1
|
Aslan C, Zolbanin NM, Faraji F, Jafari R. Exosomes for CRISPR-Cas9 Delivery: The Cutting Edge in Genome Editing. Mol Biotechnol 2024; 66:3092-3116. [PMID: 38012525 DOI: 10.1007/s12033-023-00932-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023]
Abstract
Gene mutation correction was challenging until the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas). CRISPR is a new era for genome modification, and this technology has bypassed the limitations of previous methods such as zinc-finger nuclease and transcription activator-like effector nuclease. Currently, this method is becoming the method of choice for gene-editing purposes, especially therapeutic gene editing in diseases such as cardiovascular, neurological, renal, genetic, optical, and stem cell, as well as blood disorders and muscular degeneration. However, finding the optimum delivery system capable of carrying this large complex persists as the main challenge of this technology. Therefore, it would be ideal if the delivery vehicle could direct the introduction of editing functions to specific cells in a multicellular organism. Exosomes are membrane-bound vesicles with high biocompatibility and low immunogenicity; they offer the best and most reliable way to fill the CRISPR/Cas9 system delivery gap. This review presents the current evidence on the molecular mechanisms and challenges of CRISPR/Cas9-mediated genome modification. Also, the role of CRISPR/Cas9 in the development of treatment and diagnosis of numerous disorders, from malignancies to viral infections, has been discussed. Lastly, the focus is on new advances in exosome-delivery technologies that may play a role in CRISPR/Cas9 delivery for future clinical settings.
Collapse
Affiliation(s)
- Cynthia Aslan
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Hazrat-e Rasool General Hospital, Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Floor 3, Building No. 3, Niyayesh St, Sattar Khan St, Tehran, 1445613131, Iran.
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Clinical Research Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd., P.O. Box: 1138, Urmia, 57147, Iran.
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Li C, He W, Song Y, Zhang X, Sun J, Zhou Z. Advances of 3D Cell Co-Culture Technology Based on Microfluidic Chips. BIOSENSORS 2024; 14:336. [PMID: 39056612 PMCID: PMC11274478 DOI: 10.3390/bios14070336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Cell co-culture technology aims to study the communication mechanism between cells and to better reveal the interactions and regulatory mechanisms involved in processes such as cell growth, differentiation, apoptosis, and other cellular activities. This is achieved by simulating the complex organismic environment. Such studies are of great significance for understanding the physiological and pathological processes of multicellular organisms. As an emerging cell cultivation technology, 3D cell co-culture technology, based on microfluidic chips, can efficiently, rapidly, and accurately achieve cell co-culture. This is accomplished by leveraging the unique microchannel structures and flow characteristics of microfluidic chips. The technology can simulate the native microenvironment of cell growth, providing a new technical platform for studying intercellular communication. It has been widely used in the research of oncology, immunology, neuroscience, and other fields. In this review, we summarize and provide insights into the design of cell co-culture systems on microfluidic chips, the detection methods employed in co-culture systems, and the applications of these models.
Collapse
Affiliation(s)
- Can Li
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (C.L.); (Y.S.); (X.Z.)
| | - Wei He
- Department of Clinical Medical Engineering, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Yihua Song
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (C.L.); (Y.S.); (X.Z.)
| | - Xia Zhang
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (C.L.); (Y.S.); (X.Z.)
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210009, China
| | - Zuojian Zhou
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (C.L.); (Y.S.); (X.Z.)
| |
Collapse
|
3
|
Matini M, Amini R, Foroughi-Parvar F. Glia Maturation Factor Beta: A Novel Neuro-Impairment Prediction Factor in Toxoplasmosis. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:1200-1208. [PMID: 38912132 PMCID: PMC11188646 DOI: 10.18502/ijph.v53i5.15602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 06/25/2024]
Abstract
Background Toxoplasma gondii, a neurotropic protozoan, infects up one to third of the world population. The parasite can invade a wide variety of nucleated cells but preferably glial cells. Glia maturation factor β (GMFβ), a 17KD protein expressed at high levels in the central nervous system is predominantly related to neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple sclerosis. We aimed to determine the expression level of GMFβ and its relation to other pro-inflammatory factors (IL33, SDF1, and CCL2) on T. gondii infected human neuroblastoma cell line. Methods The human neuroblastoma (SK_NMC C535) cell line was infected by 5×106 (1:1 ratio). The supernatant was collected after cell lysis and centrifugation. Total RNA was extracted using the Yekta Tajhiz RNA extraction kit. cDNA was synthesized based on RevertAid First Strand cDNA Synthesis Kit manufacturer's protocol (Parstous, cDNA synthesis kit, Iran). The specificity of each primer pair (GMFβ, IL33, SDF1, and CCL2) was provided by NCBI BLAST. Gene expression level was measured using Real-Time PCR. All experiments were conducted at the Hamadan University of Medical Sciences, western Iran in 2022. Results The GMFβ increased significantly up to 1.35-fold (P=0.007). The increase in GMFβ expression in neuroblastoma cells was consistent with the increase in pro-inflammatory factors (CCL2 (0.47), IL33 (0.152) and, SDF1 (1.33)). Conclusion GMFβ upregulation can be a novel indicator of the destruction of nerve cells.
Collapse
Affiliation(s)
- Mohammad Matini
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Department of Molecular Medicine and Human Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faeze Foroughi-Parvar
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Bellver-Sanchis A, Geng Q, Navarro G, Ávila-López PA, Companys-Alemany J, Marsal-García L, Larramona-Arcas R, Miró L, Perez-Bosque A, Ortuño-Sahagún D, Banerjee DR, Choudhary BS, Soriano FX, Poulard C, Pallàs M, Du HN, Griñán-Ferré C. G9a Inhibition Promotes Neuroprotection through GMFB Regulation in Alzheimer's Disease. Aging Dis 2024; 15:311-337. [PMID: 37307824 PMCID: PMC10796087 DOI: 10.14336/ad.2023.0424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/24/2023] [Indexed: 06/14/2023] Open
Abstract
Epigenetic alterations are a fundamental pathological hallmark of Alzheimer's disease (AD). Herein, we show the upregulation of G9a and H3K9me2 in the brains of AD patients. Interestingly, treatment with a G9a inhibitor (G9ai) in SAMP8 mice reversed the high levels of H3K9me2 and rescued cognitive decline. A transcriptional profile analysis after G9ai treatment revealed increased gene expression of glia maturation factor β (GMFB) in SAMP8 mice. Besides, a H3K9me2 ChIP-seq analysis after G9a inhibition treatment showed the enrichment of gene promoters associated with neural functions. We observed the induction of neuronal plasticity and a reduction of neuroinflammation after G9ai treatment, and more strikingly, these neuroprotective effects were reverted by the pharmacological inhibition of GMFB in mice and cell cultures; this was also validated by the RNAi approach generating the knockdown of GMFB/Y507A.10 in Caenorhabditis elegans. Importantly, we present evidence that GMFB activity is controlled by G9a-mediated lysine methylation as well as we identified that G9a directly bound GMFB and catalyzed the methylation at lysine (K) 20 and K25 in vitro. Furthermore, we found that the neurodegenerative role of G9a as a GMFB suppressor would mainly rely on methylation of the K25 position of GMFB, and thus G9a pharmacological inhibition removes this methylation promoting neuroprotective effects. Then, our findings confirm an undescribed mechanism by which G9a inhibition acts at two levels, increasing GMFB and regulating its function to promote neuroprotective effects in age-related cognitive decline.
Collapse
Affiliation(s)
- Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Qizhi Geng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Department Biochemistry and Physiology, Faculty of Pharmacy. Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Pedro A. Ávila-López
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Laura Marsal-García
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada.
| | - Raquel Larramona-Arcas
- Department of Cell Biology, Physiology, and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Lluisa Miró
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Anna Perez-Bosque
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Jalisco 44340, México.
| | | | - Bhanwar Singh Choudhary
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India.
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, India.
| | - Francesc X Soriano
- Department of Cell Biology, Physiology, and Immunology, Celltec-UB, University of Barcelona, Barcelona, Spain, and Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Coralie Poulard
- Cancer Research Cancer Lyon, Université de Lyon, F-69000 Lyon, France.
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.
- CNRS UMR5286, Centre de Recherche en Cancérlogie de Lyon, F-69000 Lyon, France.
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Chen L, Xin G, He Y, Tian Q, Kong X, Fu Y, Wang J, Zhang H, Wang L. Study of molecular patterns associated with ferroptosis in Parkinson's disease and its immune signature. PLoS One 2023; 18:e0295699. [PMID: 38127902 PMCID: PMC10734959 DOI: 10.1371/journal.pone.0295699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease in the world. We downloaded data on Parkinson's disease and Ferroptosis-related genes from the GEO and FerrDb databases. We used WCGAN and Random Forest algorithm to screen out five Parkinson's disease ferroptosis-related hub genes. Two genes were identified for the first time as possibly playing a role in Braak staging progression. Unsupervised clustering analysis based on hub genes yielded ferroptosis isoforms, and immune infiltration analysis indicated that these isoforms are associated with immune cells and may represent different immune patterns. FRHGs scores were obtained to quantify the level of ferroptosis modifications in each individual. In addition, differences in interleukin expression were found between the two ferroptosis subtypes. The biological functions involved in the hub gene are analyzed. The ceRNA regulatory network of hub genes was mapped. The disease classification diagnosis model and risk prediction model were also constructed by applying hub genes based on logistic regression. Multiple external datasets validated the hub gene and classification diagnostic model with some accuracy. This study explored hub genes associated with ferroptosis in Parkinson's disease and their molecular patterns and immune signatures to provide new ideas for finding new targets for intervention and predictive biomarkers.
Collapse
Affiliation(s)
- Lixia Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Guanghao Xin
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Yijie He
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Qinghua Tian
- Department of Neurology, The 962 Hospital of the Chinese People’s Liberation Army Joint Logistic Support Force, City Harbin, Province Heilongjiang, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Yanchi Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| |
Collapse
|
6
|
Jia Z, Guo M, Ge X, Chen F, Lei P. IL-33/ST2 Axis: A Potential Therapeutic Target in Neurodegenerative Diseases. Biomolecules 2023; 13:1494. [PMID: 37892176 PMCID: PMC10605306 DOI: 10.3390/biom13101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Interleukin 33 (IL-33) belongs to the IL-1 family and is localized in the nucleus. IL-33 is primarily composed of three distinct domains, namely the N-terminal domain responsible for nuclear localization, the intermediate sense protease domain, and the C-terminal cytokine domain. Its specific receptor is the suppression of tumorigenicity 2 (ST2), which is detected in serum-stimulated fibroblasts and oncogenes. While most other cytokines are actively produced in cells, IL-33 is passively produced in response to tissue damage or cell necrosis, thereby suggesting its role as an alarm following cell infection, stress, or trauma. IL-33 plays a crucial role in congenital and acquired immunity, which assists in the response to environmental stress and maintains tissue homeostasis. IL-33/ST2 interaction further produces many pro-inflammatory cytokines. Moreover, IL-33 is crucial for central nervous system (CNS) homeostasis and the pathogenic mechanisms underlying CNS degenerative disorders. The present work summarizes the structure of IL-33, its fundamental activities, and its role in immunoregulation and neurodegenerative diseases. Therefore, this work proposes that IL-33 may play a role in the pathogenic mechanism of diseases and can be used in the development of treatment strategies.
