1
|
Wang J, Liao N, Liu G, Li Y, Xu F, Shi J. Diversity and regioselectivity of O-methyltransferases catalyzing the formation of O-methylated flavonoids. Crit Rev Biotechnol 2024; 44:1203-1225. [PMID: 38035668 DOI: 10.1080/07388551.2023.2280755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/26/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Flavonoids and their methylated derivatives have immense market potential in the food and biomedical industries due to their multiple beneficial effects, such as antimicrobial, anti-inflammatory, and anticancer activities. The biological synthesis of flavonoids and their derivatives is often accomplished via the use of genetically modified microorganisms to ensure large-scale production. Therefore, it is pivotal to understand the properties of O-methyltransferases (OMTs) that mediate the methylation of flavonoids. However, the properties of these OMTs are governed by their: sources, substrate specificity, amino acid residues in the active sites, and the intricate mechanism. In order to obtain a clue for the selection of suitable OMTs for the biosynthesis of a target methylated flavonoid, we made a comprehensive review of the currently reported results, with a particular focus on their comparative regioselectivity for different flavonoid substrates. Additionally, the possible mechanisms for the diversity of this class of enzymes were explored using molecular simulation technology. Finally, major gaps in our understanding and areas for future studies were discussed. The findings of this study may be useful in selecting genes that encode OMTs and designing enzyme-based processes for synthesizing O-methylated flavonoids.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Yinghui Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Fengqin Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Han H, Hyun CG. Syringetin Promotes Melanogenesis in B16F10 Cells. Int J Mol Sci 2023; 24:9960. [PMID: 37373110 DOI: 10.3390/ijms24129960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Syringetin, an active compound present in red grapes, jambolan fruits, Lysimachia congestiflora, and Vaccinium ashei, is a dimethyl myricetin derivative which contains free hydroxyl groups at the C-2' and C-4' positions in ring B. Recent studies have revealed that syringetin possesses multiple pharmacological properties, such as antitumor, hepatoprotective, antidiabetic, antioxidative, and cytoprotective activities. To date, there has been no attempt to test the action of syringetin on melanogenesis. In addition, the molecular mechanism for the melanogenic effects of syringetin remains largely unknown. In this study, we investigated the effect of syringetin on melanogenesis in a murine melanoma cell line from a C57BL/6J mouse, B16F10. Our results showed that syringetin markedly stimulated melanin production and tyrosinase activity in a concentration-dependent manner in B16F10 cells. We also found that syringetin increased MITF, tyrosinase, TRP-1, and TRP-2 protein expression. Moreover, syringetin inhibited ERK and PI3K/Akt phosphorylation by stimulating p38, JNK, PKA phosphorylation levels, subsequently stimulating MITF and TRP upregulation, resulting in the activation of melanin synthesis. Furthermore, we observed that syringetin activated phosphorylation of GSK3β and β-catenin and reduced the protein level of β-catenin, suggesting that syringetin stimulates melanogenesis through the GSK3β/β-catenin signal pathway. Finally, a primary skin irritation test was conducted on the upper backs of 31 healthy volunteers to determine the irritation or sensitization potential of syringetin for topical application. The results of the test indicated that syringetin did not cause any adverse effects on the skin. Taken together, our findings indicated that syringetin may be an effective pigmentation stimulator for use in cosmetics and in the medical treatment of hypopigmentation disorders.
Collapse
Affiliation(s)
- Hyunju Han
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
3
|
Majma Sanaye P, Mojaveri MR, Ahmadian R, Sabet Jahromi M, Bahramsoltani R. Apigenin and its dermatological applications: A comprehensive review. PHYTOCHEMISTRY 2022; 203:113390. [PMID: 35998830 DOI: 10.1016/j.phytochem.2022.113390] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Apigenin is one of the abundant flavonoids in fruits and vegetables of human diet with several demonstrated health benefits. The aim of the present study is to provide an overview of the current evidence regarding the effect of apigenin on different dermatological complications. Electronic databases including PubMed, Scopus, and Web of Science were searched to retrieve all papers assessing the dermatological effects of apigenin. Preclinical studies support beneficial effects of apigenin on UV-induced skin damage, vitiligo, dermatitis, wounds, skin aging, and some types of skin cancer. The compound mostly acts via inhibition of inflammation through suppression of pro-inflammatory cytokines and intracellular inflammatory mediators, as well as antioxidant properties such as improvement of endogenous antioxidant defense mechanisms. There are also some studies for the design and development of novel drug delivery systems for apigenin to improve its oral and topical bioavailability. Nevertheless, no clinical study has evaluated apigenin as a natural supplement for skin conditions. Considering the benefits of apigenin in preclinical models of dermatological disorders, as well as the acceptable safety of this compound, apigenin may be a future candidate to be used in dermatological disorders. Future clinical studies are needed to further confirm the safety and efficacy of apigenin in skin care products.
