1
|
Anas M, Quraishi UM. Green-fabricated MnO₂ nanoparticles function as dual nanofertilizers and chromium remediators, enhancing antioxidant pathways, ionomic networks, and physiological resilience in wheat. J Trace Elem Med Biol 2025; 89:127661. [PMID: 40305986 DOI: 10.1016/j.jtemb.2025.127661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/13/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
This study investigates the potential of green-fabricated manganese dioxide (MnO₂) nanoparticles (NPs) to mitigate chromium (Cr) toxicity in wheat, presenting a novel approach to enhancing ion homeostasis and physiological resilience under Cr stress. Chromium contamination in agricultural soils is a significant concern, severely impacting crop productivity and disrupting the physiological homeostasis of wheat. Chromium exposure compromises nutrient uptake, induces oxidative stress, and impairs plant growth and yield. This study explored the use of green-fabricated MnO₂ NPs to mitigate Cr-induced oxidative stress in two bread wheat cultivars, Borlaug-16 and SKD-1. Seed nano-priming with MnO₂ NPs (100, 250, and 500 mg kg⁻¹) was applied, followed by Cr (100 mg kg⁻¹) exposure, and key physiological, biochemical, and ionomic responses were evaluated. Manganese dioxide nanoparticles significantly reduced Cr uptake and improved ion transport. In Borlaug-16, NP250 enhanced seedling height by 74 %, while NP100 reduced H₂O₂ and TBARS by 60.28 % and 50.17 %, respectively, indicating improved oxidative stress tolerance. SKD-1 exhibited greater Cr stress tolerance, with NP250 improving root length by 31.03 % and relative water content by 56.66 %, supporting better water retention. Additionally, MnO₂ NP treatments boosted antioxidant enzyme activities, increasing APX and GPX by up to 12.47 %, and restored root and leaf anatomy, reversing Cr-induced structural damage. Furthermore, MnO₂ NPs enhanced the uptake of essential nutrients such as calcium, potassium, and magnesium, while restricting Cr translocation, improving overall nutrient efficiency. These findings emphasize the potential of MnO₂ NPs as an eco-friendly strategy for enhancing crop resilience and promoting sustainable agriculture in Cr-contaminated soils.
Collapse
Affiliation(s)
- Muhammad Anas
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Umar Masood Quraishi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
2
|
Yaseen W, Iqbal M, Ashraf MA, Saleem MA, Shafiq F, Shaheen S, Khaliq S, Gulnaz R. Menadiol diacetate mediated subcellular Cd accumulation and nutrients uptake alleviates Cd toxicity and increases growth and yield of summer squash. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:583-595. [PMID: 39552218 DOI: 10.1080/15226514.2024.2427928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Cadmium (Cd) has shown toxicity to reduce growth and productivity in different plants. The Present study investigated the efficacy of menadiol diacetate (MD) to reduce Cd stress on growth and yield of summer squash plants. The experiment was performed under saturated Hoagland's nutrient solution (control) while the other group was supplemented with 0.1 mM CdCl2 (Cd stress). Surface sterilized seeds of summer squash were primed in different concentrations (10, 20 µM) of MD as well as in distilled water for 24 h and sown in the pots. Different morphological and physio-biochemical attributes were determined after 35 d of growth whereas the data for yield attributes was collected after 70 d. Cd concentration was determined in various subcellular compartments i.e., cell walls and cell wall debris, chloroplast, cell membrane and other organelles including vacuoles. The Cd stress decreased photosynthetic pigments, osmoprotectants and ultimately caused reduction in the yield attributes. Further, it increased the secondary metabolites and oxidants (MDA and H2O2) in the summer squash tissues. Cd exposure also altered ions accumulation in the summer squash tissues by increasing the root and shoot Ca2+ (24-93%) and Fe (4-18%) ions while decreasing the Mg2+ (31-39%) ions. The MD-priming, particularly at 10 µM concentration mediated increase in the total phenolics, ascorbic acid, and anthocyanins concentration, and thus enhanced growth and yield attributes of summer squash exposed to Cd toxicity. Further, 10 µM MD-priming facilitated Cd compartmentalization in the subcellular compartments mainly in the cell wall (58%) rather than in the chloroplast (18%), cell membrane (7%) and soluble fractions (18%). In this context, cell wall and vacuole were the key compartments for Cd sequestration. This study highlights MD-priming as a potential strategy to counter Cd toxicity in summer squash plants.
Collapse
Affiliation(s)
- Wajeeha Yaseen
- Department of Botany, Government College University, Faisalabad, Punjab, Pakistan
- Department of Botany, Baba Guru Nanak University, Nankana sahib, Punjab, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Government College University, Faisalabad, Punjab, Pakistan
| | | | - Muhammad Asif Saleem
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Fahad Shafiq
- Department of Botany, Government College University, Lahore, Punjab, Pakistan
| | - Sehar Shaheen
- Department of Botany, Government College Women University, Faisalabad, Punjab, Pakistan
| | - Samira Khaliq
- Department of Botany, Government College University, Faisalabad, Punjab, Pakistan
| | - Razia Gulnaz
- Department of Botany, Government College University, Faisalabad, Punjab, Pakistan
| |
Collapse
|
3
|
Iftikhar F, Zulfiqar A, Kamran A, Saleem A, Arshed MZ, Zulfiqar U, Djalovic I, Vara Prasad PV, Soufan W. Antioxidant Responses in Chromium-Stressed Maize as Influenced by Foliar and Root Applications of Fulvic Acid. Sci Rep 2025; 15:1289. [PMID: 39779785 PMCID: PMC11711313 DOI: 10.1038/s41598-024-84803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
Maize (Zea mays L.) faces significant challenges to its growth and productivity from heavy metal stress, particularly Chromium (Cr) stress, which induces reactive oxygen species (ROS) generation and damages photosynthetic tissues. This study aimed to investigate the effects of fulvic acid (FA) application, via foliar spray or root irrigation, on mitigating chromium stress in maize by evaluating its impact on antioxidant activity and growth parameters. Two maize varieties, P3939 and 30Y87, were subjected to chromium stress (CrCl3·6H2O) at concentrations of 300 µM and 100 µM for a duration of 5 weeks. The experiment was conducted in a wire house under natural environmental conditions at the Seed Centre, Institute of Botany, University of the Punjab, Lahore, Pakistan. Physiological assessments included electrolyte leakage, chlorophyll pigment content, malondialdehyde (MDA) levels, and activities of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) in maize leaves. Growth parameters were also monitored. The results revealed that chromium stress significantly reduced chlorophyll content and increased oxidative stress, as evidenced by elevated MDA levels and electrolyte leakage. However, FA application notably mitigated these effects: chlorophyll content improved by 15%, and MDA levels decreased significantly. Irrigation with FA was particularly effective, reducing MDA levels by 40% compared to the 300 µM chromium treatment. Furthermore, while chromium stress enhanced antioxidant enzyme activities, FA application further boosted total soluble protein levels and antioxidant enzyme activities under stress conditions. In conclusion, FA application demonstrates potential in improving maize tolerance to heavy metal stress by enhancing the antioxidant defense system and preserving photosynthetic pigments. These findings highlight FA's promise as a practical strategy for mitigating the negative impacts of chromium stress on maize, promoting sustainable agricultural practices in contaminated environments.
