1
|
Zhou J, Wang J, Qu M, Wang Q, Wang L, Liu S, Liu J, Sun G, Zhong P, Huang X, Liu D, Yin L, He C. Protective effects of electroacupuncture on senile osteoporosis in rats. Acupunct Med 2024; 42:334-341. [PMID: 39460675 DOI: 10.1177/09645284241280089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
OBJECTIVES The objectives were to explore the protective effects of electroacupuncture (EA) on senile osteoporosis in aged rats and investigate the underlying mechanisms. METHODS This study included aged (24-month-old; n = 16) and young (3-month-old; n = 8) male Sprague-Dawley rats. Aged rats were further randomized 1:1 to an aged control group (Aged; n = 8) and an EA treatment group (EA; n = 8). The 3-month-old rats served as young controls (Young). EA rats received EA at ST36, SP6, GB34 and SP10 bilaterally for 30 min a day, 5 days a week, for 8 weeks. RESULTS EA significantly increased serum markers of bone formation in Aged rats. There were no significant differences in serum markers of bone resorption between EA and Aged rats. Deterioration of bone mineral density (BMD) and trabecular bone architecture was observed in the Aged group, while EA significantly increased BMD of the left femur and L5 vertebral body in aged rats. Aging-induced deterioration of trabecular bone architecture was partially reversed in EA rats. Runx2 and Osterix mRNA and protein levels were significantly increased and peroxisome proliferator-activated receptor (PPAR)γ was significantly decreased in bone marrow cells in EA compared with Aged groups. The mRNA and protein levels of core constituents of the Wnt/β-catenin signaling pathway (Wnt3a, low-density lipoprotein receptor-related protein (LRP)5 and β-catenin) were significantly increased and Dickkopf 1 was significantly decreased in bone marrow cells in EA compared with Aged groups. CONCLUSION EA may prevent bone loss and deterioration in aged rats by promoting osteogenesis via a mechanism that may involve activation of the Wnt/β-catenin signaling pathway. EA may represent a therapeutic option for senile osteoporosis.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinling Wang
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Mengjian Qu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Qian Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiong Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Sijia Liu
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Liu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Guanghua Sun
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Peirui Zhong
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiarong Huang
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Danni Liu
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Linwei Yin
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
3
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Ravazzano L, Colaianni G, Tarakanova A, Xiao YB, Grano M, Libonati F. Multiscale and multidisciplinary analysis of aging processes in bone. NPJ AGING 2024; 10:28. [PMID: 38879533 PMCID: PMC11180112 DOI: 10.1038/s41514-024-00156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/07/2024] [Indexed: 06/19/2024]
Abstract
The world population is increasingly aging, deeply affecting our society by challenging our healthcare systems and presenting an economic burden, thus turning the spotlight on aging-related diseases: exempli gratia, osteoporosis, a silent disease until you suddenly break a bone. The increase in bone fracture risk with age is generally associated with a loss of bone mass and an alteration in the skeletal architecture. However, such changes cannot fully explain increased fragility with age. To successfully tackle age-related bone diseases, it is paramount to comprehensively understand the fundamental mechanisms responsible for tissue degeneration. Aging mechanisms persist at multiple length scales within the complex hierarchical bone structure, raising the need for a multiscale and multidisciplinary approach to resolve them. This paper aims to provide an overarching analysis of aging processes in bone and to review the most prominent outcomes of bone aging. A systematic description of different length scales, highlighting the corresponding techniques adopted at each scale and motivating the need for combining diverse techniques, is provided to get a comprehensive description of the multi-physics phenomena involved.
Collapse
Affiliation(s)
- Linda Ravazzano
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Anna Tarakanova
- School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, CT, 06269, Storrs, USA
| | - Yu-Bai Xiao
- School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Flavia Libonati
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy.
- Department of Mechanical, Energy, Management and Transport Engineering - DIME, University of Genova, Via all'Opera Pia 15, Genova, 16145, Italy.
| |
Collapse
|
5
|
Zhang L, Wang Z, Zhang Y, Ji R, Li Z, Zou J, Gao B. Regulatory cellular and molecular networks in the bone microenvironment during aging. LIFE MEDICINE 2024; 3:lnae019. [PMID: 39871887 PMCID: PMC11749081 DOI: 10.1093/lifemedi/lnae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/30/2024] [Indexed: 01/29/2025]
Abstract
Age-induced abnormalities in bone metabolism disrupt the equilibrium between bone resorption and formation. This largely stems from disturbances in bone homeostasis, in which signaling pathways exert a significant regulatory influence. Aging compromises the functionality of the bone marrow mesenchymal stem cells (BMSCs), ultimately resulting in tissue dysfunction and pathological aging. Age-related bone degradation primarily manifests as reduced bone formation and the increased accumulation of bone marrow fat. Cellular senescence diminishes bone cell vitality, thereby disrupting the balance of bone remodeling. Intensive osteoclast differentiation leads to the generation of more osteoclasts and increased bone resorption. This review provides insight into the impact of aging on bone, encompassing bone cell states during the aging process and bone signaling pathway transformations. It primarily delves into aging-related signaling pathways, such as the bone morphogenetic protein/Smad, Wnt/β-catenin, osteoprotegerin/receptor activator of NF-κB ligand/receptor activator of NF-κB, connexin43/miR21, and nuclear factor erythroid 2-related factor 2/antioxidant response element pathways, seeking to enhance our comprehension of crucial bone cells and their secretory phenotypes during aging. Furthermore, the precise molecular regulatory mechanisms underlying the interactions between bone signaling pathways and aging are investigated.
Collapse
Affiliation(s)
- Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yuan Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Rui Ji
- Department of Orthopedic Surgery, Xijing Hospital, Airforce Medical University, Xi'an 710032, China
| | - Zhiben Li
- Department of Orthopedic Surgery, Xijing Hospital, Airforce Medical University, Xi'an 710032, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Airforce Medical University, Xi'an 710032, China
| |
Collapse
|
6
|
Ma Y, Wang S, Wang H, Chen X, Shuai Y, Wang H, Mao Y, He F. Mesenchymal stem cells and dental implant osseointegration during aging: from mechanisms to therapy. Stem Cell Res Ther 2023; 14:382. [PMID: 38124153 PMCID: PMC10734190 DOI: 10.1186/s13287-023-03611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Dental implants are widely used to replace missing teeth, providing patients with unparalleled levels of effectiveness, convenience, and affordability. The biological basis for the clinical success of dental implants is osseointegration. Bone aging is a high-risk factor for the reduced osseointegration and survival rates of dental implants. In aged individuals, mesenchymal stem cells (MSCs) in the bone marrow show imbalanced differentiation with a reduction in osteogenesis and an increase in adipogenesis. This leads to impaired osseointegration and implant failure. This review focuses on the molecular mechanisms underlying the dysfunctional differentiation of aged MSCs, which primarily include autophagy, transcription factors, extracellular vesicle secretion, signaling pathways, epigenetic modifications, microRNAs, and oxidative stress. Furthermore, this review addresses the pathological changes in MSCs that affect osseointegration and discusses potential therapeutic interventions to enhance osseointegration by manipulating the mechanisms underlying MSC aging.
Collapse
Affiliation(s)
- Yang Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Siyuan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Hui Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Xiaoyu Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yi Shuai
- Nanjing Jinling Hospital: East Region Military Command General Hospital, Nanjing, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Yingjie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Zhang L, Guan Q, Wang Z, Feng J, Zou J, Gao B. Consequences of Aging on Bone. Aging Dis 2023; 15:2417-2452. [PMID: 38029404 PMCID: PMC11567267 DOI: 10.14336/ad.2023.1115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
With the aging of the global population, the incidence of musculoskeletal diseases has been increasing, seriously affecting people's health. As people age, the microenvironment within skeleton favors bone resorption and inhibits bone formation, accompanied by bone marrow fat accumulation and multiple cellular senescence. Specifically, skeletal stem/stromal cells (SSCs) during aging tend to undergo adipogenesis rather than osteogenesis. Meanwhile, osteoblasts, as well as osteocytes, showed increased apoptosis, decreased quantity, and multiple functional limitations including impaired mechanical sensing, intercellular modulation, and exosome secretion. Also, the bone resorption function of macrophage-lineage cells (including osteoclasts and preosteoclasts) was significantly enhanced, as well as impaired vascularization and innervation. In this study, we systematically reviewed the effect of aging on bone and the within microenvironment (including skeletal cells as well as their intracellular structure variations, vascular structures, innervation, marrow fat distribution, and lymphatic system) caused by aging, and mechanisms of osteoimmune regulation of the bone environment in the aging state, and the causal relationship with multiple musculoskeletal diseases in addition with their potential therapeutic strategy.
Collapse
Affiliation(s)
- Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jie Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
8
|
Weston WA, Barr AR. A cell cycle centric view of tumour dormancy. Br J Cancer 2023; 129:1535-1545. [PMID: 37608096 PMCID: PMC10645753 DOI: 10.1038/s41416-023-02401-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Tumour dormancy and recurrent metastatic cancer remain the greatest clinical challenge for cancer patients. Dormant tumour cells can evade treatment and detection, while retaining proliferative potential, often for years, before relapsing to tumour outgrowth. Cellular quiescence is one mechanism that promotes and maintains tumour dormancy due to its central role in reducing proliferation, elevating cyto-protective mechanisms, and retaining proliferative potential. Quiescence/proliferation decisions are dictated by intrinsic and extrinsic signals, which regulate the activity of cyclin-dependent kinases (CDKs) to modulate cell cycle gene expression. By clarifying the pathways regulating CDK activity and the signals which activate them, we can better understand how cancer cells enter, maintain, and escape from quiescence throughout the progression of dormancy and metastatic disease. Here we review how CDK activity is regulated to modulate cellular quiescence in the context of tumour dormancy and highlight the therapeutic challenges and opportunities it presents.