Collapse
Affiliation(s)
| | - Mohammad Reza Mojaveri
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roohollah Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Sabet Jahromi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Juszczak AM, Wöelfle U, Končić MZ, Tomczyk M. Skin cancer, including related pathways and therapy and the role of luteolin derivatives as potential therapeutics. Med Res Rev 2022; 42:1423-1462. [PMID: 35187675 PMCID: PMC9303584 DOI: 10.1002/med.21880] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/16/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Cutaneous malignant melanoma is the fastest growing and the most aggressive form of skin cancer that is diagnosed. However, its incidence is relatively scarce compared to the highest mortality rate of all skin cancers. The much more common skin cancers include nonmelanoma malignant skin cancers. Moreover, over the past several decades, the frequency of all skin cancers has increased much more dynamically than that of almost any other type of cancer. Among the available therapeutic options for skin cancers, chemotherapy used immediately after the surgical intervention has been an essential element. Unfortunately, the main problem with conventional chemopreventive regimens involves the lack of response to treatment and the associated side effects. Hence, there is a need for much more effective anticancer drugs. Correspondingly, the targeted alternatives have involved phytochemicals, which are safer chemotherapeutic agents and exhibit competitive anticancer activity with high therapeutic efficacy. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in medicinal plants, have been demonstrated to influence the modulation of signaling pathways at each stage of the carcinogenesis process, which is also important in the context of skin cancers. Hence, this review focuses on an exhaustive overview of the therapeutic effects of luteolin and its derivatives in the treatment and prevention of skin cancers. The bioavailability and structure–activity relationships of luteolin derivatives are also discussed. This review is the first such complete account of all of the scientific reports concerning this particular group of natural compounds that target a specific area of neoplastic diseases.
Collapse
Affiliation(s)
- Aleksandra M. Juszczak
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Białystok Białystok Poland
| | - Ute Wöelfle
- Department of Dermatology and Venereology, Research Center Skinitial, Medical Center, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Marijana Zovko Končić
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry University of Zagreb Zagreb Croatia
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy with the Division of Laboratory Medicine Medical University of Białystok Białystok Poland
| |
Collapse
|
5
|
Lee KE, Bharadwaj S, Sahoo AK, Yadava U, Kang SG. Determination of tyrosinase-cyanidin-3-O-glucoside and (-/+)-catechin binding modes reveal mechanistic differences in tyrosinase inhibition. Sci Rep 2021; 11:24494. [PMID: 34969954 PMCID: PMC8718538 DOI: 10.1038/s41598-021-03569-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Tyrosinase, exquisitely catalyzes the phenolic compounds into brown or black pigment, inhibition is used as a treatment for dermatological or neurodegenerative disorders. Natural products, such as cyanidin-3-O-glucoside and (-/+)-catechin, are considered safe and non-toxic food additives in tyrosinase inhibition but their ambiguous inhibitory mechanism against tyrosinase is still elusive. Thus, we presented the mechanistic insights into tyrosinase with cyanidin-3-O-glucoside and (-/+)-catechin using computational simulations and in vitro assessment. Initial molecular docking results predicted ideal docked poses (- 9.346 to - 5.795 kcal/mol) for tyrosinase with selected flavonoids. Furthermore, 100 ns molecular dynamics simulations and post-simulation analysis of docked poses established their stability and oxidation of flavonoids as substrate by tyrosinase. Particularly, metal chelation via catechol group linked with the free 3-OH group on the unconjugated dihydropyran heterocycle chain was elucidated to contribute to tyrosinase inhibition by (-/+)-catechin against cyanidin-3-O-glucoside. Also, predicted binding free energy using molecular mechanics/generalized Born surface area for each docked pose was consistent with in vitro enzyme inhibition for both mushroom and murine tyrosinases. Conclusively, (-/+)-catechin was observed for substantial tyrosinase inhibition and advocated for further investigation for drug development against tyrosinase-associated diseases.
Collapse
Affiliation(s)
- Kyung Eun Lee
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Gyeongbuk, Korea.
- Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Gyeongbuk, Korea.
| | - Shiv Bharadwaj
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Gyeongbuk, Korea.
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic.
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, 211015, Uttar Pradesh, India.
| | - Umesh Yadava
- Department of Physics, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India.
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Gyeongbuk, Korea.
| |
Collapse
|
6
|
Wang J, Luo L, Ding Q, Wu Z, Peng Y, Li J, Wang X, Li W, Liu G, Zhang B, Tang Y. Development of a Multi-Target Strategy for the Treatment of Vitiligo via Machine Learning and Network Analysis Methods. Front Pharmacol 2021; 12:754175. [PMID: 34603063 PMCID: PMC8479195 DOI: 10.3389/fphar.2021.754175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/03/2021] [Indexed: 01/14/2023] Open
Abstract
Vitiligo is a complex disorder characterized by the loss of pigment in the skin. The current therapeutic strategies are limited. The identification of novel drug targets and candidates is highly challenging for vitiligo. Here we proposed a systematic framework to discover potential therapeutic targets, and further explore the underlying mechanism of kaempferide, one of major ingredients from Vernonia anthelmintica (L.) willd, for vitiligo. By collecting transcriptome and protein-protein interactome data, the combination of random forest (RF) and greedy articulation points removal (GAPR) methods was used to discover potential therapeutic targets for vitiligo. The results showed that the RF model performed well with AUC (area under the receiver operating characteristic curve) = 0.926, and led to prioritization of 722 important transcriptomic features. Then, network analysis revealed that 44 articulation proteins in vitiligo network were considered as potential therapeutic targets by the GAPR method. Finally, through integrating the above results and proteomic profiling of kaempferide, the multi-target strategy for vitiligo was dissected, including 1) the suppression of the p38 MAPK signaling pathway by inhibiting CDK1 and PBK, and 2) the modulation of cellular redox homeostasis, especially the TXN and GSH antioxidant systems, for the purpose of melanogenesis. Meanwhile, this strategy may offer a novel perspective to discover drug candidates for vitiligo. Thus, the framework would be a useful tool to discover potential therapeutic strategies and drug candidates for complex diseases.
