM with severe oxidative/inflammatory/fibrotic damage, autophagy inhibition, and deteriorated lung histology. Saro and BrMSCs repaired the lung structure worsened by BLM. Treatments greatly declined the oxidative/inflammatory markers. The pro-fibrotic TGF-ß, αSMA, and SMAD-3 were decreased. Contrarily, autophagy markers were increased. SMAD-7 and PPAR α/γ were activated denoting their pivotal antifibrotic roles. Co-administration of Saro and BrMSCs revealed the top results. Our findings support the study hypothesis that Saro and BrMSCs can be proposed as potential treatments for IPF.
Collapse
Affiliation(s)
- Seba Hassan Attia
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Sara F Saadawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa M El-Mahroky
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mahitab M Nageeb
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Nasim I, Ghani N, Nawaz R, Irfan A, Arshad M, Nasim M, Raish M, Irshad MA, Ghumman SA, Ahmad A, Bin Jardan YA. Investigating the Impact of Carbon Nanotube Nanoparticle Exposure on Testicular Oxidative Stress and Histopathological Changes in Swiss albino Mice. ACS OMEGA 2024; 9:6731-6740. [PMID: 38371818 PMCID: PMC10870293 DOI: 10.1021/acsomega.3c07919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024]
Abstract
Carbon nanotubes (CNTs) possess remarkable properties that make them valuable for various industrial applications. However, concerns have arisen regarding their potential adverse health effects, particularly in occupational settings. The main aim of this research was to examine the effects of short-term exposure to multiwalled carbon nanotube nanoparticles (MWCNT-NPs) on testicular oxidative stress in Swiss albino mice, taking into account various factors such as dosage, duration of exposure, and particle size of MWCNT-NP. In this study, 20 mice were used and placed into six different groups randomly. Four of these groups comprised four repetitions each, while the two groups served as the vehicle control with two repetitions each. The experimental groups received MWCNT-NP treatment, whereas the control group remained untreated. The mice in the experimental groups were exposed to MWCNT-NP for either 7 days or 14 days. Through oral administration, the MWCNT-NP solution was introduced at two distinct dosages: 0.45 and 0.90 μg, whereas the control group was subjected to distilled water rather than the MWCNT-NP solution. The investigation evaluated primary oxidative balance indicators-glutathione (GSH) and glutathione disulfide (GSSG)-in response to MWCNT-NP exposure. Significantly, a noticeable reduction in GSH levels and a concurrent increase in GSSG concentrations were observed in comparison to the control group. To better understand and explore the assessment of the redox status, the Nernst equation was used to calculate the redox potential. Intriguingly, the calculated redox potential exhibited a negative value, signifying an imbalance in the oxidative state in the testes. These findings suggest that short-term exposure to MWCNT-NP can lead to the initiation of testicular oxidative stress and may disrupt the male reproductive system. This is evident from the alterations observed in the levels of GSH and GSSG, as well as the negative redox potential. The research offers significant insights into the reproductive effects of exposure to MWCNTs and emphasizes the necessity of assessing oxidative stress in nanomaterial toxicity studies.
Collapse
Affiliation(s)
- Iqra Nasim
- Department
of Environmental Science, Lahore College
for Women University, Lahore 54000, Pakistan
- Department
of Environmental Sciences, The University
of Lahore, Lahore 54000, Pakistan
| | - Nadia Ghani
- Department
of Environmental Science, Lahore College
for Women University, Lahore 54000, Pakistan
| | - Rab Nawaz
- Department
of Environmental Sciences, The University
of Lahore, Lahore 54000, Pakistan
- Faculty
of Engineering and Quantity Surveying, INTI
International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ali Irfan
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Arshad
- Department
of Agriculture and Food Technology, Karakoram
International University, Gilgit 15100, Pakistan
| | - Maryam Nasim
- Institute
of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore 54000, Pakistan
- Department
of Allied Health Sciences, Riphah International
University, Islamabad 46000, Pakistan
| | - Mohammad Raish
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Atif Irshad
- Department
of Environmental Sciences, The University
of Lahore, Lahore 54000, Pakistan
| | | | - Ajaz Ahmad
- Department
of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Abduh MS, Saghir SAM, Al-Gabri NA, Ahmeda AF, Abdelkarim M, Aldaqal SM, Alshawsh MA. Interleukin-35 and Thymoquinone nanoparticle-based intervention for liver protection against paracetamol-induced liver injury in rats. Saudi J Biol Sci 2023; 30:103806. [PMID: 37766887 PMCID: PMC10519855 DOI: 10.1016/j.sjbs.2023.103806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Paracetamol (PAR) is a commonly used antipyretic and analgesic agent, but its excessive usage can induce liver damage and major health consequences. Interleukin-35 (IL-35) is utilized to treat immunological disorders, intestinal illness, arthritis, allergic disease, hepatitis, and cancer. Thymoquinone (THYO) is also effective against a wide range of disorders. Consequently, this study sought out to explore the ameliorative effects of IL-35 and THYO against PAR-induced hepatotoxicity in rats. Sixty male rats were separated into six groups (10 rats/group): I control (0.5 mL NaCl, 0.9%/rat via oral gavage); II (IL-35), and III (TYHO) received intraperitoneal (i.p) injection of IL-35 (200 ng/kg) or THYO (0.5 mg/kg), respectively. Group IV (PAR) received 600 mg/kg of PAR orally; V (PAR + IL-35) and VI (PAR + TYHO); rats received 600 mg/kg of PAR orally and i.p injection of IL-35 (200 ng/kg) or THYO (0.5 mg/kg), respectively. Administration of IL-35 or THYO markedly mitigated the increasing in the levels of liver parameters triggered by PAR and noticeable enhancement of antioxidant and immunological markers were observed. Additionally, IL-35 or THYO decreased TNF-α, NF-κB, IL-10, IL-6 and IFN-γ in contrast to the PAR control group. Moreover, levels of Capase-3, and cytochrome C were significantly reduced by THYO or IL35, while, levels of Bcl-2 were markedly increased. Furthermore, significant downregulation of IL1-β, TNF-α, TGF-β, and Caspas-3 genes, as well as significant upregulation of Bcl-2 and IL-10 expression were detected. In conclusion, IL-35 and THYO insulated liver from PAR toxicity by mitigating oxidative stress, tissue damage, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sultan Ayesh Mohammed Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Naif Ahmed Al-Gabri
- Laboratory of Salam Veterinary Group, Burydha 51911, Saudi Arabia
- Department of Pathology, Faculty of Veterinary Medicine, Thamar University, Thamar 124401, Yemen
| | - Ahmad Faheem Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Mouaadh Abdelkarim
- College of General Education, University of Doha for Science and Technology, Jelaiah Street, Duhail North, 24449 Doha, Qatar
| | - Saleh Mohammad Aldaqal
- Immune Responses in Different Diseases Research Group, Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Abdullah Alshawsh
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Zhao ZM, Mei S, Zheng QY, Wang J, Yin YR, Zhang JJ, Wang XZ. Melatonin or vitamin C attenuates lead acetate-induced testicular oxidative and inflammatory damage in mice by inhibiting oxidative stress mediated NF-κB signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115481. [PMID: 37716076 DOI: 10.1016/j.ecoenv.2023.115481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Lead (Pb) acts as an environmental endocrine disruptor and has negative effects in animals; excessive accumulation of lead causes reproductive dysfunction in male animals. Oxidative stress plays a vital role in Pb-induced injury. However, the mechanisms underlying chronic testicular toxicity of Pb remain unclear. In this study, we aimed to determine the effects of lead acetate on reproductive function in male mice, identify the underlying mechanisms, and test counter measures to alleviate the toxic effects. Male mice were dosed with lead acetate (500 mg/L) in free drinking water for 12 weeks, and administered melatonin (5 mg/kg) or vitamin C (500 mg/kg) by intraperitoneal injection. Blood from the eyeball, testicles, and sperm from the caudal epididymis were collected after 12 weeks and analyzed. Pb exposure reduced sperm count and motility, increased sperm malformation (P < 0.01), disrupted testicular morphology and structure, and decreased the expression of steroid hormone synthesis-related enzymes and serum testosterone concentration (P < 0.01). Pb also increased the number of inflammatory cells and the levels of the pro-inflammatory cytokines TNF-α and IL-6 (P < 0.01), and activated NF-κB signaling. Furthermore, the ROS yield and oxidation indicators LPO and MDA were significantly increased (P < 0.01), and the antioxidant indicators T-AOC, SOD, and GSH were significantly reduced (P < 0.01). Treatment with melatonin or vitamin C reversed the effects of lead acetate; vitamin C was more effective in restoring SOD activity (P < 0.01) and enhancing ZO-1 protein levels (P < 0.01). Thus, long-term exposure to lead acetate at low concentrations could adversely affect sperm quality and induce inflammatory damage by oxidative stress mediated NF-κB signaling. Vitamin C could act as a protective agent and improve reproductive dysfunction in male animals after lead accumulation.
