1
|
Boccalini S. Value of Vaccinations: A Fundamental Public Health Priority to Be Fully Evaluated. Vaccines (Basel) 2025; 13:479. [PMID: 40432091 PMCID: PMC12115698 DOI: 10.3390/vaccines13050479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
INTRODUCTION Vaccinations are one of the most impactful public health interventions, saving millions of lives annually and reducing the spread of infectious diseases. Numerous vaccines are expected to become available in the future. Decision-makers will have to thoroughly evaluate them. It is essential to fully comprehend the value of vaccinations to effectively and efficiently guide decisions. METHODS This work aims to highlight the multifaceted benefits of vaccination, extending beyond clinical outcomes to encompass profound economic and societal advantages. RESULTS Vaccinations should be considered an investment, not a cost. In comparison to other health expenditures, the vaccine costs can be considered moderate. Vaccinations can also reduce the fiscal burden by avoiding diseases, minimizing lost workdays and absenteeism, lowering disability claims, and increasing workforce productivity. The costs of non-vaccination represent a relevant issue. Vaccination also plays a key role in addressing the global challenge of antimicrobial resistance. Apart from quantifiable economic parameters, vaccines also have intangible benefits reducing pain and avoiding quality of life lost and deaths. CONCLUSIONS Comprehensive Health Technology Assessments are required to understand the overall value of vaccinations.
Collapse
Affiliation(s)
- Sara Boccalini
- Department of Health Science, University of Florence, 50134 Florence, Italy
| |
Collapse
|
2
|
Yuan H, Bao M, Chen M, Fu J, Yu S. Advances in Immunotherapy and Targeted Therapy for Gastric Cancer: A Comprehensive Review. Br J Hosp Med (Lond) 2025; 86:1-24. [PMID: 40135294 DOI: 10.12968/hmed.2024.0759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Gastric cancer remains one of the most prevalent and lethal malignancies worldwide, characterized by poor survival rates, particularly in advanced stages. In recent years, a paradigm shift in gastric cancer treatment has been witnessed with the introduction of immunotherapy and targeted therapies. This review provides a detailed examination of current immunotherapeutic strategies, including adoptive cell therapy (ACT), immune checkpoint inhibitors (ICIs), and cancer vaccines. Additionally, it explores advancements in targeted therapies, focusing on the human epidermal growth factor receptor 2 (HER2) and vascular endothelial growth factor receptor (VEGFR) signaling pathways, as well as emerging targets such as claudin 18.2. Clinical trials investigating chimeric antigen receptor T-cell (CAR-T) therapy, T-cell receptor-engineered T-cell (TCR-T) therapy, and natural killer (NK) cell-based treatments have shown promise, particularly when combined with conventional chemotherapeutic regimens. However, challenges such as cytokine release syndrome, immune-related toxicities, and scalability issues remain significant. The combination of immunotherapy with targeted therapies represents a promising approach to enhance treatment outcomes. Future directions emphasize the need to overcome resistance mechanisms and refine treatment strategies to improve efficacy while reducing adverse effects. This review aims to elucidate the current landscape of immunotherapy and targeted therapy in gastric cancer and to explore their potential in shaping the future of clinical management for this devastating disease.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Miao Bao
- The Second Ward, Department of Pediatrics, Jinhua Maternal & Child Health Hospital, Jinhua, Zhejiang, China
| | - Minqiang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Junhao Fu
- Central Laboratory, Jinhua Municipal Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Shian Yu
- Department of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
3
|
Zhong LY, Xie C, Zhang LL, Yang YL, Liu YT, Zhao GX, Bu GL, Tian XS, Jiang ZY, Yuan BY, Li PL, Wu PH, Jia WH, Münz C, Gewurz BE, Zhong Q, Sun C, Zeng MS. Research landmarks on the 60th anniversary of Epstein-Barr virus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:354-380. [PMID: 39505801 DOI: 10.1007/s11427-024-2766-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 11/08/2024]
Abstract
Epstein-Barr virus (EBV), the first human oncovirus discovered in 1964, has become a focal point in virology, immunology, and oncology because of its unique biological characteristics and significant role in human diseases. As we commemorate the 60th anniversary of EBV's discovery, it is an opportune moment to reflect on the major advancements in our understanding of this complex virus. In this review, we highlight key milestones in EBV research, including its virion structure and life cycle, interactions with the host immune system, association with EBV-associated diseases, and targeted intervention strategies.