Collapse
Affiliation(s)
- Farwa Iftikhar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Asma Zulfiqar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Atif Kamran
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Ammara Saleem
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, 21000, Novi Sad, Serbia.
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, 108 Waters Hall, 1603 Old Claflin Place, Manhattan, KS, 66506, USA
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Abbass ZA, Zahra M, Ali H, Javed M, Mahmood I, Alvi MH, Waheed A, Hussain S, Kumar S. Zinc-lysine and iron-lysine mitigate chromium toxicity in pearl millet (Pennisetum glaucum) through modulating photosynthetic and antioxidant system and inhibiting chromium uptake and translocation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35644-1. [PMID: 39731668 DOI: 10.1007/s11356-024-35644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/21/2024] [Indexed: 12/30/2024]
Abstract
Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress. Chromium stress exhibited toxic effects on the growth, physiological, and biochemical indices of pearl millet. The combined application of zinc-lysine and iron-lysine significantly decreased malondialdehyde (MDA; 25%) and hydrogen peroxide (H2O2; 22.44%), while increased superoxide dismutase (SOD; 19.75%), catalase (CAT; 26.16%), peroxidase (POD; 19.62%), and ascorbate peroxidase (APX; 23.52%) activities under Cr toxicity compared to the control treatment. In addition, the combined application of zinc-lysine and iron-lysine effectively improved net photosynthesis (43.63%), stomatal conductance (20.05%), transpiration rate (20.14%), internal CO2 concentration (34.28%), total chlorophyll (43.12%), relative water content (23.95%), membrane stability index (32.77%), and proline content (25.53%) under stress condition and compared with control. Our results also indicated that the combined application of zinc-lysine and iron-lysine decreased Cr uptake in both shoot and root by 31.25% and 32%, and increased zinc and iron uptake by 39.28% and 36.67%, respectively, over the control, under Cr stress conditions. Moreover, under stress conditions, combined zinc-lysine and iron-lysine effectively improved growth traits particularly shoot and root dry weights, by 8% and 36.84%, respectively, over the control treatment. Overall, our results demonstrated that combined zinc-lysine and iron-lysine was more effective in mitigating Cr toxicity in pearl millet compared with the sole application of these treatments or the control.
Collapse
Affiliation(s)
- Zaryab Ali Abbass
- Department of Agronomy, Arid Agriculture University Rawalpindi, Pir Mehr Ali Shah, Rawalpindi, 46300, Pakistan
| | - Maryam Zahra
- Department of Botany, University of Education, Multan Campus, Lahore, 60000, Pakistan
| | - Habib Ali
- Department of Agronomy, Arid Agriculture University Rawalpindi, Pir Mehr Ali Shah, Rawalpindi, 46300, Pakistan.
| | - Muhammad Javed
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54000, Pakistan
| | - Imran Mahmood
- Department of Agronomy, Arid Agriculture University Rawalpindi, Pir Mehr Ali Shah, Rawalpindi, 46300, Pakistan
| | - Mavadat Hussain Alvi
- Department of Agronomy, Arid Agriculture University Rawalpindi, Pir Mehr Ali Shah, Rawalpindi, 46300, Pakistan
| | - Alishba Waheed
- Department of Life Sciences, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Sadam Hussain
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Sachin Kumar
- Department of Agronomy, Faculty of Agricultural Sciences, SGT University, Gurugram, India
| |
Collapse
|
5
|
Wang Q, Zhang C, Song J, Bamanu B, Zhao Y. Inhibitory mechanism of Cr(VI) on sulfur-based denitrification: Bio-toxicity, bio-electron characteristics, and microbial evolution. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134447. [PMID: 38692000 DOI: 10.1016/j.jhazmat.2024.134447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Sulfur-based denitrification is a promising technology for efficient nitrogen removal in low-carbon wastewater, while it is easily affected by toxic substances. This study revealed the inhibitory mechanism of Cr(VI) on thiosulfate-based denitrification, including bio-toxicity and bio-electron characteristics response. The activity of nitrite reductase (NIR) was more sensitive to Cr(VI) than that of nitrate reductase (NAR), and NIR was inhibited by 21.32 % and 19.86 % under 5 and 10 mg/L Cr(VI), resulting in 10.12 and 15.62 mg/L of NO2--N accumulation. The biofilm intercepted 36.57 % of chromium extracellularly by increasing 25.78 % of extracellular polymeric substances, thereby protecting microbes from bio-toxicity under 5 mg/L Cr(VI). However, it was unable to resist 20-30 mg/L of Cr(VI) bio-toxicity as 19.95 and 14.29 mg Cr/(g volatile suspended solids) invaded intracellularly, inducing the accumulation of reactive oxygen species by 165.98 % and 169.12 %, which triggered microbial oxidative-stress and damaged the cells. In terms of electron transfer, S2O32- oxidation was inhibited, and parts of electrons were redirected intracellularly to maintain microbial activity, resulting in insufficient electron donors. Meanwhile, the contents of flavin adenine dinucleotide and cytochrome c decreased under 5-30 mg/L Cr(VI), reducing the electron acquisition rate of denitrification. Thermomonas (the dominant genus) possessed denitrification and Cr(VI) resistance abilities, playing an important role in antioxidant stress and biofilm formation. ENVIRONMENTAL IMPLICATION: Sulfur-based denitrification (SBD) is a promising method for nitrate removal in low-carbon wastewater, while toxic heavy metals such as Cr(VI) negatively impair denitrification. This study elucidated Cr(VI) inhibitory mechanisms on SBD, including bio-toxicity response, bio-electron characteristics, and microbial community structure. Higher concentrations Cr(VI) led to intracellular invasion and oxidative stress, evidenced by ROS accumulation. Moreover, Cr(VI) disrupted electron flow by inhibiting thiosulfate oxidation and affecting electron acquisition by denitrifying enzymes. This study provided valuable insights into Cr(VI) toxicity, which is of great significance for improving wastewater treatment technologies and maintaining efficient and stable operation of SBD in the face of complex environmental challenges.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Kour J, Bhardwaj T, Chouhan R, Singh AD, Gandhi SG, Bhardwaj R, Alsahli AA, Ahmad P. Phytomelatonin maintained chromium toxicity induced oxidative burst in Brassica juncea L. through improving antioxidant system and gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124256. [PMID: 38810673 DOI: 10.1016/j.envpol.2024.124256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Chromium (Cr) contamination in soils reduces crop yields and poses a remarkable risk to human and plant system. The main objective of this study was to observe the protective mechanisms of exogenously applied melatonin (Mel- 0.05, 0.1, and 0.15 μM) in seedlings of Brassica juncea L. under Cr (0.2 mM) stress. This was accomplished by analysing the plant's morpho-physiological, biochemical, nuclear, membrane, and cellular characteristics, as well as electrolyte leakage. Superoxide, malondialdehyde, and hydrogen peroxide increased with Cr toxicity. Cr also increased electrolyte leakage. Seedlings under Cr stress had 86.4% more superoxide anion and 27.4% more hydrogen peroxide. Electrolyte leakage increased 35.7% owing to Cr toxicity. B. juncea L. cells with high radical levels had membrane and nuclear damage and decreased viability. Besides this, the activities of the antioxidative enzymes, as POD, APOX, SOD, GST, DHAR, GPOX and GR also elevated in the samples subjected to Cr toxicity. Conversely, the activity of catalase was downregulated due to Cr toxicity. In contrast, Mel reduced oxidative damage and conserved membrane integrity in B. juncea seedlings under Cr stress by suppressing ROS generation. Moreover, the activity of antioxidative enzymes that scavenge reactive oxygen species was substantially upregulated by the exogenous application of Mel. The highest concentration of Mel (Mel c- 0.15 μM) applied showed maximum ameliorative effect on the toxicity caused by Cr. It causes alleviation in the activity of SOD, CAT, POD, GPOX, APOX, DHAR, GST and GR by 51.32%, 114%, 26.44%, 48.91%, 87.51%, 149%, 42.30% and 40.24% respectively. Histochemical investigations showed that Mel increased cell survival and reduced ROS-induced membrane and nuclear damage. The findings showed that Mel treatment upregulated several genes, promoting plant development. Its supplementation decreased RBOH1 gene expression in seedling sunder stress. The results supported the hypothesis that Mel concentrations reduce Cr-induced oxidative burst in B. juncea.