Collapse
Affiliation(s)
- Ze-Min Zhao
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Su Mei
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Qi-Yue Zheng
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Jiao Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Yi-Ru Yin
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Jiao-Jiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest, University, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
15
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
16
|
Khamis T, Hegazy AA, El-Fatah SSA, Abdelfattah ER, Abdelfattah MMM, Fericean LM, Arisha AH. Hesperidin Mitigates Cyclophosphamide-Induced Testicular Dysfunction via Altering the Hypothalamic Pituitary Gonadal Axis and Testicular Steroidogenesis, Inflammation, and Apoptosis in Male Rats. Pharmaceuticals (Basel) 2023; 16:301. [PMID: 37259444 PMCID: PMC9966503 DOI: 10.3390/ph16020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Cyclophosphamide (CP) is a cytotoxic, cell cycle, non-specific, and antiproliferative drug. This study aimed to address the toxic effects of CP on male fertility and the possible ameliorative role of hesperidin (HSP). Thirty-two adult albino rats were randomly divided into four groups, namely, the negative control, HSP, CP-treated, and CP+HSP-treated groups. The CP-treated rats showed a significant reduction in the levels of serum LH, FSH, testosterone, prolactin, testicular glutathione peroxidase (GPx), and total antioxidant capacity (TAC) with an elevation in levels of malondialdehyde (MDA), and p53, and iNOS immune expression, compared to the control group. A significant downregulation in hypothalamic KISS-1, KISS-1r, and GnRH, hypophyseal GnRHr, and testicular mRNA expression of steroidogenesis enzymes, PGC-1α, PPAR-1, IL10, and GLP-1, as well as a significant upregulation in testicular mRNA of P53 and IL1β mRNA expression, were detected in the CP-treated group in comparison to that in the control group. The administration of HSP in CP-treated rats significantly improved the levels of serum LH, FSH, testosterone, prolactin, testicular GPx, and TAC, with a reduction in levels of MDA, and p53, and iNOS immune expression compared to the CP-treated group. A significant upregulation in hypophyseal GnRHr, and testicular mRNA expression of CYP19A1 enzymes, PPAR-1, IL10, and GLP-1, as well as a significant downregulation in testicular mRNA of P53 and IL1β mRNA expression, were detected in the CP+HSP-treated group in comparison to that in the CP-treated group. In conclusion, HSP could be a potential auxiliary agent for protection from the development of male infertility.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Abdelmonem Awad Hegazy
- Anatomy and Embryology, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Samaa Salah Abd El-Fatah
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Eman Ramadan Abdelfattah
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Liana Mihaela Fericean
- Biology Department, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania” from Timisoara, Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
17
|
Green Synthesized Zinc Oxide Nanoparticles Using Moringa olifera Ethanolic Extract Lessens Acrylamide-Induced Testicular Damage, Apoptosis, and Steroidogenesis-Related Gene Dysregulation in Adult Rats. Antioxidants (Basel) 2023; 12:antiox12020361. [PMID: 36829920 PMCID: PMC9952201 DOI: 10.3390/antiox12020361] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study assessed the possible protective role of green synthesized zinc oxide nanoparticles using Moringa olifera leaf extract (MO-ZNPs) in acrylamide (ACR)-induced reproductive dysfunctions in male rats. ACR (20 mg/kg b.wt/day) and/or MO-ZNPs (10 mg/kg b.wt/day) were given orally by gastric gavage for 60 days. Then, sperm parameters; testicular enzymes; oxidative stress markers; reproductive hormones including testosterone, luteinizing hormone (LH)-estradiol, and follicle-stimulating hormone (FSH) concentration; testis histology; steroidogenesis-related gene expression; and apoptotic markers were examined. The findings revealed that MO-ZNPs significantly ameliorated the ACR-induced decline in the gonadosomatic index and altered the pituitary-gonadal axis, reflected by decreased serum testosterone and FSH with increased estradiol and LH, and sperm analysis disruption. Furthermore, a notable restoration of the tissue content of antioxidants (catalase and reduced glutathione) but depletion of malondialdehyde was evident in MO-ZNPs+ACR-treated rats compared to ACR-exposed ones. In addition, MO-ZNPs oral dosing markedly rescued the histopathological changes and apoptotic caspase-3 reactions in the testis resulting from ACR exposure. Furthermore, in MO-ZNPs+ACR-treated rats, ACR-induced downregulation of testicular steroidogenesis genes and proliferating cell nuclear antigen (PCNA) immune-expression were reversed. Conclusively, MO-ZNPs protected male rats from ACR-induced reproductive toxicity by suppressing oxidative injury and apoptosis while boosting steroidogenesis and sex hormones.
Collapse
|
18
|
Nazari M, Shabani R, Ajdary M, Ashjari M, Shirazi R, Govahi A, Kermanian F, Mehdizadeh M. Effects of Au@Ag core-shell nanostructure with alginate coating on male reproductive system in mice. Toxicol Rep 2023; 10:104-116. [PMID: 36685271 PMCID: PMC9853145 DOI: 10.1016/j.toxrep.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Despite the widespread use of silver nanoparticles (NPs), these NPs can accumulate and have toxic effects on various organs. However, the effects of silver nanostructures (Ag-NS) with alginate coating on the male reproductive system have not been studied. Therefore, this study aimed to investigate the impacts of this NS on sperm function and testicular structure. After the synthesis and characterization of Ag-NS, the animals were divided into five groups (n = 8), including one control group, two sham groups (received 1.5 mg/kg/day alginate solution for 14 and 35 days), and two treatment groups (received Ag-NS at the same dose and time). Following injections, sperm parameters, apoptosis, and autophagy were analyzed by the TUNEL assay and measurement of the mRNA expression of Bax, Bcl-2, caspase-3, LC3, and Beclin-1. Fertilization rate was assessed by in vitro fertilization (IVF), and testicular structure was analyzed using the TUNEL assay and hematoxylin and eosin (H&E) staining. The results showed that the NS was rod-shaped, had a size of about 60 nm, and could reduce sperm function and fertility. Gene expression results demonstrated an increase in the apoptotic markers and a decrease in autophagy markers, indicating apoptotic cell death. Moreover, Ag-NS invaded testicular tissues, especially in the chronic phase (35 days), resulting in tissue alteration and epithelium disintegration. The results suggest that sperm parameters and fertility were affected. In addition, NS has negative influences on testicular tissues, causing infertility in men exposed to these NS.
Collapse
Key Words
- AA, Ascorbic acid
- AMPkinase, 5' adenosine monophosphate-activated protein kinase
- ANOVA, Analysis of variance
- Ag-NPs, silver nanoparticles
- AgNO3,, Silver nitrate
- Apoptosis
- Atg3, Autophagy related 3
- Autophagy
- BAX, Bcl-2-associated X protein
- BTB, Blood-testes barrier
- Bcl-2, B-cell lymphoma 2
- CSNs, Core-shell nanostructures
- CTAB, Cetyltrimethylammonium bromide
- DLS, Dynamic light scattering
- DW, Distilled water
- FTIR, Fourier transform infrared spectroscopy
- FYN kinase, Proto-oncogene tyrosine-protein kinase
- Fertilization
- H2SO4,, Sulphuric acid
- HAuCl4, Tetrachloroauric acid trihydrate
- HR-TEM, High-resolution transmission electron microscopy
- ICP-MS, Inductively coupled plasma mass spectrometry
- IL, Interleukins
- IU, International Unit
- IgE, Immunoglobulin E
- NIH, National Institutes of Health
- NMRI, Naval Medical Research Institute
- NMs, Nanomaterials
- NRs, Nano rods
- NaBH4,, Sodium borohydride
- NaOH, Sodium hydroxide
- Nanostructures
- OD, Optical density
- PBS, Phosphate-buffered saline
- PI, Propidium Iodide
- PMSG, Pregnant Mare Serum Gonadotropin
- PdI, Polydispersity index
- ROS, Reactive oxygen species
- SD, standard deviation
- SERS, Surface enhanced Raman scattering
- SNRs, Silver Nano rods
- SSCs, Spermatogonial stem cells
- Semen analysis
- TDT, Terminal deoxynucleotidyl transferase
- TGA, Thermal gravimetric Analysis
- TGF-β, Transforming growth factor
- TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling
- Testicular tissue
- cDNA, Complementary DNA
- ct, cycle threshold
- dUTP, Deoxyuridine triphosphate
- hCG, human chorionic gonadotropin
- q RT-PCR, Quantitative real time - polymerase chain reaction
- rpm, Rotations Per Minute
Collapse
Affiliation(s)
- Mahsa Nazari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohsen Ashjari
- Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Kermanian
- Department of Anatomy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Kose O, Mantecca P, Costa A, Carrière M. Putative adverse outcome pathways for silver nanoparticle toxicity on mammalian male reproductive system: a literature review. Part Fibre Toxicol 2023; 20:1. [PMID: 36604752 PMCID: PMC9814206 DOI: 10.1186/s12989-022-00511-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/11/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Adverse outcome pathways (AOPs) are conceptual frameworks that organize knowledge about biological interactions and toxicity mechanisms. They present a sequence of events commencing with initial interaction(s) of a stressor, which defines the perturbation in a biological system (molecular initiating event, MIE), and a dependent series of key events (KEs), ending with an adverse outcome (AO). AOPs have recently become the subject of intense studies in a view to better understand the mechanisms of nanomaterial (NM) toxicity. Silver nanoparticles (Ag NPs) are one of the most explored nanostructures and are extensively used in various application. This, in turn, has increased the potential for interactions of Ag NPs with environments, and toxicity to human health. The aim of this study was to construct a putative AOPs (pAOP) related to reproductive toxicity of Ag NPs, in order to lay the groundwork for a better comprehension of mechanisms affecting both undesired toxicity (against human cell) and expected toxicity (against microorganisms). METHODS PubMed and Scopus were systematically searched for peer-reviewed studies examining reproductive toxicity potential of Ag NPs. The quality of selected studies was assessed through ToxRTool. Eventually, forty-eight studies published between 2005 and 2022 were selected to identify the mechanisms of Ag NPs impact on reproductive function in human male. The biological endpoints, measurements, and results were extracted from these studies. Where possible, endpoints were assigned to a potential KE and an AO using expert judgment. Then, KEs were classified at each major level of biological organization. RESULTS We identified the impairment of intracellular SH-containing biomolecules, which are major cellular antioxidants, as a putative MIE, with subsequent KEs defined as ROS accumulation, mitochondrial damage, DNA damage and lipid peroxidation, apoptosis, reduced production of reproductive hormones and reduced quality of sperm. These successive KEs may result in impaired male fertility (AO). CONCLUSION This research recapitulates and schematically represents complex literature data gathered from different biological levels and propose a pAOP related to the reproductive toxicity induced by AgNPs. The development of AOPs specific to NMs should be encouraged in order to provide new insights to gain a better understanding of NP toxicity.