Collapse
Affiliation(s)
- Jiye Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lin Luo
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Qiong Ding
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yayuan Peng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoqin Wang
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.,Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bo Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.,Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
El-Harakeh M, Al-Ghadban S, Safi R. Medicinal Plants Towards Modeling Skin Cancer. Curr Drug Targets 2021; 22:148-161. [PMID: 33019926 DOI: 10.2174/1389450121666201005103521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
Skin cancer remains a major cause of mortality worldwide. It can be divided into melanoma and non-melanoma cancer, which comprise mainly squamous cell carcinoma and basal cell carcinoma. Although conventional therapies have ameliorated the management of skin cancer, the search for chemopreventive compounds is still the most effective and safer strategy to treat cancer. Nowadays, chemoprevention is recognized as a novel approach to prevent or inhibit carcinogenesis steps with the use of natural products. Crude extracts of plants and isolated phytocompounds are considered chemopreventive agents since they harbor anti-inflammatory, antioxidant and anti-oncogenic properties against many types of diseases and cancers. In this review, we will discuss the therapeutic effect and preventive potential of selected medicinal plants used as crude extracts or as phytocompounds against melanoma and non-melanoma cutaneous cancers.
Collapse
Affiliation(s)
- Mohammad El-Harakeh
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Sara Al-Ghadban
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Rémi Safi
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
8
|
Steven A, Friedrich M, Jank P, Heimer N, Budczies J, Denkert C, Seliger B. What turns CREB on? And off? And why does it matter? Cell Mol Life Sci 2020; 77:4049-4067. [PMID: 32347317 PMCID: PMC7532970 DOI: 10.1007/s00018-020-03525-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Altered expression and function of the transcription factor cyclic AMP response-binding protein (CREB) has been identified to play an important role in cancer and is associated with the overall survival and therapy response of tumor patients. This review focuses on the expression and activation of CREB under physiologic conditions and in tumors of distinct origin as well as the underlying mechanisms of CREB regulation by diverse stimuli and inhibitors. In addition, the clinical relevance of CREB is summarized, including its use as a prognostic and/or predictive marker as well as a therapeutic target.
Collapse
Affiliation(s)
- André Steven
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Paul Jank
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Nadine Heimer
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Jan Budczies
- Institute of Pathology, University Clinic Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
| |
Collapse
|
9
|
Islam SU, Ahmed MB, Ahsan H, Islam M, Shehzad A, Sonn JK, Lee YS. An Update on the Role of Dietary Phytochemicals in Human Skin Cancer: New Insights into Molecular Mechanisms. Antioxidants (Basel) 2020; 9:E916. [PMID: 32993035 PMCID: PMC7600476 DOI: 10.3390/antiox9100916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Human skin is continuously subjected to environmental stresses, as well as extrinsic and intrinsic noxious agents. Although skin adopts various molecular mechanisms to maintain homeostasis, excessive and repeated stresses can overwhelm these systems, leading to serious cutaneous damage, including both melanoma and non-melanoma skin cancers. Phytochemicals present in the diet possess the desirable effects of protecting the skin from damaging free radicals as well as other benefits. Dietary phytochemicals appear to be effective in preventing skin cancer and are inexpensive, widely available, and well tolerated. Multiple in vitro and in vivo studies have demonstrated the significant anti-inflammatory, antioxidant, and anti-angiogenic characteristics of dietary phytochemicals against skin malignancy. Moreover, dietary phytochemicals affect multiple important cellular processes including cell cycle, angiogenesis, and metastasis to control skin cancer progression. Herein, we discuss the advantages of key dietary phytochemicals in whole fruits and vegetables, their bioavailability, and underlying molecular mechanisms for preventing skin cancer. Current challenges and future prospects for research are also reviewed. To date, most of the chemoprevention investigations have been conducted preclinically, and additional clinical trials are required to conform and validate the preclinical results in humans.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Haseeb Ahsan
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Mazharul Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman;
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jong Kyung Sonn
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| |
Collapse
|
10
|
Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders. Food Chem Toxicol 2020; 145:111708. [PMID: 32866514 DOI: 10.1016/j.fct.2020.111708] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Acacetin is a di-hydroxy and mono-methoxy flavone present in various plants, including black locust, Damiana, Silver birch. Literature information revealed that acacetin exhibits an array of pharmacological potential including chemopreventive and cytotoxic properties in cancer cell lines, prevents ischemia/reperfusion/myocardial infarction-induced cardiac injury, lipopolysaccharide (LPS), 1-methyl-4-phenyl pyridinium ion (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced neuroinflammation, LPS and sepsis-induced lung injury, rheumatoid and collagen-induced arthritis, inhibit the microbial growth, obesity, viral-mediated infections as well as hepatic protection. PURPOSE This review highlights the therapeutic potential of acacetin, with updated and comprehensive information on the biological sources, chemistry, and pharmacological properties along with the possible mechanism of action, safety aspects, and future research opportunities. STUDY DESIGN The information was retrieved from various search engines, including Pubmed, SciFinder, Science direct, Inxight:drugs, Google scholar, and Meta cyc. RESULT The first section of this review focuses on the detailed biological source of acacetin, chromatographic techniques used for isolation, chemical characteristics, the method for the synthesis of acacetin, and the available natural and synthetic derivatives. Subsequently, the pharmacological activities, including anti-cancer, anti-inflammatory, anti-viral, anti-microbial, anti-obesity, have been discussed. The pharmacokinetics data and toxicity profile of acacetin are also discussed. CONCLUSION Acacetin is a potent molecule reported for its strong anti-inflammatory and anti-cancer activity, however further scientific evidence is essential to validate its potency in disease models associated with inflammation and cancer. There is limited information available for toxicity profiling of acacetin; therefore, further studies would aid in establishing this natural flavone as a potent candidate for research studies at clinical setup.
