1
|
Tan Y, Miao L, Wang C, Wang H, Li Y, Huang Y, Teng H, Tian Y, Yang G, Zeng X, Li J. The Role and Mechanism of TRIM13 Regulation of TRAF6 Ubiquitination in the Synergy of Inflammatory Responses and Neurotoxicity Induced by METH and HIV- 1 Tat Protein in Astrocytes. Neurotox Res 2025; 43:21. [PMID: 40192895 DOI: 10.1007/s12640-025-00743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/13/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025]
Abstract
Methamphetamine (METH) abuse and HIV infection are major public health concerns worldwide. While both METH and HIV- 1 Tat proteins can induce neurotoxicity and synergistic effects on the nervous system, the mechanisms by which they act synergistically remain unclear. Our recent research shows that neuroinflammation plays an important role in neurotoxicity induced by METH and HIV- 1 Tat proteins, but the regulatory mechanism has not been clarified. Tripartite Motif Containing 13 (TRIM13) is a protein known to regulate the inflammatory response through ubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6). This study investigated the role of TRIM13 and TRAF6 in the inflammatory response of U- 87 MG cells induced by METH and HIV- 1 Tat proteins. U- 87 MG cells were treated with 2 mM METH and/or 100 nM HIV- 1 Tat protein. Western blot (WB), immunofluorescence (IF), and co-immunoprecipitation (Co-IP) experiments were employed to elucidate the role of TRIM13 and TRAF6. The results demonstrated that METH and HIV- 1 Tat protein could synergistically induce an inflammatory response in U- 87 MG cells. Furthermore, the knockdown of TRIM13 significantly enhanced this inflammatory response, while the inhibition of TRAF6 significantly weakened it. Additionally, the study revealed that TRIM13 could degrade TRAF6 via ubiquitination. In conclusion, this study suggests that TRIM13 regulates TRAF6 ubiquitination to dampen the inflammatory response of U- 87 MG cells induced by METH and HIV- 1 Tat proteins. These findings highlight TRIM13 and TRAF6 as potential targets for therapeutic intervention in the context of METH and HIV- 1 Tat protein-induced inflammatory responses and neurotoxic effects.
Collapse
Affiliation(s)
- Yi Tan
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Yi Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Yizhen Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, People's Republic of China
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China.
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China.
| | - Juan Li
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, People's Republic of China.
| |
Collapse
|
2
|
Jimenez-Torres AC, Hastie JA, Davis SE, Porter KD, Lei B, Moukha-Chafiq O, Zhang S, Nguyen TH, Ananthan S, Augelli-Szafran CE, Zhu J. Identification of pyrimidine structure-based compounds as allosteric ligands of the dopamine transporter as therapeutic agents for NeuroHIV. J Pharmacol Exp Ther 2025; 392:100021. [PMID: 40023582 DOI: 10.1124/jpet.124.002138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 01/22/2025] Open
Abstract
The disruption of dopamine (DA) neurotransmission by the HIV-1 transactivator of transcription (Tat) during HIV-1 infection has been linked to the development of neurocognitive disorders, even under combined antiretroviral therapy treatment. We have demonstrated that Southern Research Institute (SRI) 32742, a novel allosteric modulator of DA transporter (DAT), attenuates cocaine- and Tat-binding to DAT, alleviates Tat-induced cognitive deficits and potentiation of cocaine reward in inducible Tat transgenic mice. The current study determined the in vitro pharmacological profile of SRI-32743 and its optimized second-generation analogs and their effects as allosteric modulators. Through structure-activity relationship studies of SRI-32743, 170 compounds were synthesized and evaluated for their ability to modulate DAT function. We identified 21 analogs as atypical competitors of DAT (maximum attributable drug effect, ≤60%). Four compounds, SRI-46564, SRI-47056, SRI-46286, and SRI-47867, displayed IC50 values for [3H]DA uptake inhibition from 9.33 ± 0.50 to 0.96 ± 0.05 μM and from 3.96 ± 1.36 to 1.29 ± 0.19 for DAT binding, respectively. The 4 analogs also displayed high potency at 2 different concentrations (0.5 nM and 0.05 nM) to attenuate Tat-induced inhibition of [3H]DA uptake and cocaine-mediated dissociation of [3H]WIN35,428 binding in Chinese hamster ovary cells expressing human DAT, suggesting that the effects occur through an allosteric mechanism. In further ex vivo studies using fast scan cyclic voltammetry, we demonstrated that the analogs do not disrupt the baseline phasic-like DA release. These findings provide a new insight into the potential for development of novel therapeutic agents to attenuate DAT-Tat interactions to normalize DA neurotransmission in NeuroHIV. SIGNIFICANCE STATEMENT: The allosteric inhibition of the dopamine (DA) transporter by the HIV-1 transactivator of transcription (Tat) disrupts DA homeostasis, leading to HIV-associated neurocognitive disorders. Analogs of Southern Research Institute 32743, a novel allosteric modulator of the Tat-DA transporter (DAT) interaction, were evaluated in the current study and characterized as atypical ligands of DA uptake. Four novel lead compounds demonstrated high potency to attenuate Tat-induced inhibition of human DAT-mediated DA uptake in an allosteric modulatory manner with no effects on the dynamics of DA uptake-release in DAT.
Collapse
Affiliation(s)
- Ana Catya Jimenez-Torres
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Jamison A Hastie
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Sarah E Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Katherine D Porter
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Bin Lei
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Omar Moukha-Chafiq
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | - Sixue Zhang
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | - Theresa H Nguyen
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | - Subramaniam Ananthan
- Department of Chemistry, Scientific Platforms Division, Southern Research, Birmingham, Alabama
| | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina.
| |
Collapse
|
3
|
Zhu J, Cirincione AB, Strauss MJ, Davis SE, Eans SO, Tribbitt DK, Alshakhshir N, McLaughlin JP. Impact of HIV-1 tat protein on methamphetamine-induced inhibition of vesicular monoamine transporter2-mediated dopamine transport and methamphetamine conditioned place preference in HIV-1 tat transgenic mice. Eur J Pharmacol 2024; 984:177030. [PMID: 39366503 PMCID: PMC11563864 DOI: 10.1016/j.ejphar.2024.177030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Perturbation of dopamine transmission has been implicated as a contributing factor in HIV-1 associated neurocognitive disorders with concurrent methamphetamine (METH) abuse. We have demonstrated that the HIV-1 protein, transactivator of transcription (Tat), decreases dopamine transport through inhibition of vesicular monoamine transporter2 (VMAT2). This study determined the effects of Tat protein on METH-inhibited VMAT2 function and METH-conditioned place preference (CPP). In vitro exposure of isolated mouse whole brain vesicles to recombinant Tat1-86 or METH displayed a concentration-dependent inhibition of the vesicular [3H]Dopamine uptake, in which a combination of Tat and METH induced a greater reduction of dopamine uptake compared to Tat or METH alone. In vivo, the maximal velocity (Vmax) of vesicular [3H]Dopamine uptake was decreased in inducible Tat transgenic (iTat-tg) mice harvested after treatment with either 21-day doxycycline (Dox) or 14-day METH (3 mg/kg, i.p., daily), whereas these mice treated with both Dox and METH displayed an additive reduction of the Vmax compared to either Tat or METH alone. Moreover, Dox-induced Tat expression increased METH-CPP in an exposure-dependent manner, with iTat-tg mice demonstrating a 2.3-fold potentiation of METH-CPP compared with Tat null control mice upon administration of Dox for 14 days. Furthermore, a 7-day administration of Dox reinstated extinguished METH-CPP. Collectively, these results suggest a synergistic effect of Tat protein and METH on inhibition of VMAT2-mediated DA transport, potentially contributing to potentiation of METH-CPP in iTat-tg mice.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| | - Abagail B Cirincione
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Matthew J Strauss
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Sarah E Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Danielle K Tribbitt
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Nadine Alshakhshir
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
4
|
Van Duyne R, Irollo E, Lin A, Johnson JA, Guillem AM, O’Brien EV, Merja L, Nash B, Jackson JG, Sarkar A, Klase ZA, Meucci O. Adult Human Brain Tissue Cultures to Study NeuroHIV. Cells 2024; 13:1127. [PMID: 38994979 PMCID: PMC11240386 DOI: 10.3390/cells13131127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
HIV-associated neurocognitive disorders (HAND) persist under antiretroviral therapy as a complex pathology that has been difficult to study in cellular and animal models. Therefore, we generated an ex vivo human brain slice model of HIV-1 infection from surgically resected adult brain tissue. Brain slice cultures processed for flow cytometry showed >90% viability of dissociated cells within the first three weeks in vitro, with parallel detection of astrocyte, myeloid, and neuronal populations. Neurons within brain slices showed stable dendritic spine density and mature spine morphologies in the first weeks in culture, and they generated detectable activity in multi-electrode arrays. We infected cultured brain slices using patient-matched CD4+ T-cells or monocyte-derived macrophages (MDMs) that were exposed to a GFP-expressing R5-tropic HIV-1 in vitro. Infected slice cultures expressed viral RNA and developed a spreading infection up to 9 days post-infection, which were significantly decreased by antiretrovirals. We also detected infected myeloid cells and astrocytes within slices and observed minimal effect on cellular viability over time. Overall, this human-centered model offers a promising resource to study the cellular mechanisms contributing to HAND (including antiretroviral toxicity, substance use, and aging), infection of resident brain cells, and new neuroprotective therapeutics.