Collapse
Affiliation(s)
- Ozge Kose
- grid.457348.90000 0004 0630 1517Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES-CIBEST, 38000 Grenoble, France
| | - Paride Mantecca
- grid.7563.70000 0001 2174 1754Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Anna Costa
- grid.5326.20000 0001 1940 4177CNR-ISTEC, Institute of Science and Technology for Ceramics-National Research Council of Italy, Via Granarolo 64, 48018 Faenza, Italy
| | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES-CIBEST, 38000, Grenoble, France.
| |
Collapse
|
20
|
Ziamajidi N, Daei S, Khajvand-Abedini M, Abbasalipourkabir R, Nourian A. Vitamins A, C, and E Exert Anti-apoptotic Function in the Testis of Rats After Exposure to Zinc Oxide Nanoparticles. Chonnam Med J 2023; 59:48-53. [PMID: 36794239 PMCID: PMC9900230 DOI: 10.4068/cmj.2023.59.1.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 02/03/2023] Open
Abstract
Some reports emphasize that zinc oxide nanoparticles (ZnO NPs) are detrimental to the reproductive organs of animals. As such, this research aimed at exploring the apoptotic potential of ZnO NPs on testis along with the beneficial role of Vitamins (V) A, C, and E against ZnO NP-induced damage. To this aim, a population of 54 healthy, male Wistar rats were used in this work and then assigned into nine groups of 6 rats as G1: Control 1 (Water); G2: Control 2 (Olive oil); G3: VA (1000 IU/kg), G4: VC (200 mg/kg), G5: VE (100 IU/kg), G6: ZnO NPs exposed animals (200 mg/kg); and G7, 8 and 9: ZnO NPs-exposed animals that were pre-treated with either VA, C, or E. Apoptosis rates were estimated by measuring the level of apoptotic regulatory markers including Bcl-2-associated X (Bax) and B-cell lymphoma protein 2 (Bcl-2) using western blotting and qRT-PCR assays. The data indicated that ZnO NPs exposure elevates the level of Bax protein and gene expression, whereas the protein and gene expression of Bcl-2 was reduced. Further, the activation of caspase-3,7 occurred after exposure to ZnO NPs, while the above alterations were significantly alleviated in the rats that were co-treated with VA, C, or E and ZnO NPs relative to the rats in the ZnO NPs group. In summary, VA, C, and E exerted anti-apoptotic functions in the testis of rats following administration of ZnO NPs.
Collapse
Affiliation(s)
- Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran.,Molecular Medicine Research Center, Hamadan University of Medical Science, Hamedan, Iran
| | - Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Maryam Khajvand-Abedini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
21
|
Tijani AS, Farombi EO, Olori DO. Thymol co-administration abrogates hexachlorobenzene-induced reproductive toxicities in male rats. Hum Exp Toxicol 2023; 42:9603271221149201. [PMID: 36606752 DOI: 10.1177/09603271221149201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This present study was designed to investigate ameliorating potential of thymol (THY) on hexachlorobenzene (HBC)-induced epididymal and testicular toxicities in adult male rats. Forty adult male rats were orally treated by gavage daily for 28 consecutive days and divided into four groups; control group administered with corn oil, HBC-treated group (16 mg/kg b. wt), thymol-treated group (30 mg/kg b. wt), and HBC + THY-treated group. The results revealed that HBC exposure caused a significant decrease in the body weight change, organ weights, sperm functional parameters, serum testosterone level with widespread histological abnormalities. Furthermore, HBC-treated rats showed increased in the serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH), epididymal and testicular myeloperoxidase activity, tumor necrosis-α, interleukin-1β level and caspase-3 activity, induced oxidative damage as evidenced by elevated malondialdehyde (MDA), reactive oxygen species (RONS) levels and significant reduction in antioxidant enzyme activities and reduced glutathione (GSH). However, co-treatment of THY with HBC alleviated the HBC-induced epididymal and testicular toxicities. Our findings revealed that HBC acts as a reproductive toxicant in rats and thymol could be a potential remedial agent for HBC-induced reproductive toxicity.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, 58987University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, 58987University of Ibadan, Ibadan, Nigeria
| | - David O Olori
- Department of Biochemistry, Bowen University, Iwo, Nigeria
| |
Collapse
|
22
|
Klein JP, Mery L, Boudard D, Ravel C, Cottier M, Bitounis D. Impact of Nanoparticles on Male Fertility: What Do We Really Know? A Systematic Review. Int J Mol Sci 2022; 24:576. [PMID: 36614018 PMCID: PMC9820737 DOI: 10.3390/ijms24010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The real impact of nanoparticles on male fertility is evaluated after a careful analysis of the available literature. The first part reviews animal models to understand the testicular biodistribution and biopersistence of nanoparticles, while the second part evaluates their in vitro and in vivo biotoxicity. Our main findings suggest that nanoparticles are generally able to reach the testicle in small quantities where they persist for several months, regardless of the route of exposure. However, there is not enough evidence that they can cross the blood-testis barrier. Of note, the majority of nanoparticles have low direct toxicity to the testis, but there are indications that some might act as endocrine disruptors. Overall, the impact on spermatogenesis in adults is generally weak and reversible, but exceptions exist and merit increased attention. Finally, we comment on several methodological or analytical biases which have led some studies to exaggerate the reprotoxicity of nanoparticles. In the future, rigorous clinical studies in tandem with mechanistic studies are needed to elucidate the real risk posed by nanoparticles on male fertility.
Collapse
Affiliation(s)
- Jean-Philippe Klein
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Lionel Mery
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Delphine Boudard
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Célia Ravel
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35000 Rennes, France
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Michèle Cottier
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Dimitrios Bitounis
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
| |
Collapse
|
23
|
Li J, Ning M, Zhang Y, Liu Q, Liu K, Zhang H, Zhao Y, Chen C, Liu Y. The potential for nanomaterial toxicity affecting the male reproductive system. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1806. [DOI: 10.1002/wnan.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Jiangxue Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Manman Ning
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing China
- School of Pharmaceutical Sciences of Zhengzhou University Zhengzhou China
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing China
- School of Henan Institute of Advanced Technology of Zhengzhou University Zhengzhou China
| | - Qianglin Liu
- Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Kai Liu
- Department of Chemistry Tsinghua University Beijing China
| | - Hongjie Zhang
- Department of Chemistry Tsinghua University Beijing China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing China
- University of Chinese Academy of Sciences Beijing China
- GBA National Institute for Nanotechnology Innovation Guangdong China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing China
- University of Chinese Academy of Sciences Beijing China
- GBA National Institute for Nanotechnology Innovation Guangdong China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing China
- GBA National Institute for Nanotechnology Innovation Guangdong China
| |
Collapse
|
24
|
Nageeb MM, Saadawy SF, Attia SH. Breast milk mesenchymal stem cells abate cisplatin-induced cardiotoxicity in adult male albino rats via modulating the AMPK pathway. Sci Rep 2022; 12:17554. [PMID: 36266413 PMCID: PMC9585145 DOI: 10.1038/s41598-022-22095-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023] Open
Abstract
Myocardial injury influenced by cisplatin (Cis) is a compelling reason to hunt out a treatment modality to overcome such a threat in cisplatin-treated patients. Breast Milk mesenchymal stem cells (Br-MSCs) are a non-invasive, highly reproducible source of stem cells. Herein, we investigate Br-MSCs' role in cardiotoxicity induced by cisplatin. Rats were divided into; control, Cis-treated (received 12 mg/kg single intraperitoneal injection), BrMSCs-treated (received single intraperitoneal injection of 0.5 ml sterilized phosphate-buffered saline containing 2 × 107 cells of Br-MSCs); metformin-treated (received 250 mg/kg/day orally) and BrMSCs + metformin + Cis treated groups. At the experiment end, serum creatine kinase (CK-MB) and cardiac troponin T (cTnT) activates were estimated, cardiac malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) levels were measured, cardiac expression of Bax and Bcl-2 and AMP-activated protein kinase (AMPK), as well as heart histopathology, were evaluated. Study results showed that Cis explored acute cardiotoxicity evidenced by deteriorated cardiac indices, induction of oxidative stress, and inflammation with myocardium histological alterations. Treatment with Br-MSCs restored heart function and structure deteriorated by Cis injection. The antioxidant/anti-inflammatory/anti-apoptotic results of Br-MSCs were supported by AMPK activation denoting their protective role against cisplatin-induced cardiac injury. These results were superior when metformin was added to the treatment protocol.
Collapse
Affiliation(s)
- Mahitab M Nageeb
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara F Saadawy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Seba Hassan Attia
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
25
|
Gadoa Z, Moustafa AH, El Rayes SM, Arisha AA, Mansour MF. Zinc Oxide Nanoparticles and Synthesized Pyrazolopyrimidine Alleviate Diabetic Effects in Rats Induced by Type II Diabetes. ACS OMEGA 2022; 7:36865-36872. [PMID: 36278044 PMCID: PMC9583298 DOI: 10.1021/acsomega.2c05638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 05/28/2023]
Abstract
Diabetes mellitus (DM) is a category of metabolic illness characterized by high blood sugar levels and insufficient pancreatic insulin production or activity within the body. The most common type of diabetes is type II diabetes, which is a metabolic condition characterized by insulin resistance and pancreatic islet β-cell failure, resulting in hyperglycemia. The goal of this study was to examine the anti-diabetic implications of zinc oxide nanoparticles (ZnO NPs) and/or pyrazolopyrimidine in type II diabetic rats. Rats with a weight of 150 ± 20 g were used. Animals were divided into five groups as follows: group 1: control, group 2: type II diabetic rats, group 3: diabetic rats received ZnO NPs (10 mg/kg/orally/day), group 4: diabetic rats received pyrazolopyrimidine (5 mg/kg/orally/day), and group 5: diabetic rats received ZnO NPs (10 mg/kg/orally/day) + pyrazolopyrimidine (5 mg/kg/orally/day), respectively, for 30 days. The results indicated that serum glucose, total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein-cholesterol (LDL-c), very low-density lipoprotein-cholesterol (VLDL-c), malondialdehyde, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha PGC-1α mRNA expressions were increased in the diabetic group versus the control group, while serum insulin, high-density lipoprotein-cholesterol (HDL-c), superoxide dismutase (SOD), and carnitine palmitoyltransferase 1A (CPT1A) mRNA expression levels were decreased. These parameters were reserved in the treated groups (ZnO NPs, pyrazolopyrimidine, and ZnO NPs + pyrazolopyrimidine). This study proved that ZnO NPs and pyrazolopyrimidine had an ameliorative effect on blood glucose levels, antioxidant status, lipid profile, liver function enzymes, and mRNA expression of hepatic genes.