Collapse
|
11
|
Darsandhari S, Dhakal D, Shrestha B, Lee S, Jung N, Jung HJ, Sohng JK. Biosynthesis of bioactive tamarixetin in recombinant Escherichia coli. Biotechnol Appl Biochem 2020; 68:531-537. [PMID: 32430989 DOI: 10.1002/bab.1958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/25/2018] [Indexed: 11/08/2022]
Abstract
Tamarixetin, a monomethylated derivative of quercetin, has been reported to possess many important biological activities. In the present study, a whole cell biotransformation system was used for regiospecific methylation of quercetin to produce 4'-O-methylated quercetin (tamarixetin) using methyltransferase from Streptomyces sp. KCTC 0041BP in Escherichia coli Bl21 (DE3). Its production was enhanced by adding a plasmid containing S-adenosine-l-methionine (SAM) synthase from E. coli K12 (MetK) with subsequent feeding of l-methionine and glycerol in the culture. The best condition produced ∼279 μM (88.2 mg/L) of tamarixetin. The biological activity of tamarixetin was tested and compared with quercetin, 7-O-methylated quercetin, and 3-O-methylated quercetin. Results showed that the growth of all tested cancer cell lines (AGS, B16F10, C6, and HeLa) were inhibited by tamarixetin more effectively than other methylated derivatives of quercetin or quercetin. Tamarixetin also exhibited the best antimelanogenic activity among all compounds tested.
Collapse
Affiliation(s)
- Sumangala Darsandhari
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan-si, Chungnam, Republic of Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan-si, Chungnam, Republic of Korea
| | - Biplav Shrestha
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan-si, Chungnam, Republic of Korea
| | - Sanghun Lee
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan-si, Chungnam, Republic of Korea
| | - Narae Jung
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan-si, Chungnam, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan-si, Chungnam, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan-si, Chungnam, Republic of Korea.,Department of BT-Convergent Pharmaceutical Engineering, SunMoon University, Asan-si, Chungnam, Republic of Korea
| |
Collapse
|
12
|
Arroo RRJ, Sari S, Barut B, Özel A, Ruparelia KC, Şöhretoğlu D. Flavones as tyrosinase inhibitors: kinetic studies in vitro and in silico. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:314-321. [PMID: 31997462 DOI: 10.1002/pca.2897] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/08/2019] [Accepted: 10/09/2019] [Indexed: 05/21/2023]
Abstract
INTRODUCTION Tyrosinase is a multifunctional copper-containing oxidase enzyme that catalyses the first steps in the formation of melanin pigments. Identification of tyrosinase inhibitors is of value for applications in cosmetics, medicine and agriculture. OBJECTIVE To develop an analytical method that allows identification of drug-like natural products that can be further developed as tyrosinase inhibitors. Results of in vitro and in silico studies will be compared in order to gain a deeper insight into the mechanism of action of enzyme inhibition. METHOD Using an in vitro assay we tested tyrosinase inhibitor effects of five structurally related flavones, i.e. luteolin (1), eupafolin (2), genkwanin (3), nobiletin (4), and chrysosplenetin (5). The strongest inhibitors were further investigated in silico, using enzyme docking simulations. RESULTS All compounds tested showed modest tyrosinase inhibitory effect compared to the positive control, kojic acid. The polymethoxy flavones 4 and 5 exhibited the strongest tyrosinase inhibitory effect with the half maximal inhibitory concentration (IC50 ) values of 131.92 ± 1.75 μM and 99.87 ± 2.38 μM respectively. According to kinetic analysis 2, 4 and 5 were competitive inhibitors, whereas 1 and 3 were non-competitive inhibitors of tyrosinase. Docking studies indicated that methoxy groups on 4 and 5 caused steric hindrance which prevented alternative binding modes in the tyrosinase; the methoxy groups on the B-ring of these flavones faced the catalytic site in the enzyme. CONCLUSIONS The docking simulations nicely complemented the in vitro kinetic studies, opening the way for the development of predictive models for use in drug design.