Collapse
Affiliation(s)
- William A Weston
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Alexis R Barr
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Du Cane Rd, London, W12 0NN, UK.
| |
Collapse
|
9
|
He X, Hu W, Zhang Y, Chen M, Ding Y, Yang H, He F, Gu Q, Shi Q. Cellular senescence in skeletal disease: mechanisms and treatment. Cell Mol Biol Lett 2023; 28:88. [PMID: 37891477 PMCID: PMC10612178 DOI: 10.1186/s11658-023-00501-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The musculoskeletal system supports the movement of the entire body and provides blood production while acting as an endocrine organ. With aging, the balance of bone homeostasis is disrupted, leading to bone loss and degenerative diseases, such as osteoporosis, osteoarthritis, and intervertebral disc degeneration. Skeletal diseases have a profound impact on the motor and cognitive abilities of the elderly, thus creating a major challenge for both global health and the economy. Cellular senescence is caused by various genotoxic stressors and results in permanent cell cycle arrest, which is considered to be the underlying mechanism of aging. During aging, senescent cells (SnCs) tend to aggregate in the bone and trigger chronic inflammation by releasing senescence-associated secretory phenotypic factors. Multiple signalling pathways are involved in regulating cellular senescence in bone and bone marrow microenvironments. Targeted SnCs alleviate age-related degenerative diseases. However, the association between senescence and age-related diseases remains unclear. This review summarises the fundamental role of senescence in age-related skeletal diseases, highlights the signalling pathways that mediate senescence, and discusses potential therapeutic strategies for targeting SnCs.
Collapse
Affiliation(s)
- Xu He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Wei Hu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Yuanshu Zhang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214026, People's Republic of China
| | - Mimi Chen
- Department of Orthopedics, Children Hospital of Soochow University, No. 92 Zhongnan Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Yicheng Ding
- Xuzhou Medical University, 209 Copper Mountain Road, Xuzhou, 221004, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Fan He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
| | - Qiaoli Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214026, People's Republic of China.
| |
Collapse
|
10
|
Cho SH, Lee S, Park JI, La Yang Y, Kim SR, Ahn J, Jeong H, Jung HY, Gwak N, Kim KN, Kim Y. Age-associated spinal stenosis in the turquoise killifish. iScience 2023; 26:107877. [PMID: 37810235 PMCID: PMC10550727 DOI: 10.1016/j.isci.2023.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/22/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Aging triggers spinal degeneration, including common spinal stenosis, which causes back and leg pain in older individuals, significantly impacting their quality of life. Here, we explored aging traits in turquoise killifish spines, potentially offering a model for age-linked spinal stenosis in humans. Aged turquoise killifish exhibited body shape deformation and increased vertebral collapse, which was further accelerated by spawning. High-resolution CT scans revealed suppressed cortical bone thickness and hemal arch area in vertebrae due to spawning, and osteophyte formation was observed in both aged and breeding fish populations. Scale mineralization mirrored these changes, increasing with age but being suppressed by spawning. The expression of sp7, sox9b, axin1, and wnt4a/b genes can be utilized to monitor age- and reproduction-dependent spine deformation. This study demonstrates that turquoise killifish and humans share certain phenotypes of age-related vertebral abnormalities, suggesting that turquoise killifish could serve as a potential model for studying human spinal stenosis.
Collapse
Affiliation(s)
- Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, Republic of Korea
- Department of Medical Biomaterials Engineering, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seongsin Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Jae-Il Park
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Yoon La Yang
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Song-Rae Kim
- Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, Republic of Korea
- Department of Medical Biomaterials Engineering, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoibin Jeong
- Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, Republic of Korea
- Seoul Center, Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Hye-Yeon Jung
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Nayoung Gwak
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, Republic of Korea
- Department of Bio-analysis Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yumi Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea
- Center for Genome Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
11
|
Seemann S, Dubs M, Koczan D, Salapare HS, Ponche A, Pieuchot L, Petithory T, Wartenberg A, Staehlke S, Schnabelrauch M, Anselme K, Nebe JB. Response of Osteoblasts on Amine-Based Nanocoatings Correlates with the Amino Group Density. Molecules 2023; 28:6505. [PMID: 37764281 PMCID: PMC10534789 DOI: 10.3390/molecules28186505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Increased life expectancy in industrialized countries is causing an increased incidence of osteoporosis and the need for bioactive bone implants. The integration of implants can be improved physically, but mainly by chemical modifications of the material surface. It was recognized that amino-group-containing coatings improved cell attachment and intracellular signaling. The aim of this study was to determine the role of the amino group density in this positive cell behavior by developing controlled amino-rich nanolayers. This work used covalent grafting of polymer-based nanocoatings with different amino group densities. Titanium coated with the positively-charged trimethoxysilylpropyl modified poly(ethyleneimine) (Ti-TMS-PEI), which mostly improved cell area after 30 min, possessed the highest amino group density with an N/C of 32%. Interestingly, changes in adhesion-related genes on Ti-TMS-PEI could be seen after 4 h. The mRNA microarray data showed a premature transition of the MG-63 cells into the beginning differentiation phase after 24 h indicating Ti-TMS-PEI as a supportive factor for osseointegration. This amino-rich nanolayer also induced higher bovine serum albumin protein adsorption and caused the cells to migrate slower on the surface after a more extended period of cell settlement as an indication of a better surface anchorage. In conclusion, the cell spreading on amine-based nanocoatings correlated well with the amino group density (N/C).
Collapse
Affiliation(s)
- Susanne Seemann
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany (J.B.N.)
| | - Manuela Dubs
- Department of Biomaterials, INNOVENT e.V., 07745 Jena, Germany; (M.D.); (A.W.); (M.S.)
| | - Dirk Koczan
- Department of Immunology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Hernando S. Salapare
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - Arnaud Ponche
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - Tatiana Petithory
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - Annika Wartenberg
- Department of Biomaterials, INNOVENT e.V., 07745 Jena, Germany; (M.D.); (A.W.); (M.S.)
| | - Susanne Staehlke
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany (J.B.N.)
| | | | - Karine Anselme
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - J. Barbara Nebe
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany (J.B.N.)
- Department Life, Light & Matter, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
12
|
Abstract
Changes in bone architecture and metabolism with aging increase the likelihood of osteoporosis and fracture. Age-onset osteoporosis is multifactorial, with contributory extrinsic and intrinsic factors including certain medical problems, specific prescription drugs, estrogen loss, secondary hyperparathyroidism, microenvironmental and cellular alterations in bone tissue, and mechanical unloading or immobilization. At the histological level, there are changes in trabecular and cortical bone as well as marrow cellularity, lineage switching of mesenchymal stem cells to an adipogenic fate, inadequate transduction of signals during skeletal loading, and predisposition toward senescent cell accumulation with production of a senescence-associated secretory phenotype. Cumulatively, these changes result in bone remodeling abnormalities that over time cause net bone loss typically seen in older adults. Age-related osteoporosis is a geriatric syndrome due to the multiple etiologies that converge upon the skeleton to produce the ultimate phenotypic changes that manifest as bone fragility. Bone tissue is dynamic but with tendencies toward poor osteoblastic bone formation and relative osteoclastic bone resorption with aging. Interactions with other aging physiologic systems, such as muscle, may also confer detrimental effects on the aging skeleton. Conversely, individuals who maintain their BMD experience a lower risk of fractures, disability, and mortality, suggesting that this phenotype may be a marker of successful aging. © 2023 American Physiological Society. Compr Physiol 13:4355-4386, 2023.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Endocrinology, and Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,The Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Zaidi M, Kim SM, Mathew M, Korkmaz F, Sultana F, Miyashita S, Gumerova AA, Frolinger T, Moldavski O, Barak O, Pallapati A, Rojekar S, Caminis J, Ginzburg Y, Ryu V, Davies TF, Lizneva D, Rosen CJ, Yuen T. Bone circuitry and interorgan skeletal crosstalk. eLife 2023; 12:83142. [PMID: 36656634 PMCID: PMC9851618 DOI: 10.7554/elife.83142] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone integrity in disease. Recent breakthroughs have arisen mainly from identifying disease-causing mutations and modeling human bone disease in rodents, in essence, highlighting the integrative nature of skeletal physiology. It has become increasingly clear that bone cells, osteoblasts, osteoclasts, and osteocytes, communicate and regulate the fate of each other through RANK/RANKL/OPG, liver X receptors (LXRs), EphirinB2-EphB4 signaling, sphingolipids, and other membrane-associated proteins, such as semaphorins. Mounting evidence also showed that critical developmental pathways, namely, bone morphogenetic protein (BMP), NOTCH, and WNT, interact each other and play an important role in postnatal bone remodeling. The skeleton communicates not only with closely situated organs, such as bone marrow, muscle, and fat, but also with remote vital organs, such as the kidney, liver, and brain. The metabolic effect of bone-derived osteocalcin highlights a possible role of skeleton in energy homeostasis. Furthermore, studies using genetically modified rodent models disrupting the reciprocal relationship with tropic pituitary hormone and effector hormone have unraveled an independent role of pituitary hormone in skeletal remodeling beyond the role of regulating target endocrine glands. The cytokine-mediated skeletal actions and the evidence of local production of certain pituitary hormones by bone marrow-derived cells displays a unique endocrine-immune-skeletal connection. Here, we discuss recently elucidated mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, crosstalk between bone and vital organs, as well as opportunities for treating diseases of the skeleton.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mehr Mathew
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Farhath Sultana
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sari Miyashita
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Azatovna Gumerova
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tal Frolinger
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ofer Moldavski
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Orly Barak
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anusha Pallapati
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Satish Rojekar
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Caminis
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Terry F Davies
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
14
|
Abstract
Bone is a living organ that exhibits active metabolic processes, presenting constant bone formation and resorption. The bone cells that maintain local homeostasis are osteoblasts, osteoclasts, osteocytes and bone marrow stem cells, their progenitor cells. Osteoblasts are the main cells that govern bone formation, osteoclasts are involved in bone resorption, and osteocytes, the most abundant bone cells, also participate in bone remodeling. All these cells have active metabolic activities, are interconnected and influence each other, having both autocrine and paracrine effects. Ageing is associated with multiple and complex bone metabolic changes, some of which are currently incompletely elucidated. Ageing causes important functional changes in bone metabolism, influencing all resident cells, including the mineralization process of the extracellular matrix. With advancing age, a decrease in bone mass, the appearance of specific changes in the local microarchitecture, a reduction in mineralized components and in load-bearing capacity, as well as the appearance of an abnormal response to different humoral molecules have been observed. The present review points out the most important data regarding the formation, activation, functioning, and interconnection of these bone cells, as well as data on the metabolic changes that occur due to ageing.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- IIIrd Medical Clinic, "Saint Spiridon" Clinic Emergency County Hospital, Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Rezus
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| |
Collapse
|
15
|
de Sousa VC, Sousa FRN, Vasconcelos RF, Martins CS, Lopes AP, Alves NM, Viana D, Alves K, Leitão R, Brito GAC, Girão V, Goes P. Atorvastatin reduces zoledronic acid-induced osteonecrosis of the jaws of rats. Bone 2022; 164:116523. [PMID: 35985466 DOI: 10.1016/j.bone.2022.116523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Vanessa Costa de Sousa
- Post Graduation Program in Morphological Science, Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Raquel Felipe Vasconcelos
- Post Graduation Program in Morphological Science, Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Conceição S Martins
- Post Graduation Program in Morphological Science, Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Pimentel Lopes
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Nicholas Militão Alves
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Delane Viana
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Karuza Alves
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Renata Leitão
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Gerly A C Brito
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Virginia Girão
- Department of Morphology, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Paula Goes
- Department of Pathology and Legal Medicine, Medical School, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
16
|
mTOR is involved in LRP5-induced osteogenic differentiation of normal and aged periodontal ligament stem cells in vitro. J Mol Histol 2022; 53:793-804. [PMID: 36002678 DOI: 10.1007/s10735-022-10097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Periodontal ligament stem cells (PDLSCs) plays an important role in tissue engineering. As the age increased, the cell viability and osteogenic differentiation of PDLSCs all decreased. Low density lipoprotein receptor related protein 5 (LRP5) was found to promote bone marrow mesenchymal stem cells osteogenic differentiation. Therefore, our study explored the effect of LRP5 on normal and aged PDLSCs and relative mechanism. Here, we found that the expression of LRP5 in PDLSCs of 24 week-old mice was decreased compared with PDLSCs of 5 week-old mice (n = 5). . LRP5 overexpression in PDLSCs increased the intensity of alkaline phosphatase and alizarin red staining, accompanied with upregulated the levels of RUNX family transcription factor 2, collagen type I, and β-Catenin. LRP5 knockdown displayed the opposite results in PDLSCs in vitro. LRP5 overexpression in aged PDLSCs restored part ability of osteogenic differentiation. Meantime, LRP5 increased the protein expression of phosphorylation of mammalian target of rapamycin (p-mTOR) in normal and aged PDLSCs. Immunofluorescence showed that LRP5 increased the accumulation of p-mTOR nucleus. The effect of LRP5 in promoting osteogenic differentiation of PDLSCs can be antagonized by mTOR inhibitor rapamycin. These findings suggest that LRP5 positively regulate osteogenic differentiation of normal and aged PDLSCs and may be a potential target for enlarging the application of PDLSCs in tissue regeneration.