Collapse
Affiliation(s)
- Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Le-Le Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Lin Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xian-Shu Tian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zi-Ying Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bo-Yu Yuan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng-Lin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pei-Huang Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, 8092, Switzerland
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Xu L, Li C, Liao R, Xiao Q, Wang X, Zhao Z, Zhang W, Ding X, Cao Y, Cai L, Rosenecker J, Guan S, Tang J. From Sequence to System: Enhancing IVT mRNA Vaccine Effectiveness through Cutting-Edge Technologies. Mol Pharm 2025; 22:81-102. [PMID: 39601789 DOI: 10.1021/acs.molpharmaceut.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The COVID-19 pandemic has spotlighted the potential of in vitro transcribed (IVT) mRNA vaccines with their demonstrated efficacy, safety, cost-effectiveness, and rapid manufacturing. Numerous IVT mRNA vaccines are now under clinical trials for a range of targets, including infectious diseases, cancers, and genetic disorders. Despite their promise, IVT mRNA vaccines face hurdles such as limited expression levels, nonspecific targeting beyond the liver, rapid degradation, and unintended immune activation. Overcoming these challenges is crucial to harnessing the full therapeutic potential of IVT mRNA vaccines for global health advancement. This review provides a comprehensive overview of the latest research progress and optimization strategies for IVT mRNA molecules and delivery systems, including the application of artificial intelligence (AI) models and deep learning techniques for IVT mRNA structure optimization and mRNA delivery formulation design. We also discuss recent development of the delivery platforms, such as lipid nanoparticles (LNPs), polymers, and exosomes, which aim to address challenges related to IVT mRNA protection, cellular uptake, and targeted delivery. Lastly, we offer insights into future directions for improving IVT mRNA vaccines, with the hope to spur further progress in IVT mRNA vaccine research and development.
Collapse
Affiliation(s)
- Lifeng Xu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Chao Li
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Rui Liao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Qin Xiao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoran Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Yuxue Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Larry Cai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Jie Tang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
5
|
Wang Q, Zhang R, Wang Y, Wang Y, Liang L, Ma H, Wang H, Si L, Wu X. A Subunit Vaccine Harboring the Fusion Capsid Proteins of Porcine Circovirus Types 2, 3, and 4 Induces Protective Immune Responses in a Mouse Model. Viruses 2024; 16:1964. [PMID: 39772270 PMCID: PMC11728783 DOI: 10.3390/v16121964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Coinfections with porcine circovirus types 2, 3, and 4 (PCV2, PCV3, and PCV4) are increasingly being detected in the swine industry. However, there is no commercially available vaccine which prevents coinfection with PCV2, PCV3, and PCV4. The development of a vaccine expressing capsid (Cap) fusion proteins of multiple PCVs represents a promising approach for broadly preventing infection with PCVs. In this study, we developed a PCV subunit vaccine candidate (Cap 2-3-4) by predicting, screening, and fusing antigenic epitopes of Cap proteins of PCV2, PCV3, and PCV4. Immunoprotection assays showed that the prokaryotic expression of Cap 2-3-4 could effectively induce high levels of PCV2, PCV3, and PCV4 Cap-specific antibodies and successfully neutralize both PCV2 and PCV3. Furthermore, Cap 2-3-4 demonstrated a potent ability to activate cellular immunity and thus prevent lung damage in mice. This study provides a new option for the development of broad vaccines against PCVs.
Collapse
Affiliation(s)
- Qikai Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Ran Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Yue Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Libin Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Haili Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
| | - Longlong Si
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Wu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (Q.W.)
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Weerarathna IN, Doelakeh ES, Kiwanuka L, Kumar P, Arora S. Prophylactic and therapeutic vaccine development: advancements and challenges. MOLECULAR BIOMEDICINE 2024; 5:57. [PMID: 39527305 PMCID: PMC11554974 DOI: 10.1186/s43556-024-00222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Biomedical research is fundamental in developing preventive and therapeutic vaccines, serving as a cornerstone of global public health. This review explores the key concepts, methodologies, tools, and challenges in the vaccine development landscape, focusing on transitioning from basic biomedical sciences to clinical applications. Foundational disciplines such as virology, immunology, and molecular biology lay the groundwork for vaccine creation, while recent innovations like messenger RNA (mRNA) technology and reverse vaccinology have transformed the field. Additionally, it highlights the role of pharmaceutical advancements in translating lab discoveries into clinical solutions. Techniques like CRISPR-Cas9, genome sequencing, monoclonal antibodies, and computational modeling have significantly enhanced vaccine precision and efficacy, expediting the development of vaccines against infectious diseases. The review also discusses challenges that continue to hinder progress, including stringent regulatory pathways, vaccine hesitancy, and the rapid emergence of new pathogens. These obstacles underscore the need for interdisciplinary collaboration and the adoption of innovative strategies. Integrating personalized medicine, nanotechnology, and artificial intelligence is expected to revolutionize vaccine science further. By embracing these advancements, biomedical research has the potential to overcome existing challenges and usher in a new era of therapeutic and prophylactic vaccines, ultimately improving global health outcomes. This review emphasizes the critical role of vaccines in combating current and future health threats, advocating for continued investment in biomedical science and technology.
