1
|
Meng Y, Zhang J, Liu Y, Zhu Y, Lv H, Xia F, Guo Q, Shi Q, Qiu C, Wang J. The biomedical application of inorganic metal nanoparticles in aging and aging-associated diseases. J Adv Res 2025; 71:551-570. [PMID: 38821357 DOI: 10.1016/j.jare.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Aging and aging-associated diseases (AAD), including neurodegenerative disease, cancer, cardiovascular diseases, and diabetes, are inevitable process. With the gradual improvement of life style, life expectancy is gradually extended. However, the extended lifespan has not reduced the incidence of disease, and most elderly people are in ill-health state in their later years. Hence, understanding aging and AAD are significant for reducing the burden of the elderly. Inorganic metal nanoparticles (IMNPs) predominantly include gold, silver, iron, zinc, titanium, thallium, platinum, cerium, copper NPs, which has been widely used to prevent and treat aging and AAD due to their superior properties (essential metal ions for human body, easily synthesis and modification, magnetism). Therefore, a systematic review of common morphological alternations of senescent cells, altered genes and signal pathways in aging and AAD, and biomedical applications of IMNPs in aging and AAD is crucial for the further research and development of IMNPs in aging and AAD. This review focus on the existing research on cellular senescence, aging and AAD, as well as the applications of IMNPs in aging and AAD in the past decade. This review aims to provide cutting-edge knowledge involved with aging and AAD, the application of IMNPs in aging and AAD to promote the biomedical application of IMNPs in aging and AAD.
Collapse
Affiliation(s)
- Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haining Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qianli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jigang Wang
- Department of Urology, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Sasaki Y, Ohnishi S, Takahashi H, Ishikawa K, Miura T, Funayama E, Okubo N, Yamamoto Y, Maeda T. Extracellular matrix modulating effects of amnion-derived mesenchymal stem cells on aging skin wounds in α-Klotho knockout mice. Geriatr Gerontol Int 2025; 25:701-708. [PMID: 40229127 DOI: 10.1111/ggi.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
AIM Wounds in the elderly are frequently recalcitrant and chronic as a result of the effects of skin aging and associated complications. The objective of this study is to utilize an α-Klotho knockout (KO) mice wound model to assess the capacity of amnion-derived mesenchymal stem cells (AMSCs) to facilitate wound healing in aging skin. METHODS AMSCs were applied topically to the wound after extraction and gelatinization of the conditioned medium (CM). Animal experiments were performed with two distinct mouse strains: α-Klotho KO mice and wild-type mice. Full-thickness skin defect models with a diameter of 8 mm were created by incising the skin on the left and right sides of the dorsum. On day 8 after wound creation, the mice were sacrificed, and wound tissue was collected for analysis through histological and immunohistochemical evaluations, as well as through quantitative polymerase chain reaction. RESULTS The topical application of CM gel to wounds of α-Klotho KO mice demonstrated that wound healing was significantly higher than that observed in control, reaching the wound closure rate of wild-type mice on day 8. Additionally, gene expression analysis of wound tissue indicated that AMSC-CM may regulate extracellular matrix formation and fibrosis. Moreover, histological analysis indicated that AMSC-CM may facilitate wound contraction of aging skin wounds of α-Klotho KO mice by inducing myofibroblast differentiation and promoting granulation and collagen formation, which are the primary components of the extracellular matrix. CONCLUSIONS AMSC-CM may facilitate wound healing in aging skin of α-Klotho KO mice by regulating the extracellular matrix. Geriatr Gerontol Int 2025; 25: 701-708.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shunsuke Ohnishi
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Hiroko Takahashi
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Naoto Okubo
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
3
|
Zheng Q, Lin R, Li Z, Zheng Q, Xu W. Taurine is a potential therapy for rheumatoid arthritis via targeting FOXO3 through cellular senescence and autophagy. PLoS One 2025; 20:e0318311. [PMID: 40238799 PMCID: PMC12002484 DOI: 10.1371/journal.pone.0318311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/13/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease closely related to aging with unclear pathogenic mechanisms. This study aims to identify the biomarkers in RA, aging and autophagy using bioinformatics and machine learning and explore the binding stability of taurine to target utilizing computer-aided drug design (CADD). METHODS We identified differentially expressed genes (DEGs) for RA, then crossed with gene libraries for aging and autophagy to identify common genes (Co-genes). We performed Gene Ontology (GO), Kyoto Encyclopedia of the Genome (KEGG), and ClueGO analysis for Co-genes. The Co-genes were subjected to support vector machine-recursive feature elimination (SVM-RFE), Degree, and Betweenness algorithms to get hub genes, then verified by an artificial neural network (ANN). After continuing to perform least absolute shrinkage and selection operator (LASSO) and weighted gene co-expression network analysis (WGCNA) on Co-genes, the results were crossed with hub genes to obtain genes, which were imported into various validation sets for receiver operating characteristics (ROC) to identify key genes. We analyzed the microRNA/TF network, enriched pathways, and immune cell infiltration for key genes. The binding stability of taurine with the target protein was verified by CADD. Finally, we used Western blot for in vitro experimental verification. RESULTS We obtained 74 Co-genes enriched in RA, cellular senescence, and regulation of programmed cell death. The model prediction of hub genes