Collapse
|
17
|
Ko FC, Moran MM, Ross RD, Sumner DR. Activation of canonical Wnt signaling accelerates intramembranous bone regeneration in male mice. J Orthop Res 2022; 40:1834-1843. [PMID: 34811780 PMCID: PMC9124233 DOI: 10.1002/jor.25217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
Canonical Wnt signaling plays an important role in skeletal development, homeostasis, and both endochondral and intramembranous repair. While studies have demonstrated that the inhibition of Wnt signaling impairs intramembranous bone regeneration, how its activation affects intramembranous bone regeneration has been underexplored. Therefore, we sought to determine the effects of activation of canonical Wnt signaling on intramembranous bone regeneration by using the well-established marrow ablation model. We hypothesized that mice with a mutation in the Wnt ligand coreceptor gene Lrp5 would have accelerated intramembranous bone regeneration. Male and female wild-type and Lrp5-mutant mice underwent unilateral femoral bone marrow ablation surgery in the right femur at 4 weeks of age. Both the left intact and right operated femurs were assessed at Days 3, 5, 7, 10, and 14. The intact femur of Lrp5 mutant mice of both sexes had higher bone mass than wild-type littermates, although to a greater degree in males than females. Overall, the regenerated bone volume in Lrp5 mutant male mice was 1.8-fold higher than that of littermate controls, whereas no changes were observed between female Lrp5 mutant and littermate control mice. In addition, the rate of intramembranous bone regeneration (from Day 3 to Day 7) was higher in Lrp5 mutant male mice compared to their same-sex littermate controls with no difference in the females. Thus, activation of canonical Wnt signaling increases bone mass in intact bones of both sexes, but accelerates intramembranous bone regeneration following an injury challenge only in male mice.
Collapse
Affiliation(s)
- Frank C. Ko
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | - Meghan M. Moran
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | - Ryan D. Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| | - D. Rick Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, 60612,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612
| |
Collapse
|
18
|
Marinkovic M, Dai Q, Gonzalez AO, Tran ON, Block TJ, Harris SE, Salmon AB, Yeh CK, Dean DD, Chen XD. Matrix-bound Cyr61/CCN1 is required to retain the properties of the bone marrow mesenchymal stem cell niche but is depleted with aging. Matrix Biol 2022; 111:108-132. [PMID: 35752272 PMCID: PMC10069241 DOI: 10.1016/j.matbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Previously, we showed that extracellular matrices (ECMs), produced ex vivo by various types of stromal cells, direct bone marrow mesenchymal stem cells (BM-MSCs) in a tissue-specific manner and recapitulate physiologic changes characteristic of the aging microenvironment. In particular, BM-MSCs obtained from elderly donors and cultured on ECM produced by young BM stromal cells showed improved quantity, quality and osteogenic differentiation. In the present study, we searched for matrix components that are required for a functional BM-MSC niche by comparing ECMs produced by BM stromal cells from "young" (≤25 y/o) versus "elderly" (≥60 y/o) donors. With increasing donor age, ECM fibrillar organization and mechanical integrity deteriorated, along with the ability to promote BM-MSC proliferation and responsiveness to growth factors. Proteomic analyses revealed that the matricellular protein, Cyr61/CCN1, was present in young, but undetectable in elderly, BM-ECM. To assess the role of Cyr61 in the BM-MSC niche, we used genetic methods to down-regulate the incorporation of Cyr61 during production of young ECM and up-regulate its incorporation in elderly ECM. The results showed that Cyr61-depleted young ECM lost the ability to promote BM-MSC proliferation and growth factor responsiveness. However, up-regulating the incorporation of Cyr61 during synthesis of elderly ECM restored its ability to support BM-MSC responsiveness to osteogenic factors such as BMP-2 and IGF-1. We next examined aging bone and compared bone mineral density and Cyr61 content of L4-L5 vertebral bodies in "young" (9-11 m/o) and "elderly" (21-33 m/o) mice. Our analyses showed that low bone mineral density was associated with decreased amounts of Cyr61 in osseous tissue of elderly versus young mice. Our results strongly demonstrate a novel role for ECM-bound Cyr61 in the BM-MSC niche, where it is responsible for retention of BM-MSC proliferation and growth factor responsiveness, while depletion of Cyr61 from the BM niche contributes to an aging-related dysregulation of BM-MSCs. Our results also suggest new potential therapeutic targets for treating age-related bone loss by restoring specific ECM components to the stem cell niche.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States
| | - Qiuxia Dai
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Aaron O Gonzalez
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Travis J Block
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, TX 78229, United States
| | - Adam B Salmon
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229, United States
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States; Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, United States; Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX 78229(,) United States.
| |
Collapse
|
19
|
Teke HY, Ozsoy S, Duran S, Renklidag T. The estimation of sex, age, and stature from the distal femoral cortical thickness. CANADIAN SOCIETY OF FORENSIC SCIENCE JOURNAL 2022. [DOI: 10.1080/00085030.2022.2069344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hacer Yasar Teke
- Department of Forensic Medicine, Ordu University School of Medicine, Ordu, Turkey
| | - Sait Ozsoy
- Gulhane School of Medicine, University of Health Sciences, Department of Forensic Medicine, Ankara, Turkey, Keçiören, Turkey
| | - Semra Duran
- Radiology Clinic, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Tülay Renklidag
- The Council of Forensic Medicine, Ankara Group Chairmanship, Ankara, Turkey
| |
Collapse
|
20
|
Iwamoto R, Koide M, Udagawa N, Kobayashi Y. Positive and Negative Regulators of Sclerostin Expression. Int J Mol Sci 2022; 23:ijms23094895. [PMID: 35563281 PMCID: PMC9102037 DOI: 10.3390/ijms23094895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Sclerostin is secreted from osteocytes, binds to the Wnt co-receptor Lrp5/6, and affects the interaction between Wnt ligands and Lrp5/6, which inhibits Wnt/β-catenin signals and suppresses bone formation. Sclerostin plays an important role in the preservation of bone mass by functioning as a negative regulator of bone formation. A sclerostin deficiency causes sclerosteosis, which is characterized by an excess bone mass with enhanced bone formation in humans and mice. The expression of sclerostin is positively and negatively regulated by many factors, which also govern bone metabolism. Positive and negative regulators of sclerostin expression and their effects are introduced and discussed herein based on recent and previous findings, including our research.
Collapse
Affiliation(s)
- Rina Iwamoto
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Masanori Koide
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan;
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hiro-oka, Shiojiri 399-0781, Nagano, Japan; (R.I.); (M.K.)