Collapse
Affiliation(s)
- Rachel Van Duyne
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Angel Lin
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James A. Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Alain M. Guillem
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Erick V. O’Brien
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Laura Merja
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Joshua G. Jackson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Atom Sarkar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Neurosurgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Global Neurosciences Institute, LLC, Philadelphia, PA 19107, USA
| | - Zachary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
5
|
Proulx JM, Park IW, Borgmann K. HIV-1 and methamphetamine co-treatment in primary human astrocytes: TAARgeting ER/UPR dysfunction. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:139-154. [PMID: 39175523 PMCID: PMC11338011 DOI: 10.1515/nipt-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 08/24/2024]
Abstract
Objectives Human immunodeficiency virus 1 (HIV-1) can invade the central nervous system (CNS) early during infection and persist in the CNS for life despite effective antiretroviral treatment. Infection and activation of residential glial cells lead to low viral replication and chronic inflammation, which damage neurons contributing to a spectrum of HIV-associated neurocognitive disorders (HAND). Substance use, including methamphetamine (METH), can increase one's risk and severity of HAND. Here, we investigate HIV-1/METH co-treatment in a key neurosupportive glial cell, astrocytes. Specifically, mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) signaling pathways, such as calcium and the unfolded protein response (UPR), are key mechanisms underlying HAND pathology and arise as potential targets to combat astrocyte dysfunction. Methods Primary human astrocytes were transduced with a pseudotyped HIV-1 model and exposed to low-dose METH for seven days. We assessed changes in astrocyte HIV-1 infection, inflammation, mitochondrial antioxidant and dynamic protein expression, respiratory acitivity, mitochondrial calcium flux, and UPR/MAM mediator expression. We then tested a selective antagonist for METH-binding receptor, trace amine-associated receptor 1 (TAAR1) as a potetnial upstream regulator of METH-induced calcium flux and UPR/MAM mediator expression. Results Chronic METH exposure increased astrocyte HIV-1 infection. Moreover, HIV-1/METH co-treatment suppressed astrocyte antioxidant and metabolic capacity while increasing mitochondrial calcium load and protein expression of UPR messengers and MAM mediators. Notably, HIV-1 increases astrocyte TAAR1 expression, thus, could be a critical regulator of HIV-1/METH co-treatment in astrocytes. Indeed, selective antagonism of TAAR1 significantly inhibited cytosolic calcium flux and induction of UPR/MAM protein expression. Conclusion Altogether, our findings demonstrate HIV-1/METH-induced ER-mitochondrial dysfunction in astrocytes, whereas TAAR1 may be an upstream regulator for HIV-1/METH-mediated astrocyte dysfunction.
Collapse
Affiliation(s)
- Jessica M. Proulx
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics at University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- National Institute on Drug Abuse, North Bethesda, MD, 20852, USA
| |
Collapse
|
6
|
Levine AJ, Thadani C, Soontornniyomkij V, Lopez-Aranda MF, Mesa YG, Kitchen S, Rezek V, Silva A, Kolson DL. Behavioral and histological assessment of a novel treatment of neuroHIV in humanized mice. RESEARCH SQUARE 2023:rs.3.rs-3678629. [PMID: 38168407 PMCID: PMC10760308 DOI: 10.21203/rs.3.rs-3678629/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neurocognitive deficits are prevalent among people living with HIV, likely due to chronic inflammation and oxidative stress in the brain. To date, no pharmaceutical treatments beyond antiretroviral therapy (ARV) has been shown to reduce risk for, or severity of, HIV-associated neurocognitive disorder. Here we investigate a novel compound, CDDO-Me, with documented neuroprotective effects via activation of the nrf2 and inhibition of the NFkB pathways. Methods We conducted three studies to assess the efficacy of CDDO-Me alone or in combination with antiretroviral therapy in humanized mice infected with HIV; behavioral, histopathological, and immunohistochemical. Results CDDO-Me in combination with ARV rescued social interaction deficits; however, only ARV was associated with preserved functioning in other behaviors, and CDDO-Me may have attenuated those benefits. A modest neuroprotective effect was found for CDDO-Me when administered with ARV, via preservation of PSD-95 expression; however, ARV alone had a more consistent protective effect. No significant changes in antioxidant enzyme expression levels were observed in CDDO-Me-treated animals. Only ARV use seemed to affect some antioxidant levels, indicating that it is ARV rather than CDDO-Me that is the major factor providing neuroprotection in this animal model. Finally, immunohistochemical analysis found that several cellular markers in various brain regions varied due to ARV rather than CDDO-Me. Conclusion Limited benefit of CDDO-Me on behavior and neuroprotection were observed. Instead, ARV was shown to be the more beneficial treatment. These experiments support the future use of this chimeric mouse for behavioral experiments in neuroHIV research.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott Kitchen
- UCLA Humanized Mouse Core Laboratory, University of California
| | - Valerie Rezek
- UCLA Humanized Mouse Core Laboratory, University of California
| | | | | |
Collapse
|
7
|
Miranda A, Perry W, Umlauf A, Young JW, Morgan EE, Minassian A. A Pilot Assessment of the Effects of HIV and Methamphetamine Dependence on Socially Dysregulated Behavior in the Human Behavioral Pattern Monitor. AIDS Behav 2023; 27:2617-2628. [PMID: 36738342 PMCID: PMC9898694 DOI: 10.1007/s10461-023-03987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Deficits in social cognition are seen in both people living with HIV (PWH) and people with a history of methamphetamine (METH) dependence. Dually affected individuals may experience additive negative effects on social cognition due to these conditions. We evaluated social cognition in 4 diagnostic groups (HIV-/METH-, HIV-/METH+, HIV+/METH-, HIV+/METH+). First, we used traditional social-emotional functioning assessments, the Difficulties in Emotion Regulation Scale and the Faux Pas Task, to determine any significant effects of METH dependence and HIV on social cognition. Next, we quantified social cognition using the Human Behavioral Pattern Monitor by evaluating social behavior represented by interaction with novel objects. METH dependence significantly affected social-emotional functions and HIV significantly affected on object interactions, however no significant additive effects were observed using these methods. The nuanced relationship between HIV and METH dependence suggests that other factors (i.e., adaptive life skills) likely mediate social cognition-related behaviors.