works well in ANN. The key genes (MMP9, CXCL10, IL15, FOXO3) were tested in ROC with excellent efficacy. In RA, FOXO3 expression was down-regulated while MMP9, CXCL10, and IL15 expression were upregulated, and FOXO3 was negatively correlated with MMP9, CXCL10, and IL15. Two miRNAs (hsa-mir-21-5p, hsa-mir-129-2-3p) and four TFs (CTCF, KLF, FOXC1, TP53) were associated with key genes. The immune cells positively correlated with MMP9, CXCL10, and IL15 expression and negatively correlated with FOXO3 expression were Plasma cells, CD8 T cells, memory-activated CD4 T cells, and follicular helper T cells, aggregating in RA. The binding stability of taurine with FOXO3 was verified by molecular docking and molecular dynamics simulation. In vitro experiments have indicated that taurine can upregulate the expression of FOXO3 and treat RA through the FOXO3-Parkin signaling pathway. CONCLUSIONS MMP9, CXCL10, IL15, and FOXO3 are biomarkers of RA, cellular senescence, and autophagy. Taurine might be a promising drug against RA via targeting cellular senescence and autophagy through FOXO3.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhechen Li
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingzhu Zheng
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weihong Xu
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Chandrasegaran S, Sluka JP, Shanley D. Modelling the spatiotemporal dynamics of senescent cells in wound healing, chronic wounds, and fibrosis. PLoS Comput Biol 2025; 21:e1012298. [PMID: 40233102 PMCID: PMC12052216 DOI: 10.1371/journal.pcbi.1012298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 05/05/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Cellular senescence is known to drive age-related pathology through the senescence-associated secretory phenotype (SASP). However, it also plays important physiological roles such as cancer suppression, embryogenesis and wound healing. Wound healing is a tightly regulated process which when disrupted results in conditions such as fibrosis and chronic wounds. Senescent cells appear during the proliferation phase of the healing process where the SASP is involved in maintaining tissue homeostasis after damage. Interestingly, SASP composition and functionality was recently found to be temporally regulated, with distinct SASP profiles involved: a fibrogenic, followed by a fibrolytic SASP, which could have important implications for the role of senescent cells in wound healing. Given the number of factors at play a full understanding requires addressing the multiple levels of complexity, pertaining to the various cell behaviours, individually followed by investigating the interactions and influence each of these elements have on each other and the system as a whole. Here, a systems biology approach was adopted whereby a multi-scale model of wound healing that includes the dynamics of senescent cell behaviour and corresponding SASP composition within the wound microenvironment was developed. The model was built using the software CompuCell3D, which is based on a Cellular Potts modelling framework. We used an existing body of data on healthy wound healing to calibrate the model and validation was done on known disease conditions. The model clearly shows how differences in the spatiotemporal dynamics of different senescent cell phenotypes lead to several distinct repair outcomes. These differences in senescent cell dynamics can be attributed to variable SASP composition, duration of senescence and temporal induction of senescence relative to the healing stage. The range of outcomes demonstrated strongly highlight the dynamic and heterogenous role of senescent cells in wound healing, fibrosis and chronic wounds, and their fine-tuned control. Further specific data to increase model confidence could be used to explore senolytic treatments in wound disorders.
Collapse
Affiliation(s)
| | - James P. Sluka
- Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Daryl Shanley
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Takizawa C, Qin Q, Haba D, Sasaki S, Kawasaki A, Miyake T, Oba J, Kitamura A, Abe M, Tomida S, Nakagami G. Relationship between gene expression associated with cellular senescence in cells from discarded wound dressings and wound healing: A retrospective cohort study. J Tissue Viability 2024; 33:726-731. [PMID: 39129112 DOI: 10.1016/j.jtv.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/14/2024] [Accepted: 07/21/2024] [Indexed: 08/13/2024]
Abstract
AIM Senescent cells, inducing a senescence-associated secretory phenotype (SASP), lead to chronic inflammation in hard-to-heal wound tissue. However, eliminating senescent cells may impede normal wound healing due to their important role in the wound healing mechanism. Accordingly, we focused on wound exudates in hard-to-heal wounds, which contain many inflammation biomarkers consistent with SASP. Therefore, we hypothesized that senescent cells might be present in the exudates and induce chronic inflammation. This study investigated the relationship between gene expression associated with cellular senescence in exudates from pressure injuries and wound healing status. METHODS This retrospective cohort study involved patients treated by a pressure injury team. We collected viable cells from wound dressings and analyzed gene expression. Pearson's correlation coefficient was calculated between cellular senescence and SASP expression. The relationship between the gene expression of cellular senescence and the wound area reduction rate by the following week was examined using a mixed-effects model. RESULTS CDKN1A-related to cellular senescence-was expressed in 96.3 % of 54 samples, and CDKN1A expression and SASPs positively correlated (PLAU: r = 0.68 and TNF: r = 0.34). Low CDKN1A expression was statistically associated with a large wound area reduction rate (β = 0.83, p < 0.01). CONCLUSIONS Gene expression of both cellular senescence and SASP factor in wound dressings suggests the presence of cellular senescence. Senescent cells in wound dressings could be associated with delayed wound healing in the following week.