Collapse
Affiliation(s)
- Induni Nayodhara Weerarathna
- Department of Biomedical Sciences, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India.
| | - Elijah Skarlus Doelakeh
- Department of Anesthesia, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Lydia Kiwanuka
- Department of Medical Radiology and Imaging Technology, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, FEAT, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Sanvi Arora
- Faculty of Medicine, Jawaharlal Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| |
Collapse
|
7
|
Boccalini S, Ragusa R, Panatto D, Calabrò GE, Cortesi PA, Giorgianni G, Favaretti C, Bonanni P, Ricciardi W, de Waure C. Health Technology Assessment of Vaccines in Italy: History and Review of Applications. Vaccines (Basel) 2024; 12:1090. [PMID: 39460257 PMCID: PMC11511491 DOI: 10.3390/vaccines12101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives. Many vaccines have been developed in recent decades, and many more will be available in the future. When new safe and effective vaccines are available, decision-makers must extensively assess them before including them in the national immunization plan and issuing recommendations. The Health Technology Assessment (HTA) could be an objective, transparent, and comprehensive approach to guiding the decision-making process for the use of vaccines. Objectives and Methods. The aim of this study was to review the indications for HTA use contained in Italian institutional documents on vaccination, namely the National Immunization Plans (NIPs) and available full Italian HTA reports on vaccines, assessing their availability at the time of national recommendations' introductions. Results. HTA has been recognised as an eligible approach to deciding upon the introduction of vaccines through the NIPs of 2012-2014 and 2017-2019, and the last NIP, of 2023-2025, highlights the lack of funding dedicated to the production of independent HTA reports that can be used for issuing recommendations. In 2007-2023, twenty full HTA reports on vaccines were published in Italy: eight reports on influenza vaccines, five on Human Papilloma Virus (HPV), three each on meningococcal and pneumococcal vaccines, and one on rotavirus vaccine. HTA was applied with different purposes, namely the evaluation of new vaccines or their re-assessment, but it was not always timely with respect to both the marketing authorisation and the issuing of national recommendations for use. Conclusions. As HTA can be considered the best tool to disentangle the overall value of vaccines, it would be desirable for it to be used more and more to provide the evidence for efficient resource use. This calls for action to improve the transfer of HTA results to decision-makers, to try to fill the gap between research and decision and foster evidence-based recommendations.
Collapse
Affiliation(s)
- Sara Boccalini
- Department of Health Sciences, University of Florence, 50134 Florence, Italy;
| | - Rosalia Ragusa
- HTA Committee, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, 95123 Catania, Italy;
| | - Donatella Panatto
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy;
- Interuniversity Research Centre on Influenza and Other Transmissible Infections (CIRI-IT), 16132 Genoa, Italy
| | - Giovanna Elisa Calabrò
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.E.C.); (W.R.)
| | - Paolo Angelo Cortesi
- Research Centre on Public Health (CESP), University of Milano-Bicocca, 20132 Monza, Italy;
| | - Gabriele Giorgianni
- UOS Coordinamento Operativo delle Attività Vaccinali Metropolitane e Provinciali–ASP 3 Catania, 95128 Catania, Italy;
| | - Carlo Favaretti
- Centre on Leadership in Medicine, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Paolo Bonanni
- Department of Health Sciences, University of Florence, 50134 Florence, Italy;
| | - Walter Ricciardi
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.E.C.); (W.R.)
| | - Chiara de Waure
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy;
| |
Collapse
|
8
|
Iwashkiw JA, Mohamud AO, Kazhdan N, Ameen A, Beecher JE, Filipe CDM, Lichty BD. Improved thermal stabilization of VSV-vector with enhanced vacuum drying in pullulan and trehalose-based films. Sci Rep 2024; 14:18522. [PMID: 39122821 PMCID: PMC11316110 DOI: 10.1038/s41598-024-69003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
One major limitation of effective vaccine delivery is its dependency on a robust cold chain infrastructure. While Vesicular stomatitis virus (VSV) has been demonstrated to be an effective viral vaccine vector for diseases including Ebola, its -70 °C storage requirement is a significant limitation for accessing disadvantaged locations and populations. Previous work has shown thermal stabilization of viral vaccines with a combination of pullulan and trehalose (PT) dried films. To improve the thermal stability of VSV, we optimized PT formulation concentrations and components, as well as drying methodology with enhanced vacuum drying. When formulated in PT films, VSV can be stored for 32 weeks at 4 °C with less than 2 log PFU loss, at 25 °C with 2.5 log PFU loss, and at 37 °C with 3.1 log PFU loss. These results demonstrate a significant advancement in VSV thermal stabilization, decreasing the cold chain requirements for VSV vectored vaccines.