Collapse
Affiliation(s)
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Arzu Özel
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
- Drug and Pharmaceutical Technology Application and Research Centre, Karadeniz Technical University, Trabzon, Turkey
| | | | - Didem Şöhretoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Taguchi N, Yuriguchi M, Ando T, Kitai R, Aoki H, Kunisada T. Flavonoids with Two OH Groups in the B-Ring Promote Pigmented Hair Regeneration. Biol Pharm Bull 2019; 42:1446-1449. [DOI: 10.1248/bpb.b19-00295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nobuhiko Taguchi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
- General Research & Development Institute, Hoyu Co., Ltd
| | - Minoru Yuriguchi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| | - Takuya Ando
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| | - Ryosuke Kitai
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine
| |
Collapse
|
14
|
Sugai T, Fujita R, Mandal S, Hanaya K, Shoji M, Higashibayashi S. Site-Selective Synthesis of Acacetin and Genkwanin through Lipase-Catalyzed Deacetylation of Apigenin 5,7-Diacetate and Subsequent Methylation. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Iqbal J, Abbasi BA, Ahmad R, Batool R, Mahmood T, Ali B, Khalil AT, Kanwal S, Afzal Shah S, Alam MM, Bashir S, Badshah H, Munir A. Potential phytochemicals in the fight against skin cancer: Current landscape and future perspectives. Biomed Pharmacother 2019; 109:1381-1393. [DOI: 10.1016/j.biopha.2018.10.107] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/12/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023] Open
|
16
|
Navarro SD, Pessatto LR, Meza A, de Oliveira EJT, Auharek SA, Vilela LC, de Lima DP, de Azevedo RB, Kassuya CAL, Cáceres OIA, da Silva Gomes R, Beatriz A, Oliveira RJ, Martines MAU. Resorcinolic lipid 3-heptyl-3,4,6-trimethoxy-3H-isobenzofuran-1-one is a strategy for melanoma treatment. Life Sci 2018; 209:300-312. [PMID: 30102904 DOI: 10.1016/j.lfs.2018.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
Abstract
AIMS Previous studies performed by our research group indicated that cytosporone analogues are capable of prevent or repair DNA damages. This work presents the evaluation of the activity of AMS35AA for metastatic murine melanoma cells (B16F10) in experimental model in vitro and, in pre-clinic assay of metastatic melanoma in vivo, using mice lineage C57BL/6. MAIN METHODS In vitro assays were performed: MTT and comet assay, flow cytometry evaluation, gene expression assay by RT-PCR, qualitative evaluation of cell death using B16F10 cells. In vivo assays: micronucleus and comet assay, splenic phagocytosis, melanoma murine model and histopathological analysis, using mice lineage C57BL/6 (n = 20). KEY FINDINGS In vitro results performed by MTT assay showed that AMS35AA is cytotoxic for B16F10 cells (p < 0.05). Based on comet assay the genotoxicity of the IC50 was determined (95.83 μg/mL) (p < 0.05). These data were corroborated by flow cytometry analysis after the treatment with AMS35AA, which indicates the cellular death by apoptosis (p < 0.05) and increasing of ATR, p53, p21 and GADD45 gene expressions verified using RT-PCR. With respect to in vivo results, it was observed that AMS35AA did not show genotoxic activity. Data of tumor volume ex vivo indicate reduction of tumor for the treated animals with AMS35AA up to 15.84×, which is superior to Dacarbazina (50 mg/Kg, p.c.; i.p.). SIGNIFICANCE In summary, the study showed that AMS35AA reveals relevant results regarding to cytotoxicity of B16F10 murine melanoma cells, inducing death by apoptosis via mitochondrial and/or mediated by DNA damages.
Collapse
Affiliation(s)
- Stephanie Dynczuki Navarro
- Graduate Program in Biotechnology and Biodiversity, Pro Midwest Network, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Lucas Roberto Pessatto
- Research Center in Stem Cells, Cell Therapy and Genetic Toxicology (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Campo Grande, Mato Grosso do Sul, Brazil; Graduate Program in Genetics and Molecular Biology, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Alisson Meza
- Graduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Edwin José Torres de Oliveira
- Research Center in Stem Cells, Cell Therapy and Genetic Toxicology (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Campo Grande, Mato Grosso do Sul, Brazil; Graduate Program in Genetics and Molecular Biology, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Sarah Alves Auharek
- Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Teófilo Otoni, Minas Gerais, Brazil
| | - Lizia Colares Vilela
- Faculty of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Teófilo Otoni, Minas Gerais, Brazil
| | - Dênis Pires de Lima
- Graduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Ricardo Bentes de Azevedo
- Genetics and Morphology Department, Biosciences Institute, Brasilia University, Brasilia, Federal District, Brazil
| | | | - Osmar Ignacio Ayala Cáceres
- Graduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Roberto da Silva Gomes
- Graduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil; Synthesis and Molecular Modification Laboratory, Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Adilson Beatriz
- Graduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rodrigo Juliano Oliveira
- Research Center in Stem Cells, Cell Therapy and Genetic Toxicology (CeTroGen), "Maria Aparecida Pedrossian" University Hospital, Campo Grande, Mato Grosso do Sul, Brazil; Graduate Program in Genetics and Molecular Biology, General Biology Department, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil; Graduate Program in Health and Development of Midwest Region, Faculty of Medicine "Dr Hélio Mandetta", Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| | - Marco Antonio Utrera Martines
- Graduate Program in Biotechnology and Biodiversity, Pro Midwest Network, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil; Graduate Program in Chemistry, Chemistry Institute, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
17
|
Phytochemicals in Skin Cancer Prevention and Treatment: An Updated Review. Int J Mol Sci 2018; 19:ijms19040941. [PMID: 29565284 PMCID: PMC5979545 DOI: 10.3390/ijms19040941] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 01/16/2023] Open
Abstract
Skin is the largest human organ, our protection against various environmental assaults and noxious agents. Accumulation of these stress events may lead to the formation of skin cancers, including both melanoma and non-melanoma skin cancers. Although modern targeted therapies have ameliorated the management of cutaneous malignancies, a safer, more affordable, and more effective strategy for chemoprevention and treatment is clearly needed for the improvement of skin cancer care. Phytochemicals are biologically active compounds derived from plants and herbal products. These agents appear to be beneficial in the battle against cancer as they exert anti-carcinogenic effects and are widely available, highly tolerated, and cost-effective. Evidence has indicated that the anti-carcinogenic properties of phytochemicals are due to their anti-oxidative, anti-inflammatory, anti-proliferative, and anti-angiogenic effects. In this review, we discuss the preventive potential, therapeutic effects, bioavailability, and structure–activity relationship of these selected phytochemicals for the management of skin cancers. The knowledge compiled here will provide clues for future investigations on novel oncostatic phytochemicals and additional anti-skin cancer mechanisms.