- Correspondence: ; Tel.: +81-263-51-2238
| |
Collapse
|
21
|
Teissier T, Temkin V, Pollak RD, Cox LS. Crosstalk Between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility During Chronological Age and in Diabetes. Front Physiol 2022; 13:812157. [PMID: 35388291 PMCID: PMC8978545 DOI: 10.3389/fphys.2022.812157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/27/2022] [Indexed: 01/10/2023] Open
Abstract
Bone is a complex organ serving roles in skeletal support and movement, and is a source of blood cells including adaptive and innate immune cells. Structural and functional integrity is maintained through a balance between bone synthesis and bone degradation, dependent in part on mechanical loading but also on signaling and influences of the tissue microenvironment. Bone structure and the extracellular bone milieu change with age, predisposing to osteoporosis and increased fracture risk, and this is exacerbated in patients with diabetes. Such changes can include loss of bone mineral density, deterioration in micro-architecture, as well as decreased bone flexibility, through alteration of proteinaceous bone support structures, and accumulation of senescent cells. Senescence is a state of proliferation arrest accompanied by marked morphological and metabolic changes. It is driven by cellular stress and serves an important acute tumor suppressive mechanism when followed by immune-mediated senescent cell clearance. However, aging and pathological conditions including diabetes are associated with accumulation of senescent cells that generate a pro-inflammatory and tissue-destructive secretome (the SASP). The SASP impinges on the tissue microenvironment with detrimental local and systemic consequences; senescent cells are thought to contribute to the multimorbidity associated with advanced chronological age. Here, we assess factors that promote bone fragility, in the context both of chronological aging and accelerated aging in progeroid syndromes and in diabetes, including senescence-dependent alterations in the bone tissue microenvironment, and glycation changes to the tissue microenvironment that stimulate RAGE signaling, a process that is accelerated in diabetic patients. Finally, we discuss therapeutic interventions targeting RAGE signaling and cell senescence that show promise in improving bone health in older people and those living with diabetes.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Vladislav Temkin
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Dresner Pollak
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
WNT-5a and SOST Levels in Gingival Crevicular Fluid Depend on the Inflammatory and Osteoclastogenic Activities of Periodontal Tissues. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57080788. [PMID: 34440994 PMCID: PMC8399934 DOI: 10.3390/medicina57080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022]
Abstract
Background and Objectives: Wnt signaling leads to stimulation of osteoblasts and it reduces osteoclastogenesis and bone resorption via the regulation of the osteprotegrin and receptor activator of nuclear factor kappa-Β ligan (RANKL). Wnt signaling pathways are regulated by their physiological antagonists such as sclerostin (SOST) as well as WNT-5a. The aim of this study was to determine the total amount of Sclerostin and WNT-5a in the gingival crevicular fluid (GCF) in sites with a continuum from a healthy to diseased periodontium. Materials and Methods: In this cross-sectional study, a total of 20 patients with generalized periodontitis, 10 subjects with gingivitis as well as 14 individuals with a healthy periodontium were recruited upon clinical and radiographic periodontal examination. In patients diagnosed with periodontitis, GCF samples were collected from periodontitis, gingivitis and healthy sites, while gingivitis patients provided samples from gingivitis and healthy sites. In healthy patients, only healthy sites were sampled. Protein total amount of SOST and WNT-5a were quantified by sandwich enzyme-linked immunosorbent assay (ELISA). Results: A total of 108 GCF samples were collected from a total of 44 individuals. When all periodontitis (n = 51), gingivitis (n = 12) and healthy (n = 45) sites were analyzed regardless of the patient diagnosis, periodontitis sites demonstrated significantly elevated WNT-5a total amounts (p = 0.03) when compared to gingivitis sites. Gingivitis sites demonstrated a trend of more total SOST (p = 0.09) when compared to periodontitis and healthy sites. Within each patient diagnostic category, sites showed similar SOST and WNT-5a total amounts (p > 0.05). Conclusions: WNT-5a levels in GCF depend on the stage of periodontitis sites. SOST trended higher in the GCF of gingivitis sites but similar in chronic periodontitis and healthy sites. WNT-5a and SOST play a crucial role in periodontal tissue remodeling and depend on the inflammatory and osteoclastogenic activities.
Collapse
|
23
|
Singh DK, Patel VG, Oh WK, Aguirre-Ghiso JA. Prostate Cancer Dormancy and Reactivation in Bone Marrow. J Clin Med 2021; 10:2648. [PMID: 34208521 PMCID: PMC8234151 DOI: 10.3390/jcm10122648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer has a variable clinical course, ranging from curable local disease to lethal metastatic spread. Eradicating metastatic cells is a unique challenge that is rarely met with the available therapies. Thus, targeting prostate cancer cells in earlier disease states is a crucial window of opportunity. Interestingly, cancer cells migrate from their primary site during pre-cancerous and malignant phases to seed secondary organs. These cells, known as disseminated cancer cells (DCCs), may remain dormant for months or decades before activating to form metastases. Bone marrow, a dormancy-permissive site, is the major organ for housed DCCs and eventual metastases in prostate cancer. The dynamic interplay between DCCs and the primary tumor microenvironment (TME), as well as that between DCCs and the secondary organ niche, controls the conversion between states of dormancy and activation. Here, we discuss recent discoveries that have improved our understanding of dormancy signaling and the role of the TME in modulating the epigenetic reprogramming of DCCs. We offer potential strategies to target DCCs in prostate cancer.
Collapse
Affiliation(s)
- Deepak K. Singh
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Vaibhav G. Patel
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - William K. Oh
- Division of Hematology and Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Julio A. Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
24
|
Suthon S, Perkins RS, Bryja V, Miranda-Carboni GA, Krum SA. WNT5B in Physiology and Disease. Front Cell Dev Biol 2021; 9:667581. [PMID: 34017835 PMCID: PMC8129536 DOI: 10.3389/fcell.2021.667581] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
WNT5B, a member of the WNT family of proteins that is closely related to WNT5A, is required for cell migration, cell proliferation, or cell differentiation in many cell types. WNT5B signals through the non-canonical β-catenin-independent signaling pathway and often functions as an antagonist of canonical WNT signaling. Although WNT5B has a high amino acid identity with WNT5A and is often assumed to have similar activities, WNT5B often exhibits unique expression patterns and functions. Here, we describe the distinct effects and mechanisms of WNT5B on development, bone, adipose tissue, cardiac tissue, the nervous system, the mammary gland, the lung and hematopoietic cells, compared to WNT5A. We also highlight aberrances in non-canonical WNT5B signaling contributing to diseases such as osteoarthritis, osteoporosis, obesity, type 2 diabetes mellitus, neuropathology, and chronic diseases associated with aging, as well as various cancers.
Collapse
Affiliation(s)
- Sarocha Suthon
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rachel S Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czechia
| | - Gustavo A Miranda-Carboni
- Division of Hematology and Oncology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
25
|
Pignolo RJ, Law SF, Chandra A. Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus 2021; 5:e10488. [PMID: 33869998 PMCID: PMC8046105 DOI: 10.1002/jbm4.10488] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in aging bone that lead to osteoporosis are mediated at multiple levels, including hormonal alterations, skeletal unloading, and accumulation of senescent cells. This pathological interplay is superimposed upon medical conditions, potentially bone-wasting medications, modifiable and unmodifiable personal risk factors, and genetic predisposition that accelerate bone loss with aging. In this study, the focus is on bone hemostasis and its dysregulation with aging. The major physiological changes with aging in bone and the role of cellular senescence in contributing to age-related osteoporosis are summarized. The aspects of bone aging are reviewed including remodeling deficits, uncoupling phenomena, inducers of cellular senescence related to bone aging, roles of the senescence-associated secretory phenotype, radiation-induced bone loss as a model for bone aging, and the accumulation of senescent cells in the bone microenvironment as a predominant mechanism for age-related osteoporosis. The study also addresses the rationale and potential for therapeutic interventions based on the clearance of senescent cells or suppression of the senescence-associated secretory phenotype. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Susan F Law
- Department of MedicineMayo ClinicRochesterMNUSA
| | - Abhishek Chandra
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
26
|
Serizawa N, Okazaki S, Otsuka Y, Koto M, Okabe K, Ito M, Morita T, Hoashi T, Saeki H, Abe N, Mori M, Okubo Y, Yano Y, Mitsui H, Kanda N. Dietary habits in Japanese patients with palmoplantar pustulosis. J Dermatol 2021; 48:366-375. [PMID: 33404125 DOI: 10.1111/1346-8138.15719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Palmoplantar pustulosis (PPP) is a chronic dermatitis characterized by sterile intra-epidermal pustules associated with erythema and scales on the palms and soles. Tumor necrosis factor (TNF)-α/interleukin (IL)-23/IL-17 inflammatory pathway may be involved in the pathogenesis of PPP, and the skin lesions manifest the enhanced expression of IL-8 in keratinocytes and increased levels of antimicrobial peptide cathelicidin, leucine leucine-37 in vesicles/pustules. Some PPP patients are associated with arthro-osteitis, called pustulotic arthro-osteitis (PAO). Dietary habits may modulate the pathogenesis of PPP, however, have not been investigated in PPP patients. We evaluated dietary habits in adult Japanese PPP patients, using a validated, brief-type self-administered diet history questionnaire, and compared their results to those of age- and sex-matched healthy controls. The results in PPP patients with PAO were compared to those in the patients without. Japanese PPP patients showed higher body mass indices (BMIs), higher intakes of pulses and sugar/sweeteners, and lower intake of vitamin A, compared to those of healthy controls. The bivariate and multivariable logistic regression analysis showed that PPP was associated with high BMI, high intake of pulses, and low intake of vitamin A. The sodium intake and BMI were positively correlated with palmoplantar pustulosis area and severity index (PPPASI). The linear multivariate regression analysis revealed that sodium intake and BMI were predictors of PPPASI. The age and sodium intake in the patients with PAO were lower than those in the patients without. The bivariate and multivariable logistic regression analysis showed that PAO was negatively associated with age and sodium intake. This is the first study showing the dietary habits in patients with PPP. Further studies should clarify if the dietary intervention to correct the BMI and sodium intake will alter the progress of PPP.
Collapse
Affiliation(s)
- Naotaka Serizawa
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
- Department of Dermatology, Nippon Medical School, Bunkyo-Ku, Tokyo, Japan
| | - Shizuka Okazaki
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Yohei Otsuka
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Mototaka Koto
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Kyochika Okabe
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Michiko Ito
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Takashi Morita
- Department of Dermatology, Nippon Medical School, Bunkyo-Ku, Tokyo, Japan
| | - Toshihiko Hoashi
- Department of Dermatology, Nippon Medical School, Bunkyo-Ku, Tokyo, Japan
| | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Bunkyo-Ku, Tokyo, Japan
| | - Namiko Abe
- Department of Dermatology, Nippon Medical School, Bunkyo-Ku, Tokyo, Japan
| | - Miho Mori
- Department of Dermatology, Tokyo Medical University, Shinjuku-Ku, Tokyo, Japan
| | - Yukari Okubo
- Department of Dermatology, Tokyo Medical University, Shinjuku-Ku, Tokyo, Japan
| | - Yumiko Yano
- Department of Dermatology, Tokyo Medical University, Shinjuku-Ku, Tokyo, Japan
| | - Hiroshi Mitsui
- Department of Dermatology, Tokyo Teishin Hospital, Chiyoda-Ku, Tokyo, Japan
| | - Naoko Kanda
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| |
Collapse
|
27
|
Kerschan-Schindl K, Föger-Samwald U, Gleiss A, Kudlacek S, Wallwitz J, Pietschmann P. Circulating bioactive sclerostin levels in an Austrian population-based cohort. Wien Klin Wochenschr 2021; 134:39-44. [PMID: 33544208 PMCID: PMC8813720 DOI: 10.1007/s00508-021-01815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/13/2021] [Indexed: 12/03/2022]
Abstract
Background Circulating serum sclerostin levels are supposed to give a good estimation of the levels of this negative regulator of bone mass within bone. Most studies evaluating total serum sclerostin found different levels in males compared to females and in older compared to younger subjects. Besides an ELISA detecting total sclerostin an ELISA determining bioactive sclerostin has been developed. The aim of this study was to investigate serum levels of bioactive sclerostin in an Austrian population-based cohort. Methods We conducted a cross-sectional observational study in 235 healthy subjects. Using the bioactive ELISA assay (Biomedica) bioactive sclerostin levels were evaluated. Results Serum levels of bioactive sclerostin were higher in men than in women (24%). The levels correlated positively with age (r = 0.47). A positive correlation could also be detected with body mass index and bone mineral density. Conclusion Using the ELISA detecting bioactive sclerostin our results are consistent with data in the literature obtained by different sclerostin assays. The determination of sclerostin concentrations in peripheral blood thus appears to be a robust parameter of bone metabolism.