Collapse
Affiliation(s)
- Jeremy A Iwashkiw
- Elarex Inc., 4200 South Service Road, Burlington, ON, L7L 4X5, Canada.
| | | | - Natallia Kazhdan
- Robert E. Fitzhenry Vector Laboratory, McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Aaisha Ameen
- Elarex Inc., 4200 South Service Road, Burlington, ON, L7L 4X5, Canada
| | - Jody E Beecher
- Elarex Inc., 4200 South Service Road, Burlington, ON, L7L 4X5, Canada
| | - Carlos D M Filipe
- Elarex Inc., 4200 South Service Road, Burlington, ON, L7L 4X5, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Brian D Lichty
- Robert E. Fitzhenry Vector Laboratory, McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
9
|
Gao J, Shi X, Sun Y, Liu X, Zhang F, Shi C, Yu X, Yan Z, Liu L, Yu S, Zhang J, Zhang X, Zhang S, Guo W. Deficiency of betaine-homocysteine methyltransferase activates glucose-6-phosphate dehydrogenase (G6PD) by decreasing arginine methylation of G6PD in hepatocellular carcinogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1648-1665. [PMID: 38679670 DOI: 10.1007/s11427-023-2481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/11/2023] [Indexed: 05/01/2024]
Abstract
Betaine-homocysteine methyltransferase (BHMT) regulates protein methylation and is correlated with tumorigenesis; however, the effects and regulation of BHMT in hepatocarcinogenesis remain largely unexplored. Here, we determined the clinical significance of BHMT in the occurrence and progression of hepatocellular carcinoma (HCC) using tissue samples from 198 patients. BHMT was to be frequently found (86.6%) expressed at relatively low levels in HCC tissues and was positively correlated with the overall survival of patients with HCC. Bhmt overexpression effectively suppressed several malignant phenotypes in hepatoma cells in vitro and in vivo, whereas complete knockout of Bhmt (Bhmt-/-) produced the opposite effect. We combined proteomics, metabolomics, and molecular biological strategies and detected that Bhmt-/- promoted hepatocarcinogenesis and tumor progression by enhancing the activity of glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolism in DEN-induced HCC mouse and subcutaneous tumor-bearing models. In contrast, restoration of Bhmt with an AAV8-Bhmt injection or pharmacological inhibition of G6PD attenuated hepatocarcinogenesis. Additionally, coimmunoprecipitation identified monomethylated modifications of the G6PD, and BHMT regulated the methylation of G6PD. Protein sequence analysis, generation and application of specific antibodies, and site-directed mutagenesis indicated G6PD methylation at the arginine residue 246. Furthermore, we established bidirectionally regulated BHMT cellular models combined with methylation-deficient G6PD mutants to demonstrate that BHMT potentiated arginine methylation of G6PD, thereby inhibiting G6PD activity, which in turn suppressed hepatocarcinogenesis. Taken together, this study reveals a new methylation-regulatory mechanism in hepatocarcinogenesis owing to BHMT deficiency, suggesting a potential therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Yaohui Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Xudong Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Feng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Chengcheng Shi
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Shizhe Yu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Jiacheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Xiaodan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China.
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China.
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China.
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China.
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Chen C, Xue C, Jiang J, Bi S, Hu Z, Yu G, Sun B, Mao C. Neurotoxicity Profiling of Aluminum Salt-Based Nanoparticles as Adjuvants for Therapeutic Cancer Vaccine. J Pharmacol Exp Ther 2024; 390:45-52. [PMID: 38272670 DOI: 10.1124/jpet.123.002031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Therapeutic vaccines containing aluminum adjuvants have been widely used in the treatment of tumors due to their powerful immune-enhancing effects. However, the neurotoxicity of aluminum adjuvants with different physicochemical properties has not been completely elucidated. In this study, a library of engineered aluminum oxyhydroxide (EAO) and aluminum hydroxyphosphate (EAHP) nanoparticles was synthesized to determine their neurotoxicity in vitro. It was demonstrated that the surface charge of EAHPs and size of EAOs did not affect the cytotoxicity in N9, bEnd.3, and HT22 cells; however, soluble aluminum ions trigger the cytotoxicity in three different cell lines. Moreover, soluble aluminum ions induce apoptosis in N9 cells, and further mechanistic studies demonstrated that this apoptosis was mediated by mitochondrial reactive oxygen species generation and mitochondrial membrane potential loss. This study identifies the safety profile of aluminum-containing salts adjuvants in the nervous system during therapeutic vaccine use, and provides novel design strategies for their safer applications. SIGNIFICANCE STATEMENT: In this study, it was demonstrated that engineered aluminum oxyhydroxide and aluminum hydroxyphosphate nanoparticles did not induce cytotoxicity in N9, bEnd.3, and HT22 cells. In comparation, soluble aluminum ions triggered significant cytotoxicity in three different cell lines, indicating that the form in which aluminum is presenting may play a crucial role in its safety. Moreover, apoptosis induced by soluble aluminum ions was dependent on mitochondrial damage. This study confirms the safety of engineered aluminum adjuvants in vaccine formulations.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Changying Xue