Collapse
|
18
|
Niu C, Aisa HA. Upregulation of Melanogenesis and Tyrosinase Activity: Potential Agents for Vitiligo. Molecules 2017; 22:molecules22081303. [PMID: 28777326 PMCID: PMC6152334 DOI: 10.3390/molecules22081303] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Melanin, the compound primarily responsible in humans for hair, eye and skin pigmentation, is produced by melanocytes through a complicated process called melanogenesis that is catalyzed by tyrosinase and other tyrosinase-related proteins. The abnormal loss of melanin causes dermatological problems such as vitiligo. Hence the regulation of melanogenesis and tyrosinase activity is very important for treating hypopigmentary disorders. Many melanogenesis stimulators have been discovered during the past decade. This article reviews recent advances in research on extracts and active ingredients of plants, synthesized compounds with stimulating effect on melanin synthesis and tyrosinase activity, as well as their influence on the expression of related proteins and possible signaling pathways for the design and development of novel anti-vitiligo agents.
Collapse
Affiliation(s)
- Chao Niu
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Chinese Academy of Sciences, Urumqi 830011, China.
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Haji A Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid Zone, Chinese Academy of Sciences, Urumqi 830011, China.
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
19
|
Lall N, Mogapi E, de Canha MN, Crampton B, Nqephe M, Hussein AA, Kumar V. Insights into tyrosinase inhibition by compounds isolated from Greyia radlkoferi Szyszyl using biological activity, molecular docking and gene expression analysis. Bioorg Med Chem 2016; 24:5953-5959. [DOI: 10.1016/j.bmc.2016.09.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
|
20
|
Zhu L, Lu Y, Yu WG, Zhao X, Lu YH. Anti-photoageing and anti-melanogenesis activities of chrysin. PHARMACEUTICAL BIOLOGY 2016; 54:2692-2700. [PMID: 27226145 DOI: 10.1080/13880209.2016.1179334] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT Melanin plays an important role in preventing skin photoageing by blocking ultraviolet B (UVB). However, East Asian women prefer light and fair skin, therefore they want to keep their skin from photoageing and at the same time reduce the melanin in their skin. Chrysin is a kind of natural flavonoid with luxurious biological activities, which has a very promising effect on achieving this goal. OBJECTIVE To elucidate the effects and mechanisms of chrysin on photoageing and melanogenesis. MATERIALS AND METHODS Human dermal fibroblasts (HDF) and B16 murine melanoma cells were incubated with chrysin (0-25 μM) for 48 h. Anti-photoageing activity was examined in HDF by assessment of synthesis/degradation of collagen I, antioxidative and antisenescent activities through ELISA and colorimetric method. Anti-melanogenesis activity was tested by assessment of melanin, tyrosinase (TYR), melanogenic proteins inhibition activities in B16 cells using colorimetric and ELISA method. RESULTS Chrysin increased collagen I secretion (50-121.54% at 6.25-25 μM) and chrysin showed anti-photoageing activity by decreasing the degradation of collagen I, repairing oxidation damage and reducing the rate of HDF senescence. Furthermore, chrysin exhibited inhibitory activities with 3.00-20.35% reduction of melanin content at 6.25-25 μM, and inhibited melanin synthesis through the inhibition of TYR activity and the suppression of melanogenic proteins (TYR, TYR-related protein-1/2 and microphthalmia-associated transcription factor) expressions. DISCUSSION AND CONCLUSION Chrysin may have potential for developing a functional cosmetic agent because of its anti-photoageing and anti-melanogenesis activities.