Collapse
Affiliation(s)
- Alannah Miranda
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA.
| | - William Perry
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Anya Umlauf
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Erin E Morgan
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Center of Excellence on Stress and Mental Health, San Diego, CA, USA
| |
Collapse
|
8
|
Liu J, Xie J, Dutta D, Xiong H. HIV-1 envelope protein gp120 modulation of glutamate effects on cortical neuronal synapses: implications for HIV-1-associated neuropathogenesis. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2023; 15:75-87. [PMID: 37457651 PMCID: PMC10349318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 07/18/2023]
Abstract
Despite the introduction of combined antiretroviral therapy (cART) HIV-1 virus persists in the brain in a latent or restricted manner and viral proteins, such as gp120, continue to play a significant disease-inciting role. Gp120 is known to interact with N-methyl-D-aspartate (NMDA) receptors (NMDARs) resulting in neuronal injury. Glutamate is the main excitatory neurotransmitter in the brain and plays an important role in cognitive function and dysregulation of excitatory synaptic transmission impairs neurocognition. It is our hypothesis that gp120 may alter synaptic function via modulating glutamate function from a physiological molecule to a pathophysiological substance. To test this hypothesis, we studied the modulatory effects of gp120 and glutamate on NMDAR-mediated spontaneous excitatory postsynaptic current (sEPSCNMDAR) and dynamic dendritic spine changes in rat cortical neuronal cultures. Our results revealed that gp120 and glutamate each, at low concentrations, had no significant effects on sEPSCNMDAR and dendritic spines, but increased sEPSCNMDAR frequency, decreased numbers of dendritic spines when tested in combination. The observed effects were blocked by either a CXCR4 blocker or an NMDAR antagonist, indicating the involvements of chemokine receptor CXCR4 and NMDARs in gp120 modulation of glutamate effects. These results may imply a potential mechanism for HIV-1-associated neuropathogenesis in the cART era.
Collapse
Affiliation(s)
- Jianuo Liu
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE 68198-5880, USA
| | - Jinyan Xie
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE 68198-5880, USA
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Debashis Dutta
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE 68198-5880, USA
| | - Huangui Xiong
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE 68198-5880, USA
| |
Collapse
|
9
|
Basova LV, Lindsey A, McGovern A, Rosander A, Delorme-Walker V, ElShamy WM, Pendyala VV, Gaskill PJ, Ellis RJ, Cherner M, Iudicello JE, Marcondes MCG. MRP8/14 Is a Molecular Signature Triggered by Dopamine in HIV Latent Myeloid Targets That Increases HIV Transcription and Distinguishes HIV+ Methamphetamine Users with Detectable CSF Viral Load and Brain Pathology. Viruses 2023; 15:1363. [PMID: 37376663 PMCID: PMC10304659 DOI: 10.3390/v15061363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
There is a significant overlap between HIV infection and substance-use disorders. Dopamine (DA) is the most abundantly upregulated neurotransmitter in methamphetamine abuse, with receptors (DRD1-5) that are expressed by neurons as well as by a large diversity of cell types, including innate immune cells that are the targets of HIV infection, making them responsive to the hyperdopaminergic environment that is characteristic of stimulant drugs. Therefore, the presence of high levels of dopamine may affect the pathogenesis of HIV, particularly in the brain. The stimulation of HIV latently infected U1 promonocytes with DA significantly increased viral p24 levels in the supernatant at 24 h, suggesting effects on activation and replication. Using selective agonists to different DRDs, we found that DRD1 played a major role in activating viral transcription, followed by DRD4, which increased p24 with a slower kinetic rate compared to DRD1. Transcriptome and systems biology analyses led to the identification of a cluster of genes responsive to DA, where S100A8 and S100A9 were most significantly correlated with the early increase in p24 levels following DA stimulation. Conversely, DA increased the expression of these genes' transcripts at the protein level, MRP8 and MRP14, respectively, which form a complex also known as calprotectin. Interestingly, MRP8/14 was able to stimulate HIV transcription in latent U1 cells, and this occurred via binding of the complex to the receptor for an advanced glycosylation end-product (RAGE). Using selective agonists, both DRD1 and DRD4 increased MRP8/14 on the surface, in the cytoplasm, as well as secreted in the supernatants. On the other hand, while DRD1/5 did not affect the expression of RAGE, DRD4 stimulation caused its downregulation, offering a mechanism for the delayed effect via DRD4 on the p24 increase. To cross-validate MRP8/14 as a DA signature with a biomarker value, we tested its expression in HIV+ Meth users' postmortem brain specimens and peripheral cells. MRP8/14+ cells were more frequently identified in mesolimbic areas such as the basal ganglia of HIV+ Meth+ cases compared to HIV+ non-Meth users or to controls. Likewise, MRP8/14+ CD11b+ monocytes were more frequent in HIV+ Meth users, particularly in specimens from participants with a detectable viral load in the CSF. Overall, our results suggest that the MRP8 and MRP14 complex may serve as a signature to distinguish subjects using addictive substances in the context of HIV, and that this may play a role in aggravating HIV pathology by promoting viral replication in people with HIV who use Meth.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | | | | - Ashley Rosander
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
- Human Biology Program BISP, University of California San Diego, San Diego, CA 92037, USA
| | | | - Wael M. ElShamy
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | | | | - Ronald J. Ellis
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92103, USA
| | - Mariana Cherner
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92103, USA
| | - Jennifer E. Iudicello
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92103, USA
| | | |
Collapse
|
10
|
Datta G, Miller NM, Chen X. 17⍺-Estradiol Protects against HIV-1 Tat-Induced Endolysosome Dysfunction and Dendritic Impairments in Neurons. Cells 2023; 12:813. [PMID: 36899948 PMCID: PMC10000619 DOI: 10.3390/cells12050813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
HIV-1 Tat continues to play an important role in the development of HIV-associated neurocognitive disorders (HAND), which persist in 15-55% of people living with HIV even with virological control. In the brain, Tat is present on neurons, where Tat exerts direct neuronal damaging effects by, at least in part, disrupting endolysosome functions, a pathological feature present in HAND. In this study, we determined the protective effects of 17α-estradiol (17αE2), the predominant form of estrogen in the brain, against Tat-induced endolysosome dysfunction and dendritic impairment in primary cultured hippocampal neurons. We demonstrated that pre-treatment with 17αE2 protected against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Estrogen receptor alpha (ERα) knockdown impairs the ability of 17αE2 to protect against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Furthermore, over-expressing an ERα mutant that fails to localize on endolysosomes impairs 17αE2's protective effects against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Our findings demonstrate that 17αE2 protects against Tat-induced neuronal injury via a novel ERα-mediated and endolysosome-dependent pathway, and such a finding might lead to the development of novel adjunct therapeutics against HAND.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
11
|
Opitz A, Petasch MS, Klappauf R, Kirschgens J, Hinz J, Dittmann L, Dathe AS, Quednow BB, Beste C, Stock AK. Does chronic use of amphetamine-type stimulants impair interference control? - A meta-analysis. Neurosci Biobehav Rev 2023; 146:105020. [PMID: 36581170 DOI: 10.1016/j.neubiorev.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In substance use and addiction, inhibitory control is key to ignoring triggers, withstanding craving and maintaining abstinence. In amphetamine-type stimulant (ATS) users, most research focused on behavioral inhibition, but largely neglected the equally important subdomain of cognitive interference control. Given its crucial role in managing consumption, we investigated the relationship between interference control and chronic ATS use in adults. A database search (Pubmed & Web of Science) and relevant reviews were used to identify eligible studies. Effect sizes were estimated with random effects models. Subgroup, meta-regression, and sensitivity analyses explored heterogeneity in effect sizes. We identified 61 studies (53 datasets) assessing interference control in 1873 ATS users and 1905 controls. Findings revealed robust small effect sizes for ATS-related deficits in interference control, which were mainly seen in methamphetamine, as compared to MDMA users. The differential effects are likely due to tolerance-induced dopaminergic deficiencies (presumably most pronounced in methamphetamine users). Similarities between different ATS could be due to noradrenergic deficiencies; but elucidating their functional role in ATS users requires further/more research.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Miriam-Sophie Petasch
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Regine Klappauf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Josephine Kirschgens
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Julian Hinz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Lena Dittmann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Anthea S Dathe
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Boris B Quednow
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland; Biopsychology, Department of Psychology, School of Science, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.