Collapse
Affiliation(s)
- Katharina Kerschan-Schindl
- Department of Physical Medicine, Rehabilitation and Occupational Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Ursula Föger-Samwald
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center of Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Stefan Kudlacek
- Medizinische Abteilung, Krankenhaus Barmherzige Brüder, Vienna, Austria
| | - Jacqueline Wallwitz
- Department Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner Privatuniversität für Gesundheitswissenschaften, Krems, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Saferding V, Hofmann M, Brunner JS, Niederreiter B, Timmen M, Magilnick N, Hayer S, Heller G, Steiner G, Stange R, Boldin M, Schabbauer G, Weigl M, Hackl M, Grillari J, Smolen JS, Blüml S. microRNA-146a controls age-related bone loss. Aging Cell 2020; 19:e13244. [PMID: 33085187 PMCID: PMC7681058 DOI: 10.1111/acel.13244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Bone loss is one of the consequences of aging, leading to diseases such as osteoporosis and increased susceptibility to fragility fractures and therefore considerable morbidity and mortality in humans. Here, we identify microRNA‐146a (miR‐146a) as an essential epigenetic switch controlling bone loss with age. Mice deficient in miR‐146a show regular development of their skeleton. However, while WT mice start to lose bone with age, animals deficient in miR‐146a continue to accrue bone throughout their life span. Increased bone mass is due to increased generation and activity of osteoblasts in miR‐146a‐deficient mice as a result of sustained activation of bone anabolic Wnt signaling during aging. Deregulation of the miR‐146a target genes Wnt1 and Wnt5a parallels bone accrual and osteoblast generation, which is accompanied by reduced development of bone marrow adiposity. Furthermore, miR‐146a‐deficient mice are protected from ovariectomy‐induced bone loss. In humans, the levels of miR‐146a are increased in patients suffering fragility fractures in comparison with those who do not. These data identify miR‐146a as a crucial epigenetic temporal regulator which essentially controls bone homeostasis during aging by regulating bone anabolic Wnt signaling. Therefore, miR‐146a might be a powerful therapeutic target to prevent age‐related bone dysfunctions such as the development of bone marrow adiposity and osteoporosis.
Collapse
Affiliation(s)
- Victoria Saferding
- Department of Rheumatology Medical University of Vienna Vienna Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation Vienna Austria
| | - Melanie Hofmann
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation Vienna Austria
- Institute for Vascular Biology Centre for Physiology and Pharmacology Medical University of Vienna Vienna Austria
| | - Julia S. Brunner
- Institute for Vascular Biology Centre for Physiology and Pharmacology Medical University of Vienna Vienna Austria
| | | | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine Institute of Musculoskeletal Medicine (IMM) University Hospital Münster Münster Germany
| | - Nathaniel Magilnick
- Department of Molecular and Cellular Biology Beckman Research Institute City of Hope Duarte California USA
| | - Silvia Hayer
- Department of Rheumatology Medical University of Vienna Vienna Austria
| | - Gerwin Heller
- Department of Medicine I Medical University of Vienna Vienna Austria
| | - Günter Steiner
- Department of Rheumatology Medical University of Vienna Vienna Austria
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine Institute of Musculoskeletal Medicine (IMM) University Hospital Münster Münster Germany
| | - Mark Boldin
- Department of Molecular and Cellular Biology Beckman Research Institute City of Hope Duarte California USA
| | - Gernot Schabbauer
- Institute for Vascular Biology Centre for Physiology and Pharmacology Medical University of Vienna Vienna Austria
| | - Moritz Weigl
- TAmiRNA GmbH Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| | - Matthias Hackl
- TAmiRNA GmbH Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration Vienna Austria
- Department of Biotechnology Institute for Molecular Biotechnology BOKU – University of Natural Resources and Life Sciences Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center Vienna Austria
| | - Josef S. Smolen
- Department of Rheumatology Medical University of Vienna Vienna Austria
| | - Stephan Blüml
- Department of Rheumatology Medical University of Vienna Vienna Austria
| |
Collapse
|
29
|
Kim J, Han W, Park T, Kim EJ, Bang I, Lee HS, Jeong Y, Roh K, Kim J, Kim JS, Kang C, Seok C, Han JK, Choi HJ. Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains. Nat Commun 2020; 11:5357. [PMID: 33097721 PMCID: PMC7585440 DOI: 10.1038/s41467-020-19155-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/30/2020] [Indexed: 12/21/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a coreceptor of the β-catenin-dependent Wnt signaling pathway. The LRP6 ectodomain binds Wnt proteins, as well as Wnt inhibitors such as sclerostin (SOST), which negatively regulates Wnt signaling in osteocytes. Although LRP6 ectodomain 1 (E1) is known to interact with SOST, several unresolved questions remain, such as the reason why SOST binds to LRP6 E1E2 with higher affinity than to the E1 domain alone. Here, we present the crystal structure of the LRP6 E1E2–SOST complex with two interaction sites in tandem. The unexpected additional binding site was identified between the C-terminus of SOST and the LRP6 E2 domain. This interaction was confirmed by in vitro binding and cell-based signaling assays. Its functional significance was further demonstrated in vivo using Xenopus laevis embryos. Our results provide insights into the inhibitory mechanism of SOST on Wnt signaling. The low-density lipoprotein receptor-related protein 6 (LRP6) is a co-receptor of the β-catenin-dependent Wnt signaling pathway and interacts with the Wnt inhibitor sclerostin (SOST). Here the authors present the crystal structure of SOST in complex with the LRP6 E1E2 ectodomain construct, which reveals that the SOST C-terminus binds to the LRP6 E2 domain, and further validate this binding site with in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wonhee Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Jin Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Plumbline Life Sciences, Inc., Seoul, 06552, Republic of Korea
| | - Injin Bang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hyun Sik Lee
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yejing Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeonghwan Roh
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeesoo Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
| | - Jong-Seo Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Center for RNA Research, Institute for Basic Science, Seoul, 08826, Republic of Korea
| | - Chanhee Kang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
30
|
Corrado A, Cici D, Rotondo C, Maruotti N, Cantatore FP. Molecular Basis of Bone Aging. Int J Mol Sci 2020; 21:ijms21103679. [PMID: 32456199 PMCID: PMC7279376 DOI: 10.3390/ijms21103679] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
A decline in bone mass leading to an increased fracture risk is a common feature of age-related bone changes. The mechanisms underlying bone senescence are very complex and implicate systemic and local factors and are the result of the combination of several changes occurring at the cellular, tissue and structural levels; they include alterations of bone cell differentiation and activity, oxidative stress, genetic damage and the altered responses of bone cells to various biological signals and to mechanical loading. The molecular mechanisms responsible for these changes remain greatly unclear and many data derived from in vitro or animal studies appear to be conflicting and heterogeneous, probably due to the different experimental approaches; nevertheless, understanding the main physio-pathological processes that cause bone senescence is essential for the development of new potential therapeutic options for treating age-related bone loss. This article reviews the current knowledge concerning the molecular mechanisms underlying the pathogenesis of age-related bone changes.
Collapse
|
31
|
Sagar T, Kasonga A, Baschant U, Rauner M, Moosa S, Marais S, Kruger M, Coetzee M. Aspalathin from Aspalathus linearis (rooibos) reduces osteoclast activity and increases osteoblast activity in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
32
|
Romosozumab: a novel bone anabolic treatment option for osteoporosis? Wien Med Wochenschr 2019; 170:124-131. [PMID: 31858345 PMCID: PMC7098919 DOI: 10.1007/s10354-019-00721-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 10/29/2022]
Abstract
Research into the drug romosozumab began with the investigation of patients with excess bone formation. The understanding of the wingless-type mouse mammary tumor virus integration site (Wnt) signaling pathway in bone metabolism identified the negative regulator of bone mass sclerostin as a potential target for the treatment of osteoporosis. Preclinical studies confirmed this idea because they showed that sclerostin antibodies have the potential to increase bone formation. Biochemical analyses of clinical studies showed a significant increase in bone formation markers, which then slowly decreased within a year. This was accompanied by a particularly initially pronounced decrease in bone resorption. This dual mechanism of action led to an increase in bone mineral density and a significant reduction in fracture risk. Clinical vertebral fractures decreased by between 28 and 36%, nonvertebral fractures shown in a post hoc analysis by 42%. Romosozumab is administered once a month in the form of two injections. At the puncture site, reactions occur in about 5%. The most significant side effects are cardiovascular. In phase III studies, the number of serious cardiovascular complications was not significantly, albeit numerically, higher than in the control group. In Japan, South Korea, Canada, Australia, and the USA, osteoporosis patients at a high risk of fracture may already be treated with romosozumab (Evenity). Approval in the European Union was granted by 2019-12-12.