Collapse
Affiliation(s)
- Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rekha Chouhan
- Indian Institute of Integrative Medicine (IIIM), CSIR, Jammu, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine (IIIM), CSIR, Jammu, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India
| |
Collapse
|
7
|
Kanwal H, Raza SH, Ali S, Iqbal M, Shad MI. Effect of riboflavin on redox balance, osmolyte accumulation, methylglyoxal generation and nutrient acquisition in indian squash (Praecitrullus fistulosus L.) under chromium toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20881-20897. [PMID: 38381295 DOI: 10.1007/s11356-024-32516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
The presence of high chromium (Cr) levels induces the buildup of reactive oxygen species (ROS), resulting in hindered plant development. Riboflavin (vitamin B2) is produced by plants, fungi, and microbes. It serves as a precursor to the coenzymes flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), which play a crucial role in cellular metabolism. The objective of this work was to clarify the underlying mechanisms by which riboflavin alleviates Cr stress in Praecitrullus fistulosus L. Further, the role of riboflavin in growth, ions homeostasis, methylglyoxal detoxification, and antioxidant defense mechanism are not well documented in plants under Cr toxicity. We found greater biomass and minimal production of ROS in plants pretreated with riboflavin under Cr stress. Results manifested a clear abridge in growth, chlorophyll content, and nutrient uptake in Indian squash plants exposed to Cr stress. Findings displayed that Cr stress visibly enhanced oxidative injury reflected as higher malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide radical (O2•‒), methylglyoxal (MG) levels alongside vivid lipoxygenase activity. Riboflavin strengthened antioxidant system, enhanced osmolyte production and improved membrane integrity. Riboflavin diminished Cr accumulation in aerial parts that led to improved nutrient acquisition. Taken together, riboflavin abridged Cr phytotoxic effects by improving redox balance because plants treated with riboflavin had strong antioxidant system that carried out effective ROS detoxification. Riboflavin protected membrane integrity that, in turn, improved nutrient uptake in plants.
Collapse
Affiliation(s)
- Habiba Kanwal
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Syed Hammad Raza
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Mudassir Iqbal Shad
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
8
|
Wu P, Li B, Liu Y, Bian Z, Xiong J, Wang Y, Zhu B. Multiple Physiological and Biochemical Functions of Ascorbic Acid in Plant Growth, Development, and Abiotic Stress Response. Int J Mol Sci 2024; 25:1832. [PMID: 38339111 PMCID: PMC10855474 DOI: 10.3390/ijms25031832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Ascorbic acid (AsA) is an important nutrient for human health and disease cures, and it is also a crucial indicator for the quality of fruit and vegetables. As a reductant, AsA plays a pivotal role in maintaining the intracellular redox balance throughout all the stages of plant growth and development, fruit ripening, and abiotic stress responses. In recent years, the de novo synthesis and regulation at the transcriptional level and post-transcriptional level of AsA in plants have been studied relatively thoroughly. However, a comprehensive and systematic summary about AsA-involved biochemical pathways, as well as AsA's physiological functions in plants, is still lacking. In this review, we summarize and discuss the multiple physiological and biochemical functions of AsA in plants, including its involvement as a cofactor, substrate, antioxidant, and pro-oxidant. This review will help to facilitate a better understanding of the multiple functions of AsA in plant cells, as well as provide information on how to utilize AsA more efficiently by using modern molecular biology methods.
Collapse
Affiliation(s)
- Peiwen Wu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Bowen Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Ye Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Zheng Bian
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Jiaxin Xiong
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (B.L.); (Y.L.); (Z.B.); (J.X.)
| |
Collapse
|
9
|
Aslam MA, Ahmed S, Saleem M, Sardar R, Shah AA, Siddiqui MH, Shabbir Z. Mitigation of chromium-induced phytotoxicity in 28-homobrassinolide treated Trigonella corniculata L. by modulation of oxidative biomarkers and antioxidant system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115354. [PMID: 37595348 DOI: 10.1016/j.ecoenv.2023.115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Chromium (Cr) is one of the toxic heavy metals that disturbs growth and physiological properties of plants. During the current study, Trigonella corniculata L. (Fenugreek) was exposed to different levels of Cr in potted soil. Chromium toxicity reduced fiber, ash, moisture, carbohydrate, protein, fats, and flavonoid content of T. corniculata. Considering the stress relieving effect of 28-homobrassinolide (28-HBR), seeds of T. corniculata were primed with different concentration of 28-HBR i.e., 0, 5, 10, and 20 µmol L-1. Application of 28-HBR reversed the toxic effect of Cr through improvement in activity of antioxidant enzymes like superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Conclusively, 10 µmol L-1 28-HBR increased Cr tolerance in T. corniculata seedlings due to reduction in oxidative stress markers. It is further proposed that 28-HBR is an effective stress ameliorant to relive plants from various abiotic stresses.