| |
Collapse
|
12
|
Davis SE, Ferris MJ, Ananthan S, Augelli-Szafran CE, Zhu J. Novel Allosteric Modulator Southern Research Institute-32743 Reverses HIV-1 Transactivator of Transcription-Induced Increase in Dopamine Release in the Caudate Putamen of Inducible Transactivator of Transcription Transgenic Mice. J Pharmacol Exp Ther 2023; 384:306-314. [PMID: 36456195 PMCID: PMC9875314 DOI: 10.1124/jpet.122.001291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Development of neurocognitive disorder in human immunodeficiency virus (HIV)-infected patients has been linked to dysregulation of dopamine by the HIV-1 transactivator of transcription (Tat) protein, a negative allosteric modulator of dopamine transporter (DAT). Using fast scan cyclic voltammetry, the present study determined the effects of in vivo Tat expression on dopamine release in the caudate putamen of inducible Tat transgenic (iTat-tg) mice and the impact of a novel DAT allosteric modulator, Southern Research Institute (SRI)-32743, on the Tat effect. We found that 7- or 14-day doxycycline (Dox)-induced Tat expression in iTat-tg mice resulted in a 2-fold increase in phasic but not tonic stimulated baseline dopamine release relative to saline control mice. To determine whether the Tat-induced increase in dopamine release is mediated by DAT regulation, we examined the effect of an in vitro applied DAT inhibitor, nomifensine, on the dopamine release. Nomifensine (1 nM-10 µM) concentration-dependently enhanced phasic stimulated dopamine release in both saline- and Dox-treated iTat-tg mice, while the magnitude of the nomifensine-mediated dopamine release was unchanged between saline and Dox treatment groups. A single systemic administration of SRI-32743 prior to animal sacrifice reversed the increased dopamine release in the baseline of phasic dopamine release and nomifensine-augmented dopamine levels in Dox-treated iTat-tg mice, while SRI-32743 alone did not alter baseline of dopamine release. These findings suggest that Tat expression induced an increase in extracellular dopamine levels by not only inhibiting DAT-mediated dopamine transport but also stimulating synaptic dopamine release. Thus, DAT allosteric modulators may serve as a potential therapeutic intervention for HIV infection-dysregulated dopamine system observed in HIV-1 positive individuals. SIGNIFICANCE STATEMENT: HIV infection-induced dysregulation of the dopaminergic system has been implicated in the development of neurocognitive impairments observed in HIV positive patients. Understanding the mechanisms underlying HIV-1 Tat protein-induced alteration of extracellular dopamine levels will provide insights into the development of molecules that can attenuate Tat interaction with targets in the dopaminergic system. Here, we determined whether Tat alters dopamine release and how the novel DAT allosteric modulator, SRI-32743, impacts dopamine neurotransmission to attenuate Tat-induced effects on extracellular dopamine dynamics.
Collapse
Affiliation(s)
- Sarah E Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| | - Mark J Ferris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| | - Subramaniam Ananthan
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| | - Corinne E Augelli-Szafran
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (S.E.D., J.Z.); Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina (M.M.F.); and Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, Alabama (S.A., C.E.A.)
| |
Collapse
|
13
|
Paul RH, Cho K, Belden A, Carrico AW, Martin E, Bolzenius J, Luckett P, Cooley SA, Mannarino J, Gilman JM, Miano M, Ances BM. Cognitive Phenotypes of HIV Defined Using a Novel Data-driven Approach. J Neuroimmune Pharmacol 2022; 17:515-525. [PMID: 34981318 PMCID: PMC10364465 DOI: 10.1007/s11481-021-10045-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 01/13/2023]
Abstract
The current study applied data-driven methods to identify and explain novel cognitive phenotypes of HIV. Methods: 388 people with HIV (PWH) with an average age of 46 (15.8) and median plasma CD4+ T-cell count of 555 copies/mL (79% virally suppressed) underwent cognitive testing and 3T neuroimaging. Demographics, HIV disease variables, and health comorbidities were recorded within three months of cognitive testing/neuroimaging. Hierarchical clustering was employed to identify cognitive phenotypes followed by ensemble machine learning to delineate the features that determined membership in the cognitive phenotypes. Hierarchical clustering identified five cognitive phenotypes. Cluster 1 (n=97) was comprised of individuals with normative performance on all cognitive tests. The remaining clusters were defined by impairment on action fluency (Cluster 2; n=46); verbal learning/memory (Cluster 3; n=73); action fluency and verbal learning/memory (Cluster 4; n=56); and action fluency, verbal learning/memory, and tests of executive function (Cluster 5; n=114). HIV detectability was most common in Cluster 5. Machine learning revealed that polysubstance use, race, educational attainment, and volumes of the precuneus, cingulate, nucleus accumbens, and thalamus differentiated membership in the normal vs. impaired clusters. The determinants of persistent cognitive impairment among PWH receiving suppressive treatment are multifactorial nature. Viral replication after ART plays a role in the causal pathway, but psychosocial factors (race inequities, substance use) merit increased attention as critical determinants of cognitive impairment in the context of ART. Results underscore the need for comprehensive person-centered interventions that go beyond adherence to patient care to achieve optimal cognitive health among PWH.
Collapse
Affiliation(s)
- Robert H Paul
- Department of Psychological Sciences, University of Missouri Saint Louis, Missouri, Saint Louis, US. .,Missouri Institute of Mental Health, University of Missouri Saint Louis, Missouri, Saint Louis, US.