Collapse
|
33
|
Chatzopoulos GS, Mansky KC, Lunos S, Costalonga M, Wolff LF. Sclerostin and WNT‐5a gingival protein levels in chronic periodontitis and health. J Periodontal Res 2019; 54:555-565. [DOI: 10.1111/jre.12659] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/18/2019] [Accepted: 03/09/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Georgios S. Chatzopoulos
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry University of Minnesota Minneapolis Minnesota
| | - Kim C. Mansky
- Division of Orthodontics, Department of Developmental and Surgical Sciences, School of Dentistry University of Minnesota Minneapolis Minnesota
| | - Scott Lunos
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute University of Minnesota Minneapolis Minnesota
| | - Massimo Costalonga
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry University of Minnesota Minneapolis Minnesota
| | - Larry F. Wolff
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry University of Minnesota Minneapolis Minnesota
| |
Collapse
|
34
|
Massaccesi L, Ragone V, Papini N, Goi G, Corsi Romanelli MM, Galliera E. Effects of Vitamin E-Stabilized Ultra High Molecular Weight Polyethylene on Oxidative Stress Response and Osteoimmunological Response in Human Osteoblast. Front Endocrinol (Lausanne) 2019; 10:203. [PMID: 31001202 PMCID: PMC6457167 DOI: 10.3389/fendo.2019.00203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/12/2019] [Indexed: 11/30/2022] Open
Abstract
High Crosslink process was introduced in the development of joint prosthetic devices, in order to decrease the wear rate of ultrahigh molecular weight polyethylene (UHMWPE), but it also triggers the formation of free radicals and oxidative stress, which affects the physiological bone remodeling, leading to osteolysis. Vitamin E stabilization of UHMWPE was proposed to provide oxidation resistance without affecting mechanical properties and fatigue strength. The aim of this study is to evaluate the antioxidant effect of vitamin E added to UHMWPE on oxidative stress induced osteolysis, focusing in particular on the oxidative stress response in correlation with the production of osteoimmunological markers, Sclerostin and DKK-1, and the RANKL/OPG ratio compared to conventional UHMWPE wear debris. Human osteoblastic cell line SaOS2 were incubated for 96 h with wear particles derived from crosslinked and not crosslinked Vitamin E-stabilized, UHMWPE without Vitamin E, and growth medium as control. Cellular response to oxidative stress, compared to not treat cells, was evaluated in terms of proteins O-GlcNAcylation, cellular levels of OGA, and OGT proteins by immunoblotting. O-GlcNAcylation and its positive regulator OGT levels are increased in the presence of Vitamin E blended UHMWPE, in particular with not crosslinked Vit E stabilized UHMWPE. Conversely, the negative regulator OGA increased in the presence of UHMWPE not blended with Vitamin E. Vitamin E-stabilized UHMWPE induced a decrease of RANKL/OPG ratio compared to UHMWPE without Vitamin E, and the same effect was observed for Sclerostin, while DKK-1 was not significantly affected. In conclusion, Vitamin E stabilization of UHMWPE increased osteoblast response to oxidative stress, inducing a cellular mechanism aimed at cell survival. Vitamin E antioxidant effect influences the secretion of osteoimmunological factors, shifting the bone turnover balance toward bone protection stimuli. This suggests that Vitamin E-Stabilization of UHMWPE could contribute to reduction of oxidation-induced osteolysis and the consequent loosening of the prosthetic devices, therefore improving the longevity of total joint replacements.
Collapse
Affiliation(s)
- Luca Massaccesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Vincenza Ragone
- Research and Develpoment Department, Permedica S.p.A, Merate, Italy
| | - Nadia Papini
- Department of Medical Biotechnology and Traslational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Giancarlo Goi
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- U.O.C SMEL-1 Patologia Clinica San Donato, IRCCS Policlinico San Donato, Milan, Italy
| | - Emanuela Galliera
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- *Correspondence: Emanuela Galliera
| |
Collapse
|
35
|
Ren D, Dai Y, Yang Q, Zhang X, Guo W, Ye L, Huang S, Chen X, Lai Y, Du H, Lin C, Peng X, Song L. Wnt5a induces and maintains prostate cancer cells dormancy in bone. J Exp Med 2018; 216:428-449. [PMID: 30593464 PMCID: PMC6363426 DOI: 10.1084/jem.20180661] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Wnt5a from osteoblastic niche induces and maintains the dormancy of prostate cancer cells in bone and inhibits bone metastasis in a preventive manner, uncovering a potential therapeutic utility of Wnt5a in the treatment of bone metastatic prostate cancer. In a substantial fraction of prostate cancer (PCa) patients, bone metastasis appears after years or even decades of latency. Canonical Wnt/β-catenin signaling has been proposed to be implicated in dormancy of cancer cells. However, how these tumor cells are kept dormant and recur under control of Wnt/β-catenin signaling derived from bone microenvironment remains unknown. Here, we report that Wnt5a from osteoblastic niche induces dormancy of PCa cells in a reversible manner in vitro and in vivo via inducing Siah E3 Ubiquitin Protein Ligase 2 (SIAH2) expression, which represses Wnt/β-catenin signaling. Furthermore, this effect of Wnt5a-induced dormancy of PCa cells depends on receptor tyrosine kinase-like orphan receptor 2 (ROR2), and a negative correlation of ROR2 expression with bone metastasis–free survival is observed in PCa patients. Therefore, these results demonstrate that Wnt5a/ROR2/SIAH2 signaling axis plays a crucial role in inducing and maintaining PCa cells dormancy in bone, suggesting a potential therapeutic utility of Wnt5a via inducing dormancy of PCa cells in bone.
Collapse
Affiliation(s)
- Dong Ren
- Department of Orthopedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Yuhu Dai
- Department of Orthopedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Qing Yang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Xin Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Wei Guo
- Department of Orthopedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Liping Ye
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuai Huang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Xu Chen
- Department of Urology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingrong Lai
- Department of Pathology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hong Du
- Department of Pathology, the First People's Hospital of Guangzhou City, Guangzhou, China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinsheng Peng
- Department of Orthopedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China .,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
36
|
Amjadi-Moheb F, Hosseini SR, Kosari-Monfared M, Ghadami E, Nooreddini H, Akhavan-Niaki H. A specific haplotype in potential miRNAs binding sites of secreted frizzled-related protein 1 (SFRP1) is associated with BMD variation in osteoporosis. Gene 2018; 677:132-141. [PMID: 30055306 DOI: 10.1016/j.gene.2018.07.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022]
Abstract
PURPOSE Osteoporosis is an important multifactorial disease which is largely influenced by Wnt signaling pathway. Considering regulatory single nucleotide polymorphisms in Wnt signaling pathway may pave the road of understanding the genetic basis of predisposition to osteoporosis. The aim of this study was to determine the possible association between variants of SFRP1 and WNT5b, and osteoporosis incidence risk. METHODS The study population comprised 186 osteoporotic patients and 118 normal subjects from Amirkola Health and Ageing Project. rs1127379 (c.1406A>G) and rs3242 (c.3132C>T) variants in 3'UTR of SFRP1 gene, and rs3803164 (c.236C>T) in 3'UTR and rs735890 (c.622-536A>G) in intron 4 of WNT5b gene were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Regression analyses were used to calculate the association of genotype frequencies with bone mineral density (BMD) and bone mineral content (BMC) values of participants. Bioinformatics algorithms were used to detect the effect of each SNP on the secondary structure of mRNA, and predict putative 3'UTR microRNA target sites and splicing sites changes by related SNPs. RESULTS WNT5b rs735890 was associated with lumbar spine BMD, BMC, and femoral neck BMC (P = 0.035, P = 0.007, and P = 0.038, respectively). WNT5b rs3803164, and SFRP1 rs3242 were significantly associated with lumbar spine BMD (P = 0.028 and P = 0.030, respectively). SFRP1 rs1127379 was associated with lumbar spine BMD in the male gender. Haplotype analysis showed a significant association of SFRP1 c.[1406A; 3132C] haplotype with lumbar spine BMD, and BMC (P = 0.019 and P = 0.030, respectively), and SFRP1 c.[1406G; 3132C] haplotype with lumbar spine BMC (P = 0.045). In silico analyses revealed that the G allele of SFRP1 rs1127379, and WNT5b rs3803164 appear as more possible target sites for many miRNAs. CONCLUSIONS This study is the first evidence of the association of WNT5b rs735890, and c.[1406A; 3132C] and c.[1406G; 3132C] haplotypes of SFRP1 with BMD variation in osteoporosis, probably by altering microRNA target sites, in elderly persons.
Collapse
Affiliation(s)
- Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Reza Hosseini
- Social Determinant of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohadeseh Kosari-Monfared
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Elham Ghadami
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hajighorban Nooreddini
- Department of Radiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
37
|
Brown BA, Williams H, Bond AR, Angelini GD, Johnson JL, George SJ. Carotid artery ligation induced intimal thickening and proliferation is unaffected by ageing. J Cell Commun Signal 2018; 12:529-537. [PMID: 29185213 PMCID: PMC6039339 DOI: 10.1007/s12079-017-0431-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/27/2017] [Indexed: 01/20/2023] Open
Abstract
Following interventions to treat atherosclerosis, such as coronary artery bypass graft surgery, restenosis occurs in approximately 40% of patients. Identification of proteins regulating intimal thickening could represent targets to prevent restenosis. Our group previously demonstrated that in a murine model of vascular occlusion, Wnt4 protein expression and β-catenin signalling was upregulated which promoted vascular smooth muscle cell (VSMC) proliferation and intimal thickening. In this study, the effect of age on VSMC proliferation, intimal hyperplasia and Wnt4 expression was investigated. In vitro proliferation of VSMCs isolated from young (2 month) or old (18-20 month) C57BL6/J mice was assessed by immunocytochemistry for EdU incorporation. As previously reported, 400 ng/mL recombinant Wnt4 protein increased proliferation of VSMCs from young mice. However, this response was absent in VSMCs from old mice. As our group previously reported reduced intimal hyperplasia in Wnt4+/- mice compared to wildtype controls, we hypothesised that impaired Wnt4 signalling with age may result in reduced neointimal formation. To investigate this, carotid artery ligation was performed in young and old mice and neointimal area was assessed 21 days later. Surprisingly, neointimal area and percentage lumen occlusion were not significantly affected by age. Furthermore, neointimal cell density and proliferation were also unchanged. These data suggest that although Wnt4-mediated proliferation was impaired with age in primary VSMCs, carotid artery ligation induced neointimal formation and proliferation were unchanged in old mice. These results imply that Wnt4-mediated proliferation is unaffected by age in vivo, suggesting that therapeutic Wnt4 inhibition could inhibit restenosis in patients of all ages.