Collapse
Affiliation(s)
- Zexi Jia
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengtian Guo
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100054, China;
| | - Xintong Ge
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin 300052, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300052, China; (Z.J.); (X.G.)
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
7
|
Shi S, Gu H, Xu J, Sun W, Liu C, Zhu T, Wang J, Gao F, Zhang J, Ou Q, Jin C, Xu J, Chen H, Li J, Xu G, Tian H, Lu L. Glia maturation factor beta deficiency protects against diabetic osteoporosis by suppressing osteoclast hyperactivity. Exp Mol Med 2023; 55:898-909. [PMID: 37121966 PMCID: PMC10238439 DOI: 10.1038/s12276-023-00980-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 05/02/2023] Open
Abstract
Excessive osteoclast activation, which depends on dramatic changes in actin dynamics, causes osteoporosis (OP). The molecular mechanism of osteoclast activation in OP related to type 1 diabetes (T1D) remains unclear. Glia maturation factor beta (GMFB) is considered a growth and differentiation factor for both glia and neurons. Here, we demonstrated that Gmfb deficiency effectively ameliorated the phenotype of T1D-OP in rats by inhibiting osteoclast hyperactivity. In vitro assays showed that GMFB participated in osteoclast activation rather than proliferation. Gmfb deficiency did not affect osteoclast sealing zone (SZ) formation but effectively decreased the SZ area by decreasing actin depolymerization. When GMFB was overexpressed in Gmfb-deficient osteoclasts, the size of the SZ area was enlarged in a dose-dependent manner. Moreover, decreased actin depolymerization led to a decrease in nuclear G-actin, which activated MKL1/SRF-dependent gene transcription. We found that pro-osteoclastogenic factors (Mmp9 and Mmp14) were downregulated, while anti-osteoclastogenic factors (Cftr and Fhl2) were upregulated in Gmfb KO osteoclasts. A GMFB inhibitor, DS-30, targeting the binding site of GMFB and Arp2/3, was obtained. Biocore analysis revealed a high affinity between DS-30 and GMFB in a dose-dependent manner. As expected, DS-30 strongly suppressed osteoclast hyperactivity in vivo and in vitro. In conclusion, our work identified a new therapeutic strategy for T1D-OP treatment. The discovery of GMFB inhibitors will contribute to translational research on T1D-OP.
Collapse
Affiliation(s)
- Si Shi
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, PR China
| | - Jinyuan Xu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Wan Sun
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Caiyin Liu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Tong Zhu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Juan Wang
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Furong Gao
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Jieping Zhang
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Qingjian Ou
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Caixia Jin
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Jingying Xu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Hao Chen
- Department of Ophthalmology of Ten People Hospital Affiliated with Tongji University, School of Medicine, Shanghai, 200072, PR China
| | - Jiao Li
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China
| | - Guotong Xu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China.
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, PR China.
| | - Haibin Tian
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| | - Lixia Lu
- Department of Ophthalmology of the Shanghai Tongji Hospital Affiliated with Tongji University, School of Medicine, and Tongji Eye Institute, 389 Xinchun Road, Shanghai, 200065, PR China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
8
|
Xiong T, Wang X, Zha Y, Wang Y. Interleukin-33 regulates the functional state of microglia. Front Cell Neurosci 2022; 16:1012968. [PMID: 36439205 PMCID: PMC9684324 DOI: 10.3389/fncel.2022.1012968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2023] Open
Abstract
Microglia, the most prominent resident immune cells, exhibit multiple functional states beyond their immunomodulatory roles. Non-immune functions such as synaptic reorganization, removal of cellular debris, and deposition of abnormal substances are mediated by phagocytosis of normal or enhanced microglia. Activation or migration of microglia occurs when environmental cues are altered. In response to pathological factors, microglia change into various phenotypes, preventing or exacerbating tissue damage. Interleukin-33 (IL-33) is an important cytokine that regulates innate immunity, and microglia are thought to be its target cells. Here, we outline the role of IL-33 in the expression of microglial functions such as phagocytosis, migration, activation, and inflammatory responses. We focus on microglial properties and diverse functional states in health and disease, including the different effects of IL-33 perturbation on microglia in vivo and in vitro. We also highlight several well-established mechanisms of microglial function mediated by IL-33, which may be initiators and regulators of microglial function and require elucidation and expansion of the underlying mechanisms.
Collapse
Affiliation(s)
- Tianqing Xiong
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
| | - Xingyi Wang
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Yiwen Zha
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, China
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Trimarchi M, Lauritano D, Ronconi G, Caraffa A, Gallenga CE, Frydas I, Kritas SK, Calvisi V, Conti P. Mast Cell Cytokines in Acute and Chronic Gingival Tissue Inflammation: Role of IL-33 and IL-37. Int J Mol Sci 2022; 23:13242. [PMID: 36362030 PMCID: PMC9654575 DOI: 10.3390/ijms232113242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Much evidence suggests autoimmunity in the etiopathogenesis of periodontal disease. In fact, in periodontitis, there is antibody production against collagen, DNA, and IgG, as well as increased IgA expression, T cell dysfunction, high expression of class II MHC molecules on the surface of gingival epithelial cells in inflamed tissues, activation of NK cells, and the generation of antibodies against the azurophil granules of polymorphonuclear leukocytes. In general, direct activation of autoreactive immune cells and production of TNF can activate neutrophils to release pro-inflammatory enzymes with tissue damage in the gingiva. Gingival inflammation and, in the most serious cases, periodontitis, are mainly due to the dysbiosis of the commensal oral microbiota that triggers the immune system. This inflammatory pathological state can affect the periodontal ligament, bone, and the entire gingival tissue. Oral tolerance can be abrogated by some cytokines produced by epithelial cells and activated immune cells, including mast cells (MCs). Periodontal cells and inflammatory-immune cells, including mast cells (MCs), produce cytokines and chemokines, mediating local inflammation of the gingival, along with destruction of the periodontal ligament and alveolar bone. Immune-cell activation and recruitment can be induced by inflammatory cytokines, such as IL-1, TNF, IL-33, and bacterial products, including lipopolysaccharide (LPS). IL-1 and IL-33 are pleiotropic cytokines from members of the IL-1 family, which mediate inflammation of MCs and contribute to many key features of periodontitis and other inflammatory disorders. IL-33 activates several immune cells, including lymphocytes, Th2 cells, and MCs in both innate and acquired immunological diseases. The classic therapies for periodontitis include non-surgical periodontal treatment, surgery, antibiotics, anti-inflammatory drugs, and surgery, which have been only partially effective. Recently, a natural cytokine, IL-37, a member of the IL-1 family and a suppressor of IL-1b, has received considerable attention for the treatment of inflammatory diseases. In this article, we report that IL-37 may be an important and effective therapeutic cytokine that may inhibit periodontal inflammation. The purpose of this paper is to study the relationship between MCs, IL-1, IL-33, and IL-37 inhibition in acute and chronic inflamed gingival tissue.
Collapse
Affiliation(s)
- Matteo Trimarchi
- Centre of Neuroscience of Milan, Department of Medicine and Surgery, University of Milan, 20122 Milano, Italy;
| | - Dorina Lauritano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Gianpaolo Ronconi
- Clinica dei Pazienti del Territorio, Fondazione Policlinico Gemelli, 00185 Rome, Italy;
| | | | - Carla E. Gallenga
- Section of Ophthalmology, Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121 Ferrara, Italy;
| | - Ilias Frydas
- Department of Parasitology, Aristotle University, 54124 Thessaloniki, Greece;
| | - Spyros K. Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Macedonia, Greece;
| | - Vittorio Calvisi
- Orthopaedics Department, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, 65100 Pescara, Italy
| |
Collapse
|
10
|
Liu R, Meng X, Yu X, Wang G, Dong Z, Zhou Z, Qi M, Yu X, Ji T, Wang F. From 2D to 3D Co-Culture Systems: A Review of Co-Culture Models to Study the Neural Cells Interaction. Int J Mol Sci 2022; 23:13116. [PMID: 36361902 PMCID: PMC9656609 DOI: 10.3390/ijms232113116] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/11/2024] Open
Abstract
The central nervous system (CNS) controls and regulates the functional activities of the organ systems and maintains the unity between the body and the external environment. The advent of co-culture systems has made it possible to elucidate the interactions between neural cells in vitro and to reproduce complex neural circuits. Here, we classified the co-culture system as a two-dimensional (2D) co-culture system, a cell-based three-dimensional (3D) co-culture system, a tissue slice-based 3D co-culture system, an organoid-based 3D co-culture system, and a microfluidic platform-based 3D co-culture system. We provide an overview of these different co-culture models and their applications in the study of neural cell interaction. The application of co-culture systems in virus-infected CNS disease models is also discussed here. Finally, the direction of the co-culture system in future research is prospected.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiaoting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiyao Yu
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guoqiang Wang
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhiyong Dong
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhengjie Zhou
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Mingran Qi
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiao Yu
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Tong Ji
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogenic Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
11
|
Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, Ying J, Wang X. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J Transl Med 2022; 20:369. [PMID: 35974336 PMCID: PMC9382782 DOI: 10.1186/s12967-022-03570-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of an aging society, the incidence of dementia is increasing, resulting in a vast burden on society. It is increasingly acknowledged that neuroinflammation is implicated in various neurological diseases with cognitive dysfunction such as Alzheimer’s disease, multiple sclerosis, ischemic stroke, traumatic brain injury, and central nervous system infections. As an important neuroinflammatory factor, interleukin-33 (IL-33) is highly expressed in various tissues and cells in the mammalian brain, where it plays a role in the pathogenesis of a number of central nervous system conditions. Reams of previous studies have shown that IL-33 has both pro- and anti-inflammatory effects, playing dual roles in the progression of diseases linked to cognitive impairment by regulating the activation and polarization of immune cells, apoptosis, and synaptic plasticity. This article will summarize the current findings on the effects IL-33 exerts on cognitive function by regulating neuroinflammation, and attempt to explore possible therapeutic strategies for cognitive disorders based on the adverse and protective mechanisms of IL-33.