Collapse
Affiliation(s)
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Muhammad Saleem
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zunera Shabbir
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, USA
| |
Collapse
|
10
|
Iram K, Ashraf MA, Ibrahim SM, Rasheed R, Ali S. Coumarin regulated redox homeostasis to facilitate phytoremediation of saline and alkaline soils by bitter gourd (Momordica charantia L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99584-99604. [PMID: 37620696 DOI: 10.1007/s11356-023-29360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
The use of coumarin (COU) to alleviate the phytotoxic effects of salinity has great potential in improving the phytoremediation of saline and alkaline soils. 30-day bitter gourd plants were exposed to 15 dS m‒1 salinity of neutral (NaCl and Na2SO4) and alkaline (Na2CO3 and NaHCO3) salts. 60-day plants were harvested to record different growth, physiological and biochemical attributes. Salinity significantly subsided plant growth, chlorophyll, photosynthesis, and nutrient acquisition. Salinity induced notable oxidative damage in plants that displayed higher relative membrane permeability (RMP), accumulated elevated ROS (H2O2 and O2•‒) and MDA levels alongside intensified lipoxygenase (LOX) activity. The production of cytotoxic methylglyoxal was also significantly higher in plants under salinity. COU seed priming (50, 100 and 150 mg L‒1) promoted plant growth by circumventing oxidative injury and intensifying oxidative defense. Further, COU maintained the intricate balance between reduced (GSH) and oxidized (GSSG) glutathione to diminish ion excess toxicity, thereby facilitating the phytoremediation of saline soils. The lower doses of COU promoted methylglyoxal and ROS detoxification systems that, in turn, lessened the phytotoxic effects of salinity. COU restored ions homeostasis by augmenting osmotic adjustment in plants under salinity.
Collapse
Affiliation(s)
- Kamila Iram
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sobhy M Ibrahim
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
11
|
Kamal MA, Perveen K, Khan F, Sayyed RZ, Hock OG, Bhatt SC, Singh J, Qamar MO. Effect of different levels of EDTA on phytoextraction of heavy metal and growth of Brassica juncea L. Front Microbiol 2023; 14:1228117. [PMID: 37601347 PMCID: PMC10435890 DOI: 10.3389/fmicb.2023.1228117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Heavy metal pollution of soil is a major concern due to its non-biodegradable nature, bioaccumulation, and persistence in the environment. To explore the probable function of EDTA in ameliorating heavy metal toxicity and achieve the sustainable development goal (SDG), Brassica juncea L. seedlings were treated with different concentrations of EDTA (0, 1.0, 2.0, 3.0, and 4.0 mM Kg-1) in heavy metal-polluted soil. Plant samples were collected 60 days after sowing; photosynthetic pigments, H2O2, monoaldehyde (MDA), antioxidant enzymes, and ascorbic acid content, as well as plant biomass, were estimated in plants. Soil and plant samples were also examined for the concentrations of Cd, Cr, Pb, and Hg. Moreover, values of the phytoremediation factor were utilized to assess the accumulation capacity of heavy metals by B. juncea under EDTA treatments. In the absence of EDTA, B. juncea seedlings accrued heavy metals in their roots and shoots in a concentration-dependent manner. However, the highest biomass of plants (roots and shoots) was recorded with the application of 2 mM kg-1 EDTA. Moreover, high levels (above 3 mM kg-1) of EDTA concentration have reduced the biomass of plants (roots and shoots), photosynthetic area, and chlorophyll content. The effect of EDTA levels on photosynthetic pigments (chlorophyll a and b) revealed that with an increment in EDTA concentration, accumulation of heavy metals was also increased in the plant, subsequently decreasing the chlorophyll a and b concentration in the plant. TLF was found to be in the order Pb> Hg> Zn> and >Ni, while TF was found to be in the order Hg>Zn>Ni>Pb, and the best dose was 3 mM kg-1 EDTA for Hg and 4 mM kg-1 for Pb, Ni, and Zn. Furthermore, hyperaccumulation of heavy metals enhanced the generation of hydrogen peroxide (H2O2), superoxide anions (O2•-), and lipid peroxidation. It also interrupts mechanisms of the antioxidant defense system. Furthermore, heavy metal stress reduced plant growth, biomass, and chlorophyll (chl) content. These findings suggest that the exogenous addition of EDTA to the heavy metal-treated seedlings increases the bioavailability of heavy metals for phytoextraction and decreases heavy metal-induced oxidative injuries by restricting heavy metal uptake and components of their antioxidant defense systems.
Collapse
Affiliation(s)
- Mohab Amin Kamal
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Faheema Khan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - R. Z. Sayyed
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | - Ong Ghim Hock
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| | | | - Jyoti Singh
- Department of Microbiology, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Mohd Obaid Qamar
- Department of Civil Engineering (Environmental Science and Engineering), Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
12
|
Raja V, Qadir SU, Kumar N, Alsahli AA, Rinklebe J, Ahmad P. Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107872. [PMID: 37478726 DOI: 10.1016/j.plaphy.2023.107872] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Chromium (Cr) is considered one of the most hazardous metal contaminant reducing crop production and putting human health at risk. Phytohormones are known to regulate chromium stress, however, the function of melatonin and strigolactones in Chromium stress tolerance in tomato is rarely investigated. Here we investigated the potential role of melatonin (ML) and strigolactone (SL) on mitigating Chromium toxicity in tomato. With exposure to 300 μM Cr stress a remarkable decline in growth (63.01%), biomass yield (50.25)%, Pigment content (24.32%), photosynthesis, gas exchange and Physico-biochemical attributes of tomato was observed. Cr treatment also resulted in oxidative stress closely associated with higher H2O2 generation (215.66%), Lipid peroxidation (50.29%), electrolyte leakage (440.01%) and accumulation of osmolytes like proline and glycine betine. Moreover, Cr toxicity up-regulated the transcriptional expression profiles of antioxidant, stress related and metal transporter genes and down-regulated the genes related to photosynthesis. The application of ML and SL alleviated the Cr induced phytotoxic effects on photosynthetic pigments, gas exchange parameters and restored growth of tomato plants. ML and SL supplementation induced plant defense system via enhanced regulation of antioxidant enzymes, ascorbate and glutathione pool and transcriptional regulation of several genes. The coordinated regulation of antioxidant and glyoxalase systems expressively suppressed the oxidative stress. Hence, ML and SL application might be considered as an effective approach for minimizing Cr uptake and its detrimental effects in tomato plants grown in contaminated soils. The study may also provide new insights into the role of transcriptional regulation in the protection against heavy metal toxicity.