Collapse
Affiliation(s)
- B A Brown
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - H Williams
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - A R Bond
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - G D Angelini
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - J L Johnson
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - S J George
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
38
|
Wu J, Zhang W, Ran Q, Xiang Y, Zhong JF, Li SC, Li Z. The Differentiation Balance of Bone Marrow Mesenchymal Stem Cells Is Crucial to Hematopoiesis. Stem Cells Int 2018; 2018:1540148. [PMID: 29765406 PMCID: PMC5903338 DOI: 10.1155/2018/1540148] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/21/2018] [Indexed: 01/20/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs), the important component and regulator of bone marrow microenvironment, give rise to hematopoietic-supporting stromal cells and form hematopoietic niches for hematopoietic stem cells (HSCs). However, how BMSC differentiation affects hematopoiesis is poorly understood. In this review, we focus on the role of BMSC differentiation in hematopoiesis. We discussed the role of BMSCs and their progeny in hematopoiesis. We also examine the mechanisms that cause differentiation bias of BMSCs in stress conditions including aging, irradiation, and chemotherapy. Moreover, the differentiation balance of BMSCs is crucial to hematopoiesis. We highlight the negative effects of differentiation bias of BMSCs on hematopoietic recovery after bone marrow transplantation. Keeping the differentiation balance of BMSCs is critical for hematopoietic recovery. This review summarises current understanding about how BMSC differentiation affects hematopoiesis and its potential application in improving hematopoietic recovery after bone marrow transplantation.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Weiwei Zhang
- Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Qian Ran
- Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yang Xiang
- Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiang F. Zhong
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Shengwen Calvin Li
- CHOC Children's Hospital Research Institute, University of California, Irvine, 1201 West La Veta Ave, Orange, CA 92868, USA
| | - Zhongjun Li
- Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
39
|
Yuan X, Pei X, Zhao Y, Tulu US, Liu B, Helms JA. A Wnt-Responsive PDL Population Effectuates Extraction Socket Healing. J Dent Res 2018; 97:803-809. [PMID: 29420105 DOI: 10.1177/0022034518755719] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stem cells residing in the periodontal ligament (PDL) support the homeostasis of the periodontium, but their in vivo identity, source(s), and function(s) remain poorly understood. Here, using a lineage-tracing mouse strain, we identified a quiescent Wnt-responsive population in the PDL that became activated in response to tooth extraction. The Wnt-responsive population expanded by proliferation, then migrated from the PDL remnants that remained attached to bundle bone, into the socket. Once there, the Wnt-responsive progeny upregulated osteogenic protein expression, differentiated into osteoblasts, and generated the new bone that healed the socket. Using a liposomal WNT3A protein therapeutic, we showed that a single application at the time of extraction was sufficient to accelerate extraction socket healing 2-fold. Collectively, these data identify a new stem cell population in the intact periodontium that is directly responsible for alveolar bone healing after tooth removal.
Collapse
Affiliation(s)
- X Yuan
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - X Pei
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA, USA.,2 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Zhao
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA, USA.,3 Department of Oral Basic Science, School of Dentistry, Lanzhou University, Lanzhou, China
| | - U S Tulu
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - B Liu
- 4 Ankasa Regenerative Therapeutics, South San Francisco, CA, USA
| | - J A Helms
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
40
|
Michalicka M, Boisjoli G, Jahan S, Hovey O, Doxtator E, Abu-Khader A, Pasha R, Pineault N. Human Bone Marrow Mesenchymal Stromal Cell-Derived Osteoblasts Promote the Expansion of Hematopoietic Progenitors Through Beta-Catenin and Notch Signaling Pathways. Stem Cells Dev 2017; 26:1735-1748. [PMID: 29050516 DOI: 10.1089/scd.2017.0133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Coculture of hematopoietic stem cells (HSC) with primary stromal cells from HSC niches supports the maintenance and expansion of HSC and progenitors ex vivo. However, a major drawback is the availability of primary human samples for research and clinical applications. We investigated the use of in vitro derived osteoblasts as a new source of feeder cells and characterized the molecular pathways that mediate their growth-promoting activities. First, we compared the growth and differentiation modulating activities of mesenchymal stromal cells (MSC)-derived osteoblasts (M-OST) with those of their undifferentiated precursor on umbilical cord blood (UCB) progenitors. Feeder-free cultures were also included as baseline control. Cell growth and expansion of hematopoietic progenitors were significantly enhanced by both feeder cell types. However, progenitor cell growth was considerably greater with M-OST. Coculture also promoted the maintenance of immature CD34+ progenitor subsets and modulated in a positive fashion the expression of several homing-related cell surface receptors, in a feeder-specific fashion. Serial transplantation experiments revealed that M-OST coculture supported the maintenance of long-term lympho-myeloid reconstituting HSC that provided engraftment levels that were generally superior to those from MSC cocultures. Mechanistically, we found that coculture with M-OST was associated with enhanced beta-catenin (β-Cat) activity in UCB cells and that abrogation of β-Cat/T-cell factor activity blunted the growth-promoting activity of the M-OST coculture. Conversely, Notch inhibition reduced UCB cell expansion, but to a much lesser extent. In conclusion, this study demonstrates that M-OST are excellent feeder cells for HSC and progenitors, and it identifies key molecular pathways that are responsible for the growth-enhancing activities of osteoblasts on UCB progenitors.
Collapse
Affiliation(s)
- Matthew Michalicka
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Gavin Boisjoli
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Suria Jahan
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada .,2 Biochemistry, Microbiology and Immunology Department, University of Ottawa , Ottawa, Canada
| | - Owen Hovey
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada .,2 Biochemistry, Microbiology and Immunology Department, University of Ottawa , Ottawa, Canada
| | - Emily Doxtator
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Ahmad Abu-Khader
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Roya Pasha
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada
| | - Nicolas Pineault
- 1 Canadian Blood Services, Centre for Innovation , Ottawa, Ontario, Canada .,2 Biochemistry, Microbiology and Immunology Department, University of Ottawa , Ottawa, Canada
| |
Collapse
|
41
|
Becerikli M, Jaurich H, Schira J, Schulte M, Döbele C, Wallner C, Abraham S, Wagner JM, Dadras M, Kneser U, Lehnhardt M, Behr B. Age-dependent alterations in osteoblast and osteoclast activity in human cancellous bone. J Cell Mol Med 2017; 21:2773-2781. [PMID: 28444839 PMCID: PMC5661248 DOI: 10.1111/jcmm.13192] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/09/2017] [Indexed: 01/18/2023] Open
Abstract
It is assumed that the activity of osteoblasts and osteoclasts is decreased in bone tissue of aged individuals. However, detailed investigation of the molecular signature of human bone from young compared to aged individuals confirming this assumption is lacking. In this study, quantitative expression analysis of genes related to osteogenesis and osteoclastogenesis of human cancellous bone derived from the distal radius of young and aged individuals was performed. Furthermore, we additionally performed immunohistochemical stainings. The young group included 24 individuals with an average age of 23.2 years, which was compared to cancellous bone derived from 11 body donators with an average age of 81.0 years. In cancellous bone of young individuals, the osteogenesis-related genes RUNX-2, OSTERIX, OSTEOPONTIN and OSTEOCALCIN were significantly up-regulated compared to aged individuals. In addition, RANKL and NFATc1, both markers for osteoclastogenesis, were significantly induced in cancellous bone of young individuals, as well as the WNT gene family member WNT5a and the matrix metalloproteinases MMP-9. However, quantitative RT-PCR analysis of BMP-2, ALP, FGF-2, CYCLIN-D1, MMP-13, RANK, OSTEOPROTEGERIN and TGFb1 revealed no significant difference. Furthermore, Tartrate-resistant acid phosphatase (TRAP) staining was performed which indicated an increased osteoclast activity in cancellous bone of young individuals. In addition, pentachrome stainings revealed significantly less mineralized bone matrix, more osteoid and an increased bone density in young individuals. In summary, markers related to osteogenesis as well as osteoclastogenesis were significantly decreased in the aged individuals. Thus, the present data extends the knowledge about reduced bone regeneration and healing capacity observed in aged individuals.
Collapse
Affiliation(s)
- Mustafa Becerikli
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Henriette Jaurich
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Jessica Schira
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Matthias Schulte
- Department of Plastic SurgeryBG Trauma Hospital LudwigshafenUniversity of HeidelbergLudwigshafenGermany
| | - Carmen Döbele
- Department of Plastic SurgeryBG Trauma Hospital LudwigshafenUniversity of HeidelbergLudwigshafenGermany
| | - Christoph Wallner
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Stephanie Abraham
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Johannes M. Wagner
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Mehran Dadras
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Ulrich Kneser
- Department of Plastic SurgeryBG Trauma Hospital LudwigshafenUniversity of HeidelbergLudwigshafenGermany
| | - Marcus Lehnhardt
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Björn Behr
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| |
Collapse
|
42
|
Pizzino G, Irrera N, Galfo F, Oteri G, Atteritano M, Pallio G, Mannino F, D'Amore A, Pellegrino E, Aliquò F, Anastasi GP, Cutroneo G, Squadrito F, Altavilla D, Bitto A. Adenosine Receptor Stimulation Improves Glucocorticoid-Induced Osteoporosis in a Rat Model. Front Pharmacol 2017; 8:558. [PMID: 28928654 PMCID: PMC5591884 DOI: 10.3389/fphar.2017.00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/08/2017] [Indexed: 11/21/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIO) is a secondary cause of bone loss. Bisphosphonates approved for GIO, might induce jaw osteonecrosis; thus additional therapeutics are required. Adenosine receptor agonists are positive regulators of bone remodeling, thus the efficacy of adenosine receptor stimulation for treating GIO was tested. In a preventive study GIO was induced in Sprague-Dawley rats by methylprednisolone (MP) for 60 days. Animals were randomly assigned to receive polydeoxyribonucleotide (PDRN), an adenosine A2 receptor agonist, or PDRN and DMPX (3,7-dimethyl-1-propargylxanthine, an A2 antagonist), or vehicle (0.9% NaCl). Another set of animals was used for a treatment study, following the 60 days of MP-induction rats were randomized to receive (for additional 60 days) PDRN, or PDRN and DMPX (an adenosine A2 receptor antagonist), or zoledronate (as control for gold standard treatment), or vehicle. Control animals were administered with vehicle for either 60 or 120 days. Femurs were analyzed after treatments for histology, imaging, and breaking strength analysis. MP treatment induced severe bone loss, the concomitant use of PDRN prevented the developing of osteoporosis. In rats treated for 120 days, PDRN restored bone architecture and bone strength; increased b-ALP, osteocalcin, osteoprotegerin and stimulated the Wnt canonical and non-canonical pathway. Zoledronate reduced bone resorption and ameliorated the histological features, without significant effects on bone formation. Our results suggest that adenosine receptor stimulation might be useful for preventing and treating GIO.