Collapse
Affiliation(s)
- Chihiro Takizawa
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Qi Qin
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Daijiro Haba
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Well-being Nursing, Graduate School of Nursing, Ishikawa Prefectural Nursing University, Ishikawa, Japan
| | - Sanae Sasaki
- Department of Nursing, The University of Tokyo Hospital, Tokyo, Japan
| | - Akiko Kawasaki
- Department of Nursing, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomomi Miyake
- Department of Dermatology, The University of Tokyo Hospital, Tokyo, Japan
| | - Jun Oba
- Department of Plastic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Aya Kitamura
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Nursing Administration and Advanced Clinical Nursing, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mari Abe
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sanai Tomida
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
O’Reilly S, Markiewicz E, Idowu OC. Aging, senescence, and cutaneous wound healing-a complex relationship. Front Immunol 2024; 15:1429716. [PMID: 39483466 PMCID: PMC11524853 DOI: 10.3389/fimmu.2024.1429716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
Cutaneous wound healing is a complex multi-step process that is highly controlled, ensuring efficient repair to damaged tissue and restoring tissue architecture. Multiple cell types play a critical role in wound healing, and perturbations in this can lead to non-healing wounds or scarring and fibrosis. Thus, the process is tightly regulated and controlled. Cellular senescence is defined as irreversible cell cycle arrest and is associated with various phenotypic changes and metabolic alterations and coupled to a secretory program. Its role in wound healing, at least in the acute setting, appears to help promote appropriate mechanisms leading to the complete restoration of tissue architecture. Opposing this is the role of senescence in chronic wounds where it can lead to either chronic non-healing wounds or fibrosis. Given the two opposing outcomes of wound healing in either acute or chronic settings, this has led to disparate views on the role of senescence in wound healing. This review aims to consolidate knowledge on the role of senescence and aging in wound healing, examining the nuances of the roles in the acute or chronic settings, and attempts to evaluate the modulation of this to promote efficient wound healing.
Collapse
Affiliation(s)
- Steven O’Reilly
- Hexislab Limited, The Catalyst, Newcastle Upon Tyne, United Kingdom
| | | | | |
Collapse
|
7
|
Guo XX, Chang XJ, Pu Q, Li AL, Li J, Li XY. Urolithin A alleviates cell senescence by inhibiting ferroptosis and enhances corneal epithelial wound healing. Front Med (Lausanne) 2024; 11:1441196. [PMID: 39351004 PMCID: PMC11439666 DOI: 10.3389/fmed.2024.1441196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Purpose To analyze the therapeutic effect and mechanism of Urolithin A (UA) on delayed corneal epithelial wound healing. Methods The C57BL/6 mice were continuously exposed to hyperosmotic stress (HS) for 7 days followed by the removal of central corneal epithelium to establish a delayed corneal epithelial wound healing model in vivo. In vitro, the human corneal epithelial cell line (HCE-T) was also incubated under HS. UA was administered in vivo and in vitro to study its effects on corneal epithelial cells. Senescence-associated β-galactosidase (SA-β-gal) staining was performed to detect the level of cell senescence. Transcriptome sequencing (RNA-seq) was conducted to elucidate the molecular mechanism underlying the effect of UA on corneal epithelial repair. Additionally, the expression of senescence-related and ferroptosis-related genes and the levels of lipid peroxides (LPO) and malondialdehyde (MDA) were measured. Results Hyperosmotic stress (HS) significantly increased the proportion of SA-β-gal staining positive cells in corneal epithelial cells and upregulated the expression of p16 and p21 (p < 0.0001). Topical application of UA decreased the accumulation of senescent cells in corneal epithelial wounds and promoted epithelial wound healing. The results of RNA-seq of HS-induced corneal epithelial cells showed that the ferroptosis pathway was significantly dysregulated. Further investigation revealed that UA decreased the level of oxidative stress in HCE-T cells, including the levels of LPO and MDA (p < 0.05). Inhibition of ferroptosis significantly prevented cellular senescence in HS-induced HCE-T cells. Conclusion In this study, UA promoted HS-induced delayed epithelial wound healing by reducing the senescence of corneal epithelial cells through the inhibition of ferroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin-Yu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Zhang S, Meng N, Liu S, Ruan J, Li H, Xu X, Ruan Q, Xie W. Targeting senescent HDF with the USP7 inhibitor P5091 to enhance DFU wound healing through the p53 pathway. Biochem Biophys Res Commun 2024; 722:150149. [PMID: 38788355 DOI: 10.1016/j.bbrc.2024.150149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE The objective of this study was to examine the potential of USP7 as a target for senolytic therapy and to investigate the molecular mechanism by which its inhibitor selectively induced apoptosis in senescent HDF and enhanced DFU wound healing. METHODS Clinical samples of DFU were collected to detect the expression of USP7 and aging-related proteins using immunohistochemistry and Western blot. In addition, β-galactosidase staining, qPCR, flow cytometry, ROS and MMP kits, and Western blot were used to analyze the biological functions of P5091 on senescence, cycle, and apoptosis. RNAseq was employed to further analyze the molecular mechanism of P5091. Finally, the DFU rat model was established to evaluate the effect of P5091 on wound healing. RESULTS The expression of USP7 and p21 were increased in DFU clinical samples. After treatment with d-glucose (30 mM, 7 days), β-galactosidase staining was deepened, proliferation rate decreased. USP7 inhibitors (P5091) could reduce the release of SASP factors, activate the production of ROS, and reduce MMP. In addition, it induced apoptosis and selectively clears senescent cells through the p53 signaling pathway. Finally, P5091 can improve diabetic wound healing in rats. CONCLUSION This study clarified the molecular mechanism of USP7 inhibitor (P5091) selectively inducing apoptosis of high glucose senescent HDF cells. This provides a new senolytics target and experimental basis for promoting DFU wound healing.