Collapse
Affiliation(s)
- Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Sami Ullah Qadir
- Department of Environmental Sciences Govt. Degree College for Women, Udhampur, 182101, India
| | - Naveen Kumar
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Abdulaziz Abdullah Alsahli
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
13
|
Ashraf MA, Hafeez A, Rasheed R, Hussain I, Farooq U, Rizwan M, Ali S. Effect of exogenous taurine on growth, oxidative defense, and nickel (Ni) uptake in canola ( Brassica napus L.) under Ni stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1135-1152. [PMID: 37829701 PMCID: PMC10564706 DOI: 10.1007/s12298-023-01359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Nickel (Ni) contamination and its associated hazardous effects on human health and plant growth are ironclad. However, the potential remedial effects of taurine (TAU) on Ni-induced stress in plants remain obscure. Therefore, the present study was undertaken to examine the effect of TAU seed priming (100 and 150 mg L‒1) as an alleviative strategy to circumvent the phytotoxic effects of Ni (150 mg kg‒1) on two canola cultivars (Ni-tolerant cv. Shiralee and Ni-sensitive cv. Dunkeld). Our results manifested an apparent decline in growth, biomass, photosynthetic pigments, leaf relative water content, DPPH free radical scavenging activity, total soluble proteins, nitrate reductase activity, and nutrient acquisition (N, P, K, Ca) under Ni toxicity. Further, Ni toxicity led to a substantial increase in oxidative stress reflected as higher levels of superoxide radicals (O2•‒) and hydrogen peroxide (H2O2) alongside increased relative membrane permeability, lipoxygenase (LOX) activity, and Ni accumulation in leaves and roots. However, TAU protected canola plants from Ni-induced oxidative damage through the amplification of hydrogen sulfide (H2S) production that intensified the antioxidant system to avert O2•‒, H2O2, and malondialdehyde (MDA) production. Further, TAU-mediated increase in H2S levels maintained membrane integrity that might have improved ionomics and bettered plant growth under Ni toxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01359-9.
Collapse
Affiliation(s)
- Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Umer Farooq
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000 Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402 Taiwan
| |
Collapse
|
14
|
Alam R, Rasheed R, Ashraf MA, Hussain I, Ali S. Allantoin alleviates chromium phytotoxic effects on wheat by regulating osmolyte accumulation, secondary metabolism, ROS homeostasis and nutrient acquisition. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131920. [PMID: 37413799 DOI: 10.1016/j.jhazmat.2023.131920] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/27/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Allantoin is a nitrogen metabolite with significant potential to mediate plant defense responses under salinity. However, the impact of allantoin on ions homeostasis and ROS metabolism has yet to be established in plants under Cr toxicity. In the current study, chromium (Cr) notably diminished growth, photosynthetic pigments, and nutrient acquisition in two wheat cultivars (Galaxy-2013 and Anaj-2017). Plants subjected to Cr toxicity displayed excessive Cr accumulation. Chromium produced substantial oxidative stress reflected as higher levels of O2•, H2O2, MDA, methylglyoxal (MG) and lipoxygenase activity. Plants manifested marginally raised antioxidant enzyme activities due to Cr stress. Further, reduced glutathione (GSH) levels diminished with a concurrent rise in oxidized glutathione levels (GSSG). Plants exhibited a considerable abridge in GSH:GSSG due to Cr toxicity. Allantoin (200 and 300 mg L1) subsided metal phytotoxic effects by strengthening the activities of antioxidant enzymes and levels of antioxidant compounds. Plants administered allantoin displayed a considerable rise in endogenous H2S and nitric oxide (NO) levels that, in turn, lessened oxidative injury in Cr-stressed plants. Allantoin diminished membrane damage and improved nutrient acquisition under Cr stress. Allantoin markedly regulated the uptake and distribution of Cr in wheat plants, abridging the degree of metal phytotoxic effect.
Collapse
Affiliation(s)
- Rizwan Alam
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
15
|
Ali S, Mir RA, Tyagi A, Manzar N, Kashyap AS, Mushtaq M, Raina A, Park S, Sharma S, Mir ZA, Lone SA, Bhat AA, Baba U, Mahmoudi H, Bae H. Chromium Toxicity in Plants: Signaling, Mitigation, and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12071502. [PMID: 37050128 PMCID: PMC10097182 DOI: 10.3390/plants12071502] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 05/31/2023]
Abstract
Plants are very often confronted by different heavy metal (HM) stressors that adversely impair their growth and productivity. Among HMs, chromium (Cr) is one of the most prevalent toxic trace metals found in agricultural soils because of anthropogenic activities, lack of efficient treatment, and unregulated disposal. It has a huge detrimental impact on the physiological, biochemical, and molecular traits of crops, in addition to being carcinogenic to humans. In soil, Cr exists in different forms, including Cr (III) "trivalent" and Cr (VI) "hexavalent", but the most pervasive and severely hazardous form to the biota is Cr (VI). Despite extensive research on the effects of Cr stress, the exact molecular mechanisms of Cr sensing, uptake, translocation, phytotoxicity, transcript processing, translation, post-translational protein modifications, as well as plant defensive responses are still largely unknown. Even though plants lack a Cr transporter system, it is efficiently accumulated and transported by other essential ion transporters, hence posing a serious challenge to the development of Cr-tolerant cultivars. In this review, we discuss Cr toxicity in plants, signaling perception, and transduction. Further, we highlight various mitigation processes for Cr toxicity in plants, such as microbial, chemical, and nano-based priming. We also discuss the biotechnological advancements in mitigating Cr toxicity in plants using plant and microbiome engineering approaches. Additionally, we also highlight the role of molecular breeding in mitigating Cr toxicity in sustainable agriculture. Finally, some conclusions are drawn along with potential directions for future research in order to better comprehend Cr signaling pathways and its mitigation in sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rakeeb A. Mir
- Department of Biotechnology, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nazia Manzar
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Abhijeet Shankar Kashyap
- Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University, Bajhol 173229, India
| | - Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Zahoor A. Mir
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Showkat A. Lone
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Ajaz A. Bhat
- Govt. Degree College for Women, University of Kashmir, Baramulla 193101, India
| | - Uqab Baba
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India
| | - Henda Mahmoudi
- Directorate of Programs, International Center for Biosaline Agriculture, Dubai P.O. Box 14660, United Arab Emirates
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
16
|