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Jiaxuan Jiang
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Shisheng Bi
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Zurui Hu
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Ge Yu
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Chuanbin Mao
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| |
Collapse
|
11
|
Zheng J, Li X, Masci AM, Kahn H, Huffman A, Asfaw E, Pan Y, Guo J, He V, Song J, Seleznev AI, Lin AY, He Y. Empowering standardization of cancer vaccines through ontology: enhanced modeling and data analysis. J Biomed Semantics 2024; 15:12. [PMID: 38890666 PMCID: PMC11186274 DOI: 10.1186/s13326-024-00312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The exploration of cancer vaccines has yielded a multitude of studies, resulting in a diverse collection of information. The heterogeneity of cancer vaccine data significantly impedes effective integration and analysis. While CanVaxKB serves as a pioneering database for over 670 manually annotated cancer vaccines, it is important to distinguish that a database, on its own, does not offer the structured relationships and standardized definitions found in an ontology. Recognizing this, we expanded the Vaccine Ontology (VO) to include those cancer vaccines present in CanVaxKB that were not initially covered, enhancing VO's capacity to systematically define and interrelate cancer vaccines. RESULTS An ontology design pattern (ODP) was first developed and applied to semantically represent various cancer vaccines, capturing their associated entities and relations. By applying the ODP, we generated a cancer vaccine template in a tabular format and converted it into the RDF/OWL format for generation of cancer vaccine terms in the VO. '12MP vaccine' was used as an example of cancer vaccines to demonstrate the application of the ODP. VO also reuses reference ontology terms to represent entities such as cancer diseases and vaccine hosts. Description Logic (DL) and SPARQL query scripts were developed and used to query for cancer vaccines based on different vaccine's features and to demonstrate the versatility of the VO representation. Additionally, ontological modeling was applied to illustrate cancer vaccine related concepts and studies for in-depth cancer vaccine analysis. A cancer vaccine-specific VO view, referred to as "CVO," was generated, and it contains 928 classes including 704 cancer vaccines. The CVO OWL file is publicly available on: http://purl.obolibrary.org/obo/vo/cvo.owl , for sharing and applications. CONCLUSION To facilitate the standardization, integration, and analysis of cancer vaccine data, we expanded the Vaccine Ontology (VO) to systematically model and represent cancer vaccines. We also developed a pipeline to automate the inclusion of cancer vaccines and associated terms in the VO. This not only enriches the data's standardization and integration, but also leverages ontological modeling to deepen the analysis of cancer vaccine information, maximizing benefits for researchers and clinicians. AVAILABILITY The VO-cancer GitHub website is: https://github.com/vaccineontology/VO/tree/master/CVO .
Collapse
Affiliation(s)
- Jie Zheng
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xingxian Li
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anna Maria Masci
- Data Impact and Governance, Technology Data and Innovation, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hayleigh Kahn
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Anthony Huffman
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Eliyas Asfaw
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yuanyi Pan
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jinjing Guo
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Virginia He
- The College of Brown University, Brown University, Providence, RI, 02912, USA
| | - Justin Song
- College of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrey I Seleznev
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Asiyah Yu Lin
- Axle Research and Technology, Rockville, MD, 20852, USA
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
12
|
Casas I, Colmenares K, Blanco B, Valera J. [The value of vaccines in the 21st century]. Med Clin (Barc) 2024; 162:448-454. [PMID: 38161078 DOI: 10.1016/j.medcli.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 01/03/2024]
Affiliation(s)
- Irma Casas
- Servicio de Medicina Preventiva, Hospital Universitario Germans Trias i Pujol, Badalona, Barcelona, España.