Collapse
Affiliation(s)
- Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
12
|
Fathi M, Vakili K, Yaghoobpoor S, Qadirifard MS, Kosari M, Naghsh N, Asgari taei A, Klegeris A, Dehghani M, Bahrami A, Taheri H, Mohamadkhani A, Hajibeygi R, Rezaei Tavirani M, Sayehmiri F. Pre-clinical Studies Identifying Molecular Pathways of Neuroinflammation in Parkinson's Disease: A Systematic Review. Front Aging Neurosci 2022; 14:855776. [PMID: 35912090 PMCID: PMC9327618 DOI: 10.3389/fnagi.2022.855776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 12/09/2022] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by neuroinflammation, formation of Lewy bodies, and progressive loss of dopaminergic neurons in the substantia nigra of the brain. In this review, we summarize evidence obtained by animal studies demonstrating neuroinflammation as one of the central pathogenetic mechanisms of PD. We also focus on the protein factors that initiate the development of PD and other neurodegenerative diseases. Our targeted literature search identified 40 pre-clinical in vivo and in vitro studies written in English. Nuclear factor kappa B (NF-kB) pathway is demonstrated as a common mechanism engaged by neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), as well as the bacterial lipopolysaccharide (LPS). The α-synuclein protein, which plays a prominent role in PD neuropathology, may also contribute to neuroinflammation by activating mast cells. Meanwhile, 6-OHDA models of PD identify microsomal prostaglandin E synthase-1 (mPGES-1) as one of the contributors to neuroinflammatory processes in this model. Immune responses are used by the central nervous system to fight and remove pathogens; however, hyperactivated and prolonged immune responses can lead to a harmful neuroinflammatory state, which is one of the key mechanisms in the pathogenesis of PD.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Qadirifard
- Department of Nursing and Midwifery, Islamic Azad University, Tehran, Iran
- Department of Nursing, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Mohammadreza Kosari
- The First Clinical College, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Navid Naghsh
- Department of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Afsaneh Asgari taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andis Klegeris
- Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| | - Mina Dehghani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Science, Kashan, Iran
| | - Hamed Taheri
- Dental School, Kazan Federal University, Kazan, Russia
| | - Ashraf Mohamadkhani
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- Department of Cardiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mostafa Rezaei Tavirani
| | - Fatemeh Sayehmiri
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Fatemeh Sayehmiri
| |
Collapse
|
13
|
IL-33 in autoimmunity; possible therapeutic target. Int Immunopharmacol 2022; 108:108887. [DOI: 10.1016/j.intimp.2022.108887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022]
|
14
|
Liu C, Sun W, Zhu T, Shi S, Zhang J, Wang J, Gao F, Ou Q, Jin C, Li J, Xu JY, Zhang J, Tian H, Xu GT, Lu L. Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy. Redox Biol 2022; 52:102292. [PMID: 35325805 PMCID: PMC8942824 DOI: 10.1016/j.redox.2022.102292] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/27/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world, and timely prevention and treatment are very important. Previously, we found that a neurodegenerative factor, Glia maturation factor-β (GMFB), was upregulated in the vitreous at a very early stage of diabetes, which may play an important role in pathogenesis. Here, we found that in a high glucose environment, large amounts of GMFB protein can be secreted in the vitreous, which translocates the ATPase ATP6V1A from the lysosome, preventing its assembly and alkalinizing the lysosome in the retinal pigment epithelial (RPE) cells. ACSL4 protein can be recognized by HSC70, the receptor for chaperone-mediated autophagy, and finally digested in the lysosome. Abnormalities in the autophagy-lysosome degradation process lead to its accumulation, which catalyzes the production of lethal lipid species and finally induces ferroptosis in RPE cells. GMFB antibody, lysosome activator NKH477, CMA activator QX77, and ferroptosis inhibitor Liproxstatin-1 were all effective in preventing early diabetic retinopathy and maintaining normal visual function, which has powerful clinical application value. Our research broadens the understanding of the relationship between autophagy and ferroptosis and provides a new therapeutic target for the treatment of DR.
Collapse
Affiliation(s)
- Caiying Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wan Sun
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tong Zhu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Si Shi
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Furong Gao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiao Li
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China; The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China; Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
15
|
Role of IL-33/ST2 Axis in Chronic Inflammatory Neurological Disorderss. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2020-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Interleukin-33 (IL-33) is a member of IL-1 family of cytokines, produced constitutively by fibroblasts, endothelial cells, and epithelial cells. IL-33 can be released passively from cells during tissue damage and cell necrosis, suggesting that it may act as an alarmin. Function of IL-33 is mediated by its interaction with ST2 molecule that is expressed on many immune cells: Th2 lymphocytes, NK, NKT and mast cells, monocytes, dendritic cells and granulocytes. IL-33/ST2 pathway plays, often dual, roles in different physiological and inflammatory processes, mediating both, pathological immune responses and tissue repair. Expression of IL-33 in the central nervous system (CNS) is significantly enhanced during various pathological processes, indicating its important role in the pathogenesis of neurological inflammatory and degenerative diseases. In this review the biological features, expression of IL-33 and its ligand ST2 in CNS, and the role of IL- 33/ST2 pathway in development of Alzheimer’s disease and multiple sclerosis are discussed.
Collapse
|
16
|
Najafi M, Amini R, Maghsood AH, Fallah M, Foroughi-Parvar F. Co Expression of GMFβ, IL33, CCL2 and SDF1 Genes in the Acute Stage of Toxoplasmosis in Mice Model and Relation for Neuronal Impairment. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:426-434. [PMID: 34630588 PMCID: PMC8476739 DOI: 10.18502/ijpa.v16i3.7096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023]
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite that migrates through macrophages or dendritic cells to neurons and nerve cells. Glia Maturation Factor (GMF) is a pre-inflammatory protein that is expressed in the central nervous system (CNS). GMFβ expression is related to IL33 and CCL2 and SDF1 in some neurodegenerative diseases. According to the importance of GMFβ in neurodegenerative diseases and its association with IL33, CCL2 and SDF1 genes, this study was designed to determine the level of expression of these genes in the brains of mice with acute toxoplasmosis. Methods Tachyzoites of T. gondii RH strains were injected to 5 Swiss Albino mice. At the same time, healthy mice were inoculated with the Phosphate-buffered saline (PBS). Their brains were removed and kept at -70 °C in order to RNA extraction, cDNA syntheses and Real Time PCR performance. The level of gene expression was investigated with SYBR Green Quantitative Real-Time PCR. Results GMFβ gene expression increased significantly (P=0.003) 3.26 fold in Toxoplasma infected mice in comparison to the control. GMFβ gene expression was associated with increased expression level of IL33, CCL2, and SDF1 genes. Conclusion Considering the prominent role of GMFβ in CNS as well as the immune system, the elevation of GMFβ, IL33, CCL2 and SDF1 genes expression in the early stage of toxoplasmosis is associated with the occurrence of neuropathological alterations. Detection of these genes as an indication of brain damage in the early stages of Toxoplasma infection can prevent neurodegenerative disorders following acquired toxoplasmosis.
Collapse
Affiliation(s)
- Mehri Najafi
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Maghsood
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Fallah
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faeze Foroughi-Parvar
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
17
|
Xu M, Wu G. The Clinical Significance of Serum IL-33 and sST2 Alterations in the Post-Stroke Depression. J Multidiscip Healthc 2021; 14:2009-2015. [PMID: 34354360 PMCID: PMC8331084 DOI: 10.2147/jmdh.s310524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction This study was to test whether the serum levels of IL-33 and sST2 are correlated with the development of depression after acute ischemic stroke. Methods Patients diagnosed with acute ischemic stroke were selected. This study took the 24-item Hamilton Depression Rating Scale (HAMD) (score ≥20) as the diagnostic criteria for depression. On the 21st day after admission, patients who met the depression diagnostic criteria were included in the depression group, and patients who failed to meet the diagnostic criteria were included in the non-depression group. The serum levels of IL-33, sST2 and hsCRP were measured by enzyme-linked immunosorbent assay (ELISA). Results On 1st day after stroke, compared with the non-depression group, there was no significant difference in the serum IL-33, sST2 and hsCRP levels in the depression group; on 21st day after stroke, compared with the non-depression group, the serum IL-33 and hsCRP levels were significantly increased, while the sST2 level was significantly decreased in the depression group. Correlation analysis showed that IL-33 was positively correlated with the depression quantitative score and hsCRP, while sST2 was negatively correlated with the depression quantitative score and hsCRP. Regression analysis showed that IL-33 and sST2 were independent risk factors for the depression after acute ischemic stroke. Discussion The abnormal alterations of serum IL-33 and sST2 levels in the stroke patients may serve as one of the risk factors for the occurrence and exacerbation of the depression, and its mechanism may be related to the promotion of inflammatory factor production in vivo.
Collapse
Affiliation(s)
- Meirong Xu
- Department of Geriatrics, The Second Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437100, Hubei Province, People's Republic of China
| | - Ganlin Wu
- Department of Medicine, School of Clinical Medicine Sciences, Hubei University of Science and Technology, Xianning, 437100, Hubei Province, People's Republic of China.,National Demonstration Center for Experimental General Medicine Education (Hubei University of Science and Technology), Xianning, 437100, Hubei Province, People's Republic of China
| |
Collapse
|
18
|
Bhardwaj S, Kesari KK, Rachamalla M, Mani S, Ashraf GM, Jha SK, Kumar P, Ambasta RK, Dureja H, Devkota HP, Gupta G, Chellappan DK, Singh SK, Dua K, Ruokolainen J, Kamal MA, Ojha S, Jha NK. CRISPR/Cas9 gene editing: New hope for Alzheimer's disease therapeutics. J Adv Res 2021; 40:207-221. [PMID: 36100328 PMCID: PMC9481950 DOI: 10.1016/j.jare.2021.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Mutations in APP, PSEN1 and PSEN2 are known factors for AD pathobiology. CRISPR/Cas9 genome editing approach hold promises in AD management. CRISPR/Cas9 is utilized to help correct anomalous genetic functions. Off-target mutations may impair the functionality of edited cells. Non-viral vectors show better efficacy and safety than viral vectors.
Background Alzheimer's disease (AD) is an insidious, irreversible, and progressive neurodegenerative health condition manifesting as cognitive deficits and amyloid beta (Aβ) plaques and neurofibrillary tangles. Approximately 50 million individuals are affected by AD, and the number is rapidly increasing globally. This review explores the role of CRISPR/Cas9 gene editing in the management of AD and its clinical manifestations. Aim of Review This review aims to provide a deep insight into the recent progress in CRISPR/Cas9-mediated genome editing and its use against neurodegenerative disorders, specifically AD. However, we have referred to its use against parkinsons’s disease (PD), Huntington’s disease (HD), and other human diseases, as is one of the most promising and emerging technologies for disease treatment. Key Scientific Concepts of Review The pathophysiology of AD is known to be linked with gene mutations, that is, presenilin (PSEN) and amyloid beta precursor protein (APP). However, clinical trials focused at the genetic level could not meet the desired efficiency. The CRISPR/Cas9 genome editing tool is one of the most powerful technologies for correcting inconsistent genetic signatures and now extensively used for AD management. It has significant potential for the correction of undesired gene mutations associated with AD. This technology has allowed the development of empirical AD models, therapeutic lines, and diagnostic approaches for better understanding the nervous system, from in vitro to in vivo models.