| | - Kyu Cho
- Missouri Institute of Mental Health, University of Missouri Saint Louis, Missouri, Saint Louis, US
| | - Andrew Belden
- Missouri Institute of Mental Health, University of Missouri Saint Louis, Missouri, Saint Louis, US
| | - Adam W Carrico
- Department of Public Health, University of Miami School of Medicine, Coral Gables, Florida, US
| | - Eileen Martin
- Department of Psychiatry, Rush University School of Medicine, Chicago, Illinois, US
| | - Jacob Bolzenius
- Missouri Institute of Mental Health, University of Missouri Saint Louis, Missouri, Saint Louis, US
| | - Patrick Luckett
- Department of Neurology, Washington University, Saint Louis, Missouri, US
| | - Sarah A Cooley
- Department of Neurology, Washington University, Saint Louis, Missouri, US
| | - Julie Mannarino
- Missouri Institute of Mental Health, University of Missouri Saint Louis, Missouri, Saint Louis, US
| | - Jodi M Gilman
- Center for Addiction Medicine, Harvard Medical School/Massachusetts General Hospital, Boston, Massachusetts, US
| | - Mariah Miano
- Department of Communication Sciences and Disorders, Northern Arizona University, Flagstaff, Arizona, US
| | - Beau M Ances
- Department of Neurology, Washington University, Saint Louis, Missouri, US
| |
Collapse
|
14
|
Chean KT, Aalinkeel R, Abbasi S, Sharikova AV, Schwartz SA, Khmaladze A, Mahajan SD. Raman spectroscopy based molecular signatures of methamphetamine and HIV induced mitochondrial dysfunction. Biochem Biophys Res Commun 2022; 621:116-121. [PMID: 35820281 DOI: 10.1016/j.bbrc.2022.06.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
METH and HIV Tat treatment results in increased oxidative stress which affects cellular metabolism and causes DNA damage in the treated microglia. Both, METH ± HIV Tat impair mitochondrial respiration, leading to dysfunction in bioenergetics and increased ROS in microglial cells. Our data indicate that mitochondrial dysfunction may be key to the METH and/or HIV Tat-induced neuropathology. METH and/or HIV Tat induced changes in the protein, lipid and nucleotide concentration in microglial cells were measured by Raman Spectroscopy, and we speculate that these fundamental molecular-cellular changes in microglial cells contribute to the neuropathology that is associated with METH abuse in HIV patients.
Collapse
Affiliation(s)
- Khoo Ting Chean
- Department of Physics, University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Ravikumar Aalinkeel
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, Buffalo, NY, 14203, USA
| | - Serfraz Abbasi
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, Buffalo, NY, 14203, USA
| | - Anna V Sharikova
- Department of Physics, University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Stanley A Schwartz
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, Buffalo, NY, 14203, USA
| | - Alexander Khmaladze
- Department of Physics, University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
15
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
16
|
Davis S, Zhu J. Substance abuse and neurotransmission. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:403-441. [PMID: 35341573 PMCID: PMC9759822 DOI: 10.1016/bs.apha.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The number of people who suffer from a substance abuse disorder has continued to rise over the last decade; particularly, the number of drug-related overdose deaths has sharply increased during the COVID-19 pandemic. Converging lines of clinical observations, supported by imaging and neuropsychological performance testing, have demonstrated that substance abuse-induced dysregulation of neurotransmissions in the brain is critical for development and expression of the addictive properties of abused substances. Recent scientific advances have allowed for better understanding of the neurobiological processes that mediates drugs of abuse and addiction. This chapter presents the past classic concepts and the recent advances in our knowledge about how cocaine, amphetamines, opioids, alcohol, and nicotine alter multiple neurotransmitter systems, which contribute to the behaviors associated with each drug. Additionally, we discuss the interactive effects of HIV-1 or COVID-19 and substance abuse on neurotransmission and neurobiological pathways. Finally, we introduce therapeutic strategies for development of pharmacotherapies for substance abuse disorders.
Collapse
Affiliation(s)
- Sarah Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
17
|
Relationship of the balloon analog risk task to neurocognitive impairment differs by HIV serostatus and history of major depressive disorder. J Neurovirol 2022; 28:248-264. [PMID: 34981438 PMCID: PMC9187559 DOI: 10.1007/s13365-021-01046-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 12/27/2022]
Abstract
HIV and major depressive disorder (MDD) commonly co-occur and are both linked to greater risk-taking behavior, possibly due to neurocognitive impairment (NCI). The present study examined the concordance of the Balloon Analog Risk Task (BART), a gold standard measure of risk-taking propensity, with NCI and real-world sexual risk behaviors in PWH with comorbid MDD. Participants included 259 adults, stratified by HIV serostatus (HIV + /HIV −) and lifetime MDD (MDD + /MDD −), who completed neuropsychological testing, the BART, and sexual risk behavior questionnaires. Logistic regression, stratified by HIV serostatus, examined joint effects of MDD and BART (linear and quadratic) on NCI. Follow-up linear regressions examined sexual risk behavior and neurocognitive domain T-scores as correlates of the BART. NCI prevalence was lowest in HIV − /MDD − , but BART scores did not differ by HIV/MDD status. In the HIV + group, BART performance predicted NCI such that high and low BART scores related to greater odds of NCI, but only in dual-risk HIV + /MDD + individuals. HIV + /MDD + individuals with both low and high BART scores exhibited poorer learning and recall, whereas processing speed and executive function were only poor in low BART risk-taking HIV + /MDD + . Higher BART scores linearly related to higher sexual risk behaviors only in MDD + individuals, independent of HIV serostatus. Low and high risk-taking on the BART may reflect discrete neurocognitive profiles in HIV + /MDD + individuals, with differential implications for real-world sexual risk behavior. HIV and comorbid MDD may disturb corticostriatal circuits responsible for integrating affective and neurocognitive components of decision-making, thereby contributing to risk-averse and risk-taking phenotypes.
Collapse
|
18
|
Hussain MA, Sun-Suslow N, Montoya JL, Iudicello JE, Heaton RK, Grant I, Morgan EE. Loneliness, Risky Beliefs and Intentions about Practicing Safer Sex among Methamphetamine Dependent Individuals. Subst Use Misuse 2021; 57:295-307. [PMID: 34889707 PMCID: PMC8922988 DOI: 10.1080/10826084.2021.2003404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Methamphetamine use is a known predictor of riskier sexual behaviors, which can have important public health implications (e.g., HIV-transmission risk). Loneliness also is associated with riskier sexual behaviors, though the relationship between loneliness and beliefs and/or intentions to practice safer sex has not been examined among people dependent on methamphetamine. MATERIALS AND METHODS Individuals who met DSM-IV criteria for lifetime methamphetamine dependence and current (≤ 18-months) methamphetamine abuse or dependence (METH+ n = 56) were compared to those without severity and recency of methamphetamine use (METH- n = 59). These groups did not differ on social network size or proportion of people with HIV (∼58% HIV+). Participants completed the NIH Toolbox Loneliness Scale and the Sexual Risks Scale's "Norms" and "Intentions" subscales. RESULTS METH+ individuals were significantly lonelier than METH- controls (t(113) = 2.45, p = .02). Methamphetamine dependence remained significantly associated with greater loneliness, after controlling for HIV status and other relevant covariates (e.g., neurocognitive impairment, history of mood disorder, social network size; F = 3.70, Adjusted R2 = 0.18, p = .0009). Loneliness, above and beyond the aforementioned covariates, was significantly associated with riskier beliefs and intentions to practice safer sex among METH+, but not METH-, individuals (β = 2.92, p = .02). CONCLUSIONS Loneliness is prevalent among individuals dependent on methamphetamine, and is uniquely associated with riskier beliefs and intentions regarding practicing safer sex. Findings may aid in identifying individuals at-risk of engaging in riskier sexual behaviors and guide risk prevention strategies.