Collapse
Affiliation(s)
- Zahraa
Alaaeldein Gadoa
- Department
of Chemistry, Faculty of Science, Suez Canal
University in Ismailia, Ismailia 41522, Egypt
| | | | - Samir Mohamed El Rayes
- Department
of Chemistry, Faculty of Science, Suez Canal
University in Ismailia, Ismailia 41522, Egypt
| | - Ahmed A. Arisha
- Department
of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt
- Department
of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Fouad Mansour
- Department
of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
26
|
Saber TM, Abo-Elmaaty AMA, Said EN, Beheiry RR, Moselhy AAA, Abdelgawad FE, Arisha MH, Saber T, Arisha AH, Fahmy EM. Alhagi maurorum Ethanolic Extract Rescues Hepato-Neurotoxicity and Neurobehavioral Alterations Induced by Lead in Rats via Abrogating Oxidative Stress and the Caspase-3-Dependent Apoptotic Pathway. Antioxidants (Basel) 2022; 11:1992. [PMID: 36290715 PMCID: PMC9598489 DOI: 10.3390/antiox11101992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 09/29/2023] Open
Abstract
This work investigated the probable protective effect of an Alhagi maurorum ethanolic extract on the hepatotoxicity and neurotoxicity accompanied by neurobehavioral deficits caused by lead in rats. Rats in four groups were orally administered distilled water, ethanolic extract of A. maurorum (300 mg/kg BW daily), lead (100 mg/kg BW daily for 3 months), and lead + A. maurorum extract. The results demonstrated that lead exposure resulted in elevated locomotor activities and sensorimotor deficits associated with a decrease in brain dopamine levels. Moreover, lead exposure significantly increased liver function markers. In addition, the lead-treated rats exhibited extensive liver and brain histological changes and apoptosis. The lead treatment also triggered oxidative stress, as demonstrated by the increase in malondialdehyde (MDA) concentrations with a remarkable reduction in the activities of antioxidant enzymes, reduced glutathione (GSH) levels, and transcriptional mRNA levels of antioxidant genes in the liver and brain. Nevertheless, co-treatment with the A. maurorum extract significantly ameliorated the lead-induced toxic effects. These findings indicate that the A. maurorum extract has the ability to protect hepatic and brain tissues against lead exposure in rats through the attenuation of apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Taghred M. Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Azza M. A. Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Enas N. Said
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rasha R. Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Attia A. A. Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Fathy Elsayed Abdelgawad
- Medical Biochemistry Department, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt
- Chemistry Department, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia
| | - Mariam H. Arisha
- Department of Psychology, Faculty of Arts, Zagazig University, Zagazig 44519, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Esraa M. Fahmy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
27
|
Hassan AA, Bel Hadj Salah K, Fahmy EM, Mansour DA, Mohamed SAM, Abdallah AA, Ashkan MF, Majrashi KA, Melebary SJ, El-Sheikh ESA, El-Shaer N. Olive Leaf Extract Attenuates Chlorpyrifos-Induced Neuro- and Reproductive Toxicity in Male Albino Rats. Life (Basel) 2022; 12:1500. [PMID: 36294935 PMCID: PMC9605092 DOI: 10.3390/life12101500] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Chlorpyrifos (CPF) is a common organophosphorus insecticide. It is associated with negative consequences such as neurotoxicity and reproductive injury. This study aimed to observe the ability of olive leaf extract to attenuate chlorpyrifos toxicity, which induced neuro- and reproductive toxicity in male albino rats. Olive leaf extract (OLE) exhibits potent antioxidant and antiapoptotic properties. Twenty-two mature male rats were divided into four groups: control (saline), CPF (9 mg/kg), OLE (150 mg/kg), and CPF + OLE. Treatment was administered orally for 80 days. The CPF significantly reduced serum sex hormones, sperm counts and motility, high oxidants (MDA), and depleted antioxidants (GSH, SOD, TAC) in the brain and testes homogenate; additionally, it decreased serum AChE and brain neurotransmitters, increased Bax, decreased Bcl-2, and boosted caspase-3 immune expression in neural and testicular cells. Immunological expression of Ki 67 in the cerebrum, cerebellum, choroid plexus, and hippocampus was reduced, and α-SMA in testicular tissue also decreased. Histopathological findings were consistent with the above impacts. OLE co-administration significantly normalized all these abnormalities. OLE showed significant protection against neural and reproductive damage caused by CPF.
Collapse
Affiliation(s)
- Arwa A. Hassan
- Pharmacology & Toxicology Department, Faculty of Pharmacy & Pharmaceutical Industries, Sinai University, El-Arish 45518, Egypt
| | - Karima Bel Hadj Salah
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir 5019, Tunisia
| | - Esraa M. Fahmy
- Pharmacology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Doaa A. Mansour
- Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Sally A. M. Mohamed
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa A. Abdallah
- Theriogenology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mada F. Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sahar J. Melebary
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - El-Sayed A. El-Sheikh
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nashwa El-Shaer
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
28
|
Shen Y, You Y, Zhu K, Fang C, Yu X, Chang D. Bibliometric and visual analysis of blood-testis barrier research. Front Pharmacol 2022; 13:969257. [PMID: 36071829 PMCID: PMC9441755 DOI: 10.3389/fphar.2022.969257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Extensive research on the blood-testis barrier has been undertaken in recent years. However, no systematic bibliometric study has been conducted on this subject. Our research aimed to identify the hotspots and frontiers of blood-testis barrier research and to serve as a guide for future scientific research and decision-making in the field.Methods: Studies on the blood-testis barrier were found in the Web of Science Core Collection. VOSviewer, CiteSpace, and Microsoft Excel were used to conduct the bibliometric and visual analyses.Results: We found 942 blood-testis barrier studies published in English between 1992 and 2022. The number of annual publications and citations increased significantly between 2011 and 2022, notably in the United States. China and the United States, the US Population Council, Endocrinology, and Cheng C. Yan were the most productive countries, institution, journal, and author, respectively. The study keywords indicated that blood-testis barrier research involves a variety of compositional features (tight junctions, cytoskeleton, adherens junctions), cell types (Sertoli cells, germ cells, Leydig cells, stem cells), reproductive toxicity (cadmium, nanoparticles, bisphenol-a), and relevant mechanisms (spermatogenesis, apoptosis, oxidative stress, dynamics, inflammation, immune privilege).Conclusion: The composition and molecular processes of the blood-testis barrier as well as the blood-testis barrier in male infertility patients are the primary research hotspots in this field. In addition, future research will likely focus on treatment and the development of novel medications that target signal pathways in oxidative stress and apoptosis to preserve the blood-testis barrier. Further studies must extend to clinical diagnosis and therapy.
Collapse
|
29
|
Xie D, Hu J, Wu T, Xu W, Meng Q, Cao K, Luo X. Effects of Flavonoid Supplementation on Nanomaterial-Induced Toxicity: A Meta-Analysis of Preclinical Animal Studies. Front Nutr 2022; 9:929343. [PMID: 35774549 PMCID: PMC9237539 DOI: 10.3389/fnut.2022.929343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 12/09/2022] Open
Abstract
BackgroundNanomaterials, widely applied in various fields, are reported to have toxic effects on human beings; thus, preventive or therapeutic measures are urgently needed. Given the anti-inflammatory and antioxidant activities, supplementation with flavonoids that are abundant in the human diet has been suggested as a potential strategy to protect against nanomaterial-induced toxicities. However, the beneficial effects of flavonoids remain inconclusive. In the present study, we performed a meta-analysis to comprehensively explore the roles and mechanisms of flavonoids for animals intoxicated with nanomaterials.MethodsA systematic literature search in PubMed, EMBASE, and Cochrane Library databases was performed up to April 2022. STATA 15.0 software was used for meta-analyses.ResultsA total of 26 studies were identified. The results showed that flavonoid supplementation could significantly increase the levels of antioxidative enzymes (superoxide dismutase, catalase, glutathione, glutathione peroxidase, and glutathione-S-transferase), reduce the production of oxidative agents (malonaldehyde) and pro-inflammatory mediators (tumor necrosis factor-α, interleukin-6, IL-1β, C-reactive protein, immunoglobulin G, nitric oxide, vascular endothelial growth factor, and myeloperoxidase), and alleviate cell apoptosis (manifested by decreases in the mRNA expression levels of pro-apoptotic factors, such as caspase-3, Fas cell surface death receptor, and Bax, and increases in the mRNA expression levels of Bcl2), DNA damage (reductions in tail length and tail DNA%), and nanomaterial-induced injuries of the liver (reduced alanine aminotransferase and aspartate aminotransferase activities), kidney (reduced urea, blood urea nitrogen, creatinine, and uric acid concentration), testis (increased testosterone, sperm motility, 17β-hydroxysteroid dehydrogenase type, and reduced sperm abnormalities), and brain (enhanced acetylcholinesterase activities). Most of the results were not changed by subgroup analyses.ConclusionOur findings suggest that appropriate supplementation of flavonoids may be effective to prevent the occupational detriments resulting from nanomaterial exposure.