Sharma P, Singh SP, Tripathi RD, Tong YW. Chromium toxicity and tolerance mechanisms in plants through cross-talk of secondary messengers: An overview of pathways and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121049. [PMID: 36627046 DOI: 10.1016/j.envpol.2023.121049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Environmental sources of chromium (Cr) such as solid waste, battery chemicals, industrial /waste, automotive exhaust emissions, mineral mining, fertilizers, and pesticides, have detrimental effects on plants. An excessive amount of Cr exposure can lead to toxic accumulations in human, animal, and plant tissues. In plants, diverse signaling molecules like hydrogen sulfide (H2S) and nitric oxide (NO) play multiple roles during Cr stress. Consequently, the molecular mechanisms of Cr toxicity in plants, such as metal binding, modifying enzyme activity, and damaging cells are examined by several studies. The reactive oxygen species (ROS) that are formed when Cr reacts with lipids, membranes, DNA, proteins, and carbohydrates are all responsible for damage caused by Cr. ROS regulate plant growth, programmed cell death (PCD), cell cycle, pathogen defense, systemic communication, abiotic stress responses, and growth. Plants accumulate Cr mostly through the root system, with very little movement to the shoots. The characterization of stress-inducible proteins and metabolites involved in Cr tolerance and cross-talk messengers has been made possible due to recent advances in metabolomics, transcriptomics, and proteomics. This review discusses Cr absorption, translocation, subcellular distribution, and cross-talk between secondary messengers as mechanisms responsible for Cr toxicity and tolerance in plants. To mitigate this problem, soil-plant systems need to be monitored for the biogeochemical behavior of Cr and the identification of secondary messengers in plants.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Rudra Deo Tripathi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow, 226 001, India
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| |
Collapse
|
17
|
Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, Shahzad B, Waqas MM, Ali B, Tayyab MN, Ahmad SA, Khan I, Eldin SM. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. FRONTIERS IN PLANT SCIENCE 2023; 13:1081624. [PMID: 36714741 PMCID: PMC9880494 DOI: 10.3389/fpls.2022.1081624] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, environmental pollution with chromium (Cr) has gained significant attention. Although chromium (Cr) can exist in a variety of different oxidation states and is a polyvalent element, only trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are found frequently in the natural environment. In the current review, we summarize the biogeochemical procedures that regulate Cr(VI) mobilization, accumulation, bioavailability, toxicity in soils, and probable risks to ecosystem are also highlighted. Plants growing in Cr(VI)-contaminated soils show reduced growth and development with lower agricultural production and quality. Furthermore, Cr(VI) exposure causes oxidative stress due to the production of free radicals which modifies plant morpho-physiological and biochemical processes at tissue and cellular levels. However, plants may develop extensive cellular and physiological defensive mechanisms in response to Cr(VI) toxicity to ensure their survival. To cope with Cr(VI) toxicity, plants either avoid absorbing Cr(VI) from the soil or turn on the detoxifying mechanism, which involves producing antioxidants (both enzymatic and non-enzymatic) for scavenging of reactive oxygen species (ROS). Moreover, this review also highlights recent knowledge of remediation approaches i.e., bioremediation/phytoremediation, or remediation by using microbes exogenous use of organic amendments (biochar, manure, and compost), and nano-remediation supplements, which significantly remediate Cr(VI)-contaminated soil/water and lessen possible health and environmental challenges. Future research needs and knowledge gaps are also covered. The review's observations should aid in the development of creative and useful methods for limiting Cr(VI) bioavailability, toxicity and sustainably managing Cr(VI)-polluted soils/water, by clear understanding of mechanistic basis of Cr(VI) toxicity, signaling pathways, and tolerance mechanisms; hence reducing its hazards to the environment.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | | | - Syed Amjad Ahmad
- Department of Mechanical Engineering, NFC IEFR, Faisalabad, Pakistan
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
18
|
Hafeez A, Rasheed R, Ashraf MA, Rizwan M, Ali S. Effects of exogenous taurine on growth, photosynthesis, oxidative stress, antioxidant enzymes and nutrient accumulation by Trifolium alexandrinum plants under manganese stress. CHEMOSPHERE 2022; 308:136523. [PMID: 36165928 DOI: 10.1016/j.chemosphere.2022.136523] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Plants essentially require manganese (Mn) for their normal metabolic functioning. However, excess Mn in the cellular environment is detrimental to plant growth, development, and physio-biochemical functions. Taurine (TAU) is an amino acid with potent antioxidant and anti-inflammatory properties in animals and humans. However, no previous study has investigated the potential of TAU in plant metal stress tolerance. The current study provides some novel insights into the effect of TAU in modulating the defense system of Trifolium alexandrinum plants under Mn toxicity. Manganese toxicity resulted in higher oxidative stress and membrane damage through increased superoxide radical, hydrogen peroxide, malondialdehyde, and methylglyoxal generation alongside enhanced lipoxygenase (LOX) activity. Mn toxicity also resulted in limited uptake of potassium (K+), phosphorus (P), calcium (Ca2+), and increased the accumulation of Mn in both leaf and roots. However, TAU circumvented the Mn-induced oxidative stress by upregulating the activities of antioxidant enzymes (ascorbate peroxidase, peroxidase, catalase, glutathione reductase, glutathione-S-transferase, and superoxide dismutase) and levels of ascorbic acid, proline, anthocyanins, phenolics, flavonoids and glutathione (GSH). Taurine conspicuously improved the growth, photosynthetic pigments, hydrogen sulphide (H2S), and nitric oxide (NO) levels of Mn stressed plants. Taurine also improved the uptake of K+, Ca2+, P and reduced the Mn content in stressed plants. Overall, exogenous taurine might be a suitable strategy to combat Mn stress in T. alexandrinum plants but applications at field levels for various crops and metal toxicities and economic suitability need to be addressed before final recommendations.
Collapse
Affiliation(s)
- Arslan Hafeez
- Department of Botany, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, 38000, Faisalabad, Pakistan.
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
19
|
Akbar A, Ashraf MA, Rasheed R, Hussain I, Ali S, Parveen A. Exogenous menadione sodium bisulphite alleviates detrimental effects of alkaline stress on wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1889-1903. [PMID: 36484028 PMCID: PMC9723007 DOI: 10.1007/s12298-022-01250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Menadione sodium bisulphite (MSB) is known to augment plant defense responses against abiotic and biotic stresses. Wheat is an essential cereal with significant sensitivity to alkaline stress. The present study investigated the effects of MSB seed priming (5 and 10 mM) in alleviating the damaging effects of alkaline stress on hydroponically grown wheat cultivars (salt-sensitive cv. MH-97 and salt-tolerant cv. Millat-2011). Our findings revealed a significant reduction in growth, chlorophyll contents, total soluble proteins, free amino acids, K+, Ca2+, P, and K+/Na+ in wheat cultivars under alkaline stress. In contrast, a noteworthy accretion in lipid peroxidation, H2O2 production, proline levels, antioxidant enzyme activities, soluble sugars, antioxidant compounds, and Na+ levels was noticed in wheat plants grown in alkaline hydroponic medium. MSB priming significantly lowered chlorophyll degradation, Na+ levels, and osmolyte accumulation. Further, K+/Na+ ratio, antioxidant compounds, and antioxidant enzyme activities were higher in plants primed with MSB. Therefore, seed priming eminently protected plants by regulating osmotic adjustment and strengthening oxidative defense under alkaline stress. Plants administered 5 mM MSB as seed priming manifested better tolerance to alkaline stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01250-z.