Collapse
Affiliation(s)
- Mariam A. Hussain
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, California, USA
| | - Ni Sun-Suslow
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, USA
| | - Jessica L. Montoya
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, USA
| | - Jennifer E. Iudicello
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, USA
| | - Robert K. Heaton
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, USA
| | - Igor Grant
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, USA
| | - Erin E. Morgan
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, USA
| | - TMARC Group
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
19
|
Mathur K, Blumenthal J, Horton LE, Wagner GA, Martin TCS, Lo M, Gianella S, Vilke GM, Coyne CJ, Little SJ, Hoenigl M. HIV screening in emergency departments: Linkage works but what about retention? Acad Emerg Med 2021; 28:913-917. [PMID: 33314418 PMCID: PMC8196073 DOI: 10.1111/acem.14194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Kushagra Mathur
- University of California San Diego School of Medicine, San Diego, California, USA
| | - Jill Blumenthal
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California at San Diego, San Diego, California, USA
| | - Lucy E. Horton
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California at San Diego, San Diego, California, USA
| | - Gabriel A. Wagner
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California at San Diego, San Diego, California, USA
| | - Thomas C. S. Martin
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California at San Diego, San Diego, California, USA
| | - Megan Lo
- University of California San Diego School of Medicine, San Diego, California, USA
| | - Sara Gianella
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California at San Diego, San Diego, California, USA
| | - Gary M. Vilke
- Department of Emergency Medicine, University of California at San Diego, San Diego, California, USA
| | - Christopher J. Coyne
- Department of Emergency Medicine, University of California at San Diego, San Diego, California, USA
| | - Susan J. Little
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California at San Diego, San Diego, California, USA
| | - Martin Hoenigl
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California at San Diego, San Diego, California, USA
| |
Collapse
|
20
|
Doulias PT, Nakamura T, Scott H, McKercher SR, Sultan A, Deal A, Albertolle M, Ischiropoulos H, Lipton SA. TCA cycle metabolic compromise due to an aberrant S-nitrosoproteome in HIV-associated neurocognitive disorder with methamphetamine use. J Neurovirol 2021; 27:367-378. [PMID: 33876414 PMCID: PMC8477648 DOI: 10.1007/s13365-021-00970-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
In the brain, both HIV-1 and methamphetamine (meth) use result in increases in oxidative and nitrosative stress. This redox stress is thought to contribute to the pathogenesis of HIV-associated neurocognitive disorder (HAND) and further worsening cognitive activity in the setting of drug abuse. One consequence of such redox stress is aberrant protein S-nitrosylation, derived from nitric oxide, which may disrupt normal protein activity. Here, we report an improved, mass spectrometry-based technique to assess S-nitrosylated protein in human postmortem brains using selective enrichment of S-nitrosocysteine residues with an organomercury resin. The data show increasing S-nitrosylation of tricarboxylic acid (TCA) enzymes in the setting of HAND and HAND/meth use compared with HIV+ control brains without CNS pathology. The consequence is systematic inhibition of multiple TCA cycle enzymes, resulting in energy collapse that can contribute to the neuronal and synaptic damage observed in HAND and meth use.
Collapse
Affiliation(s)
- Paschalis-Thomas Doulias
- Children's Hospital of Philadelphia Research Institute and Departments of Pediatrics and Pharmacology, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, San Diego, CA, 92037, USA
| | - Henry Scott
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, San Diego, CA, 92037, USA
| | - Scott R McKercher
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, San Diego, CA, 92037, USA
| | - Abdullah Sultan
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, San Diego, CA, 92037, USA
| | - Amanda Deal
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, San Diego, CA, 92037, USA
| | - Matthew Albertolle
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, San Diego, CA, 92037, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute and Departments of Pediatrics and Pharmacology, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stuart A Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, San Diego, CA, 92037, USA.
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
21
|
Yuan NY, Kaul M. Beneficial and Adverse Effects of cART Affect Neurocognitive Function in HIV-1 Infection: Balancing Viral Suppression against Neuronal Stress and Injury. J Neuroimmune Pharmacol 2021; 16:90-112. [PMID: 31385157 PMCID: PMC7233291 DOI: 10.1007/s11481-019-09868-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) persist despite the successful introduction of combination antiretroviral therapy (cART). While insufficient concentration of certain antiretrovirals (ARV) may lead to incomplete viral suppression in the brain, many ARVs are found to cause neuropsychiatric adverse effects, indicating their penetration into the central nervous system (CNS). Several lines of evidence suggest shared critical roles of oxidative and endoplasmic reticulum stress, compromised neuronal energy homeostasis, and autophagy in the promotion of neuronal dysfunction associated with both HIV-1 infection and long-term cART or ARV use. As the lifespans of HIV patients are increased, unique challenges have surfaced. Longer lives convey prolonged exposure of the CNS to viral toxins, neurotoxic ARVs, polypharmacy with prescribed or illicit drug use, and age-related diseases. All of these factors can contribute to increased risks for the development of neuropsychiatric conditions and cognitive impairment, which can significantly impact patient well-being, cART adherence, and overall health outcome. Strategies to increase the penetration of cART into the brain to lower viral toxicity may detrimentally increase ARV neurotoxicity and neuropsychiatric adverse effects. As clinicians attempt to control peripheral viremia in an aging population of HIV-infected patients, they must navigate an increasingly complex myriad of comorbidities, pharmacogenetics, drug-drug interactions, and psychiatric and cognitive dysfunction. Here we review in comparison to the neuropathological effects of HIV-1 the available information on neuropsychiatric adverse effects and neurotoxicity of clinically used ARV and cART. It appears altogether that future cART aiming at controlling HIV-1 in the CNS and preventing HAND will require an intricate balancing act of suppressing viral replication while minimizing neurotoxicity, impairment of neurocognition, and neuropsychiatric adverse effects. Graphical abstract Schematic summary of the effects exerted on the brain and neurocognitive function by HIV-1 infection, comorbidities, psychostimulatory, illicit drugs, therapeutic drugs, such as antiretrovirals, the resulting polypharmacy and aging, as well as the potential interactions of all these factors.
Collapse
Affiliation(s)
- Nina Y Yuan
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, 900 University Ave, Riverside, CA, 92521, USA.
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Disease Center, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
22
|
Boerwinkle AH, Meeker KL, Luckett P, Ances BM. Neuroimaging the Neuropathogenesis of HIV. Curr HIV/AIDS Rep 2021; 18:221-228. [PMID: 33630240 DOI: 10.1007/s11904-021-00548-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This review highlights neuroimaging studies of HIV conducted over the last 2 years and discusses how relevant findings further our knowledge of the neuropathology of HIV. Three major avenues of neuroimaging research are covered with a particular emphasis on inflammation, aging, and substance use in persons living with HIV (PLWH). RECENT FINDINGS Neuroimaging has been a critical tool for understanding the neuropathological underpinnings observed in HIV. Recent studies comparing levels of neuroinflammation in PLWH and HIV-negative controls show inconsistent results but report an association between elevated neuroinflammation and poorer cognition in PLWH. Other recent neuroimaging studies suggest that older PLWH are at increased risk for brain and cognitive compromise compared to their younger counterparts. Finally, recent findings also suggest that the effects of HIV may be exacerbated by alcohol and drug abuse. These neuroimaging studies provide insight into the structural, functional, and molecular changes occurring in the brain due to HIV. HIV triggers a strong neuroimmune response and may lead to a cascade of events including increased chronic inflammation and cognitive decline. These outcomes are further exacerbated by age and age-related comorbidities, as well as lifestyle factors such as drug use/abuse.