Collapse
Affiliation(s)
- Siyu Zhang
- Institute of Burns, Wuhan Third Hospital (Tongren Hospital of WuHan University), Wuhan 430060, China.
| | - Na Meng
- School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Shuhua Liu
- Institute of Burns, Wuhan Third Hospital (Tongren Hospital of WuHan University), Wuhan 430060, China.
| | - Jingjing Ruan
- Institute of Burns, Wuhan Third Hospital (Tongren Hospital of WuHan University), Wuhan 430060, China.
| | - Hongju Li
- Marine Biomedical Research Institute of Qingdao, Key Laboratory of Marine Drugs Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Ximing Xu
- Marine Biomedical Research Institute of Qingdao, Key Laboratory of Marine Drugs Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Qiongfang Ruan
- Institute of Burns, Wuhan Third Hospital (Tongren Hospital of WuHan University), Wuhan 430060, China.
| | - Weiguo Xie
- Institute of Burns, Wuhan Third Hospital (Tongren Hospital of WuHan University), Wuhan 430060, China.
| |
Collapse
|
9
|
Chandrasegaran S, Sluka JP, Shanley D. Modelling the spatiotemporal dynamics of senescent cells in wound healing, chronic wounds, and fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602041. [PMID: 39026713 PMCID: PMC11257496 DOI: 10.1101/2024.07.04.602041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular senescence is known to drive age-related pathology through the senescence-associated secretory phenotype (SASP). However, it also plays important physiological roles such as cancer suppression, embryogenesis and wound healing. Wound healing is a tightly regulated process which when disrupted results in conditions such as fibrosis and chronic wounds. Senescent cells appear during the proliferation phase of the healing process where the SASP is involved in maintaining tissue homeostasis after damage. Interestingly, SASP composition and functionality was recently found to be temporally regulated, with distinct SASP profiles involved: a fibrogenic, followed by a fibrolytic SASP, which could have important implications for the role of senescent cells in wound healing. Given the number of factors at play a full understanding requires addressing the multiple levels of complexity, pertaining to the various cell behaviours, individually followed by investigating the interactions and influence each of these elements have on each other and the system as a whole. Here, a systems biology approach was adopted whereby a multi-scale model of wound healing that includes the dynamics of senescent cell behaviour and corresponding SASP composition within the wound microenvironment was developed. The model was built using the software CompuCell3D, which is based on a Cellular Potts modelling framework. We used an existing body of data on healthy wound healing to calibrate the model and validation was done on known disease conditions. The model provides understanding of the spatiotemporal dynamics of different senescent cell phenotypes and the roles they play within the wound healing process. The model also shows how an overall disruption of tissue-level coordination due to age-related changes results in different disease states including fibrosis and chronic wounds. Further specific data to increase model confidence could be used to explore senolytic treatments in wound disorders.
Collapse
Affiliation(s)
- Sharmilla Chandrasegaran
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James P Sluka
- Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University Bloomington, Bloomington, IN, USA
| | - Daryl Shanley
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Zhen AX, Kang KA, Piao MJ, Madushan Fernando PDS, Lakmini Herath HMU, Hyun JW. Protective effects of astaxanthin on particulate matter 2.5‑induced senescence in HaCaT keratinocytes via maintenance of redox homeostasis. Exp Ther Med 2024; 28:275. [PMID: 38800049 PMCID: PMC11117106 DOI: 10.3892/etm.2024.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Particulate matter 2.5 (PM2.5) imposes a heavy burden on the skin and respiratory system of human beings, causing side effects such as aging, inflammation and cancer. Astaxanthin (ATX) is a well-known antioxidant widely used for its anti-inflammatory and anti-aging properties. However, few studies have investigated the protective effects of ATX against PM2.5-induced senescence in HaCaT cells. In the present study, the levels of reactive oxygen species (ROS) and antioxidant enzymes were measured after treatment with PM2.5. The results revealed that PM2.5 generated excessive ROS and reduced the translocation of nuclear factor erythroid 2-related factor 2 (NRF2), subsequently reducing the expression of antioxidant enzymes. However, pretreatment with ATX reversed the ROS levels as well as the expression of antioxidant enzymes. In addition, ATX protected cells from PM2.5-induced DNA damage and rescued PM2.5-induced cell cycle arrest. The levels of senescence-associated phenotype markers, such as interleukin-1β, matrix metalloproteinases, and β-galactosidase, were increased by exposure to PM2.5, however these effects were reversed by ATX. After interfering with NRF2 mRNA expression and exposing cells to PM2.5, the levels of ROS and β-galactosidase were higher compared with siControl RNA cells exposed to PM2.5. However, ATX inhibited ROS and β-galactosidase levels in both the siControl RNA and the siNRF2 RNA groups. Thus, ATX protects HaCaT keratinocytes from PM2.5-induced senescence by partially inhibiting excessive ROS generation via the NRF2 signaling pathway.