Collapse
Affiliation(s)
- Shanu Bhardwaj
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal road, Jagatpura, Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India.
| |
Collapse
|
19
|
Şengül B, Dursun E, Verkhratsky A, Gezen-Ak D. Overexpression of α-Synuclein Reorganises Growth Factor Profile of Human Astrocytes. Mol Neurobiol 2020; 58:184-203. [PMID: 32914394 DOI: 10.1007/s12035-020-02114-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022]
Abstract
Misfolding and accumulation of aberrant α-synuclein in the brain is associated with the distinct class of neurodegenerative diseases known as α-synucleinopathies, which include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Pathological changes in astrocytes contribute to all neurological disorders, and astrocytes are reported to possess α-synuclein inclusions in the context of α-synucleinopathies. Astrocytes are known to express and secrete numerous growth factors, which are fundamental for neuroprotection, synaptic connectivity and brain metabolism; changes in growth factor secretion may contribute to pathobiology of neurological disorders. Here we analysed the effect of α-synuclein overexpression in cultured human astrocytes on growth factor expression and release. For this purpose, the intracellular and secreted levels of 33 growth factors (GFs) and 8 growth factor receptors (GFRs) were analysed in cultured human astrocytes by chemiluminescence-based western/dot blot. Overexpression of human α-synuclein in cultured foetal human astrocytes significantly changes the profile of GF production and secretion. We found that human astrocytes express and secrete FGF2, FGF6, EGF, IGF1, AREG, IGFBP2, IGFBP4, VEGFD, PDGFs, KITLG, PGF, TGFB3 and NTF4. Overexpression of human α-synuclein significantly modified the profile of GF production and secretion, with particularly strong changes in EGF, PDGF, VEGF and their receptors as well as in IGF-related proteins. Bioinformatics analysis revealed possible interactions between α-synuclein and EGFR and GDNF, as well as with three GF receptors, EGFR, CSF1R and PDGFRB.
Collapse
Affiliation(s)
- Büşra Şengül
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK. .,Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
20
|
Ahmed ME, Selvakumar GP, Kempuraj D, Raikwar SP, Thangavel R, Bazley K, Wu K, Khan O, Khan A, Zaheer S, Iyer S, Burton C, James D, Zaheer A. Glia Maturation Factor (GMF) Regulates Microglial Expression Phenotypes and the Associated Neurological Deficits in a Mouse Model of Traumatic Brain Injury. Mol Neurobiol 2020; 57:4438-4450. [PMID: 32737763 DOI: 10.1007/s12035-020-02040-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) induces inflammatory responses through microglial activation and polarization towards a more inflammatory state that contributes to the deleterious secondary brain injury. Glia maturation factor (GMF) is a pro-inflammatory protein that is responsible for neuroinflammation following insult to the brain, such as in TBI. We hypothesized that the absence of GMF in GMF-knockout (GMF-KO) mice would regulate microglial activation state and the M1/M2 phenotypes following TBI. We used the weight drop model of TBI in C57BL/6 mice wild-type (WT) and GMF-KO mice. Immunofluorescence staining, Western blot, and ELISA assays were performed to confirm TBI-induced histopathological and neuroinflammatory changes. Behavioral analysis was done to check motor coordination ability and cognitive function. We demonstrated that the deletion of GMF in GMF-KO mice significantly limited lesion volume, attenuated neuronal loss, inhibited gliosis, and activated microglia adopted predominantly anti-inflammatory (M2) phenotypes. Using an ELISA method, we found a gradual decrease in pro-inflammatory cytokines (TNF-α and IL-6) and upregulation of anti-inflammatory cytokines (IL-4 and IL-10) in GMF-KO mice compared with WT mice, thus, promoting the transition of microglia towards a more predominantly anti-inflammatory (M2) phenotype. GMF-KO mice showed significant improvement in motor ability, memory, and cognition. Overall, our results demonstrate that GMF deficiency regulates microglial polarization, which ameliorates neuronal injury and behavioral impairments following TBI in mice and concludes that GMF is a regulator of neuroinflammation and an ideal therapeutic target for the treatment of TBI.
Collapse
Affiliation(s)
- Mohammad Ejaz Ahmed
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA
| | - Duraisamy Kempuraj
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA
| | - Sudhanshu P Raikwar
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA
| | - Ramasamy Thangavel
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA
| | - Kieran Bazley
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Kristopher Wu
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Osaid Khan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Asher Khan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Smita Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | - Shankar Iyer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA
| | | | | | - Asgar Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65211, USA.
| |
Collapse
|
21
|
CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sci 2020; 259:118165. [PMID: 32735884 DOI: 10.1016/j.lfs.2020.118165] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic Repeats)/Cas9 is a new genetic editing technology that can be a beneficial method to advance gene therapy. CRISPR technology is a defense system of some bacteria against invading viruses. Genome editing based on the CRISPR/Cas9 system is an efficient and potential technology that can be a viable alternative to traditional methods. This system is a compound of a short guide RNAs (gRNAs) for identifying the target DNA sequence and Cas9 protein as nuclease for breaking and cutting of DNA. In this review, recent advances in the CRISPR/Cas9-mediated genome editing tools are presented as well as their use in gene therapy strategies for the treatment of neurological disorders including Parkinson's disease, Alzheimer's disease, and Huntington's disease.
Collapse
|
22
|
Selvakumar GP, Ahmed ME, Thangavel R, Kempuraj D, Dubova I, Raikwar SP, Zaheer S, Iyer SS, Zaheer A. A role for glia maturation factor dependent activation of mast cells and microglia in MPTP induced dopamine loss and behavioural deficits in mice. Brain Behav Immun 2020; 87:429-443. [PMID: 31982500 PMCID: PMC7316620 DOI: 10.1016/j.bbi.2020.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
The molecular mechanism mediating degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease (PD) is not yet fully understood. Previously, we have shown the contribution of glia maturation factor (GMF), a proinflammatory protein in dopaminergic neurodegeneration mediated by activation of mast cells (MCs). In this study, methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal neurodegeneration and astro-glial activations were determined by western blot and immunofluorescence techniques in wild type (WT) mice, MC-deficient (MC-KO) mice and GMF-deficient (GMF-KO) mice, with or without MC reconstitution before MPTP administration. We show that GMF-KO in the MCs reduces the synergistic effects of MC and Calpain1 (calcium-activated cysteine protease enzyme)-dependent dopaminergic neuronal loss that reduces motor behavioral impairments in MPTP-treated mouse. Administration of MPTP increase in calpain-mediated proteolysis in nigral dopaminergic neurons further resulting in motor decline in mice. We found that MPTP administered WT mice exhibits oxidative stress due to significant increases in the levels of malondialdehyde, superoxide dismutase and reduction in the levels of reduced glutathione and glutathione peroxidase activity as compared with both MC-KO and GMF-KO mice. The number of TH-positive neurons in the ventral tegmental area, substantia nigra and the fibers in the striatum were significantly reduced while granulocyte macrophage colony-stimulating factor (GM-CSF), MC-Tryptase, GFAP, IBA1, Calpain1 and intracellular adhesion molecule 1 expression were significantly increased in WT mice. Similarly, tyrosine hydroxylase, dopamine transporters and vesicular monoamine transporters 2 proteins expression were significantly reduced in the SN of MPTP treated WT mice. The motor behavior as analyzed by rotarod and hang test was significantly reduced in WT mice as compared with both the MC-KO and GMF-KO mice. We conclude that GMF-dependent MC activation enhances the detrimental effect of astro-glial activation-mediated oxidative stress and neuroinflammation in the midbrain, and its inhibition may slowdown the progression of PD.
Collapse
Affiliation(s)
- Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States,Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States,Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States,Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States,Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Iuliia Dubova
- Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Sudhanshu P. Raikwar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States,Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Smita Zaheer
- Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Shankar S. Iyer
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States,Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65211, United States; Department of Neurology, and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
23
|
Ahmed ME, Selvakumar GP, Thangavel R, Kempuraj D, Raikwar SP, Zaheer S, Iyer S, Zaheer A. Immune Suppression of Glia Maturation Factor Reverses Behavioral Impairment, Attenuates Amyloid Plaque Pathology and Neuroinflammation in an Alzheimer's Disease Mouse Model. J Neuroimmune Pharmacol 2020; 16:363-375. [PMID: 32504312 DOI: 10.1007/s11481-020-09929-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is an irreversible progressive neurodegenerative disorder recognized by accumulation of amyloid-plaques (APs) and neurofibrillary tangles (NFTs) and eventually loss of memory. Glia maturation factor (GMF), a neuroinflammatory protein first time isolated and cloned in our laboratory plays an important role in the pathogenesis of AD. However, no studies have been reported on whether anti-GMF antibody administration could downregulate neuroinflammation and attenuate amyloid pathology in AD brain. We investigated the potential effect of single dose of (2 mg/kg b.wt/mouse) intravenously (iv) injected with anti-GMF antibodyon cognitive function, neuroprotection, neuroinflammation and Aβ load in the brain of 9-month-old 5XFAD mice. Following 4 weeks of anti-GMF antibody delivery in mice, we found reduced expression of GMF, astrocytic glial fibrillary acidic protein (GFAP) and microglial ionizing calcium binding adaptor molecule 1 (Iba1) as well as improvement inneuroinflammatory response via inhibition of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) production and amyloid pathology in the cerebral cortex and hippocampal CA1 region of 5XFAD mice. Correspondingly, blockade of GMF function with anti-GMF antibody improved spatial learning, memory, and long-term recognition memory in 5XFAD mice. The present study demonstrates that the immune checkpoint blockade of GMF function with anti-GMF antibody coordinates anti-inflammatory effects to attenuate neurodegeneration in the cortex and hippocampal CA1 region of 5XFAD mouse brain. Further, our data suggest, that pharmacological immune neutralization of GMF is a promising neuroprotective strategy totherapeutically target neuroinflammation and neurodegeneration in AD. Graphical Abstract 5XFAD mice Polyclonal anti-GMF antibody.