Collapse
Affiliation(s)
- Ali Akbar
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402 Taiwan
| | - Abida Parveen
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| |
Collapse
|
20
|
Ashraf MA, Rasheed R, Hussain I, Hafeez A, Adrees M, Rehman MZU, Rizwan M, Ali S. Effect of different seed priming agents on chromium accumulation, oxidative defense, glyoxalase system and mineral nutrition in canola (Brassica napus L.) cultivars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119769. [PMID: 35850318 DOI: 10.1016/j.envpol.2022.119769] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The present experiment was conducted to appraise the role of different seed priming agents in circumventing the negative impact of chromium (Cr) toxicity on canola plants. Chromium toxicity resulted in significant decline in photosynthetic pigments and growth attributes of two canola cultivars (Puriga and MS-007). Cr toxicity also resulted in higher oxidative stress mirrored as greater accumulation of hydrogen peroxide (H2O2) superoxide radical (O2•‒), electrolyte leakage (EL) and malondialdehyde (MDA). Further, lipoxygenase enzyme activity that catalyzes the peroxidation of membrane lipids was also enhanced due to Cr toxicity. Canola plants also manifested impaired methylglyoxal (MG) detoxification due to the downregulation of glyoxalase enzymes (GlyI and II) under Cr stress. Seed priming treatments viz. osmo-priming with calcium chloride (CaCl2) and hormonal priming with salicylic acid (SA) remarkably improved growth and chlorophyll content in both canola cultivars under Cr toxicity as compared to other priming treatments such as hydro-priming, redox priming (H2O2) and chemical priming (Se; selenium). Moreover, CaCl2 and SA seed priming also resulted in lower oxidative stress and improved enzymatic (SOD, POD, CAT, APX, GR, GST) and non-enzymatic (GSH, phenolics, flavonoids, proline) antioxidant system of both cultivars under Cr toxicity. Further, hormonal and osmo-priming strengthened glyoxalase and antioxidant systems, thus improving reactive oxygen species (ROS) and MG detoxification. In this background, the cultivar Puriga is considered Cr tolerant as it exhibited better growth and lesser oxidative stress in both seed priming and non-primed conditions under Cr toxicity than cv. MS-007.
Collapse
Affiliation(s)
- Muhammad Arslan Ashraf
- Department of Botany Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Rizwan Rasheed
- Department of Botany Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Iqbal Hussain
- Department of Botany Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Arslan Hafeez
- Department of Botany Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
21
|
de Lima SVAM, Marques DM, Silva MFS, Bressanin LA, Magalhães PC, de Souza TC. Applications of chitosan to the roots and shoots change the accumulation pattern of cadmium in Talinum patens (Talinaceae) cuttings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67787-67800. [PMID: 35524100 DOI: 10.1007/s11356-022-20620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Chitosan induces tolerance to abiotic stress agents in plants. However, studies on the different application forms of this biopolymer are limited. This study evaluated the effect of two forms of chitosan application on the morphophysiology of and metal accumulation by Talinum patens cuttings subjected to Cd to develop new cadmium (Cd) decontamination technologies. Cuttings from 75-day-old plants were transferred to a hydroponic system. For 30 days, three Cd concentrations (0, 7, and 14 mg L-1) and three forms of chitosan application (without application, root, and foliar) were applied. The cuttings were tolerant to Cd because the metal did not influence biomass production or photosynthetic efficiency. Neither chitosan application nor Cd increased the modified chlorophyll content and fluorescence parameters. However, foliar chitosan reduced the transpiration rate. At the highest concentration of Cd, the application of chitosan in the root reduced the Mg content of the root system and shoots. The root application of chitosan increased the surface area and volume of thicker roots at the expense of finer ones. The foliar application resulted in greater total root length and surface area, mainly those finer. Furthermore, chitosan applied to the leaves activated catalase in the roots and leaves. In contrast to the root application, foliar application increased the accumulation of Cd in the roots. The action of catalase and the increase of fine roots may have favored a greater absorption of the nutrient solution and Cd in the chitosan foliar application treatment. It is concluded that chitosan foliar spraying can improve Cd rhizofiltration with T. patens.
Collapse
Affiliation(s)
- Samuel Vitor Assis Machado de Lima
- Institute of Natural Sciences - ICN, Federal University of Alfenas - UNIFAL-MG, 700, Gabriel Monteiro Street, P. O. Box, Alfenas, MG, 37130-001, Brazil
| | - Daniele Maria Marques
- Institute of Natural Sciences - ICN, Federal University of Alfenas - UNIFAL-MG, 700, Gabriel Monteiro Street, P. O. Box, Alfenas, MG, 37130-001, Brazil
| | - Matheus Felipe Soares Silva
- Institute of Natural Sciences - ICN, Federal University of Alfenas - UNIFAL-MG, 700, Gabriel Monteiro Street, P. O. Box, Alfenas, MG, 37130-001, Brazil
| | - Leticia Aparecida Bressanin
- Institute of Natural Sciences - ICN, Federal University of Alfenas - UNIFAL-MG, 700, Gabriel Monteiro Street, P. O. Box, Alfenas, MG, 37130-001, Brazil
| | - Paulo César Magalhães
- Maize and Sorghum National Research Center, P. O. Box 151, Sete Lagoas, MG, 35701-970, Brazil
| | - Thiago Corrêa de Souza
- Institute of Natural Sciences - ICN, Federal University of Alfenas - UNIFAL-MG, 700, Gabriel Monteiro Street, P. O. Box, Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
22
|
Shah AA, Shah AN, Bilal Tahir M, Abbas A, Javad S, Ali S, Rizwan M, Alotaibi SS, Kalaji HM, Telesinski A, Javed T, AbdElgawad H. Harzianopyridone Supplementation Reduced Chromium Uptake and Enhanced Activity of Antioxidant Enzymes in Vigna radiata Seedlings Exposed to Chromium Toxicity. FRONTIERS IN PLANT SCIENCE 2022; 13:881561. [PMID: 35860543 PMCID: PMC9290437 DOI: 10.3389/fpls.2022.881561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 05/24/2023]
Abstract
This study explains the scarce information on the role of harzianopyridone (HZRP) in the alleviation of chromium (Cr) stress alleviation in Vigna radiata (L.). To this end, V. radiata seedlings primed with HZRP at 1 and 2 ppm were exposed to 50 mg kg-1 Cr for 30 days. Cr stress reduced growth, chlorophyll (Chl) content, net photosynthetic rate, gas-exchange attributes along with enhanced oxidative damages, i.e., electrolyte leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA). Application of HZRP enhanced intercellular carbon dioxide (CO2) concentration, stomatal conductance, and net photosynthetic rate with decreased activity of the chlorophyllase (Chlase) enzyme in V. radiata seedlings exposed to Cr stressed conditions. To maintain Cr-induced oxidative damages, HZRP treatment increased the levels of antioxidant metabolites (phenolic and flavonoids) and the activity of antioxidative enzymes [superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)] in V. radiata seedlings grown in normal and Cr-polluted potted soil. In addition to this, glycine betaine content was also increased in plants grown in Cr-contaminated soil. It is proposed the potential role of supplementation of HZRP in mitigating Cr stress. Further research should be conducted to evaluate the potential of HZRP in the mitigation of abiotic stresses in plants.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Bilal Tahir
- Department of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Sumera Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sajid Ali
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Science and Engineering, Government College University, Faisalabad, Pakistan