Collapse
Affiliation(s)
- Li Zhu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P.R. China
- b Shanghai Institute of Biomanufacturing Technology , Shanghai , P.R. China
| | - Yue Lu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P.R. China
- b Shanghai Institute of Biomanufacturing Technology , Shanghai , P.R. China
| | - Wan-Guo Yu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P.R. China
- b Shanghai Institute of Biomanufacturing Technology , Shanghai , P.R. China
| | - Xin Zhao
- c Shanghai Inoherb Cosmetics Co. Ltd. , Shanghai , P.R. China
| | - Yan-Hua Lu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P.R. China
- b Shanghai Institute of Biomanufacturing Technology , Shanghai , P.R. China
| |
Collapse
|
21
|
Šmejkal K, Malaník M, Zhaparkulova K, Sakipova Z, Ibragimova L, Ibadullaeva G, Žemlička M. Kazakh Ziziphora Species as Sources of Bioactive Substances. Molecules 2016; 21:molecules21070826. [PMID: 27347924 PMCID: PMC6274025 DOI: 10.3390/molecules21070826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 01/19/2023] Open
Abstract
Ziziphora species represent the prototypical example of the Lamiaceae family. The phytochemicals present in Ziziphora include monoterpenic essential oils, triterpenes and phenolic substances belonging to the flavonoids. In Kazakh traditional medicine, Ziziphora species possess several medicinal uses. In particular, Z. bungeana Lam. and Z. clinopodioides Lam. are used for the treatment of illnesses related to the cardiovascular system or to combat different infections. Unfortunately, the majority of the information about the complex Ziziphora species is only available in Russian and Chinese language, therefore, we decided gather all available information on Kazakhstan Ziziphora, namely its content compounds, medicinal uses and published patents, to draw the attention of scientists to this very interesting plant with high medicinal potential.
Collapse
Affiliation(s)
- Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno 61242, Czech Republic.
| | - Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno 61242, Czech Republic.
| | - Karlygash Zhaparkulova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Zuriyadda Sakipova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Liliya Ibragimova
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Galya Ibadullaeva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kazakh National Medical University, Almaty 050000, Kazakhstan.
| | - Milan Žemlička
- Department of Pharmacognosy and Botany, The University of Veterinary Medicine and Pharmacy in Košice, Košice 04181, Slovakia.
| |
Collapse
|
22
|
Hanamura S, Hanaya K, Shoji M, Sugai T. Synthesis of acacetin and resveratrol 3,5-di-O-β-glucopyranoside using lipase-catalyzed regioselective deacetylation of polyphenol glycoside peracetates as the key step. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Drira R, Sakamoto K. Isosakuranetin, a 4'-O-methylated flavonoid, stimulates melanogenesis in B16BL6 murine melanoma cells. Life Sci 2015; 143:43-9. [PMID: 26524968 DOI: 10.1016/j.lfs.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/11/2015] [Accepted: 10/09/2015] [Indexed: 11/24/2022]
Abstract
AIMS The beneficial effects of 4'-O-methylated flavonoids on induction of melanogenesis are well established. Here, we report the effect of isosakuranetin (Iso) on melanogenesis in B16BL6 melanoma cells and an analysis of the signaling pathways involved in this activity. METHODS B16BL6 melanoma cells were treated with several concentrations of Iso and melanin content was measured. Activation and expression of factors involved in melanogenesis were assessed via western blotting. KEY FINDINGS Iso (15 and 30μmol/L) strongly stimulated melanogenesis in a dose-dependent manner. Iso increased tyrosinase activity and up-regulated tyrosinase (Tyr), tyrosinase related protein 1 (TRP1), and tyrosinase related protein 2 (TRP2) in a time-dependent manner. Iso decreased B16 cell proliferation at a concentration above 45μmol/L, and had no effect on cell viability as revealed by MTT and trypan blue assays. Iso up-regulated expression of microphthalmia transcription factor (MITF), with a maximum effect after 12h. H89, a specific inhibitor of PKA, showed that MITF up-regulation is mediated through PKA/CREB activation. Furthermore, Iso decreased phosphorylation of MITF at Ser73 after 24h and 48h of exposure, activating MITF and leading to up-regulation of Tyr, TRP1, and TRP2. Iso inhibited phosphorylation and activation of ERK1/2 after 12h, while no significant effects on p38 and JNK phosphorylation were observed. Iso inhibited AKT phosphorylation and led to activation of GSK3β. SIGNIFICANCE Iso stimulates melanogenesis in B16 melanoma cells via up-regulation of MITF. Furthermore, Iso-induced inhibition of ERK1/2 and PI3K/AKT signaling pathways activate MITF and subsequent expression of Tyr, TRP1, and TRP2.
Collapse
Affiliation(s)
- Riadh Drira
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuichi Sakamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
24
|
Kim HJ, Kim IS, Dong Y, Lee IS, Kim JS, Kim JS, Woo JT, Cha BY. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci 2015; 16:8772-88. [PMID: 25903150 PMCID: PMC4425108 DOI: 10.3390/ijms16048772] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/09/2015] [Indexed: 01/10/2023] Open
Abstract
The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP) 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF) after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.
Collapse
Affiliation(s)
- Hyo Jung Kim
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan.
| | - Il Soon Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea.
| | - Yin Dong
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan.
| | - Ik-Soo Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea.
| | - Jin Sook Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Korea.