Collapse
Affiliation(s)
- Mohammad Ejaz Ahmed
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Ramasamy Thangavel
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Sudhanshu P Raikwar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | - Shankar Iyer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
| |
Collapse
|
24
|
NLRP3 inflammasome and glia maturation factor coordinately regulate neuroinflammation and neuronal loss in MPTP mouse model of Parkinson's disease. Int Immunopharmacol 2020; 83:106441. [PMID: 32259702 DOI: 10.1016/j.intimp.2020.106441] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/10/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023]
Abstract
Neuroinflammation plays an active role in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease (PD). Earlier studies from this laboratory showed that glia maturation factor (GMF), a proinflammatory mediator; is up-regulated in the brain in neurodegenerative diseases and that deficiency of GMF showed decreased production of IL-1β and improved behavioral abnormalities in mouse model of PD. However, the mechanisms linking GMF and dopaminergic neuronal death have not been completely explored. In the present study, we have investigated the expression of NLRP3 inflammasome and caspase-1 in the substantia nigra (SN) of human PD and non-PD brains by immunohistochemistry. Wild-type (WT) and GMF-/- (GMF knock-out) mice were treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine (MPTP) and the brains were isolated for neurochemical and morphological examinations. NLRP3 and caspase-1 positive cells were found significantly increased in PD when compared to non-PD control brains. Moreover, GMF co-localized with α-Synuclein within reactive astrocytes in the midbrain of PD. Mice treated with MPTP exhibit glial activation-induced inflammation, and nigrostriatal dopaminergic neurodegeneration. Interestingly, increased expression of the inflammasome components in astrocytes and microglia observed in the SN of MPTP-treated WT mice were significantly reduced in GMF-/- mice. Additionally, we show that NLRP3 activation in microglia leads to translocation of GMF and NLRP3 to the mitochondria. We conclude that downregulation of GMF may have beneficial effects in prevention of PD by modulating the cytotoxic functions of microglia and astrocytes through reduced activation of the NLRP3 inflammasome; a major contributor of neuroinflammation in the CNS.
Collapse
|
25
|
Saçmacı H, Sabah Özcan S. A critical role for expression of atypical chemokine receptor 2 in multiple sclerosis: A preliminary project. Mult Scler Relat Disord 2020; 38:101524. [DOI: 10.1016/j.msard.2019.101524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/02/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
|
26
|
Ramaswamy SB, Bhagavan SM, Kaur H, Giler GE, Kempuraj D, Thangavel R, Ahmed ME, Selvakumar GP, Raikwar SP, Zaheer S, Iyer SS, Govindarajan R, Zaheer A. Glia Maturation Factor in the Pathogenesis of Alzheimer's disease. OPEN ACCESS JOURNAL OF NEUROLOGY & NEUROSURGERY 2019; 12:79-82. [PMID: 32775957 PMCID: PMC7413177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative and neuroinflammatory disease characterized by the presence of extracellular amyloid plaques (APs) and intracellular neurofibrillary tangles (NFTs) in the brain. There is no disease modifying therapeutic options currently available for this disease. Hippocampus, entorhinal cortex (Broadmann area 28), perirhinal cortex (Broadmann area 35) and insular cortices are areas within the brain that are first ones to be severely affected in AD. Neuroinflammation is an important factor that induces neurodegeneration in AD. Glia maturation factor (GMF), a proinflammatory factor plays a crucial role in AD through activation of microglia and astrocytes to release proinflammatory mediators in the brain. Through immunohistochemical studies, we have previously shown that GMF is highly expressed in the vicinity of APs and NFTs in AD brains. Glial fibrillary acidic protein (GFAP), reactive astrocytes, ionized calcium binding adaptor molecule-1 (Iba-1) labelled activated microglia and GMF immunoreactive glial cells are increased in the entorhinal cortical layers especially at the sites of APs and Tau containing NFTs indicating a role for GMF. Overexpression of GMF in glial cells leads to neuroinflammation and neurodegeneration. Inhibition of GMF expression reduces neurodegeneration. Therefore, we suggest that GMF is a novel therapeutic target not only for AD but also for various other neurodegenerative diseases.
Collapse
Affiliation(s)
- Swathi Beladakere Ramaswamy
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Sachin M Bhagavan
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Harleen Kaur
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Gema E Giler
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Ramasamy Thangavel
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Sudhanshu P. Raikwar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Shankar S Iyer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| | - Raghav Govindarajan
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
| |
Collapse
|
27
|
Raikwar SP, Kikkeri NS, Sakuru R, Saeed D, Zahoor H, Premkumar K, Mentor S, Thangavel R, Dubova I, Ahmed ME, Selvakumar GP, Kempuraj D, Zaheer S, Iyer SS, Zaheer A. Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders. J Neuroimmune Pharmacol 2019; 14:608-641. [PMID: 31011884 PMCID: PMC8211357 DOI: 10.1007/s11481-019-09849-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Despite significant advancements in the field of molecular neurobiology especially neuroinflammation and neurodegeneration, the highly complex molecular mechanisms underlying neurodegenerative diseases remain elusive. As a result, the development of the next generation neurotherapeutics has experienced a considerable lag phase. Recent advancements in the field of genome editing offer a new template for dissecting the precise molecular pathways underlying the complex neurodegenerative disorders. We believe that the innovative genome and transcriptome editing strategies offer an excellent opportunity to decipher novel therapeutic targets, develop novel neurodegenerative disease models, develop neuroimaging modalities, develop next-generation diagnostics as well as develop patient-specific precision-targeted personalized therapies to effectively treat neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, Frontotemporal dementia etc. Here, we review the latest developments in the field of CRISPR-mediated genome editing and provide unbiased futuristic insights regarding its translational potential to improve the treatment outcomes and minimize financial burden. However, despite significant advancements, we would caution the scientific community that since the CRISPR field is still evolving, currently we do not know the full spectrum of CRISPR-mediated side effects. In the wake of the recent news regarding CRISPR-edited human babies being born in China, we urge the scientific community to maintain high scientific and ethical standards and utilize CRISPR for developing in vitro disease in a dish model, in vivo testing in nonhuman primates and lower vertebrates and for the development of neurotherapeutics for the currently incurable neurodegenerative disorders. Graphical Abstract.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Nidhi S Kikkeri
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Ragha Sakuru
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Daniyal Saeed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Haris Zahoor
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Keerthivaas Premkumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shireen Mentor
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- Department of Medical Biosciences, University of the Western Cape, Bellville, 7535, Republic of South Africa
| | - Ramasamy Thangavel
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Iuliia Dubova
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Govindhasamy P Selvakumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shankar S Iyer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65211, USA.
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran's Hospital, Columbia, MO, USA.
| |
Collapse
|
28
|
Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Kumar KK, Yelam A, Kaur H, Dubova I, Raikwar SP, Iyer SS, Zaheer A. Glia Maturation Factor and Mast Cell-Dependent Expression of Inflammatory Mediators and Proteinase Activated Receptor-2 in Neuroinflammation. J Alzheimers Dis 2019; 66:1117-1129. [PMID: 30372685 DOI: 10.3233/jad-180786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is characterized by the presence of inflammation-mediated dopaminergic neurodegeneration in the substantia nigra. Inflammatory mediators from activated microglia, astrocytes, neurons, T-cells and mast cells mediate neuroinflammation and neurodegeneration. Administration of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induces PD like motor deficits in rodents. 1-methyl-4-phenylpyridinium (MPP+), a toxic metabolite of MPTP activates glial cells, neurons and mast cells to release neuroinflammatory mediators. Glia maturation factor (GMF), mast cells and proteinase activated receptor-2 (PAR-2) are implicated in neuroinflammation. Alpha-synuclein which induces neurodegeneration increases PAR-2 expression in the brain. However, the exact mechanisms are not yet understood. In this study, we quantified inflammatory mediators in the brains of MPTP-administered wild type (Wt), GMF-knockout (GMF-KO), and mast cell knockout (MC-KO) mice. Additionally, we analyzed the effect of MPP+, GMF, and mast cell proteases on PAR-2 expression in astrocytes and neurons in vitro. Results show that the levels of interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and the chemokine (C-C motif) ligand 2 (CCL2) were lesser in the brains of GMF-KO mice and MC-KO mice when compared to Wt mice brain after MPTP administration. Incubation of astrocytes and neurons with MPP+, GMF, and mouse mast cell protease-6 (MMCP-6) and MMCP-7 increased the expression of PAR-2. Our studies show that the absence of mast cells and GMF reduce the expression of neuroinflammatory mediators in the brain. We conclude that GMF along with mast cell interactions with glial cells and neurons during neuroinflammation can be explored as a new therapeutic target for PD and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Keerthana Kuppamma Kumar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Anudeep Yelam
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Harleen Kaur
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Iuliia Dubova
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Shankar S Iyer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.,Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
29
|
Krishnan M, Kang SC. Vitexin inhibits acrylamide-induced neuroinflammation and improves behavioral changes in zebrafish larvae. Neurotoxicol Teratol 2019; 74:106811. [PMID: 31158445 DOI: 10.1016/j.ntt.2019.106811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/08/2023]
Abstract
Neuroinflammation is crucial for the pathophysiological hallmarks of many neurodegenerative disorders. Hyperactivated microglia has long been implicated as a detrimental player in regulating unresolvable inflammatory insults which cause damage to neurons. In the context of acrylamide (ACR) neurotoxicity, microglia activation is documented to correlate with ACR-adduct formation in the presynaptic neurons. Thus, inhibition of inflammatory mediators through vital candidate is greatly warranted to retard the disease progression. In the present study, we investigated, whether vitexin, a C-glycosylated flavone, with anti-inflammatory activity, could inhibit ACR-induced neuroinflammation-like behavior in zebrafish larvae. ACR was exposed at a dose 1 mM to 3 days post fertilization (dpf) zebrafish larvae for 3 days, whereas vitexin (10 μM) was treated for 24 h. After vitexin treatment, a series of histopathology, behavioral tests and molecular analyses were measured. Our data show that ACR larvae exhibited abnormal morphologies in brain cartilage and histological patterns. At behavioral levels, motor function was altered while the expression of pro-inflammatory mediator levels was markedly up-regulated in ACR larvae. Further, we validated the enhanced CDK5 activity is known to trigger microglia activation, also we found reduced expressions of neuroplasticity (CREB1 and ATF1) and antioxidant response makers (Nrf2, SOD-1 and CAT) in ACR intoxicated larvae. Interestingly, vitexin treatment markedly alleviated ACR-induced histological and behavioral changes in zebrafish larvae. Moreover, vitexin effectively inhibited CDK5 expression, and also hampered the release of pro-inflammatory mediators in ACR larvae. Finally, vitexin treatment rescued the loss of neuroplasticity markers along with enhanced antioxidant markers in ACR larvae. Taken together, results in the present study showed the possibility of vitexin as a potential therapeutic drug in the suppression of neuroinflammation.