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, Szkoła Główna Gospodarstwa Wiejskiego (SGGW), Warsaw, Poland
- Institute of Technology and Life Sciences-National Research Institute, Falenty, Poland
| | - Arkadiusz Telesinski
- Department of Bioengineering, West Pomeranian, University of Technology in Szczecin, Szczecin, Poland
| | - Talha Javed
- College of Agriculture, Fijian Agriculture and Forestry University, Fuzhou, China
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
23
|
Ashraf MA, Rasheed R, Hussain I, Iqbal M, Farooq MU, Saleem MH, Ali S. Taurine modulates dynamics of oxidative defense, secondary metabolism, and nutrient relation to mitigate boron and chromium toxicity in Triticum aestivum L. plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45527-45548. [PMID: 35147884 DOI: 10.1007/s11356-022-19066-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/01/2022] [Indexed: 05/27/2023]
Abstract
The present study was undertaken to appraise the efficacy of exogenous taurine in alleviating boron (B) and chromium (Cr) toxicity. Taurine protects cell membranes from lipid peroxidation due to its function as a ROS scavenger. However, there exists no report in the literature on the role of taurine in plants under abiotic stresses. The present investigation indicated the involvement of exogenous taurine in mediating plant defense responses under B and Cr toxicity. Wheat plants manifested a significant drop in growth, chlorophyll molecules, SPAD values, relative water content, nitrate reductase activity, and uptake of essential nutrients under B, Cr, and combined B-Cr toxicity. Plants showed significant oxidative damage due to enhanced cellular levels of superoxide radicals (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA), relative membrane permeability, and activity of lipoxygenase (LOX). Additionally, a significant negative correlation existed in B and Cr levels with the uptake of essential nutrients. Taurine substantially improved growth, photosynthetic pigments, and nutrient uptake by regulating ROS scavenging, secondary metabolism, and ions homeostasis under stress. Taurine protected plants from the detrimental effects of B and Cr by upregulating the production of nitric oxide, hydrogen sulfide, glutathione, and phenolic compounds.
Collapse
Affiliation(s)
- Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan
| | - Muhammad Umar Farooq
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
24
|
Sharma P, Chouhan R, Bakshi P, Gandhi SG, Kaur R, Sharma A, Bhardwaj R. Amelioration of Chromium-Induced Oxidative Stress by Combined Treatment of Selected Plant-Growth-Promoting Rhizobacteria and Earthworms via Modulating the Expression of Genes Related to Reactive Oxygen Species Metabolism in Brassica juncea. Front Microbiol 2022; 13:802512. [PMID: 35464947 PMCID: PMC9019754 DOI: 10.3389/fmicb.2022.802512] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/25/2022] [Indexed: 01/24/2023] Open
Abstract
Chromium (Cr) toxicity leads to the enhanced production of reactive oxygen species (ROS), which are extremely toxic to the plant and must be minimized to protect the plant from oxidative stress. The potential of plant-growth-promoting rhizobacteria (PGPR) and earthworms in plant growth and development has been extensively studied. The present study was aimed at investigating the effect of two PGPR (Pseudomonas aeruginosa and Burkholderia gladioli) along with earthworms (Eisenia fetida) on the antioxidant defense system in Brassica juncea seedlings under Cr stress. The Cr toxicity reduced the fresh and dry weights of seedlings, enhanced the levels of superoxide anion (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL), which lead to membrane as well as the nuclear damage and reduced cellular viability in B. juncea seedlings. The activities of the antioxidant enzymes, viz., superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APOX), glutathione peroxidase (GPOX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were increased; however, a reduction was observed in the activity of catalase (CAT) in the seedlings under Cr stress. Inoculation of the PGPR and the addition of earthworms enhanced the activities of all other antioxidant enzymes except GPOX, in which a reduction of the activity was observed. For total lipid- and water-soluble antioxidants and the non-enzymatic antioxidants, viz., ascorbic acid and glutathione, an enhance accumulation was observed upon the inoculation with PGPR and earthworms. The supplementation of PGPR with earthworms (combined treatment) reduced both the reactive oxygen species (ROS) and the MDA content by modulating the defense system of the plant. The histochemical studies also corroborated that the combined application of PGPR and earthworms reduced O2•-, H2O2, lipid peroxidation, and membrane and nuclear damage and improved cell viability. The expression of key antioxidant enzyme genes, viz., SOD, CAT, POD, APOX, GR, DHAR, and GST showed the upregulation of these genes at post-transcriptional level upon the combined treatment of the PGPR and earthworms, thereby corresponding to the improved plant biomass. However, a reduced expression of RBOH1 gene was noticed in seedlings supplemented under the effect of PGPR and earthworms grown under Cr stress. The results provided sufficient evidence regarding the role of PGPR and earthworms in the amelioration of Cr-induced oxidative stress in B. juncea.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Microbiology, DAV University, Jalandhar, India.,Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rekha Chouhan
- Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Palak Bakshi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Rupinder Kaur
- Department of Biotechnology, DAV College, Amritsar, India
| | - Ashutosh Sharma
- Faculty of Agricultural Sciences, DAV University, Jalandhar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
25
|
Wen K, Li X, Huang R, Nian H. Application of exogenous glutathione decreases chromium translocation and alleviates its toxicity in soybean (Glycine max L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113405. [PMID: 35298965 DOI: 10.1016/j.ecoenv.2022.113405] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Chromium is considered one of the most severe toxic elements affecting agriculture. Soybean seedlings under chromium stress were treated with glutathione and buthionine sulfoximine. The effects of exogenous glutathione on the physiological effects of two different chromium-resistant soybean seedlings and the expression levels of expression levels related genes were studied. This study tested the seedling weight and SPAD values, detected enzymatic antioxidants (i.e., superoxide dismutase, peroxidase, catalase, catalase, ascorbate peroxidase), and non-enzymatic antioxidants (i.e., glutathione, proline, soluble sugars, and soluble phenols) that attenuate chromium-induced reactive oxygen species, and quantified several genes associated with glutathione-mediated chromium stress. The results showed that exogenous glutathione could improve the physiological adaptability of soybean seedlings by regulating photosynthesis, antioxidant, and related enzyme activities, osmotic system, the compartmentalization of ion chelation, and regulating the transcription level of related genes, thereby increasing the chromium accumulation of soybean seedlings, enhancing the tolerance of chromium stress, and reducing the toxicity of chromium. Overall, the application of glutathione alleviates chromium toxicity in soybeans, and this strategy may be a potential farming option for soybean bioremediation in chromium-contaminated soils.
Collapse
Affiliation(s)
- Ke Wen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Xingang Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Rong Huang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong, People's Republic of China; The National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China; The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China; Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|