Collapse
Affiliation(s)
- Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Tong Wu
- Shanghai Jing Rui Yang Industrial Co., Ltd, Shanghai, China
| | - Wei Xu
- Shanghai Nutri-woods Bio-Technology Co., Ltd, Shanghai, China
| | - Qingyang Meng
- Shanghai Pechoin Daily Chemical Co., Ltd, Shanghai, China
| | - Kangli Cao
- Shanghai Institute of Spacecraft Equipment, Shanghai, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- *Correspondence: Xiaogang Luo,
| |
Collapse
|
30
|
Rajan R, Huo P, Chandran K, Manickam Dakshinamoorthi B, Yun SI, Liu B. A review on the toxicity of silver nanoparticles against different biosystems. CHEMOSPHERE 2022; 292:133397. [PMID: 34954197 DOI: 10.1016/j.chemosphere.2021.133397] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Despite significant progress made in the past two decades, silver nanoparticles (AgNPs) have not yet made it to the clinical trials. In addition, they showed both positive and negative effects in their toxicity from unicellular organism to well-developed multi-organ system, for example, rat. Although it is generally accepted that capped (bio)molecules have synergistic bioactivities and diminish the toxicity of metallic Ag core, convincing evidence is completely lacking. Therefore, in this review, we first highlight the recent in vivo toxicity studies of chemically manufactured AgNPs, biologically synthesized AgNPs and reference AgNPs of European Commission. Then, their toxic effects are compared with each other and the overlooked factors leading to the potential conflict of obtained toxicity results are discussed. Finally, suggestions are given to better design and conduct the future toxicity studies and to fast-track the successful clinical translation of AgNPs as well.
Collapse
Affiliation(s)
- Ramachandran Rajan
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, PR China
| | - PeiPei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, PR China
| | - Krishnaraj Chandran
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | | | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, PR China.
| |
Collapse
|
31
|
Yao Y, Tang M. Advances in endocrine toxicity of nanomaterials and mechanism in hormone secretion disorders. J Appl Toxicol 2021; 42:1098-1120. [PMID: 34935166 DOI: 10.1002/jat.4266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/23/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
The size of nanoparticles is about 1-100 nm. People are exposed to nanoparticles in environmental pollutants from ancient times to the present. With the maturity of nanotechnology in the past two decades, the production of manufactured nanomaterials is rapidly increasing and they are used in a wide range of aerospace, medicine, food, and industrial applications. However, both natural and manufactured nanomaterials have been proved to pose a threat to diverse organs and systems. The endocrine system is critical to maintaining homeostasis. Endocrine disorders are associated with many diseases, including cancer, reduced fertility, and metabolic diseases. Therefore, we review the literatures dealing with the endocrine toxicity of nanomaterial. This review provides an exhaustive description of toxic effects of several common nanomaterials in the endocrine system; more involved are reproductive endocrinology. Then physicochemical factors that determine the endocrine toxicity of nanomaterials are discussed. Furthermore, oxidative stress, changes in steroid production and metabolic enzymes, organelle disruption, and alterations in signal pathways are introduced as potential mechanisms that may cause changes in hormone levels. Finally, we suggest that a risk assessment of endocrine toxicity based on standard procedures and consideration of endocrine disrupting effects of nanomaterials in the field and its environmental and population effects could be future research directions for endocrine toxicity of nanomaterials.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
32
|
Changes in heavy metal levels, reproductive characteristics, oxidative stress markers and testicular apoptosis in rams raised around thermal power plant. Theriogenology 2021; 179:211-222. [PMID: 34894490 DOI: 10.1016/j.theriogenology.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022]
Abstract
Male reproductive dysfunction is one of the damages in the organism caused by heavy metals. In this study, it was aimed to investigate the changes in heavy metal levels in serum and testicular tissue, and serum hormone levels, epididymal spermatozoa characteristics, tissue oxidative stress levels, testicular histology and testicular apoptosis level in rams raised in remote and near regions of a thermal power plant. A total of 75 rams were divided into 3 groups according to the regions, where they were born and raised, being far [250 km distance, group 1 (control), n = 25], close (20 km distance, group 2, n = 25) and very close (10 km distance, group 3, n = 25) to the thermal power plant. The blood along with testis and epididymis tissues was taken from the animals after slaughtering. In addition, soil and water heavy metal analyzes were also performed. The highest levels of serum Al, Cr, As, Ag, Sn and testicular Al, V, Ni, Ag, Cd, Cr, As, Pb, and the lowest levels of serum Cu, testicular Cu and Zn were determined in group 3 compared to control. Soil and water heavy metal results were similar to those found in serum and testis. The lowest serum testosterone level, tissue glutathione-peroxidase and catalase activities, spermatozoon concentration, and the highest tissue malondialdehyde level, dead spermatozoon rate, Bax apoptotic protein expression level and Bax/Bcl-2 rate alongside some testicular histopathological lesions were found in group 3 in comparison to control. Significant correlations were determined between some heavy metal levels and some parameters measured. As a result, heavy metals accumulate in the soil and water in the region close to the thermal power plant. The endocrine and exocrine reproductive potentials of rams born and grown in these regions were clearly damaged by the increased testicular heavy metals due to water drank and herbs consumed.
Collapse
|
33
|
Wang LM, Wang YT, Yang WX. Engineered nanomaterials induce alterations in biological barriers: focus on paracellular permeability. Nanomedicine (Lond) 2021; 16:2725-2741. [PMID: 34870452 DOI: 10.2217/nnm-2021-0165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Engineered nanoparticles (ENPs) are widely used in medical diagnosis and treatment, as food additives and as energy materials. ENPs may exert adverse or beneficial effects on the human body, which may be linked to interactions with biological barriers. In this review, the authors summarize the influences of four typical metal/metal oxide nanomaterials (Ag, TiO2, Au, ZnO nanoparticles) on the paracellular permeability of biological barriers. Disruptions on tight junctions, adhesion junctions, gap junctions and desmosomes via complex signaling pathways, such as the MAPK, PKC and ROCK signaling pathways, affect paracellular permeability. Reactive oxygen species and cytokines underlie the mechanism of ENP-triggered alterations in paracellular permeability. This review provides the information necessary for the cautious application of nanoparticles in medicine and life sciences in the future.
Collapse
Affiliation(s)
- Lan-Min Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu-Ting Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
34
|
Pan Z, Gao Y, Liu S, Ke Z, Guo J, Ma W, Cui T, Liu B, Zhang X. Wu-Zi-Yan-Zong-Wan protects mouse blood-testis barrier from Tripterygium wilfordii Hook. f. multiglycoside-induced disruption by regulating proinflammatory cytokines. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114440. [PMID: 34293456 DOI: 10.1016/j.jep.2021.114440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wu-Zi-Yan-Zong-Wan (WZYZW) is a classical traditonal Chinese herbal formula and a Chinese patent medicine used to treat male infertility. However, the chemical components of WZYZW and its mechanism are not yet fully clarified. AIM OF THE STUDY The purpose of this study is to observe the effect and underlying mechanism of WZYZW on ameliorating blood-testis barrier (BTB) dysfunction in mice with spermatogenic dysfunction induced by administration of Tripterygium wilfordii Hook. f. multiglycosides (GTW). MATERIALS AND METHODS WZYZW was administered by gavage to mice with GTW-induced spermatogenic dysfunction (kidney essence deficiency pattern) for 40 days. Testis tissues were obtained for subsequent histopathological analysis. Biotin tracing was used to evaluate the permeability of Sertoli cell tight junctions. The levels of proinflammatory cytokines including interleukin (IL)-6, IL-17A, IL-1α and tumor necrosis factor (TNF)-α were analyzed by ELISA. The expression levels of proteins related to tight junction including ZO-1, JAM-A and occludin were analyzed by western blotting. The ultrastructures of tight junctions were observed by transmission electron microscopy. RESULTS WZYZW ameliorated GTW-induced testicular spermatogenic dysfunction. Levels of IL-6, IL-17A, IL-1α, and TNF-α in the groups receiving low, medium, and high doses of WZYZW decreased in a dose-dependent manner. WZYZW impeded a biotin tracer from permeating the BTB, protecting its integrity in GTW-treated mice. In addition, our results showed no significant changes in the protein expressions of ZO-1, JAM-A, and occludin after WZYZW administration compared with the GTW group. Meanwhile, WZYZW exhibited a linear arrangement and restored the typical "sandwich" structure of BTB. No acute poisoning incidences were observed in all groups during the experiment. CONCLUSIONS Our findings demonstrate that WZYZW may ameliorate some GTW-induced BTB dysfunction, possibly by regulating proinflammatory cytokine levels. In vitro studies on the regulation of BTB permeability by WZYZW and its active components are further required.
Collapse
Affiliation(s)
- Zhenkun Pan
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Yunxiao Gao
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Shuang Liu
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New District, Chongqing, 401121, China.
| | - Zhenghao Ke
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Jianqiang Guo
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wenjing Ma
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Tianwei Cui
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Baoxing Liu
- Department of Andrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Xiuping Zhang
- Department of Gynecology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China.
| |
Collapse
|
35
|
Nanosafety vs. nanotoxicology: adequate animal models for testing in vivo toxicity of nanoparticles. Toxicology 2021; 462:152952. [PMID: 34543703 DOI: 10.1016/j.tox.2021.152952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 11/20/2022]
Abstract
Nanotoxicological studies using existing models of normal cells and animals often encounter a paradox: retention of nanoparticles in intracellular compartments for a long time is not accompanied by any significant toxicological effects. Can we expect that the revealed changes will be not harmful after translation to practice, outside of a sterile laboratory and ideally healthy organisms? Age-associated and pathological processes can affect target organs, metabolism, and detoxification in the mononuclear phagocyte system organs and change biodistribution routes, thus making the use of nanomaterial not safe. The potential solution to this issue can be testing the toxic properties of nanoparticles in animal models with chronic diseases. However, current studies of nanotoxicity in animal models with a brain, cardiovascular system, liver, digestive tract, reproductive system, and skin diseases are unsystematic. Even though these studies demonstrate the emergence of new toxic effects that are not present in healthy animals. In this regard, we set the goal of this review as the formulation of the requirements for an animal model capable of assessing the potential toxicity of nanoparticles based on the nanosafety approach.