Collapse
Affiliation(s)
- Anna H Boerwinkle
- Department of Neurology, Washington University in St. Louis, School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Karin L Meeker
- Department of Neurology, Washington University in St. Louis, School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Patrick Luckett
- Department of Neurology, Washington University in St. Louis, School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
| |
Collapse
|
23
|
Li J, Huang J, He Y, Wang W, Leung CK, Zhang D, Zhang R, Wang S, Li Y, Liu L, Zeng X, Li Z. The protective effect of gastrodin against the synergistic effect of HIV-Tat protein and METH on the blood-brain barrier via glucose transporter 1 and glucose transporter 3. Toxicol Res (Camb) 2021; 10:91-101. [PMID: 33613977 DOI: 10.1093/toxres/tfaa102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Many individuals infected with human immunodeficiency virus (HIV) are also afflicted with HIV-associated neurocognitive disorders (HANDs). Methamphetamine (METH) abuse puts HIV-1 patients at risk for HANDs because METH and HIV-1 proteins, such as trans-activator of transcription (Tat), can synergistically damage the blood-brain barrier (BBB). However, the underlying mechanism of METH- and HIV-Tat-induced BBB damage remains unclear. In this study, male adult tree shrews and human brain capillary endothelial cells were treated with HIV-Tat, METH, and gastrodin. We used western blotting to examine the expressions of glucose transporters (GLUT1 and GLUT3), tight junctions, and junctional adhesion molecule A (JAMA) and to evaluate the damage and detect Evans blue (EB) and fluorescein sodium in the brain to assess BBB permeability to study the effect of METH and the HIV-1 Tat protein on BBB function in vitro and in vivo. The results showed that the group treated with Tat and METH experienced a significant change at the ultrastructural level of the tree shrew cerebral cortex, decreased protein levels of occluding, claudin-5, Zonula occludens 1 (ZO1), and JAMA in vitro and in vivo, and increased levels of EB and fluorescein sodium in the tree shrew cerebral cortex. The protein levels of GLUT1 and GLUT3 was downregulated in patients with Tat- and METH-induced BBB damage. Pretreatment with gastrodin significantly increased the levels of EB and fluorescein sodium in the tree shrew cerebral cortex and increased the expressions of occluding, ZO1, JAMA, and GLUT1 and GLUT. These results indicate that gastrodin may offer a potential therapeutic option for patients with HANDs.
Collapse
Affiliation(s)
- Juan Li
- School of Basic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong, Kunming, Yunnan 650500, China.,Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Chinese Academy of Medical Science and Peking Union Medical College, 935 Jiaoling road,Yunnan 650531, China
| | - Jian Huang
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong, Kunming, Yunnan 650500, China.,School of Forensic Medicine, Southern Medical University, 1838 Guangzhou Dadao Bei, Baiyun District, Guangzhou 510515, Guangdong, China
| | - Yongwang He
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong, Kunming, Yunnan 650500, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, Chinese Academy of Medical Science and Peking Union Medical College, 935 Jiaoling road,Yunnan 650531, China
| | - Chi-Kwan Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,CUHK-SDU Joint Laboratory of Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dongxian Zhang
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong, Kunming, Yunnan 650500, China
| | - Ruilin Zhang
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong, Kunming, Yunnan 650500, China
| | - Shangwen Wang
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong, Kunming, Yunnan 650500, China
| | - Yuanyuan Li
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong, Kunming, Yunnan 650500, China
| | - Liu Liu
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong, Kunming, Yunnan 650500, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong, Kunming, Yunnan 650500, China
| | - Zhen Li
- School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong, Kunming, Yunnan 650500, China
| |
Collapse
|
24
|
Ohene-Nyako M, Persons AL, Napier TC. Hippocampal blood-brain barrier of methamphetamine self-administering HIV-1 transgenic rats. Eur J Neurosci 2021; 53:416-429. [PMID: 32725911 PMCID: PMC9949894 DOI: 10.1111/ejn.14925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Combined antiretroviral therapy for HIV infection reduces plasma viral load and prolongs life. However, the brain is a viral reservoir, and pathologies such as cognitive decline and blood-brain barrier (BBB) disruption persist. Methamphetamine abuse is prevalent among HIV-infected individuals. Methamphetamine and HIV toxic proteins can disrupt the BBB, but it is unclear if there exists a common pathway by which HIV proteins and methamphetamine induce BBB damage. Also unknown are the BBB effects imposed by chronic exposure to HIV proteins in the comorbid context of chronic methamphetamine abuse. To evaluate these scenarios, we trained HIV-1 transgenic (Tg) and non-Tg rats to self-administer methamphetamine using a 21-day paradigm that produced an equivalency dose range at the low end of the amounts self-titrated by humans. Markers of BBB integrity were measured for the hippocampus, a brain region involved in cognitive function. Outcomes revealed that tight junction proteins, claudin-5 and occludin, were reduced in Tg rats independent of methamphetamine, and this co-occurred with increased levels of lipopolysaccharide, albumin (indicating barrier breakdown) and matrix metalloproteinase-9 (MMP-9; indicating barrier matrix disruption); reductions in GFAP (indicating astrocytic dysfunction); and microglial activation (indicating inflammation). Evaluations of markers for two signaling pathways that regulate MMP-9 transcription, NF-κB and ERK/∆FosB revealed an overall genotype effect for NF-κB. Methamphetamine did not alter measurements from Tg rats, but in non-Tg rats, methamphetamine reduced occludin and GFAP, and increased MMP-9 and NF-κB. Study outcomes suggest that BBB dysregulation resulting from chronic exposure to HIV-1 proteins or methamphetamine both involve NF-κB/MMP-9.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Department of Pharmacology, Rush University, Chicago, IL, USA,Department of Physician Assistant Studies, Rush University, Chicago, IL, USA
| | - Amanda L. Persons
- Department of Physician Assistant Studies, Rush University, Chicago, IL, USA,Department of Psychiatry and Behavioral Sciences, Rush University, Chicago, IL, USA,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - T. Celeste Napier
- Department of Pharmacology, Rush University, Chicago, IL, USA,Department of Physician Assistant Studies, Rush University, Chicago, IL, USA,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| |
Collapse
|
25
|
Saloner R, Cherner M, Grelotti DJ, Paolillo EW, Moore DJ, Heaton RK, Letendre SL, Kumar A, Grant I, Ellis RJ. Lower CSF homovanillic acid relates to higher burden of neuroinflammation and depression in people with HIV disease. Brain Behav Immun 2020; 90:353-363. [PMID: 32966871 PMCID: PMC7544671 DOI: 10.1016/j.bbi.2020.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HIV-related neuroinflammation has been proposed as a catalyst for dopaminergic dysregulation in mesocortical pathways, which may contribute to the pathogenesis of depression. Abnormalities in dopaminergic neurotransmission and depression are common in people with HIV (PWH), however the link between dopamine (DA) and depression in PWH is poorly characterized. This study investigated CSF dopaminergic biomarkers, specifically DA and its metabolite, homovanillic acid (HVA), and examined their relationship with depressive symptoms and CSF neuroinflammatory markers in PWH and HIV-seronegative (HIV-) individuals. METHODS Participants were 102 HIV- individuals and 123 PWH (mean age = 42) who underwent neuropsychiatric evaluations and lumbar puncture. Current depression severity was classified using the Beck Depression Inventory-II (BDI-II). CSF was assayed for DA and HVA using high performance liquid chromatography and neuroinflammatory markers using immunoassays. Linear regressions modelled BDI-II scores as a function of HIV, dopaminergic biomarker z-scores, and their interaction, controlling for psychosocial factors. Correlational analyses examined dopaminergic and neuroinflammatory relationships. RESULTS PWH had significantly higher BDI-II scores than HIV- participants. DA and HVA were not associated with HIV status but both significantly moderated the effect of HIV on BDI-II scores, such that PWH exhibited higher depressive symptoms than HIV- participants only at lower concentrations of HVA (z ≤ 0.06) and DA (z ≤ 0.11). In PWH only, lower HVA significantly correlated with higher BDI-II scores and higher neuroinflammation, including higher MCP-1 and IP-10. CONCLUSIONS Results suggest that the pathophysiology of depression in PWH differs from that in HIV- individuals. Specifically, lower central dopaminergic activity was selectively associated with greater depressive symptoms and neuroinflammation in PWH. With the rise in consideration of DA agonists for the treatment of depression, these results suggest that PWH may show a greater response to these agents than their HIV- peers.