Collapse
Affiliation(s)
- Ao Xuan Zhen
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Jin Won Hyun
- Department of Biochemistry, College of Medicine and Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
11
|
Wu H, Yao Z, Li H, Zhang L, Zhao Y, Li Y, Wu Y, Zhang Z, Xie J, Ding F, Zhu H. Improving dermal fibroblast-to-epidermis communications and aging wound repair through extracellular vesicle-mediated delivery of Gstm2 mRNA. J Nanobiotechnology 2024; 22:307. [PMID: 38825668 PMCID: PMC11145791 DOI: 10.1186/s12951-024-02541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Skin aging is characterized by the disruption of skin homeostasis and impaired skin injury repair. Treatment of aging skin has long been limited by the unclear intervention targets and delivery techniques. Engineering extracellular vesicles (EVs) as an upgraded version of natural EVs holds great potential in regenerative medicine. In this study, we found that the expression of the critical antioxidant and detoxification gene Gstm2 was significantly reduced in aging skin. Thus, we constructed the skin primary fibroblasts-derived EVs encapsulating Gstm2 mRNA (EVsGstm2), and found that EVsGstm2 could significantly improve skin homeostasis and accelerate wound healing in aged mice. Mechanistically, we found that EVsGstm2 alleviated oxidative stress damage of aging dermal fibroblasts by modulating mitochondrial oxidative phosphorylation, and promoted dermal fibroblasts to regulate skin epidermal cell function by paracrine secretion of Nascent Polypeptide-Associated Complex Alpha subunit (NACA). Furthermore, we confirmed that NACA is a novel skin epidermal cell protective molecule that regulates skin epidermal cell turnover through the ROS-ERK-ETS-Cyclin D pathway. Our findings demonstrate the feasibility and efficacy of EVs-mediated delivery of Gstm2 for aged skin treatment and unveil novel roles of GSTM2 and NACA for improving aging skin.
Collapse
Affiliation(s)
- Haiyan Wu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Hongkun Li
- Department of Cardiology, Changzhi Medical College Affiliated Heji Hospital, Shanxi, 046000, China
| | - Laihai Zhang
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuying Zhao
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yongwei Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yating Wu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhenchun Zhang
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Feixue Ding
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People Hospital, School of Medicine, JiaoTong University, Shanghai, 200001, China
| | - Hongming Zhu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
12
|
Luo C, Nakagawa M, Sumi Y, Matsushima Y, Uemura M, Honda Y, Matsumoto N. Detection of senescent cells in the mucosal healing process on type 2 diabetic rats after tooth extraction for biomaterial development. Dent Mater J 2024; 43:430-436. [PMID: 38644214 DOI: 10.4012/dmj.2023-262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The delayed mucosal healing of tooth extraction sockets in diabetes has few known effective treatment strategies, and its underlying mechanism remains unknown. Senescent cells may play a pivotal role in this delay, given the well-established association between diabetes, senescent cells, and wound healing. Here, we demonstrated an increase in p21- or p16-positive senescent cells in the epithelial and connective tissues of extraction sockets in type 2 diabetic rats compared to those in control rats. Between 7 and 14 days after tooth extraction, a decrease in senescent cells and improvement in re-epithelialization failure were observed in the epithelium, while an increase in senescent cells and persistence of inflammation were observed in the connective tissue. These results suggest that cellular senescence may have been induced by diabetes and contributed to delayed mucosal healing by suppressing re-epithelization and persistent inflammation. These findings provide new targets for treatment using biomaterials, cells, and drugs.
Collapse
Affiliation(s)
- Chuyi Luo
- Department of Orthodontics, Osaka Dental University
| | | | - Yoichi Sumi
- Department of Anatomy, Osaka Dental University
| | | | | | | | | |
Collapse
|
13
|
He X, Gao X, Xie W. Research Progress in Skin Aging and Immunity. Int J Mol Sci 2024; 25:4101. [PMID: 38612909 PMCID: PMC11012511 DOI: 10.3390/ijms25074101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024] Open
Abstract
Skin aging is a complex process involving structural and functional changes and is characterized by a decrease in collagen content, reduced skin thickness, dryness, and the formation of wrinkles. This process is underpinned by multiple mechanisms including the free radical theory, inflammation theory, photoaging theory, and metabolic theory. The skin immune system, an indispensable part of the body's defense mechanism, comprises macrophages, lymphocytes, dendritic cells, and mast cells. These cells play a pivotal role in maintaining skin homeostasis and responding to injury or infection. As age advances, along with various internal and external environmental stimuli, skin immune cells may undergo senescence or accelerated aging, characterized by reduced cell division capability, increased mortality, changes in gene expression patterns and signaling pathways, and altered immune cell functions. These changes collectively impact the overall function of the immune system. This review summarizes the relationship between skin aging and immunity and explores the characteristics of skin aging, the composition and function of the skin immune system, the aging of immune cells, and the effects of these cells on immune function and skin aging. Immune dysfunction plays a significant role in skin aging, suggesting that immunoregulation may become one of the important strategies for the prevention and treatment of skin aging.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Xinyu Gao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (X.H.); (X.G.)