Collapse
|
36
|
Abu-Zeid EH, Abdel Fattah DM, Arisha AH, Ismail TA, Alsadek DM, Metwally MMM, El-Sayed AA, Khalil AT. Protective prospects of eco-friendly synthesized selenium nanoparticles using Moringa oleifera or Moringa oleifera leaf extract against melamine induced nephrotoxicity in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112424. [PMID: 34174736 DOI: 10.1016/j.ecoenv.2021.112424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 05/07/2023]
Abstract
Nanotechnology is used in a wide range of applications, including medical therapies that precisely target disease prevention and treatment. The current study aimed firstly, to synthesize selenium nanoparticles (SeNPs) in an eco-friendly manner using Moringa oleifera leaf extract (MOLE). Secondly, to compare the protective effects of green-synthesized MOLE-SeNPs conjugate and MOLE ethanolic extract as remedies for melamine (MEL) induced nephrotoxicity in male rats. One hundred and five male Sprague Dawley rats were divided into seven groups (n = 15), including 1st control, 2nd MOLE (800 mg/kg BW), 3rd SeNPs (0.5 mg/kg BW), 4th MOLE-SeNPs (200 μg/kg BW), 5th MEL (700 mg/kg BW), 6th MEL+MOLE, and 7th MEL+MOLE SeNPs. All groups were orally gavaged day after day for 28 days. SeNPs and the colloidal SeNPs were characterized by TEM, SEM, and DLS particle size. SeNPs showed an absorption peak at a wavelength of 530 nm, spherical shape, and an average size between 3.2 and 20 nm. Colloidal SeNPs absorption spectra were recorded between 400 and 700 nm with an average size of 3.3-17 nm. MEL-induced nephropathic alterations represented by a significant increase in serum creatinine, urea, blood urea nitrogen (BUN), renal TNFα, oxidative stress-related indices, and altered the relative mRNA expression of apoptosis-related genes Bax, Caspase-3, Bcl2, Fas, and FasL. MEL-induced array of nephrotoxic morphological changes, and up-regulated immune-expression of proliferating cell nuclear antigen (PCNA) and proliferation-associated nuclear antigen Ki-67. Administration of MOLE or MOLE-SeNPs significantly reversed MEL-induced renal function impairments, oxidative stress, histological alterations, modulation in the relative mRNA expression of apoptosis-related genes, and the immune-expression of renal PCNA and Ki-67. Conclusively, the green-synthesized MOLE-SeNPs and MOLE display nephron-protective properties against MEL-induced murine nephropathy. This study is the first to report these effects which were more pronounced in the MOLE group than the green biosynthesized MOLE-SeNPs conjugate group.
Collapse
Affiliation(s)
- Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia Province 44511, Egypt.
| | - Doaaa M Abdel Fattah
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dina M Alsadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed A El-Sayed
- Department of Photochemistry, Industrial Chemical Division, National Research Centre, 33 EL Bohouthst., Dokki, Giza 12622, Egypt
| | - Amany T Khalil
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia Province 44511, Egypt
| |
Collapse
|
37
|
Saber TM, Arisha AH, Abo-Elmaaty AMA, Abdelgawad FE, Metwally MMM, Saber T, Mansour MF. Thymol alleviates imidacloprid-induced testicular toxicity by modulating oxidative stress and expression of steroidogenesis and apoptosis-related genes in adult male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112435. [PMID: 34171690 DOI: 10.1016/j.ecoenv.2021.112435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The present work was designed to assess the potential ameliorative effect of thymol on the testicular toxicity caused by imidacloprid (IMI) in adult male rats. Forty adult male rats were allocated into four groups; control group was given corn oil, thymol-treated group (30 mg/kg b.wt), IMI-treated group (22.5 mg/kg b.wt), and IMI + thymol-treated group. All administrations were done by gavage every day for duration of 56 days. As a result, the IMI exposure caused a significant decline in the body weight change, reproductive organ weights, sperm functional parameters, and serum level of testosterone, widespread histological alterations, and apoptosis in the testis. Additionally, the IMI-treated rats exhibited a remarkable increment in the serum levels of follicle stimulating hormone and luteinizing hormone. Also, IMI induced testicular oxidative stress, as indicated by elevated malondialdehyde (MDA) levels and a marked decline in the activity of antioxidant enzymes and reduced glutathione (GSH), and total antioxidant capacity (TAC) levels. Moreover, IMI treatment significantly downregulated the mRNA expression of steroidogenic genes and proliferating cell nuclear antigen (PCNA) immunoexpression in the testicular tissue. However, thymol co-administration significantly mitigated the IMI-induced toxic effects. Our findings suggested that IMI acts as a male reproductive toxicant in rats and thymol could be a potential therapeutic option for IMI reprotoxic impacts.
Collapse
Affiliation(s)
- Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Azza M A Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Fathy Elsayed Abdelgawad
- Medical Biochemistry Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt; Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, KSA
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed Fouad Mansour
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
38
|
Abu-Zeid EH, Khalifa BA, Elewa YHA, Arisha AH, Ismail TA, Hendam BM, Abdel-Hamid SE. Bee venom Apis mellifera lamarckii rescues blood brain barrier damage and neurobehavioral changes induced by methyl mercury via regulating tight junction proteins expression in rat cerebellum. Food Chem Toxicol 2021; 154:112309. [PMID: 34062221 DOI: 10.1016/j.fct.2021.112309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
The objective of the current study is to investigate the protective effect of Egyptian bee venom (BV) against methyl mercury chloride (MMC) induced blood-brain barrier (BBB) damage and neurobehavioral changes. Eighty male Sprague-Dawley rats were randomly grouped into 1st control (C), 2nd BV (0.5 mg/kg S/C for14 days), 3rd MMC (6.7 mg/kg orally/14 days), and 4th MMC + BV group. MMC exposure significantly altered rat cognitive behavior, auditory startle habituation, and swimming performance, increased the exploratory, grooming, and stereotypic behavior. MMC significantly impaired BBB integrity via induction of inflammation, oxidative stress, and down-regulation of tight junction proteins genes (TJPs) mRNA expression levels: Occludin (OCC), Claudins-5 (CLDN5), Zonula occludens-1 (ZO-1), while up-regulated the transforming growth factor-beta (TGF-β) mRNA expression levels. MMC revealed a significantly higher percentage of IgG positive area ratio, a higher index ratio of Iba1, Sox10, and ss-DNA, while index ratio of CD31, neurofilament, and pan neuron showed a significant reduction. Administration of BV significantly regulates the MMC altered behavioral responses, TJPs relative mRNA expression, and the immune-expression markers for specific neural cell types. It could be concluded for the first time that BV retains a promising in vivo protection against MMC-induced BBB dysfunction and neurobehavioral toxicity.
Collapse
Affiliation(s)
- Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Bouthaina A Khalifa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Cairo, 12211, Egypt
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt; Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shereen El Abdel-Hamid
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
39
|
Alam RTM, Abu Zeid EH, Khalifa BA, Arisha AH, Reda RM. Dietary exposure to methyl mercury chloride induces alterations in hematology, biochemical parameters, and mRNA expression of antioxidant enzymes and metallothionein in Nile tilapia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31391-31402. [PMID: 33606169 DOI: 10.1007/s11356-021-13014-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Methyl mercury chloride "MMC" (CH3ClHg) is an ubiquitous environmental toxicant that causes a variety of adverse effects. In the present study, we investigated the effects of sub-chronic toxicity of MMC on Nile tilapia (Oreochromis niloticus) through the evaluation of growth performance and hematological, biochemical, and oxidative stress biomarkers. From 150 healthy fish, five equally sized treatment groups were created: a control (CT) group fed with a basal diet and four MMC treatment groups exposed to 0.5, 1, 1.5, and 2 mg of MMC per kg of basal diet for 60 days. MMC exposure significantly reduced the growth performance and survival of O. niloticus and decreased red blood cell count and hemoglobin concentration. Treated fish exhibited normocytic normochromic anemia in addition to leucopenia, lymphopenia, granulocytopenia, and monocytopenia. Moreover, MMC exposure significantly affected liver function, including a reduction in the total protein levels while increasing cholesterol and triglyceride levels. It also markedly increased the production of stress biomarkers such as glucose and cortisol levels. Furthermore, MMC significantly elevated the levels of hepatic enzymes, induced tissue damage, and caused inflammation, as indicated by the upregulation of mRNA expression of hepatic metallothionein. Finally, MMC exposure induced oxidative stress by altering the antioxidant status of the liver and downregulating the mRNA expression of superoxide dismutase, glutathione peroxidase, and glutathione S-reductase. In conclusion, MMC toxicity induced hematological and biochemical alterations, leading to an enhanced state of oxidative stress in O. niloticus.
Collapse
Affiliation(s)
- Rasha T M Alam
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt.
| | - Ehsan H Abu Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt
| | - Bouthaina A Khalifa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, 44511, Egypt
| | - Rasha M Reda
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
40
|
Khattab SA, Hussien WF, Raafat N, Ahmed Alaa El-Din E. Effects of catechin hydrate in benzo[ a]pyrene-induced lung toxicity: roles of oxidative stress, apoptosis, and DNA damage. Toxicol Mech Methods 2021; 31:467-475. [PMID: 34027802 DOI: 10.1080/15376516.2021.1916667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The major sources for human exposure to Benzo [a] pyrene (B[a]P) are contaminated food, water, and inhalation of polycyclic aromatic hydrocarbon. B[a]P is a well-known human genotoxic carcinogen (IARC Group 1). It has a tumorigenic potential in virtually all in vivo experimental animal model systems. The study aimed to evaluate the effect of catechin hydrate (CH) against B [a] P-induced toxicity in the lung of adult albino rats. Thirty-six adult male albino rats (150-200 g) were divided into six groups, three control groups, and three experimental groups: B[a] P-treated group, (CH)-treated group, and B[a] P+(CH)-treated group. At the end of the fourth week of the study, blood samples and lung tissues were obtained for the biochemical and genotoxicity, RT-PCR, histopathological, and immunohistochemical investigations, respectively. Our results clarified that B[a] P exposure caused a subsequent decrease in the activities of antioxidant enzymes (SOD, CAT), and conversely (MDA) levels elevated markedly. Also, B[a] P induced DNA damages and activated the apoptotic pathway, presented by upregulated Bax, caspase-3, and downregulated Bcl-2 gens. However, treatment with CH increased antioxidant enzymes as well as regulated apoptosis. Discernible histological changes in the lung also supported the protective effects of CH. These findings suggested that CH is an effective natural product that attenuates Benzo [a] pyrene-induced lung toxicity.