| | - Karen Colmenares
- Servicio de Medicina Preventiva, Hospital Universitario Germans Trias i Pujol, Badalona, Barcelona, España
| | - Beatriz Blanco
- Servicio de Medicina Preventiva, Hospital Universitario Germans Trias i Pujol, Badalona, Barcelona, España
| | - Julia Valera
- Servicio de Medicina Preventiva, Hospital Universitario Germans Trias i Pujol, Badalona, Barcelona, España
| |
Collapse
|
13
|
Jia W, Shen X, Guo Z, Cheng X, Zhao R. The future of cancer vaccines against colorectal cancer. Expert Opin Biol Ther 2024; 24:269-284. [PMID: 38644655 DOI: 10.1080/14712598.2024.2341744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second most lethal malignancy worldwide. Immune checkpoint inhibitors (ICIs) benefit only 15% of patients with mismatch repair-deficient/microsatellite instability (dMMR/MSI) CRC. The majority of patients are not suitable due to insufficient immune infiltration. Cancer vaccines are a potential approach for inducing tumor-specific immunity within the solid tumor microenvironment. AREA COVERED In this review, we have provided an overview of the current progress in CRC vaccines over the past three years and briefly depict promising directions for further exploration. EXPERT OPINION Cancer vaccines are certainly a promising field for the antitumor treatment against CRC. Compared to monotherapy, cancer vaccines are more appropriate as adjuvants to standard treatment, especially in combination with ICI blockade, for microsatellite stable patients. Improved vaccine construction requires neoantigens with sufficient immunogenicity, satisfactory HLA-binding affinity, and an ideal delivery platform with perfect lymph node retention and minimal off-target effects. Prophylactic vaccines that potentially prevent CRC carcinogenesis are also worth investigating. The exploration of appropriate biomarkers for cancer vaccines may benefit prognostic prediction analysis and therapeutic response prediction in patients with CRC. Although many challenges remain, CRC vaccines represent an exciting area of research that may become an effective addition to current guidelines.
Collapse
Affiliation(s)
- Wenqing Jia
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaonan Shen
- Department of Gastroenterology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichao Guo
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Cheng
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Zhao
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Zhu Y, Zhou M, Li C, Kong W, Hu Y. Gastric cancer with brain metastasis: from molecular characteristics and treatment. Front Oncol 2024; 14:1310325. [PMID: 38577333 PMCID: PMC10991736 DOI: 10.3389/fonc.2024.1310325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer is one of the cancers with increasing incidence and ranks fourth globally among the most frequent causes of cancer-related mortality. Early gastric cancer is often asymptomatic or presents with atypical symptoms, and the majority of patients present with advanced disease upon diagnosis. Brain metastases are present in approximately 1% of gastric cancer patients at the time of diagnosis, which significantly contributed to the overall mortality of the disease worldwide. Conventional therapies for patients with brain metastases remain limited and the median overall survival of patients is only 8 months in advanced cases. Recent studies have improved our understanding of the molecular mechanisms underlying gastric cancer brain metastases, and immunotherapy has become an important treatment option in combination with radiotherapy, chemotherapy, targeted therapy and surgery. This review aims to provide insight into the cellular processes involved in gastric cancer brain metastases, discuss diagnostic approaches, evaluate the integration of immune checkpoint inhibitors into treatment and prognosis, and explore the predictive value of biomarkers in immunotherapy.
Collapse
Affiliation(s)
- Yingze Zhu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Miao Zhou
- Department of Oncology, Tang Shan Central Hospital, Tangshan, China
| | - Congling Li
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Wenyue Kong
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Yuning Hu
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
15
|
Guo L, Ding J, Zhou W. Converting bacteria into autologous tumor vaccine via surface biomineralization of calcium carbonate for enhanced immunotherapy. Acta Pharm Sin B 2023; 13:5074-5090. [PMID: 38045045 PMCID: PMC10692385 DOI: 10.1016/j.apsb.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/21/2023] [Accepted: 06/18/2023] [Indexed: 12/05/2023] Open
Abstract
Autologous cancer vaccine that stimulates tumor-specific immune responses for personalized immunotherapy holds great potential for tumor therapy. However, its efficacy is still suboptimal due to the immunosuppressive tumor microenvironment (ITM). Here, we report a new type of bacteria-based autologous cancer vaccine by employing calcium carbonate (CaCO3) biomineralized Salmonella (Sal) as an in-situ cancer vaccine producer and systematical ITM regulator. CaCO3 can be facilely coated on the Sal surface with calcium ionophore A23187 co-loading, and such biomineralization did not affect the bioactivities of the bacteria. Upon intratumoral accumulation, the CaCO3 shell was decomposed at an acidic microenvironment to attenuate tumor acidity, accompanied by the release of Sal and Ca2+/A23187. Specifically, Sal served as a cancer vaccine producer by inducing cancer cells' immunogenic cell death (ICD) and promoting the gap junction formation between tumor cells and dendritic cells (DCs) to promote antigen presentation. Ca2+, on the other hand, was internalized into various types of immune cells with the aid of A23187 and synergized with Sal to systematically regulate the immune system, including DCs maturation, macrophages polarization, and T cells activation. As a result, such bio-vaccine achieved remarkable efficacy against both primary and metastatic tumors by eliciting potent anti-tumor immunity with full biocompatibility. This work demonstrated the potential of bioengineered bacteria as bio-active vaccines for enhanced tumor immunotherapy.