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
14
|
Woo SH, Mo YJ, Lee YI, Park JH, Hwang D, Park TJ, Kang HY, Park SC, Lee YS. ANT2 Accelerates Cutaneous Wound Healing in Aged Skin by Regulating Energy Homeostasis and Inflammation. J Invest Dermatol 2023; 143:2295-2310.e17. [PMID: 37211200 DOI: 10.1016/j.jid.2023.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
An effective healing response is critical to healthy aging. In particular, energy homeostasis has become increasingly recognized as a factor in effective skin regeneration. ANT2 is a mediator of adenosine triphosphate import into mitochondria for energy homeostasis. Although energy homeostasis and mitochondrial integrity are critical for wound healing, the role played by ANT2 in the repair process had not been elucidated to date. In our study, we found that ANT2 expression decreased in aged skin and cellular senescence. Interestingly, overexpression of ANT2 in aged mouse skin accelerated the healing of full-thickness cutaneous wounds. In addition, upregulation of ANT2 in replicative senescent human diploid dermal fibroblasts induced their proliferation and migration, which are critical processes in wound healing. Regarding energy homeostasis, ANT2 overexpression increased the adenosine triphosphate production rate by activating glycolysis and induced mitophagy. Notably, ANT2-mediated upregulation of HSPA6 in aged human diploid dermal fibroblasts downregulated proinflammatory genes that mediate cellular senescence and mitochondrial damage. This study shows a previously uncharacterized physiological role of ANT2 in skin wound healing by regulating cell proliferation, energy homeostasis, and inflammation. Thus, our study links energy metabolism to skin homeostasis and reports, to the best of our knowledge, a previously unreported genetic factor that enhances wound healing in an aging model.
Collapse
Affiliation(s)
- Seung-Hwa Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yun Jeong Mo
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea; Institution of Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hee Young Kang
- Institution of Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Dermatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea; Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
15
|
Scherthan H, Geiger B, Ridinger D, Müller J, Riccobono D, Bestvater F, Port M, Hausmann M. Nano-Architecture of Persistent Focal DNA Damage Regions in the Minipig Epidermis Weeks after Acute γ-Irradiation. Biomolecules 2023; 13:1518. [PMID: 37892200 PMCID: PMC10605239 DOI: 10.3390/biom13101518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Exposure to high acute doses of ionizing radiation (IR) can induce cutaneous radiation syndrome. Weeks after such radiation insults, keratinocyte nuclei of the epidermis exhibit persisting genomic lesions that present as focal accumulations of DNA double-strand break (DSB) damage marker proteins. Knowledge about the nanostructure of these genomic lesions is scarce. Here, we compared the chromatin nano-architecture with respect to DNA damage response (DDR) factors in persistent genomic DNA damage regions and healthy chromatin in epidermis sections of two minipigs 28 days after lumbar irradiation with ~50 Gy γ-rays, using single-molecule localization microscopy (SMLM) combined with geometric and topological mathematical analyses. SMLM analysis of fluorochrome-stained paraffin sections revealed, within keratinocyte nuclei with perisitent DNA damage, the nano-arrangements of pATM, 53BP1 and Mre11 DDR proteins in γ-H2AX-positive focal chromatin areas (termed macro-foci). It was found that persistent macro-foci contained on average ~70% of 53BP1, ~23% of MRE11 and ~25% of pATM single molecule signals of a nucleus. MRE11 and pATM fluorescent tags were organized in focal nanoclusters peaking at about 40 nm diameter, while 53BP1 tags formed nanoclusters that made up super-foci of about 300 nm in size. Relative to undamaged nuclear chromatin, the enrichment of DDR protein signal tags in γ-H2AX macro-foci was on average 8.7-fold (±3) for 53BP1, 3.4-fold (±1.3) for MRE11 and 3.6-fold (±1.8) for pATM. The persistent macro-foci of minipig epidermis displayed a ~2-fold enrichment of DDR proteins, relative to DSB foci of lymphoblastoid control cells 30 min after 0.5 Gy X-ray exposure. A lasting accumulation of damage signaling and sensing molecules such as pATM and 53BP1, as well as the DSB end-processing protein MRE11 in the persistent macro-foci suggests the presence of diverse DNA damages which pose an insurmountable problem for DSB repair.
Collapse
Affiliation(s)
- Harry Scherthan
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Beatrice Geiger
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| | - David Ridinger
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| | - Jessica Müller
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Diane Riccobono
- Département des Effets Biologiques des Rayonnements, French Armed Forces Biomedical Research Institute, UMR 1296, BP 73, 91223 Brétigny-sur-Orge, France;
| | - Felix Bestvater
- Core Facility Light Microscopy, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany;
| | - Matthias Port
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, D-80937 München, Germany (M.P.)
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany (D.R.)
| |
Collapse
|
16
|
Lorenzo EC, Torrance BL, Haynes L. Impact of senolytic treatment on immunity, aging, and disease. FRONTIERS IN AGING 2023; 4:1161799. [PMID: 37886012 PMCID: PMC10598643 DOI: 10.3389/fragi.2023.1161799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/31/2023] [Indexed: 10/28/2023]
Abstract
Cellular senescence has been implicated in the pathophysiology of many age-related diseases. However, it also plays an important protective role in the context of tumor suppression and wound healing. Reducing senescence burden through treatment with senolytic drugs or the use of genetically targeted models of senescent cell elimination in animals has shown positive results in the context of mitigating disease and age-associated inflammation. Despite positive, albeit heterogenous, outcomes in clinical trials, very little is known about the short-term and long-term immunological consequences of using senolytics as a treatment for age-related conditions. Further, many studies examining cellular senescence and senolytic treatment have been demonstrated in non-infectious disease models. Several recent reports suggest that senescent cell elimination may have benefits in COVID-19 and influenza resolution and disease prognosis. In this review, we discuss the current clinical trials and pre-clinical studies that are exploring the impact of senolytics on cellular immunity. We propose that while eliminating senescent cells may have an acute beneficial impact on primary immune responses, immunological memory may be negatively impacted. Closer investigation of senolytics on immune function and memory generation would provide insight as to whether senolytics could be used to enhance the aging immune system and have potential to be used as therapeutics or prophylactics in populations that are severely and disproportionately affected by infections such as the elderly and immunocompromised.