Collapse
Affiliation(s)
- Samah A Khattab
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Wafaa F Hussien
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nermin Raafat
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman Ahmed Alaa El-Din
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
41
|
Khattab SA, Hussien WF, Raafat N, Ahmed Alaa El-Din E. Modulatory effects of catechin hydrate on benzo[a]pyrene-induced nephrotoxicity in adult male albino rats. Toxicol Res (Camb) 2021; 10:542-550. [PMID: 34141168 DOI: 10.1093/toxres/tfab029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
Benzo [a] pyrene (B[a]P) is a potent mutagen and carcinogen, considered one of the commonest concomitants in the environment. The study aimed to evaluate the effect of catechin hydrate on benzo pyrene-induced kidney toxicity. Thirty-six adult male albino rats were divided into six groups: group I untreated control, group II received 10 mL/kg of corn oil (solvent of benzo [a] pyrene) twice a week, group III received 1 mL/kg 0.5% dimethyl sulfoxide (DMSO) (solvent of catechin) once per day, group IV received 50 mg/kg body weight of benzo[a]pyrene twice a week, group V received 20 mg/kg body weight of catechin in 1 mL/kg 0.5% DMSO once daily, and group VI received both catechin+benzo [a] pyrene with the same doses. All treatment was given by oral gavage for four weeks. At the end of the experiment, blood samples were collected for biochemical investigations, tissues were obtained for genotoxicity, RT-PCR, and histopathological studies. B[a]P exposure induced an increase in serum urea and creatinine levels along with severe renal histopathological changes. Our results showed a subsequent decrease in the antioxidant enzyme activities (catalase and superoxide dismutase), and conversely, (malondialdehyde) levels markedly elevated. Also, B[a]P induced DNA damage as well as activated an apoptotic pathway confirmed by upregulation of Bax, caspase-3, and downregulation of Bcl-2 expression. However, treatment with catechin-corrected kidney functions and antioxidant enzymes as well as regulated apoptosis. Histological results also supported the protective effects of catechin. These findings suggested that catechin hydrate is an effective natural product that attenuates benzo pyrene-induced kidney toxicity.
Collapse
Affiliation(s)
- Samah A Khattab
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Wafaa F Hussien
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nermin Raafat
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Eman Ahmed Alaa El-Din
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
42
|
Souza MR, Mazaro-Costa R, Rocha TL. Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144354. [PMID: 33736249 DOI: 10.1016/j.scitotenv.2020.144354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/05/2020] [Indexed: 05/28/2023]
Abstract
The nanotechnology enabled the development of nanomaterials (NMs) with a variety of industrial, biomedical, and consumer applications. However, the mechanism of action (MoA) and toxicity of NMs remain unclear, especially in the male reproductive system. Thus, this study aimed to perform a bibliometric and systematic review of the literature on the toxic effects of different types of NMs on the male reproductive system and function in mammalian models. A series of 236 articles related to the in vitro and in vivo reproductive toxicity of NMs in mammalian models were analyzed. The data concerning the bioaccumulation, experimental conditions (types of NMs, species, cell lines, exposure period, and routes of exposure), and the MoA and toxicity of NMs were summarized and discussed. Results showed that this field of research began in 2005 and has experienced an exponential increase since 2012. Revised data confirmed that the NMs have the ability to cross the blood-testis barrier and bioaccumulate in several organs of the male reproductive system, such as testis, prostate, epididymis, and seminal vesicle. A similar MoA and toxicity were observed after in vitro and in vivo exposure to NMs. The NM reproductive toxicity was mainly related to ROS production, oxidative stress, DNA damage and apoptosis. In conclusion, the NM exposure induces bioaccumulation and toxic effects on male reproductive system of mammal models, confirming its potential risk to human and environmental health. The knowledge concerning the NM reproductive toxicity contributes to safety and sustainable use of nanotechnology.
Collapse
Affiliation(s)
- Maingredy Rodrigues Souza
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Renata Mazaro-Costa
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil.
| |
Collapse
|
43
|
Shehata AM, Salem FMS, El-Saied EM, Abd El-Rahman SS, Mahmoud MY, Noshy PA. Zinc Nanoparticles Ameliorate the Reproductive Toxicity Induced by Silver Nanoparticles in Male Rats. Int J Nanomedicine 2021; 16:2555-2568. [PMID: 33833511 PMCID: PMC8020588 DOI: 10.2147/ijn.s307189] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Silver nanoparticles (Ag-NPs) are among the most commonly used nanoparticles in different fields. Zinc nanoparticles (Zn-NPs) are known for their antioxidant effect. This study was designed to investigate the adverse effects of Ag-NPs (50 nm) on the male reproductive system and also the ameliorative effect of Zn-NPs (100 nm) against these harmful effects. Methods Forty adult male rats were used in this study; they were randomly divided into four equal groups: control group, Ag-NPs group, Zn-NPs group, Ag-NPs + Zn-NPs group. Ag-NPs (50 mg/kg) and/or Zn-NPs (30 mg/kg) were administered orally for 90 days. Results The results revealed that exposure to Ag-NPs adversely affected sperm motility, morphology, viability, and concentration. Ag-NPs also induced oxidative stress and lipid peroxidation in testicular tissue. The exposure to Ag-NPs decreased serum FSH, LH, and testosterone hormones. Additionally, comet assay revealed DNA degeneration in the testicular tissue of rats exposed to Ag-NPs. Histopathological examination showed various histological alterations in the testes of rats intoxicated with Ag-NPs. Furthermore, co-administration of Zn-NPs ameliorated most of the toxic effects of Ag-NPs via their antioxidative capacity.
Collapse
Affiliation(s)
- Asmaa M Shehata
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fatma M S Salem
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eiman M El-Saied
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Y Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Peter A Noshy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
44
|
The role of different compounds on the integrity of blood-testis barrier: A concise review based on in vitro and in vivo studies. Gene 2021; 780:145531. [PMID: 33631249 DOI: 10.1016/j.gene.2021.145531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Sertoli cells are "nurturing cells'' in the seminiferous tubules of the testis which have essential roles in the development, proliferation and differentiation of germ cells. These cells also divide the seminiferous epithelium into a basal and an adluminal compartment and establish the blood-testis barrier (BTB). BTB shields haploid germ cells from recognition by the innate immune system. Moreover, after translocation of germ cells into the adluminal compartment their nutritional source is separated from the circulatory system being only supplied by the Sertoli cells. The integrity of BTB is influenced by several organic/ organometallic, hormonal and inflammatory substances. Moreover, several environmental contaminants such as BPA have hazardous effects on the integrity of BTB. In the current review, we summarize the results of studies that assessed the impact of these agents on the integrity of BTB. These studies have implications in understanding the molecular mechanism of male infertility and also in the male contraception.
Collapse
|
45
|
Mohamed AAR, Khater SI, Hamed Arisha A, Metwally MM, Mostafa-Hedeab G, El-Shetry ES. Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway. Gene 2021; 768:145288. [PMID: 33181259 DOI: 10.1016/j.gene.2020.145288] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
|
46
|
Zeinvand-Lorestani M, Karimi S, Khorsandi L. Quercetin ameliorates cytotoxic effects of zinc oxide nanoparticles on sertoli cells by enhancing autophagy and suppressing oxidative stress. Andrologia 2021; 53:e13988. [PMID: 33476054 DOI: 10.1111/and.13988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/04/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Previous studies have demonstrated the toxic impacts of zinc oxide nanoparticles (ZO-NPs) on male reproductive cells. The effect of quercetin (QCT) on ZO-NPs-induced mouse Sertoli cell (TM4 cell line) toxicity and its underlying mechanisms were investigated in this study. The TM4 cells were exposed to ZO-NPs or QCT in different groups for 24 hr. The TM4 cells pre-treated with 3MA (3-Methyladenine, an autophagy inhibitor) to evaluate the autophagy role of QCT and ZO-NPs in the TM4 cells. ZO-NPs significantly reduced the viability percentage of the TM4 cells. The apoptosis percentage and Bax/Bcl-2 ratio of the ZO-NPs group were significantly increased, while the expression of autophagy-related genes was considerably downregulated. ZO-NPs also induced oxidative stress in the TM4 cells through increasing malondialdehyde contents and reactive oxygen species levels (ROS) and reducing antioxidant factors including superoxide dismutase, catalase, glutathione and glutathione peroxidase. In QCT + ZO-NPs group, these events were considerably reversed. 3MA could significantly decrease the cell viability of TM4 cells exposed to the QCT and ZO-NPs in comparison with the untreated 3MA groups. According to these results, the protective effects of QCT on ZO-NPs-exposed TM4 cells are related to inducing autophagy, prevention apoptosis and suppressing oxidative stress.