Collapse
Affiliation(s)
- Gabriele Pizzino
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Federica Galfo
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Giacomo Oteri
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Marco Atteritano
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Angelica D'Amore
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Enrica Pellegrino
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Federica Aliquò
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Giuseppe P Anastasi
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Giuseppina Cutroneo
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| | - Domenica Altavilla
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Images, University of MessinaMessina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of MessinaMessina, Italy
| |
Collapse
|
43
|
Lima MDR, Lopes AP, Martins C, Brito GAC, Carneiro VC, Goes P. The Effect of Calendula officinalis on Oxidative Stress and Bone Loss in Experimental Periodontitis. Front Physiol 2017; 8:440. [PMID: 28701962 PMCID: PMC5487466 DOI: 10.3389/fphys.2017.00440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is associated with reduced antioxidant capacity and increased oxidative damage. Oxidative stress induces inflammation and bone loss contributing to the pathological progression of periodontal disease. Calendula officinalis (CLO) has demonstrated anti-inflammatory and anti-oxidant activities. Therefore, the aim of this study was to evaluate the effect of CLO on oxidative stress and bone loss in rats subjected to experimental periodontitis (EP). For this, 72 male Wistar rats were divided into groups: Naïve, Saline (SAL) and CLO. Rats received SAL or CLO (90 mg/kg) 30 min before ligature and daily until the 11th day. Naïve group experienced no manipulation. After 11 days, the animals were euthanized and left maxillae collected for macroscopic analysis of alveolar bone loss (ABL). Periodontium was analyzed by macroscopy, scanning electron microscopy; confocal and light polarized microscopy. Immunohistochemical examination of DKK1, WNT 10b and β-catenin was performed. The gingival tissue was collected to reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) analyses. The 11 days of ligature induced bone loss, breakdown of collagen fibers, increased the immunostaining DKK-1 while reduced WNT 10b and β-catenin expressions. Periodontitis reduced GSH, SOD, CAT and increase MDA. All findings were reversed by 90 mg/kg of CLO. In summary our findings demonstrated that CLO reduced oxidative stress and bone loss and preserved collagen fibers in rats with EP, with participation of WNT signaling pathway.
Collapse
Affiliation(s)
- Mariana Dos Reis Lima
- Nucleus of Study and Research in Pain, Inflammation, and Osteoimmunology, Department of Morphology, Medical School, Federal University of CearáFortaleza, Brazil
| | - Amanda P Lopes
- Nucleus of Study and Research in Pain, Inflammation, and Osteoimmunology, Department of Pathology and Legal Medicine, Medical School, Federal University of CearáFortaleza, Brazil
| | - Conceição Martins
- Nucleus of Study and Research in Pain, Inflammation, and Osteoimmunology, Department of Morphology, Medical School, Federal University of CearáFortaleza, Brazil
| | - Gerly A C Brito
- Department of Morphology, Medical School, Federal University of CearáFortaleza, Brazil
| | - Virgínia C Carneiro
- Department of Morphology, Medical School, Federal University of CearáFortaleza, Brazil
| | - Paula Goes
- Nucleus of Study and Research in Pain, Inflammation, and Osteoimmunology, Department of Pathology and Legal Medicine, Medical School, Federal University of CearáFortaleza, Brazil
| |
Collapse
|
44
|
Park YE, Musson DS, Naot D, Cornish J. Cell–cell communication in bone development and whole-body homeostasis and pharmacological avenues for bone disorders. Curr Opin Pharmacol 2017; 34:21-35. [DOI: 10.1016/j.coph.2017.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
45
|
Pflug T, Huynh-Do U, Rudloff S. Reduced β-catenin expression affects patterning of bone primordia, but not bone maturation. Biol Open 2017; 6:582-588. [PMID: 28347990 PMCID: PMC5450319 DOI: 10.1242/bio.023572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Wnt/β-catenin signaling is involved in patterning of bone primordia, but also plays an important role in the differentiation of chondrocytes and osteoblasts. During these processes the level of β-catenin must be tightly regulated. Excess β-catenin leads to conditions with increased bone mass, whereas loss of β-catenin is associated with osteoporosis or, in extreme cases, the absence of limbs. In this study, we examined skeletogenesis in mice, which retain only 25% of β-catenin. These embryos showed severe morphological abnormalities of which the lack of hindlimbs and misshaped front paws were the most striking. Surprisingly however, calcification of bone primordia occurred normally. Moreover, the Wnt-dependent regulatory network of transcription factors driving the differentiation of cartilage and bone, as well as the expression of extracellular matrix components, were preserved. These findings show that 25% β-catenin is insufficient for the correct patterning of bone primordia, but sufficient for their mineralization. Our approach helps to identify bone morphogenetic processes that can proceed normally even at low β-catenin levels, in contrast to those that require high β-catenin dosages. This information could be exploited to improve the treatment of bone diseases by fine-tuning the individual β-catenin dosage requirements. Summary: The correct allocation and patterning of skeletal elements during development requires a higher dosage of β-catenin than the maturation and mineralization of these primordia.
Collapse
Affiliation(s)
- Tobias Pflug
- Department of Clinical Research, Department of Nephrology and Hypertension, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, Switzerland
| | - Uyen Huynh-Do
- Department of Clinical Research, Department of Nephrology and Hypertension, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, Switzerland
| | - Stefan Rudloff
- Department of Clinical Research, Department of Nephrology and Hypertension, Bern University Hospital, University of Bern, Freiburgstrasse 15, Bern CH-3010, Switzerland
| |
Collapse
|
46
|
Haffner-Luntzer M, Liedert A, Ignatius A. Mechanobiology of bone remodeling and fracture healing in the aged organism. Innov Surg Sci 2016; 1:57-63. [PMID: 31579720 PMCID: PMC6753991 DOI: 10.1515/iss-2016-0021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 01/18/2023] Open
Abstract
Bone can adapt to changing load demands by mechanically regulated bone remodeling. Osteocytes, osteoblasts, and mesenchymal stem cells are mechanosensitive and respond to mechanical signals through the activation of specific molecular signaling pathways. The process of bone regeneration after fracture is similarly and highly regulated by the biomechanical environment at the fracture site. Depending on the tissue strains, mesenchymal cells differentiate into fibroblasts, chondrocytes, or osteoblasts, determining the course and the success of healing. In the aged organism, mechanotransduction in both intact and fractured bones may be altered due to changed hormone levels and expression of growth factors and other signaling molecules. It is proposed that altered mechanotransduction may contribute to disturbed healing in aged patients. This review explains the basic principles of mechanotransduction in the bone and the fracture callus and summarizes the current knowledge on aging-induced changes in mechanobiology. Furthermore, the methods for external biomechanical stimulation of intact and fractured bones are discussed with respect to a possible application in the elderly patient.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Helmholtzstraße 14, 89081 Ulm, Germany
| |
Collapse
|
47
|
Sclerostin serum levels in patients with systemic autoimmune diseases. BONEKEY REPORTS 2016; 5:775. [PMID: 26909149 DOI: 10.1038/bonekey.2016.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
Abstract
Systemic autoimmune diseases (SADs) are associated with lower bone mass and an increased risk of fractures. Sclerostin has a pivotal role in bone metabolism. Available data on circulating sclerostin levels in healthy subjects are limited, whereas those in SAD patients are absent. Our objective was to determine circulating sclerostin concentrations in systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and Crohn's disease (CD) patients, and to analyze the factors associated with sclerostin concentrations. In this cross-sectional case-control study, serum sclerostin levels were measured in 38 SLE patients, 20 CD patients, 8 SSc patients and 20 healthy controls using a sclerostin ELISA. The mean values of the sclerostin (95% confidence interval) were 35.36 pmol l(-1) (12-101) in patients and 33.92 pmol l(-1) (2.31-100) in control subjects. The mean sclerostin value was 36.4 pmol l(-1) (22.1-48.5) in SLE patients, 26.7 pmol l(-1) (17.3-36.3) in CD patients and 51.8 pmol l(-1) (26.5-77.1) in SSc patients (P=0.001). Serum sclerostin levels were positively correlated with age (P<0.001), body mass index (BMI) (P=0.01) and lumbar spine Z-score (P=0.001) and negatively with creatinine clearance (P=0.001). Glucocorticoid treatment did not affect sclerostin levels. Sclerostin levels seem to have a heterogeneous pattern in different autoimmune diseases. SLE and SSc patients did not differ from healthy controls regarding sclerostin levels. The CD group had significantly lower values compared with SSc patients. Factors associated with sclerostin levels in autoimmune diseases seem to be the same than in the general population.
Collapse
|
48
|
|
49
|
Shu B, Shi Q, Wang YJ. Shen (Kidney)-tonifying principle for primary osteoporosis: to treat both the disease and the Chinese medicine syndrome. Chin J Integr Med 2015; 21:656-61. [DOI: 10.1007/s11655-015-2306-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 10/23/2022]
|
50
|
Saidak Z, Le Henaff C, Azzi S, Marty C, Marie PJ. Low-dose PTH increases osteoblast activity via decreased Mef2c/Sost in senescent osteopenic mice. J Endocrinol 2014; 223:25-33. [PMID: 25056116 DOI: 10.1530/joe-14-0249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intermittent administration of parathyroid hormone (PTH) 1-34 at a standard dose has been shown to induce anabolic effects in bone. However, whether low-dose PTH promotes bone formation during senescence is unknown. To address this issue, we determined the effects of low-dose PTH and analysed the underlying mechanisms in prematurely senescent mice that display osteopenia. Treatment of 9-week-old Samp6 mice for 6 weeks with PTH at a standard dose (100 μg/kg per day) increased vertebral and femoral bone mass and improved bone microarchitecture as a result of increased bone-forming surfaces and mineral apposition rate (MAR). At a tenfold lower dose (10 μg/kg per day), PTH increased axial bone volume and trabecular thickness, as detected by bone histomorphometry but not by micro-computed tomography analysis. This anabolic effect resulted from increased osteoblast activity, as reflected by increased serum N-terminal propeptide of type 1 procollagen (P1NP) levels and MAR, with unchanged bone-forming surface or osteoblast surface. Mechanistically, low-dose PTH increased the expression of osteoblast markers in bone marrow stromal cells and mature osteoblasts, which was associated with increased expression of the Wnt effector Wisp1. Moreover, low-dose PTH decreased the expression of the Mef2c transcription factor, resulting in decreased Sost expression in osteoblasts/osteocytes. These results indicate that PTH at a low dose is effective at promoting bone formation and increased bone volume in senescent osteopenic mice through increased osteoblast activity and modulation of specific Wnt effectors, which raises the potential therapeutic use of intermittent PTH at low dose to increase bone forming activity and bone mass in skeletal senescence.
Collapse
Affiliation(s)
- Zuzana Saidak
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| | - Carole Le Henaff
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| | - Sofia Azzi
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| | - Caroline Marty
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| | - Pierre J Marie
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| |
Collapse
|