Collapse
Affiliation(s)
- Erica C. Lorenzo
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Blake L. Torrance
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Laura Haynes
- UConn Health Center on Aging, University of Connecticut School of Medicine, Farmington, CT, United States
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States
| |
Collapse
|
17
|
Mavrogonatou E, Papadopoulou A, Pratsinis H, Kletsas D. Senescence-associated alterations in the extracellular matrix: deciphering their role in the regulation of cellular function. Am J Physiol Cell Physiol 2023; 325:C633-C647. [PMID: 37486063 DOI: 10.1152/ajpcell.00178.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) is a dynamic structural network that provides a physical scaffolding, as well as biochemical factors that maintain normal tissue homeostasis and thus its disruption is implicated in many pathological conditions. On the other hand, senescent cells express a particular secretory phenotype, affecting the composition and organization of the surrounding ECM and modulating their microenvironment. As accumulation of senescent cells may be linked to the manifestation of several age-related conditions, senescence-associated ECM alterations may serve as targets for novel anti-aging treatment modalities. Here, we will review characteristic changes in the ECM elicited by cellular senescence and we will discuss the complex interplay between ECM and senescent cells, in relation to normal aging and selected age-associated pathologies.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," Athens, Greece
| |
Collapse
|
18
|
Chu X, Xiong Y, Knoedler S, Lu L, Panayi AC, Alfertshofer M, Jiang D, Rinkevich Y, Lin Z, Zhao Z, Dai G, Mi B, Liu G. Immunomodulatory Nanosystems: Advanced Delivery Tools for Treating Chronic Wounds. RESEARCH (WASHINGTON, D.C.) 2023; 6:0198. [PMID: 37456931 PMCID: PMC10348408 DOI: 10.34133/research.0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The increasingly aging society led to a rise in the prevalence of chronic wounds (CWs), posing a significant burden to public health on a global scale. One of the key features of CWs is the presence of a maladjusted immune microenvironment characterized by persistent and excessive (hyper)inflammation. A variety of immunomodulatory therapies have been proposed to address this condition. Yet, to date, current delivery systems for immunomodulatory therapy remain inadequate and lack efficiency. This highlights the need for new therapeutic delivery systems, such as nanosystems, to manage the pathological inflammatory imbalance and, ultimately, improve the treatment outcomes of CWs. While a plethora of immunomodulatory nanosystems modifying the immune microenvironment of CWs have shown promising therapeutic effects, the literature on the intersection of immunomodulatory nanosystems and CWs remains relatively scarce. Therefore, this review aims to provide a comprehensive overview of the pathogenesis and characteristics of the immune microenvironment in CWs, discuss important advancements in our understanding of CW healing, and delineate the versatility and applicability of immunomodulatory nanosystems-based therapies in the therapeutic management of CWs. In addition, we herein also shed light on the main challenges and future perspectives in this rapidly evolving research field.
Collapse
Affiliation(s)
- Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen/Rhine, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilian University Munich, Munich, Germany
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Zhiming Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Guandong Dai
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong 518118, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
19
|
Dańczak‐Pazdrowska A, Gornowicz‐Porowska J, Polańska A, Krajka‐Kuźniak V, Stawny M, Gostyńska A, Rubiś B, Nourredine S, Ashiqueali S, Schneider A, Tchkonia T, Wyles SP, Kirkland JL, Masternak MM. Cellular senescence in skin-related research: Targeted signaling pathways and naturally occurring therapeutic agents. Aging Cell 2023; 22:e13845. [PMID: 37042069 PMCID: PMC10265178 DOI: 10.1111/acel.13845] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Despite the growing interest by researchers into cellular senescence, a hallmark of cellular aging, its role in human skin remains equivocal. The skin is the largest and most accessible human organ, reacting to the external and internal environment. Hence, it is an organ of choice to investigate cellular senescence and to target root-cause aging processes using senolytic and senomorphic agents, including naturally occurring plant-based derivatives. This review presents different aspects of skin cellular senescence, from physiology to pathology and signaling pathways. Cellular senescence can have both beneficial and detrimental effects on the skin, indicating that both prosenescent and antisenescent therapies may be desirable, based on the context. Knowledge of molecular mechanisms involved in skin cellular senescence may provide meaningful insights for developing effective therapeutics for senescence-related skin disorders, such as wound healing and cosmetic skin aging changes.