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 702-701, Korea.
| | - Je-Tae Woo
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan.
- Department of Research and Development, Erina Co., Inc., 1-9-2 Hagashi-Shinbashi, Minato-ku, Tokyo 105-0021, Japan.
| | - Byung-Yoon Cha
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
25
|
Yong Y, Shin SY, Jung Y, Jung H, Ahn S, Chong Y, Lim Y. Flavonoids activating adenosine monophosphate-activated protein kinase. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0003-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Nath LR, Gorantla JN, Joseph SM, Antony J, Thankachan S, Menon DB, Sankar S, Lankalapalli RS, Anto RJ. Kaempferide, the most active among the four flavonoids isolated and characterized from Chromolaena odorata, induces apoptosis in cervical cancer cells while being pharmacologically safe. RSC Adv 2015; 5:100912-100922. [DOI: 10.1039/c5ra19199h] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report the isolation and characterization of four compounds from a cytotoxic fraction F-17, isolated from the DCM extract ofC. odorataby bioactivity guided fractionation.
Collapse
Affiliation(s)
- Lekshmi R. Nath
- Division of Cancer Research
- Rajiv Gandhi Centre for Biotechnology
- Thiruvananthapuram-695014
- India
| | - Jaggaiah N. Gorantla
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram-695019
- India
| | - Sophia Margaret Joseph
- Division of Cancer Research
- Rajiv Gandhi Centre for Biotechnology
- Thiruvananthapuram-695014
- India
| | - Jayesh Antony
- Division of Cancer Research
- Rajiv Gandhi Centre for Biotechnology
- Thiruvananthapuram-695014
- India
| | - Sanu Thankachan
- Division of Cancer Research
- Rajiv Gandhi Centre for Biotechnology
- Thiruvananthapuram-695014
- India
| | - Darsan B. Menon
- Division of Cancer Research
- Rajiv Gandhi Centre for Biotechnology
- Thiruvananthapuram-695014
- India
| | - S. Sankar
- Department of Pathology
- Government Medical College
- Thiruvananthapuram-695011
- India
| | - Ravi S. Lankalapalli
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram-695019
- India
| | - Ruby John Anto
- Division of Cancer Research
- Rajiv Gandhi Centre for Biotechnology
- Thiruvananthapuram-695014
- India
| |
Collapse
|
27
|
Bari L, Kemeny L, Bari F. A multilingual assessment of melanoma information quality on the Internet. JOURNAL OF CANCER EDUCATION : THE OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER EDUCATION 2014; 29:284-288. [PMID: 24385338 DOI: 10.1007/s13187-013-0596-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study aims to assess and compare melanoma information quality in Hungarian, Czech, and German languages on the Internet. We used country-specific Google search engines to retrieve the first 25 uniform resource locators (URLs) by searching the word "melanoma" in the given language. Using the automated toolbar of Health On the Net Foundation (HON), we assessed each Web site for HON certification based on the Health On the Net Foundation Code of Conduct (HONcode). Information quality was determined using a 35-point checklist created by Bichakjian et al. (J Clin Oncol 20:134-141, 2002), with the NCCN melanoma guideline as control. After excluding duplicate and link-only pages, a total of 24 Hungarian, 18 Czech, and 21 German melanoma Web sites were evaluated and rated. The amount of HON certified Web sites was the highest among the German Web pages (19%). One of the retrieved Hungarian and none of the Czech Web sites were HON certified. We found the highest number of Web sites containing comprehensive, correct melanoma information in German language, followed by Czech and Hungarian pages. Although the majority of the Web sites lacked data about incidence, risk factors, prevention, treatment, work-up, and follow-up, at least one comprehensive, high-quality Web site was found in each language. Several Web sites contained incorrect information in each language. While a small amount of comprehensive, quality melanoma-related Web sites was found, most of the retrieved Web content lacked basic disease information, such as risk factors, prevention, and treatment. A significant number of Web sites contained malinformation. In case of melanoma, primary and secondary preventions are of especially high importance; therefore, the improvement of disease information quality available on the Internet is necessary.
Collapse
Affiliation(s)
- Lilla Bari
- Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | | |
Collapse
|
28
|
Chen W, Becker T, Qian F, Ring J. Beer and beer compounds: physiological effects on skin health. J Eur Acad Dermatol Venereol 2013; 28:142-50. [DOI: 10.1111/jdv.12204] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/23/2013] [Accepted: 05/31/2013] [Indexed: 12/28/2022]
Affiliation(s)
- W. Chen
- Department of Dermatology and Allergy Biederstein; Technische Universität München; Christine Kühne Center for Allergy Research and Education (CK CARE); Munich Germany
| | - T. Becker
- Brewing and Beverage Technology; Department of Life Science Engineering; Center of Life and Food Sciences Weihenstephan; Technische Universitaet Muenchen; Freising Germany
| | - F. Qian
- Brewing and Beverage Technology; Department of Life Science Engineering; Center of Life and Food Sciences Weihenstephan; Technische Universitaet Muenchen; Freising Germany
| | - J. Ring
- Department of Dermatology and Allergy Biederstein; Technische Universität München; Christine Kühne Center for Allergy Research and Education (CK CARE); Munich Germany
| |
Collapse
|