Collapse
Affiliation(s)
- Manigandan Krishnan
- Department of Biotechnology, College of Engineering, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, College of Engineering, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea.
| |
Collapse
|
30
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
CRISPR/Cas9 Editing of Glia Maturation Factor Regulates Mitochondrial Dynamics by Attenuation of the NRF2/HO-1 Dependent Ferritin Activation in Glial Cells. J Neuroimmune Pharmacol 2019; 14:537-550. [PMID: 30810907 DOI: 10.1007/s11481-019-09833-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022]
Abstract
Microglial cells are brain specific professional phagocytic immune cells that play a crucial role in the inflammation- mediated neurodegeneration especially in Parkinson's disease (PD) and Alzheimer's disease. Glia maturation factor (GMF) is a neuroinflammatory protein abundantly expressed in the brain. We have previously shown that GMF expression is significantly upregulated in the substantia nigra (SN) of PD brains. However, its possible role in PD progression is still not fully understood. The Clustered-Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR Associated (Cas) protein9 (CRISPR/Cas9) system is a simple, rapid and often extremely efficient gene editing tool at desired loci, enabling complete gene knockout or homology directed repair. In this study, we examined the effect of GMF editing by using the CRISPR/Cas9 technique in BV2 microglial cells (hereafter referred to as BV2-G) on oxidative stress and nuclear factor erythroid 2-related factor 2 (NRF2)/Hemeoxygenase1 (HO-1)-dependent ferritin activation after treatment with (1-methyl-4-phenylpyridinium) MPP+. Knockout of GMF in BV2-G cells significantly attenuated oxidative stress via reduced ROS production and calcium flux. Furthermore, deficiency of GMF significantly reduced nuclear translocation of NRF2, which modulates HO-1 and ferritin activation, cyclooxygenase 2 (COX2) and nitric oxide synthase 2 (NOS2) expression in BV2 microglial cells. Lack of GMF significantly improved CD11b and CD68 positive microglial cells as compared with untreated cells. Our results also suggest that pharmacological and genetic intervention targeting GMF may represent a promising and a novel therapeutic strategy in controlling Parkinsonism by regulating microglial functions. Targeted regulation of GMF possibly mediates protein aggregation in microglial homeostasis associated with PD progression through regulation of iron metabolism by modulating NRF2-HO1 and ferritin expression.
Collapse
|
32
|
Thangavel R, Bhagavan SM, Ramaswamy SB, Surpur S, Govindarajan R, Kempuraj D, Zaheer S, Raikwar S, Ahmed ME, Selvakumar GP, Iyer SS, Zaheer A. Co-Expression of Glia Maturation Factor and Apolipoprotein E4 in Alzheimer's Disease Brain. J Alzheimers Dis 2019; 61:553-560. [PMID: 29172001 DOI: 10.3233/jad-170777] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Apolipoprotein E4 (ApoE4) is a major genetic risk factor for Alzheimer's disease (AD). The E4 allele of ApoE plays a crucial role in the inflammatory and neurodegenerative processes associated with AD. This is evident from the multiple effects of the ApoE isoforms in amyloid-β (Aβ) aggregation. Glia maturation factor (GMF) is a brain-specific neuroinflammatory protein that we have previously demonstrated to be significantly upregulated in various regions of AD brains compared to non-AD control brains and that it induces neurodegeneration. We have previously reported that GMF is predominantly expressed in the reactive astrocytes surrounding amyloid plaques (APs) in AD brain. In the present study, using immunohistochemical and dual immunofluorescence staining, we show the expression and colocalization of GMF and ApoE4 in AD brains. Our results show that ApoE4 is present within the APs of AD brain. Further, we found that GMF and ApoE4 were strongly expressed and co-associated in APs and in the reactive astrocytes surrounding APs in AD. An increased expression of GMF in APs and neurofibrillary tangles in the AD brain, and the co-localization of GMF and ApoE4 in APs suggest that GMF and ApoE4 together should be contributing to the neuropathological changes associated with AD.
Collapse
Affiliation(s)
- Ramasamy Thangavel
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Sachin M Bhagavan
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Swathi Beladakere Ramaswamy
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Spurthi Surpur
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Raghav Govindarajan
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Sudhanshu Raikwar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mohammad E Ahmed
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Shankar S Iyer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology and Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.,Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| |
Collapse
|
33
|
Fairlie-Clarke K, Barbour M, Wilson C, Hridi SU, Allan D, Jiang HR. Expression and Function of IL-33/ST2 Axis in the Central Nervous System Under Normal and Diseased Conditions. Front Immunol 2018; 9:2596. [PMID: 30515150 PMCID: PMC6255965 DOI: 10.3389/fimmu.2018.02596] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Interleukin-33 (IL-33) is a well-recognized immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. The abundant expression of IL-33 in brain and spinal cord prompted many scientists to explore its unique role in the central nervous system (CNS) under physiological and pathological conditions. Indeed emerging evidence from over a decade's research suggests that IL-33 acts as one of the key molecular signaling cues coordinating the network between the immune and CNS systems, particularly during the development of neurological diseases. Here, we highlight the recent advances in our knowledge regarding the distribution and cellular localization of IL-33 and its receptor ST2 in specific CNS regions, and more importantly the key roles IL-33/ST2 signaling pathway play in CNS function under normal and diseased conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
34
|
Selvakumar GP, Iyer SS, Kempuraj D, Ahmed ME, Thangavel R, Dubova I, Raikwar SP, Zaheer S, Zaheer A. Molecular Association of Glia Maturation Factor with the Autophagic Machinery in Rat Dopaminergic Neurons: a Role for Endoplasmic Reticulum Stress and MAPK Activation. Mol Neurobiol 2018; 56:3865-3881. [PMID: 30218400 DOI: 10.1007/s12035-018-1340-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is one of the several neurodegenerative diseases where accumulation of aggregated proteins like α-synuclein occurs. Dysfunction in autophagy leading to this protein build-up and subsequent dopaminergic neurodegeneration may be one of the causes of PD. The mechanisms that impair autophagy remain poorly understood. 1-Methyl-4-phenylpiridium ion (MPP+) is a neurotoxin that induces experimental PD in vitro. Our studies have shown that glia maturation factor (GMF), a brain-localized inflammatory protein, induces dopaminergic neurodegeneration in PD and that suppression of GMF prevents MPP+-induced loss of dopaminergic neurons. In the present study, we demonstrate a molecular action of GMF on the autophagic machinery resulting in dopaminergic neuronal loss and propose GMF-mediated autophagic dysfunction as one of the contributing factors in PD progression. Using dopaminergic N27 neurons, primary neurons from wild type (WT), and GMF-deficient (GMF-KO) mice, we show that GMF and MPP+ enhanced expression of MAPKs increased the mammalian target of rapamycin (mTOR) activation and endoplasmic reticulum stress markers such as phospho-eukaryotic translation initiation factor 2 alpha kinase 3 (p-PERK) and inositol-requiring enzyme 1α (IRE1α). Further, GMF and MPP+ reduced Beclin 1, focal adhesion kinase (FAK) family-interacting protein of 200 kD (FIP200), and autophagy-related proteins (ATGs) 3, 5, 7, 16L, and 12. The combined results demonstrate that GMF affects autophagy through autophagosome formation with significantly reduced lysosomal-associated membrane protein 1/2, and the number of autophagic acidic vesicles. Using primary neurons, we show that MPP+ treatment leads to differential expression and localization of p62/sequestosome and in GMF-KO neurons, there was a marked increase in p62 staining implying autophagy deficiency with very little co-localization of α-synuclein and p62 as compared with WT neurons. Collectively, this study provides a bidirectional role for GMF in executing dopaminergic neuronal death mediated by autophagy that is relevant to PD.
Collapse
Affiliation(s)
- Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA
| | - Shankar S Iyer
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA
| | - Iuliia Dubova
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA
| | - Smita Zaheer
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA. .,Department of Neurology, and Center for Translational Neuroscience, School of Medicine-University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, USA.
| |
Collapse
|
35
|
Xu FF, Zhang ZB, Wang YY, Wang TH. Brain-Derived Glia Maturation Factor β Participates in Lung Injury Induced by Acute Cerebral Ischemia by Increasing ROS in Endothelial Cells. Neurosci Bull 2018; 34:1077-1090. [PMID: 30191459 PMCID: PMC6246848 DOI: 10.1007/s12264-018-0283-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/03/2018] [Indexed: 02/05/2023] Open
Abstract
Brain damage can cause lung injury. To explore the mechanism underlying the lung injury induced by acute cerebral ischemia (ACI), we established a middle cerebral artery occlusion (MCAO) model in male Sprague-Dawley rats. We focused on glia maturation factor β (GMFB) based on quantitative analysis of the global rat serum proteome. Polymerase chain reaction, western blotting, and immunofluorescence revealed that GMFB was over-expressed in astrocytes in the brains of rats subjected to MCAO. We cultured rat primary astrocytes and confirmed that GMFB was also up-regulated in primary astrocytes after oxygen-glucose deprivation (OGD). We subjected the primary astrocytes to Gmfb RNA interference before OGD and collected the conditioned medium (CM) after OGD. We then used the CM to culture pulmonary microvascular endothelial cells (PMVECs) acquired in advance and assessed their status. The viability of the PMVECs improved significantly when Gmfb was blocked. Moreover, ELISA assays revealed an elevation in GMFB concentration in the medium after OGD. Cell cultures containing recombinant GMFB showed increased levels of reactive oxygen species and a deterioration in the state of the cells. In conclusion, GMFB is up-regulated in astrocytes after ACI, and brain-derived GMFB damages PMVECs by increasing reactive oxygen species. GMFB might thus be an initiator of the lung injury induced by ACI.
Collapse
Affiliation(s)
- Fei-Fei Xu
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zi-Bin Zhang
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang-Yang Wang
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Selvakumar GP, Iyer SS, Kempuraj D, Raju M, Thangavel R, Saeed D, Ahmed ME, Zahoor H, Raikwar SP, Zaheer S, Zaheer A. Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells. Mol Neurobiol 2018; 55:7132-7152. [PMID: 29383690 PMCID: PMC6066475 DOI: 10.1007/s12035-018-0882-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease affecting over five million individuals worldwide. The exact molecular events underlying PD pathogenesis are still not clearly known. Glia maturation factor (GMF), a neuroinflammatory protein in the brain plays an important role in the pathogenesis of PD. Mitochondrial dysfunctions and oxidative stress trigger apoptosis leading to dopaminergic neuronal degeneration in PD. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α or PPARGC-α) acts as a transcriptional co-regulator of mitochondrial biogenesis and energy metabolism by controlling oxidative phosphorylation, antioxidant activity, and autophagy. In this study, we found that incubation of immortalized rat dopaminergic (N27) neurons with GMF influences the expression of peroxisome PGC-1α and increases oxidative stress, mitochondrial dysfunction, and apoptotic cell death. We show that incubation with GMF reduces the expression of PGC-1α with concomitant decreases in the mitochondrial complexes. Besides, there is increased oxidative stress and depolarization of mitochondrial membrane potential (MMP) in these cells. Further, GMF reduces tyrosine hydroxylase (TH) expression and shifts Bax/Bcl-2 expression resulting in release of cytochrome-c and increased activations of effector caspase expressions. Transmission electron microscopy analyses revealed alteration in the mitochondrial architecture. Our results show that GMF acts as an important upstream regulator of PGC-1α in promoting dopaminergic neuronal death through its effect on oxidative stress-mediated apoptosis. Our current data suggest that GMF is a critical risk factor for PD and suggest that it could be explored as a potential therapeutic target to inhibit PD progression.