Collapse
Affiliation(s)
- Marzieh Zeinvand-Lorestani
- Faculty of Pharmacy, Department of Toxicology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Faculty of Medicine, Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
47
|
Abu Zeid EH, Khalifa BA, Said EN, Arisha AH, Reda RM. Neurobehavioral and immune-toxic impairments induced by organic methyl mercury dietary exposure in Nile tilapia Oreochromis niloticus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105702. [PMID: 33264694 DOI: 10.1016/j.aquatox.2020.105702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Although substantial knowledge of mercury toxicity in fish has been assembled; until now, studies investigating the toxic impacts in Nile tilapia (Oreochromis niloticus) following dietary exposure to organic methyl mercury (MeHg) are less prolific. Accordingly, the current study aimed to evaluate the impacts of MeHg on neurobehavioral and immune integrity in Nile tilapia after dietary exposure. Two hundred and twenty-five juvenile Nile tilapia (19.99 ± 0.33 g) were allocated into five groups in triplicates (15 fish/replicate). G1, G2, G3, G4, and G5. O. niloticus were fed corresponding basal diets containing 0, 0.5, 1, 1.5, and 2 mg/kg diet MeHg chloride (MeHgCl) daily for 30 days, zero value represented the control G1 group. The results showed that MeHg induced significant alterations in O. niloticus behavior, the swimming behavior was significantly decreased, while scratching, biting, and fin tugging behaviors were significantly augmented. Moreover; chasing, mouth pushing, and butting behaviors were significantly increased in all the exposed groups. MeHg significantly decreased brain acetylcholine esterase (AChE) and serum immunoglobulin M (IgM) levels in all the exposed groups. Meanwhile, serum levels of lysozyme (LYZ), nitric oxide (NO), superoxide dismutase (SOD) malondialdehyde (MDA), protein carbonyl (PCO), and 8 hydroxy 2 deoxyguanosine (8OH2dG) were significantly elevated in all the exposed groups except for serum reduced glutathione (GSH) content was significantly decreased implying oxidative stress (OS), lipid peroxidation (LPO), protein, DNA damage and impaired immune response of the exposed tilapia. MeHg significantly altered transcriptional expression of immune-related genes including (TNF-α, IL-1β, and IL-8, and IL-10) in all the exposed groups. From the obtained outcomes, the present research is the premier to investigate that dietary MeHg exposure in O. niloticus significantly induced neurobehavioral and immune defense impairments in a dose-related manner. This study exhibits that dietary MeHg may pose a potential threat to the O. niloticus populations.
Collapse
Affiliation(s)
- Ehsan H Abu Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, El-Sharkia Province Zagazig 44511, Egypt.
| | - Bouthaina A Khalifa
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Enas N Said
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed H Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Rasha M Reda
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
48
|
Abd El-Hakim YM, Abdel-Rahman Mohamed A, Khater SI, Hamed Arisha A, Metwally MMM, Nassan MA, Hassan ME. Chitosan-Stabilized Selenium Nanoparticles and Metformin Synergistically Rescue Testicular Oxidative Damage and Steroidogenesis-Related Genes Dysregulation in High-Fat Diet/Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel) 2020; 10:E17. [PMID: 33375437 PMCID: PMC7824144 DOI: 10.3390/antiox10010017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND this study examined the metformin (MF) and/or chitosan stabilized selenium nanoparticles (CH-SeNPs) efficacy to alleviate the male reproductive function impairment in a high-fat diet feed with low-dose streptozotocin (HFD/STZ) induced type 2 diabetes mellitus (T2DM) diabetic rat model. METHODS control non-diabetic, HFD/STZ diabetic, HFD/STZ+MF, HFD/STZ+CH-SeNPs, and HFD/STZ+MF+CH-SeNPs rat groups were used. After 60 days, semen evaluation, hormonal assay, enzymatic antioxidant, lipid peroxidation, testis histopathology, and the steroidogenesis-related genes mRNA expressions were assessed. RESULTS in the HFD/STZ diabetic rats, sperm count and motility, male sexual hormones, and testicular antioxidant enzymes were significantly reduced. However, sperm abnormalities and testicular malondialdehyde were significantly incremented. The steroidogenesis-related genes, including steroidogenic acute regulatory protein (StAr), cytochrome11A1 (CYP11A1), cytochrome17A1 (CYP17A1), and hydroxysteroid 17-beta dehydrogenase 3 (HSD17B3), and the mitochondrial biogenesis related genes, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGCα) and sirtuin (SIRT), were significantly downregulated in the HFD/STZ diabetic rats. However, CYP19A1mRNA expression was significantly upregulated. In contrast, MF and/or CH-SeNPs oral dosing significantly rescued the T2DM-induced sperm abnormalities, reduced sperm motility, diminished sexual hormones level, testicular oxidative damage, and steroidogenesis-related genes dysregulation. In the MF and CH-SeNP co-treated group, many of the estimated parameters differ considerably from single MF or CH-SeNPs treated groups. CONCLUSIONS the MF and CH-SeNPs combined treatment could efficiently limit the diabetic complications largely than monotherapeutic approach and they could be considered a hopeful treatment option in the T2DM.
Collapse
Affiliation(s)
- Yasmina M. Abd El-Hakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 4511, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 4511, Egypt
| | - Safaa I. Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 4511, Egypt;
| | - Ahmed Hamed Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11865, Egypt
| | - Mohamed M. M. Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed A. Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Manal Ewaiss Hassan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt;
- Department of Pathology, Medical College, Jouf University, Al-Jawf 72388, Saudi Arabia
| |
Collapse
|
49
|
Olayinka ET, Adewole KE. Ameliorative effect of morin on dutasteride-tamsulosin-induced testicular oxidative stress in rat. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:327-337. [PMID: 34187124 DOI: 10.1515/jcim-2019-0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/31/2020] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Dutasteride-Tamsulosin (DUT-TAM), a drug of choice for the treatment of prostate enlargement (Benign Prostatic Hyperplasia, BPH) has been implicated in testicular toxicity. This study investigated the protective effect of morin, a plant-derived flavonoid on DUT-TAM-induced testicular toxicity in Wistar rat. METHODS Twenty-four male Wistar rats (110-140 g) were randomly divided into four treatment groups (n=6). Group A animals served as the control and were administered olive oil, Group B animals were administered 5.4 mg/kg b.w. of dutasteride + 3.4 mg/kg b.w of tamsulosin., Group C animals were administered 100 mg/kg b.w. of morin, while Group D animals were administered DUT-TAM (5.4 mg/kg b.w. of dutasteride + 3.4 mg/kg b.w. of tamsulosin) and morin (100 mg/kg b.w.). The administration lasted for two weeks. RESULTS DUT-TAM-induced abnormal sperm morphology (31.8%), significantly reduced (p<0.05) sperm count, sperm motility, live-dead sperm ratio, testicular superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST) and acid phosphatase (ACP) activities, as well as the levels of ascorbic acid and reduced glutathione (GSH) which were ameliorated by co-treatment with morin. Also, DUT-TAM-induced increase in testicular malondialdehyde level and the activities of alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) were significantly reversed (p<0.05) by co-treatment with morin. CONCLUSIONS These results indicated the protective ability of morin against Dutasteride-Tamsulosin-induced testicular toxicity and oxidative stress.
Collapse
Affiliation(s)
- Ebenezer Tunde Olayinka
- Department of Chemical Sciences, Biochemistry Unit, Ajayi Crowther University, Oyo, Oyo State, Nigeria
| | - Kayode Ezekiel Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical SciencesOndo, Ondo State,Nigeria
| |
Collapse
|
50
|
Ibrahim D, Sewid AH, Arisha AH, abd El-fattah AH, Abdelaziz AM, Al-Jabr OA, Kishawy ATY. Influence of Glycyrrhiza glabra Extract on Growth, Gene Expression of Gut Integrity, and Campylobacter jejuni Colonization in Broiler Chickens. Front Vet Sci 2020; 7:612063. [PMID: 33415133 PMCID: PMC7782238 DOI: 10.3389/fvets.2020.612063] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Phytogenic feed additives have been gaining considerable interest due to their ability to improve gut health and thereby performance of broiler chickens. The impact of Glycyrrhiza glabra (licorice) extract (GE) on expression of genes coding for tight junction proteins and gut protection and Campylobacter jejuni colonization in broilers has not been discussed until now. Thus, the current study assessed the effective dose of GE for maximum growth in broiler chickens, clear-cut molecular mechanisms related to integrity and health of intestine, and controlling C. jejuni colonization. Over a 35-day feeding period, a total of 500 Ross broiler chicks were allocated to five groups; the first group was fed a control diet without GE and the second group to the fifth group were fed a control diet with GE (0.25, 0.5, 1, and 2 g/kg of diet); each group comprised 100 chicks with 10 replicates (10 birds/replicate). Birds fed GE had an improved body weight gain and feed conversion ratio. Furthermore, the highest body weight gain was observed in the group that received 1 g/kg of GE (P < 0.05). The expression of genes coding for tight junction proteins [occludin and junctional adhesion molecules (JAM)] was upregulated in all groups supplemented with GE. Moreover, birds fed 1 g/kg of GE exhibited the maximum gene expression of occludin and JAM [0.2 and 0.3 fold change, respectively (P < 0.05)]. In relation to enterocyte protective genes [glucagon-like peptide (GLP-2) and fatty acid-binding protein (FABP-6)], use of GE significantly upregulated expression of GLP-2 gene with 0.8 fold change in 2 g/kg of the GE supplemented group (P < 0.05) while the expression of FABP-6 gene was not affected by GE supplementation (P > 0.05). After challenge with C. jejuni, the expression of mucin (MUC-2) gene was upregulated and the inflammatory markers such as Toll-like receptors (TLR-4) and interleukin (IL-1β) were downregulated with increasing level of supplemented GE (P < 0.05). The mean log10 count of C. jejuni in cecal samples after 7 days post-infection by culture and real-time qPCR was decreased in groups fed GE in a dose-dependent manner (P < 0.05). In addition, the highest reduction of C. jejuni count in cecal samples by culture and real-time qPCR was observed in the group fed 2 g/kg of GE (2.58 and 2.28 log10 CFU/g, respectively). Results from this study suggested that G. glabra extract (1 g/kg) improved growth performance of broiler chickens, as well as influenced the maintenance of intestinal integrity and reduced C. jejuni shedding from infected birds.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Alaa H. Sewid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Ahmed H. Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zaagazig University, Zagazig, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
| | - Amir H. abd El-fattah
- Department of Animal Wealth Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Adel M. Abdelaziz
- Faculty of Veterinary Medicine, Veterinary Educational Hospital, Zagazig University, Zagazig, Egypt
| | - Omar A. Al-Jabr
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Asmaa T. Y. Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|