Collapse
Affiliation(s)
- Lina Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Changsha 410008, China
| |
Collapse
|
16
|
Zhao G, Bu G, Liu G, Kong X, Sun C, Li Z, Dai D, Sun H, Kang Y, Feng G, Zhong Q, Zeng M. mRNA-based Vaccines Targeting the T-cell Epitope-rich Domain of Epstein Barr Virus Latent Proteins Elicit Robust Anti-Tumor Immunity in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302116. [PMID: 37890462 PMCID: PMC10724410 DOI: 10.1002/advs.202302116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/04/2023] [Indexed: 10/29/2023]
Abstract
Epstein-Barr virus (EBV) is associated with various malignancies and infects >90% of the global population. EBV latent proteins are expressed in numerous EBV-associated cancers and contribute to carcinogenesis, making them critical therapeutic targets for these cancers. Thus, this study aims to develop mRNA-based therapeutic vaccines that express the T-cell-epitope-rich domain of truncated latent proteins of EBV, including truncatedlatent membrane protein 2A (Trunc-LMP2A), truncated EBV nuclear antigen 1 (Trunc-EBNA1), and Trunc-EBNA3A. The vaccines effectively activate both cellular and humoral immunity in mice and show promising results in suppressing tumor progression and improving survival time in tumor-bearing mice. Furthermore, it is observed that the truncated forms of the antigens, Trunc-LMP2A, Trunc-EBNA1, and Trunc-EBNA3A, are more effective than full-length antigens in activating antigen-specific immune responses. In summary, the findings demonstrate the effectiveness of mRNA-based therapeutic vaccines targeting the T-cell-epitope-rich domain of EBV latent proteins and providing new treatment options for EBV-associated cancers.
Collapse
Affiliation(s)
- Ge‐Xin Zhao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Guo‐Long Bu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Gang‐Feng Liu
- Department of Head and Neck Surgery Section IIThe Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital519 Kunzhou RoadKunming650118China
| | - Xiang‐Wei Kong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Cong Sun
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zi‐Qian Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Dan‐Ling Dai
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hai‐Xia Sun
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yin‐Feng Kang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Guo‐Kai Feng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Qian Zhong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Mu‐Sheng Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Guangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
17
|
Abstract
The use of cancer vaccines is considered a promising therapeutic strategy in clinical oncology, which is achieved by stimulating antitumor immunity with tumor antigens delivered in the form of cells, peptides, viruses, and nucleic acids. The ideal cancer vaccine has many advantages, including low toxicity, specificity, and induction of persistent immune memory to overcome tumor heterogeneity and reverse the immunosuppressive microenvironment. Many therapeutic vaccines have entered clinical trials for a variety of cancers, including melanoma, breast cancer, lung cancer, and others. However, many challenges, including single antigen targeting, weak immunogenicity, off-target effects, and impaired immune response, have hindered their broad clinical translation. In this review, we introduce the principle of action, components (including antigens and adjuvants), and classification (according to applicable objects and preparation methods) of cancer vaccines, summarize the delivery methods of cancer vaccines, and review the clinical and theoretical research progress of cancer vaccines. We also present new insights into cancer vaccine technologies, platforms, and applications as well as an understanding of potential next-generation preventive and therapeutic vaccine technologies, providing a broader perspective for future vaccine design.
Collapse
Affiliation(s)
- Nian Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
18
|
Zhang N, Cheng X, Zhu Y, Mo O, Yu H, Zhu L, Zhang J, Kuang L, Gao Y, Cao R, Liang X, Wang H, Li H, Li S, Zhong W, Li X, Li X, Hao P. Multi-valent mRNA vaccines against monkeypox enveloped or mature viron surface antigens demonstrate robust immune response and neutralizing activity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2329-2341. [PMID: 37300753 PMCID: PMC10257374 DOI: 10.1007/s11427-023-2378-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Monkeypox was declared a global health emergency by the World Health Organization, and as of March 2023, 86,000 confirmed cases and 111 deaths across 110 countries have been reported. Its causal agent, monkeypox virus (MPV) belongs to a large family of double-stranded DNA viruses, Orthopoxviridae, that also includes vaccinia virus (VACV) and others. MPV produces two distinct forms of viral particles during its replication cycles: the enveloped viron (EV) that is released via exocytosis, and the mature viron (MV) that is discharged through lysis of host cells. This study was designed to develop multi-valent mRNA vaccines against monkeypox EV and MV surface proteins, and examine their efficacy and mechanism of action. Four mRNA vaccines were produced with different combinations of surface proteins from EV (A35R and B6R), MV (A29L, E8L, H3L and M1R), or EV and MV, and were administered in Balb/c mice to assess their immunogenicity potentials. A dynamic immune response was observed as soon as seven days after initial immunization, while a strong IgG response to all immunogens was detected with ELISA after two vaccinations. The higher number of immunogens contributed to a more robust total IgG response and correlating neutralizing activity against VACV, indicating the additive potential of each immunogen in generating immune response and nullifying VACV infection. Further, the mRNA vaccines elicited an antigen-specific CD4+ T cell response that is biased towards Th1. The mRNA vaccines with different combinations of EV and MV surface antigens protected a mouse model from a lethal dose VACV challenge, with the EV and MV antigens-combined vaccine offering the strongest protection. These findings provide insight into the protective mechanism of multi-valent mRNA vaccines against MPV, and also the foundation for further development of effective and safe mRNA vaccines for enhanced protection against monkeypox virus outbreak.