Collapse
Affiliation(s)
| | - Justyna Gornowicz‐Porowska
- Department and Division of Practical Cosmetology and Skin Diseases ProphylaxisPoznan University of Medical SciencesPoznanPoland
| | - Adriana Polańska
- Department of Dermatology and VenereologyPoznan University of Medical SciencesPoznanPoland
| | | | - Maciej Stawny
- Department of Pharmaceutical ChemistryPoznan University of Medical SciencesPoznanPoland
| | - Aleksandra Gostyńska
- Department of Pharmaceutical ChemistryPoznan University of Medical SciencesPoznanPoland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular DiagnosticsPoznan University of Medical SciencesPoznanPoland
| | - Sarah Nourredine
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central FloridaOrlandoFloridaUSA
| | - Sarah Ashiqueali
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central FloridaOrlandoFloridaUSA
| | | | - Tamara Tchkonia
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | | | - James L. Kirkland
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Michal M. Masternak
- Burnett School of Biomedical SciencesCollege of Medicine, University of Central FloridaOrlandoFloridaUSA
- Department of Head and Neck SurgeryPoznan University of Medical SciencesPoznanPoland
| |
Collapse
|
20
|
Wyles SP, Dashti P, Pirtskhalava T, Tekin B, Inman C, Gomez LS, Lagnado AB, Prata L, Jurk D, Passos JF, Tchkonia T, Kirkland JL. A chronic wound model to investigate skin cellular senescence. Aging (Albany NY) 2023; 15:2852-2862. [PMID: 37086260 PMCID: PMC10188333 DOI: 10.18632/aging.204667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Wound healing is an essential physiological process for restoring normal skin structure and function post-injury. The role of cellular senescence, an essentially irreversible cell cycle state in response to damaging stimuli, has emerged as a critical mechanism in wound remodeling. Transiently-induced senescence during tissue remodeling has been shown to be beneficial in the acute wound healing phase. In contrast, persistent senescence, as observed in chronic wounds, contributes to delayed closure. Herein we describe a chronic wound murine model and its cellular senescence profile, including the senescence-associated secretory phenotype.
Collapse
Affiliation(s)
- Saranya P. Wyles
- Department of Dermatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Parisa Dashti
- Department of Dermatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Pirtskhalava
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Burak Tekin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Christina Inman
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Lilian Sales Gomez
- Department of Medicine, Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Anthony B. Lagnado
- Department of Medicine, Division of General Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Larissa Prata
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - João F. Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Shvedova M, Samdavid Thanapaul RJR, Thompson EL, Niedernhofer LJ, Roh DS. Cellular Senescence in Aging, Tissue Repair, and Regeneration. Plast Reconstr Surg 2022; 150:4S-11S. [PMID: 36170430 PMCID: PMC9529244 DOI: 10.1097/prs.0000000000009667] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SUMMARY Society and our healthcare system are facing unprecedented challenges due to the expansion of the older population. As plastic surgeons, we can improve care of our older patients through understanding the mechanisms of aging that inevitably impact their outcomes and well-being. One of the major hallmarks of aging, cellular senescence, has recently become the focus of vigorous research in academia and industry. Senescent cells, which are metabolically active but in a state of stable cell cycle arrest, are implicated in causing aging and numerous age-related diseases. Further characterization of the biology of senescence revealed that it can be both detrimental and beneficial to organisms depending on tissue context and senescence chronicity. Here, we review the role of cellular senescence in aging, wound healing, tissue regeneration, and other domains relevant to plastic surgery. We also review the current state of research on therapeutics that modulate senescence to improve conditions of aging.
Collapse
Affiliation(s)
- Maria Shvedova
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Rex Jeya Rajkumar Samdavid Thanapaul
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Elizabeth L Thompson
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Laura J Niedernhofer
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Daniel S Roh
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| |
Collapse
|
22
|
Zou X, Zou D, Li L, Yu R, Li X, Du X, Guo J, Wang K, Liu W. Multi-omics analysis of an in vitro photoaging model and protective effect of umbilical cord mesenchymal stem cell-conditioned medium. Stem Cell Res Ther 2022; 13:435. [PMID: 36056394 PMCID: PMC9438153 DOI: 10.1186/s13287-022-03137-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/14/2022] [Indexed: 01/10/2023] Open
Abstract
Background Skin ageing caused by long-term ultraviolet (UV) irradiation is a complex biological process that involves multiple signalling pathways. Stem cell-conditioned media is believed to have anti-ageing effects on the skin. The purpose of this study was to explore the biological effects of UVB irradiation and anti-photoaging effects of human umbilical cord mesenchymal stem cell-conditioned medium (hUC-MSC-CM) on HaCaT cells using multi-omics analysis with a novel cellular photoaging model.
Methods A cellular model of photoaging was constructed by irradiating serum-starved HaCaT cells with 20 mJ/cm2 UVB. Transcriptomics and proteomics analyses were used to explore the biological effects of UVB irradiation on photoaged HaCaT cells. Changes in cell proliferation, apoptosis, and migration, the cell cycle, and expression of senescence genes and proteins were measured to assess the protective effects of hUC-MSC-CM in the cellular photoaging model. Results The results of the multi-omics analysis revealed that UVB irradiation affected various biological functions of cells, including cell proliferation and the cell cycle, and induced a senescence-associated secretory phenotype. hUC-MSC-CM treatment reduced cell apoptosis, inhibited G1 phase arrest in the cell cycle, reduced the production of reactive oxygen species, and promoted cell motility. The qRT-PCR results indicated that MYC, IL-8, FGF-1, and EREG were key genes involved in the anti-photoaging effects of hUC-MSC-CM. The western blotting results demonstrated that C-FOS, C-JUN, TGFβ, p53, FGF-1, and cyclin A2 were key proteins involved in the anti-photoaging effects of hUC-MSC-CM. Conclusion Serum-starved HaCaT cells irradiated with 20 mJ/cm2 UVB were used to generate an innovative cellular photoaging model, and hUC-MSC-CM demonstrates potential as an anti-photoaging treatment for skin. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03137-y.
Collapse
Affiliation(s)
- Xiaocang Zou
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China.,Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Dayang Zou
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Linhao Li
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Renfeng Yu
- The People's Liberation Army 965 Hospital, JiLin, 132000, China
| | - XianHuang Li
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Xingyue Du
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - JinPeng Guo
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - KeHui Wang
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Wei Liu
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|