Collapse
Affiliation(s)
- Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Department of Neurology and The Center for Translational Neuroscience, M741A Medical Science Building, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | - Shankar S Iyer
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Department of Neurology and The Center for Translational Neuroscience, M741A Medical Science Building, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Department of Neurology and The Center for Translational Neuroscience, M741A Medical Science Building, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | - Murugesan Raju
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Department of Neurology and The Center for Translational Neuroscience, M741A Medical Science Building, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | - Daniyal Saeed
- Department of Neurology and The Center for Translational Neuroscience, M741A Medical Science Building, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology and The Center for Translational Neuroscience, M741A Medical Science Building, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | - Harris Zahoor
- Department of Neurology and The Center for Translational Neuroscience, M741A Medical Science Building, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
- Department of Neurology and The Center for Translational Neuroscience, M741A Medical Science Building, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology and The Center for Translational Neuroscience, M741A Medical Science Building, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.
- Department of Neurology and The Center for Translational Neuroscience, M741A Medical Science Building, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO, USA.
| |
Collapse
|
37
|
Kempuraj D, Thangavel R, Selvakumar GP, Ahmed ME, Zaheer S, Raikwar SP, Zahoor H, Saeed D, Dubova I, Giler G, Herr S, Iyer SS, Zaheer A. Mast Cell Proteases Activate Astrocytes and Glia-Neurons and Release Interleukin-33 by Activating p38 and ERK1/2 MAPKs and NF-κB. Mol Neurobiol 2018; 56:1681-1693. [PMID: 29916143 DOI: 10.1007/s12035-018-1177-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Inflammatory mediators released from activated microglia, astrocytes, neurons, and mast cells mediate neuroinflammation. Parkinson's disease (PD) is characterized by inflammation-dependent dopaminergic neurodegeneration in substantia nigra. 1-Methyl-4-phenylpyridinium (MPP+), a metabolite of parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), induces inflammatory mediators' release from brain cells and mast cells. Brain cells' interaction with mast cells is implicated in neuroinflammation. However, the exact mechanisms involved are not yet clearly understood. Mouse fetal brain-derived cultured primary astrocytes and glia-neurons were incubated with mouse mast cell protease-6 (MMCP-6) and MMCP-7, and mouse bone marrow-derived mast cells (BMMCs) were incubated with MPP+ and brain protein glia maturation factor (GMF). Interleukin-33 (IL-33) released from these cells was quantitated by enzyme-linked immunosorbent assay. Both MMCP-6 and MMCP-7 induced IL-33 release from astrocytes and glia-neurons. MPP+ and GMF were used as a positive control-induced IL-33 and reactive oxygen species expression in mast cells. Mast cell proteases and MPP+ activate p38 and extracellular signal-regulated kinases 1/2 (ERK1/2), mitogen-activated protein kinases (MAPKs), and transcription factor nuclear factor-kappa B (NF-κB) in astrocytes, glia-neurons, or mast cells. Addition of BMMCs from wt mice and transduction with adeno-GMF show higher chemokine (C-C motif) ligand 2 (CCL2) release. MPP+ activated glial cells and reduced microtubule-associated protein 2 (MAP-2) expression indicating neurodegeneration. IL-33 expression increased in the midbrain and striatum of PD brains as compared with age- and sex-matched control subjects. Glial cells and neurons interact with mast cells and accelerate neuroinflammation and these interactions can be explored as a new therapeutic target to treat PD.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA.
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Gvindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Smita Zaheer
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Haris Zahoor
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Daniyal Saeed
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Iuliia Dubova
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Gema Giler
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shelby Herr
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Shankar S Iyer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, MO, USA.
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Medical Science Building,1 Hospital Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
38
|
Goode BL, Sweeney MO, Eskin JA. GMF as an Actin Network Remodeling Factor. Trends Cell Biol 2018; 28:749-760. [PMID: 29779865 DOI: 10.1016/j.tcb.2018.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 10/24/2022]
Abstract
Glia maturation factor (GMF) has recently been established as a regulator of the actin cytoskeleton with a unique role in remodeling actin network architecture. Conserved from yeast to mammals, GMF is one of five members of the ADF-H family of actin regulatory proteins, which includes ADF/cofilin, Abp1/Drebrin, Twinfilin, and Coactosin. GMF does not bind actin, but instead binds the Arp2/3 complex with high affinity. Through this association, GMF catalyzes the debranching of actin filament networks and inhibits actin nucleation by Arp2/3 complex. Here, we discuss GMF's emerging role in controlling actin filament spatial organization and dynamics underlying cell motility, endocytosis, and other biological processes. Further, we attempt to reconcile these functions with its earlier characterization as a cell differentiation factor.
Collapse
Affiliation(s)
- Bruce L Goode
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA.
| | - Meredith O Sweeney
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Julian A Eskin
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| |
Collapse
|
39
|
Fan J, Fong T, Chen X, Chen C, Luo P, Xie H. Glia maturation factor-β: a potential therapeutic target in neurodegeneration and neuroinflammation. Neuropsychiatr Dis Treat 2018; 14:495-504. [PMID: 29445286 PMCID: PMC5810533 DOI: 10.2147/ndt.s157099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glia maturation factor-β (GMFB) is considered to be a growth and differentiation factor for both glia and neurons. GMFB has been found to be upregulated in several neuroinflammation and neurodegeneration conditions. It may function by mediating apoptosis and by modulating the expression of superoxide dismutase, granulocyte-macrophage colony-stimulating factor, and neurotrophin. In this review, we mainly discussed the role of GMFB in several neuroinflammatory and neurodegenerative diseases. On review of the literature, we propose that GMFB may be a promising therapeutic target for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Junsheng Fan
- Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Tszhei Fong
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xinjie Chen
- Second School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuyun Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Peng Luo
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Haiting Xie
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
DINCEL GC. First description of enhanced expression of glia maturation factor-beta in experimental toxoplasmic encephalitis. J Int Med Res 2017; 45:1670-1679. [PMID: 28774213 PMCID: PMC5805200 DOI: 10.1177/0300060517700320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/27/2017] [Indexed: 01/29/2023] Open
Abstract
Objective We previously showed that Toxoplasma gondii infection induces severe neuropathology in the form of oxidative stress, high nitric oxide production, glial activation, and apoptosis. This study examined the association between glia maturation factor-beta (GMF-β) expression, activated astrocytes/microglia, and neuropathology in toxoplasmic encephalitis (TE). Methods Mouse brain GMF expression was examined by immunohistochemistry on days 10 and 30 post- T. gondii infection. Results Neuropathology of infected mice was associated with increased GMF expression in reactive glial cells and neurons compared with healthy controls. Specific up-regulation of GMF-β expression in glial cells was associated with increased gliosis in TE. Conclusions GMF up-regulation in glial cells causes neuronal destruction, suggesting a TE pathological pathway involving GMF-mediated brain cell cytotoxicity. GMF-β may therefore be a good biomarker for disease risk assessment and to estimate host neuropathy after exposure to T. gondii, as well as providing a new therapeutic target. This is the first study to demonstrate the expression of GMF-β in reactive glial cells and its association with neuropathology in TE.
Collapse
|
41
|
Candidate proteins from predegenerated nerve exert time-specific protection of retinal ganglion cells in glaucoma. Sci Rep 2017; 7:14540. [PMID: 29109409 PMCID: PMC5673995 DOI: 10.1038/s41598-017-14860-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/02/2017] [Indexed: 11/08/2022] Open
Abstract
Glaucoma is thought to be the main cause of severe visual impairment or permanent loss of vision. Current therapeutic strategies are not sufficient to protect against glaucoma. Thus, new therapies and potential novel therapeutic targets must be developed to achieve progress in the treatment of this insidious disease. This study was undertaken to verify whether the time of administration of an extract from predegenerated rat sciatic nerves as well as exposure time of this extract onto retinal ganglion cells (RGCs) influences the survival of RGCs in a rat glaucoma model. We have demonstrated that extract obtained from the predegenerated sciatic nerves protects RGCs in a rat glaucoma model. The neuroprotective effect depends mostly on the time of administration of the extract and less clearly on the time of exposure to the extract and is associated with stimulation of endogenous BDNF expression both in RGCs and glial cells. The 14th day following glaucoma induction represents a therapeutic window for effective treatment in a glaucoma model. Mass Spectrometry analysis demonstrated that metallothionein 2 (MT2) may be a key molecule responsible for neuroprotective effects on RGC survival.
Collapse
|
42
|
Kempuraj D, Selvakumar GP, Zaheer S, Thangavel R, Ahmed ME, Raikwar S, Govindarajan R, Iyer S, Zaheer A. Cross-Talk between Glia, Neurons and Mast Cells in Neuroinflammation Associated with Parkinson's Disease. J Neuroimmune Pharmacol 2017; 13:100-112. [PMID: 28952015 DOI: 10.1007/s11481-017-9766-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is a progressive movement disorder characterized by neuroinflammation and dopaminergic neurodegeneration in the brain. 1-methyl-4-phenylpyridinium (MPP+), a metabolite of the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces the release of inflammatory mediators from glial cells and neurons. Glia maturation factor (GMF), a brain proinflammatory protein, MPP+, and mast cell-derived inflammatory mediators induce neurodegeneration which eventually leads to PD. However, the precise mechanisms underlying interaction between glial cells, neurons and mast cells in PD still remain elusive. In the present study, mouse bone marrow-derived mast cells (BMMCs) and mouse fetal brain-derived mixed glia/neurons, astrocytes and neurons were incubated with MPP+, GMF and mast cell-derived inflammatory mediators mouse mast cell protease-6 (MMCP-6), MMCP-7 or tryptase/brain-specific serine protease-4 (tryptase/BSSP-4). Inflammatory mediators released from these cells in the culture medium were quantitated by enzyme-linked immunosorbent assay. Neurodegeneration was quantified by measuring total neurite outgrowth following microtubule-associated protein-2 immunocytochemistry. MPP+-induced significant neurodegeneration with reduced total neurite outgrowth. MPP+induced the release of tryptase/BSSP-4 from the mouse mast cells, and tryptase/BSSP-4 induced chemokine (C-C motif) ligand 2 (CCL2) release from astrocytes and glia/neurons. Overall our results suggest that MPP+, GMF, MMCP-6 or MMCP-7 stimulate glia/neurons, astrocytes or neurons to release CCL2 and matrix metalloproteinase-3. Additionally, CD40L expression is increased in BMMCs after incubation with MPP+ in a co-culture system consisting of BMMCs and glia/neurons. We propose that mast cell interaction with glial cells and neurons during neuroinflammation can be explored as a new therapeutic target for PD.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Govindhasamy Pushpavathi Selvakumar
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Smita Zaheer
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Ramasamy Thangavel
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Mohammad Ejaz Ahmed
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Sudhanshu Raikwar
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Raghav Govindarajan
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Shankar Iyer
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA
| | - Asgar Zaheer
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, 65201, USA. .,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of Missouri, M741A Medical Science Building, 1 Hospital Drive, Columbia, MO, 65201, USA.
| |
Collapse
|
43
|
Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, Zahoor H, Saeed D, Natteru PA, Iyer S, Zaheer A. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2017; 11:216. [PMID: 28790893 PMCID: PMC5522882 DOI: 10.3389/fncel.2017.00216] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson’s disease (PD), Alzheimer’s disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1–42 (Aβ1–42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Govindhasamy P Selvakumar
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Smita Zaheer
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Mohammad E Ahmed
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Haris Zahoor
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Daniyal Saeed
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Prashant A Natteru
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Shankar Iyer
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Asgar Zaheer
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| |
Collapse
|
44
|
Sochocka M, Diniz BS, Leszek J. Inflammatory Response in the CNS: Friend or Foe? Mol Neurobiol 2016; 54:8071-8089. [PMID: 27889895 PMCID: PMC5684251 DOI: 10.1007/s12035-016-0297-1] [Citation(s) in RCA: 387] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022]
Abstract
Inflammatory reactions could be both beneficial and detrimental to the brain, depending on strengths of their activation in various stages of neurodegeneration. Mild activation of microglia and astrocytes usually reveals neuroprotective effects and ameliorates early symptoms of neurodegeneration; for instance, released cytokines help maintain synaptic plasticity and modulate neuronal excitability, and stimulated toll-like receptors (TLRs) promote neurogenesis and neurite outgrowth. However, strong activation of glial cells gives rise to cytokine overexpression/dysregulation, which accelerates neurodegeneration. Altered mutual regulation of p53 protein, a major tumor suppressor, and NF-κB, the major regulator of inflammation, seems to be crucial for the shift from beneficial to detrimental effects of neuroinflammatory reactions in neurodegeneration. Therapeutic intervention in the p53-NF-κB axis and modulation of TLR activity are future challenges to cope with neurodegeneration.