Collapse
Affiliation(s)
- Niubing Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- East China University of Science and Technology, Shanghai, 200237, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Xiang Cheng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilong Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- Academicians Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ouyang Mo
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiqing Yu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liqi Zhu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linlin Kuang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Gao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaozhen Liang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haikun Wang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honglin Li
- East China University of Science and Technology, Shanghai, 200237, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Wan Y, Shen J, Hong Y, Liu J, Shi T, Cai J. Mapping knowledge landscapes and emerging trends of the biomarkers in melanoma: a bibliometric analysis from 2004 to 2022. Front Oncol 2023; 13:1181164. [PMID: 37427124 PMCID: PMC10327294 DOI: 10.3389/fonc.2023.1181164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Background Melanoma is a skin tumor with a high mortality rate, and early diagnosis and effective treatment are the key to reduce its mortality rate. Therefore, more and more attention has been paid for biomarker identification for early diagnosis, prognosis prediction and prognosis evaluation of melanoma. However, there is still a lack of a report that comprehensively and objectively evaluates the research status of melanoma biomarkers. Therefore, this study aims to intuitively analyze the research status and trend of melanoma biomarkers through the methods of bibliometrics and knowledge graph. Objective This study uses bibliometrics to analyze research in biomarkers in melanoma, summarize the field's history and current status of research, and predict future research directions. Method Articles and Reviews related to melanoma biomarkers were retrieved by using Web of Science core collection subject search. Bibliometric analysis was performed in Excel 365, CiteSpace, VOSviewer and Bibliometrix (R-Tool of R-Studio). Result A total of 5584 documents from 2004 to 2022 were included in the bibliometric analysis. The results show that the number of publications and the frequency of citations in this field are increasing year by year, and the frequency of citations has increased rapidly after 2018. The United States is the most productive and influential country in this field, with the largest number of publications and institutions with high citation frequency. Caroline Robert, F. Stephen Hodi, Suzanne L. Topalian and others are authoritative authors in this field, and The New England Journal of Medicine, Journal of Clinical Oncology and Clinical Cancer Research are the most authoritative journals in this field. Biomarkers related to the diagnosis, treatment and prognosis of melanoma are hot topics and cutting-edge hotspots in this field. Conclusion For the first time, this study used the bibliometric method to visualize the research in the field of melanoma biomarkers, revealing the trends and frontiers of melanoma biomarkers research, which provides a useful reference for scholars to find key research issues and partners.
Collapse
Affiliation(s)
- Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China
| | - Junwei Cai
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Sun B, Xia N, Zhang X. Progress in immunotherapy. SCIENCE CHINA. LIFE SCIENCES 2023; 66:653-657. [PMID: 36932314 PMCID: PMC10023301 DOI: 10.1007/s11427-023-2322-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 03/19/2023]
Affiliation(s)
- Bing Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences & School of Public Health, Xiamen University, Xiamen, 361102, China.
- Xiang An Biomedicine Laboratory, Xiamen, 361102, China.
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, 361102, China.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
21
|
Lokhov PG, Balashova EE, Trifonova OP, Maslov DL, Archakov AI. Cell Proteomic Footprinting: Advances in the Quality of Cellular and Cell-Derived Cancer Vaccines. Pharmaceutics 2023; 15:661. [PMID: 36839983 PMCID: PMC9963030 DOI: 10.3390/pharmaceutics15020661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In omics sciences, many compounds are measured simultaneously in a sample in a single run. Such analytical performance opens up prospects for improving cellular cancer vaccines and other cell-based immunotherapeutics. This article provides an overview of proteomics technology, known as cell proteomic footprinting. The molecular phenotype of cells is highly variable, and their antigenic profile is affected by many factors, including cell isolation from the tissue, cell cultivation conditions, and storage procedures. This makes the therapeutic properties of cells, including those used in vaccines, unpredictable. Cell proteomic footprinting makes it possible to obtain controlled cell products. Namely, this technology facilitates the cell authentication and quality control of cells regarding their molecular phenotype, which is directly connected with the antigenic properties of cell products. Protocols for cell proteomic footprinting with their crucial moments, footprint processing, and recommendations for the implementation of this technology are described in this paper. The provided footprints in this paper and program source code for their processing contribute to the fast implementation of this technology in the development and manufacturing of cell-based immunotherapeutics.
Collapse
Affiliation(s)
- Petr G. Lokhov
- Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia
| | | | | | | | | |
Collapse
|