Collapse
Affiliation(s)
- Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Breno Satler Diniz
- Department of Psychiatry and Behavioral Sciences, and The Consortium on Aging, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże L. Pasteura 10, 50-367, Wroclaw, Poland.
| |
Collapse
|
45
|
Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, Zaheer S, Iyer SS, Zaheer A. Neuroinflammation Induces Neurodegeneration. JOURNAL OF NEUROLOGY, NEUROSURGERY AND SPINE 2016; 1:1003. [PMID: 28127589 PMCID: PMC5260818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Multiple Sclerosis (MS) are characterized by neuronal degeneration and neuronal death in specific regions of the central nervous system (CNS). In AD, neurons of the hippocampus and entorhinal cortex are the first to degenerate, whereas in PD, dopaminergic neurons in the substantia nigra degenerate. MS patients show destruction of the myelin sheath. Once the CNS neurons are damaged, they are unable to regenerate unlike any other tissue in the body. Neurodegeneration is mediated by inflammatory and neurotoxic mediators such as interleukin-1beta (IL-1β), IL-6, IL-8, IL-33, tumor necrosis factor-alpha (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), CCL5, matrix metalloproteinase (MMPs), granulocyte macrophage colony-stimulating factor (GM-CSF), glia maturation factor (GMF), substance P, reactive oxygen species (ROS), reactive nitrogen species (RNS), mast cells-mediated histamine and proteases, protease activated receptor-2 (PAR-2), CD40, CD40L, CD88, intracellular Ca+ elevation, and activation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-B (NF-kB). Activated microglia, astrocytes, neurons, T-cells and mast cells release these inflammatory mediators and mediate neuroinflammation and neurodegeneration in a vicious manner. Further, immune and inflammatory cells and inflammatory mediators from the periphery cross the defective blood-brain-barrier (BBB) and augment neuroinflammation. Though inflammation is crucial in the onset and the progression of neurodegenerative diseases, anti-inflammatory drugs do not provide significant therapeutic effects in these patients till date, as the disease pathogenesis is not yet clearly understood. In this review, we discuss the possible factors involved in neuroinflammation-mediated neurodegeneration.
Collapse
Affiliation(s)
- D Kempuraj
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - R Thangavel
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - PA Natteru
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - GP Selvakumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - D Saeed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - H Zahoor
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - S Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - SS Iyer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - A Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| |
Collapse
|
46
|
Allan D, Fairlie-Clarke KJ, Elliott C, Schuh C, Barnett SC, Lassmann H, Linnington C, Jiang HR. Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system. Acta Neuropathol Commun 2016; 4:75. [PMID: 27455844 PMCID: PMC4960877 DOI: 10.1186/s40478-016-0344-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022] Open
Abstract
Recent research findings have provided convincing evidence indicating a role for Interleukin-33 (IL-33) signalling pathway in a number of central nervous system (CNS) diseases including multiple sclerosis (MS) and Alzheimer's disease. However, the exact function of IL-33 molecule within the CNS under normal and pathological conditions is currently unknown. In this study, we have mapped cellular expression of IL-33 and its receptor ST2 by immunohistochemistry in the brain tissues of MS patients and appropriate controls; and investigated the functional significance of these findings in vitro using a myelinating culture system. Our results demonstrate that IL-33 is expressed by neurons, astrocytes and microglia as well as oligodendrocytes, while ST2 is expressed in the lesions by oligodendrocytes and within and around axons. Furthermore, the expression levels and patterns of IL-33 and ST2 in the lesions of acute and chronic MS patient brain samples are enhanced compared with the healthy brain tissues. Finally, our data using rat myelinating co-cultures suggest that IL-33 may play an important role in MS development by inhibiting CNS myelination.
Collapse
|
47
|
Gramatzki D, Frei K, Cathomas G, Moch H, Weller M, Mertz KD. Interleukin-33 in human gliomas: Expression and prognostic significance. Oncol Lett 2016; 12:445-452. [PMID: 27347163 PMCID: PMC4906635 DOI: 10.3892/ol.2016.4626] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 04/29/2016] [Indexed: 12/14/2022] Open
Abstract
Interleukin-33 (IL-33) is a nuclear and pleiotropic cytokine with regard to its cellular sources and its actions. IL-33 is involved in the pathogenesis of brain diseases. Several factors account for the tumorigenicity of human gliomas, including cytokines and their receptors. The present study assessed the expression and prognostic significance of IL-33 in human astroglial brain tumors. Protein levels of IL-33 were determined by immunohistochemistry using a tissue microarray containing 95 human gliomas. mRNA expression data of IL-33, as well as of its receptors, IL-1 receptor-like 1 protein and IL-1 receptor accessory protein (IL1RAcP), were obtained from The Cancer Genome Atlas database. IL-33 protein was expressed heterogeneously in tumor tissue, but was, however, not detected in normal brain tissue. There was no differential IL-33 protein expression by tumor grade, while IL-33 protein expression was associated with inferior survival in patients with recurrent glioblastomas. Interrogations of the TCGA database indicated that mRNA expression of IL-33 and the IL-33 receptors was heterogeneous, and that IL-33 and IL1RAcP mRNA levels were correlated with the tumor grade. Elevated IL-33 mRNA levels were associated with the inferior survival of glioblastoma patients. Therefore, IL-33 may play an important role in the pathogenesis and prognosis of human gliomas.
Collapse
Affiliation(s)
- Dorothee Gramatzki
- Laboratory for Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Karl Frei
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Gieri Cathomas
- Institute of Pathology Liestal, Cantonal Hospital Baselland, 4410 Liestal, Switzerland
| | - Holger Moch
- Department of Pathology, Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Laboratory for Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kirsten Diana Mertz
- Institute of Pathology Liestal, Cantonal Hospital Baselland, 4410 Liestal, Switzerland; Department of Pathology, Institute of Surgical Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
48
|
Imai R, Asai K, Hanai JI, Takenaka M. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation. Aging (Albany NY) 2016; 7:486-99. [PMID: 26232943 PMCID: PMC4543038 DOI: 10.18632/aging.100779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosis in vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.
Collapse
Affiliation(s)
- Rika Imai
- Clinical Nutrition and Internal Medicine, Kobe Women's University, Kobe 654-8585, Japan
| | - Kanae Asai
- Clinical Nutrition and Internal Medicine, Kobe Women's University, Kobe 654-8585, Japan.,Current address: Department of Metabolism and Clinical Nutrition, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Jun-ichi Hanai
- Renal Division and Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Masaru Takenaka
- Clinical Nutrition and Internal Medicine, Kobe Women's University, Kobe 654-8585, Japan
| |
Collapse
|
49
|
Martin NT, Martin MU. Interleukin 33 is a guardian of barriers and a local alarmin. Nat Immunol 2016; 17:122-31. [DOI: 10.1038/ni.3370] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
|
50
|
Kempuraj D, Thangavel R, Fattal R, Pattani S, Yang E, Zaheer S, Santillan DA, Santillan MK, Zaheer A. Mast Cells Release Chemokine CCL2 in Response to Parkinsonian Toxin 1-Methyl-4-Phenyl-Pyridinium (MPP(+)). Neurochem Res 2015; 41:1042-9. [PMID: 26646004 DOI: 10.1007/s11064-015-1790-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 01/29/2023]
Abstract
Microglial activation and release of inflammatory cytokines and chemokines are crucial events in neuroinflammation. Microglial cells interact and respond to other inflammatory cells such as T cells and mast cells as well as inflammatory mediators secreted from these cells. Recent studies have shown that neuroinflammation causes and accelerates neurodegenerative disease such as Parkinson's disease (PD) pathogenesis. 1-methyl-4-phenyl-pyridinium ion (MPP(+)), the active metabolite of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine activates glial cells and mediate neurodegeneration through release of inflammatory mediators. We have shown that glia maturation factor (GMF) activates glia and induces neuroinflammation and neurodegeneration and that MPP(+) activates mast cells and release proinflammatory cytokines and chemokines. The chemokine (C-C motif) ligand 2 (CCL2) levels have been shown to be elevated and play a role in PD pathogenesis. In the present study, we analyzed if MPP(+) activates mouse and human mast cells to release chemokine CCL2. Mouse bone marrow-derived mast cells (BMMCs) and human umbilical cord blood-derived cultured mast cells (hCBMCs) were incubated with MPP(+) (10 µM) for 24 h and CCL2 levels were measured in the supernatant media by ELISA. MPP(+)-significantly induced CCL2 release from BMMCs and hCBMCs. Additionally, GMF overexpression in BMMCs obtained from wild-type mice released significantly more CCL2, while BMMCs obtained from GMF-deficient mice showed less CCL2 release. Further, we show that MPP(+)-induced CCL2 release was greater in BMMCs-astrocyte co-culture conditions. Uncoupling protein 4 (UCP4) which is implicated in neurodegenerative diseases including PD was detected in BMMCs by immunocytochemistry. Our results suggest that mast cells may play role in PD pathogenesis.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Veterans Affairs Health Care System, Iowa City, IA, 52242, USA
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Ramasamy Thangavel
- Veterans Affairs Health Care System, Iowa City, IA, 52242, USA
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Ranan Fattal
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Sagar Pattani
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Evert Yang
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Smita Zaheer
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Asgar Zaheer
- Veterans Affairs Health Care System, Iowa City, IA, 52242, USA.
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.
| |
Collapse
|