Collapse
Affiliation(s)
- Rowan Saloner
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA.
| | - Mariana Cherner
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - David J Grelotti
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Emily W Paolillo
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - David J Moore
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Robert K Heaton
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Adarsh Kumar
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Igor Grant
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, CA, USA; Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
26
|
Salahuddin M, Manzar MD, Hassen HY, Unissa A, Abdul Hameed U, Spence DW, Pandi-Perumal SR. Prevalence and Predictors of Neurocognitive Impairment in Ethiopian Population Living with HIV. HIV AIDS (Auckl) 2020; 12:559-572. [PMID: 33116918 PMCID: PMC7568595 DOI: 10.2147/hiv.s260831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/22/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Modern antiretroviral therapy has extended the life expectancies of people living with HIV; however, the prevention and treatment of their associated neurocognitive decline have remained a challenge. Consequently, it is desirable to investigate the prevalence and predictors of neurocognitive impairment to help in targeted screening and disease prevention. MATERIALS AND METHODS Two hundred and forty-four people living with HIV were interviewed in a study using a cross-sectional design and the International HIV Dementia Scale (IHDS). Additionally, the sociodemographic, clinical, and psychosocial characteristics of the patients were recorded. Chi-square and binary logistic regression analysis were used to determine the level of significance among the independent risk factors and probable neurocognitive impairment. RESULTS The point prevalence of neurocognitive impairment was found to be 39.3%. Participants' characteristics of being older than 40 years (AOR= 2.81 (95% CI; 1.11-7.15)), having a history of recreational drug use (AOR= 13.67 (95% CI; 6.42-29.13)), and being non-compliant with prescribed medications (AOR= 2.99 (95% CI; 1.01-8.87)) were independent risk factors for neurocognitive impairment. CONCLUSION The identification of predictors, in the Ethiopian people living with HIV, may help in the targeted screening of vulnerable groups during cART follow-up visits. This may greatly help in strategizing and implementation of the prevention program, more so, because (i) HIV-associated neurocognitive impairment is an asymptomatic condition for considerable durations, and (ii) clinical trials on neurocognitive impairment therapies have been unsuccessful.
Collapse
Affiliation(s)
- Mohammed Salahuddin
- Department of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University (Mizan Campus), Mizan, Ethiopia
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Md Dilshad Manzar
- Department of Nursing, College of Applied Medical Sciences, Majmaah University, Al Majmaah11952, Saudi Arabia
| | - Hamid Yimam Hassen
- Department of Public Health, College of Health Sciences, Mizan Tepi University, (Mizan Campus), Mizan, Ethiopia
- Department of Primary and Interdisciplinary Care, College of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Aleem Unissa
- Malla Reddy College of Pharmacy, Hyderabad, Telangana, India
| | - Unaise Abdul Hameed
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | | | | |
Collapse
|
27
|
Pocuca N, Young JW, MacQueen DA, Letendre S, Heaton RK, Geyer MA, Perry W, Grant I, Minassian A. Sustained attention and vigilance deficits associated with HIV and a history of methamphetamine dependence. Drug Alcohol Depend 2020; 215:108245. [PMID: 32871507 PMCID: PMC7811354 DOI: 10.1016/j.drugalcdep.2020.108245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/31/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-associated neurocognitive disorders persist in the era of antiretroviral therapy. One factor that is elevated among persons with HIV (PWH) and independently associated with neurocognitive impairment is methamphetamine dependence (METH). Such dependence may further increase cognitive impairment among PWH, by delaying HIV diagnosis (and thus, antiretroviral therapy initiation), which has been posited to account for persistent cognitive impairment among PWH, despite subsequent treatment-related viral load suppression (VLS; <50 copies of the virus per milliliter in plasma or cerebrospinal fluid). This study examined the main and interactive (additive versus synergistic) effects of HIV and history of METH on the sustained attention and vigilance cognitive domain, while controlling for VLS. METHODS Participants included 205 (median age = 44 years; 77% males; HIV-/METH- n = 67; HIV+/METH - n = 49; HIV-/METH+ n = 36; HIV+/METH+ n = 53) individuals enrolled in the Translational Methamphetamine AIDS Research Center, who completed Conners' and the 5-Choice continuous performance tests (CPTs). RESULTS METH participants exhibited deficits in sustained attention and vigilance; however, these effects were not significant after excluding participants who had a positive urine toxicology screen for methamphetamine. Controlling for VLS, PWH did not have worse sustained attention and vigilance, but consistently displayed slower reaction times across blocks, relative to HIV- participants. There was no HIV x METH interaction on sustained attention and vigilance. CONCLUSIONS Recent methamphetamine use among METH people and detectable viral loads are detrimental to sustained attention and vigilance. These findings highlight the need for prompt diagnosis of HIV and initiation of antiretroviral therapy, and METH use interventions.
Collapse
Affiliation(s)
- Nina Pocuca
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States.
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States; Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, United States
| | - David A MacQueen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States; Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, United States
| | - Scott Letendre
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States
| | - Robert K Heaton
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States; Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, United States
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States
| | - Igor Grant
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, United States; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, United States
| |
Collapse
|
28
|
Saloner R, Cherner M, Iudicello JE, Heaton RK, Letendre SL, Ellis RJ. Cerebrospinal Fluid Norepinephrine and Neurocognition in HIV and Methamphetamine Dependence. J Acquir Immune Defic Syndr 2020; 85:e12-e22. [PMID: 32558666 PMCID: PMC7492443 DOI: 10.1097/qai.0000000000002422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE HIV disease and methamphetamine (METH) dependence share overlapping mechanisms of neurotoxicity that preferentially compromise monoamine-rich frontostriatal circuitry. However, norepinephrine (NE) function is poorly understood in HIV and METH dependence. We evaluated associations between cerebrospinal fluid (CSF) NE and HIV, METH dependence, and neurocognition. METHODS Participants included 125 adults, stratified by HIV serostatus (HIV+/HIV-) and recent METH dependence (METH+/METH-), who underwent comprehensive neurocognitive testing and lumbar puncture. CSF NE was assayed using high-performance liquid chromatography. Multivariable regression modelled NE as a function of HIV, METH, and their interaction, adjusting for demographic and clinical factors. Pearson correlations examined relationships between NE and demographically-adjusted neurocognitive domain scores. RESULTS HIV significantly interacted with METH (P < 0.001) such that compared with HIV-/METH-, CSF NE was markedly elevated in the single risk-groups (HIV+/METH-: d = 0.96; HIV-/METH+: d = 0.79) and modestly elevated in the dual-risk group (HIV+/METH+: d = 0.48). This interaction remained significant after adjustment for lifetime depression, antidepressant use, and race/ethnicity. In the full sample, higher NE levels significantly correlated with worse global function (r = -0.19), learning (r = -0.23), and delayed recall (r = -0.18). Similar relationships between higher NE and worse neurocognition were detected in the METH- groups (ie, HIV-/METH- and HIV+/METH-) and in the virally-suppressed persons HIV+ subgroup, but not in the METH+ groups (ie, HIV-/METH+, HIV+/METH+). DISCUSSION HIV and METH independently, but not additively, relate to noradrenergic excess in the central nervous system, and perturbations to noradrenergic function may represent a pathophysiological mechanism of HIV-related neurocognitive dysfunction. Consistent with prior reports that noradrenergic excess compromises hippocampal and prefrontal function, higher NE related to worse neurocognition, even among successfully treated persons with HIV. Pharmacological and psychosocial interventions that stabilize NE function may improve neurocognition in persons with HIV.
Collapse
Affiliation(s)
- Rowan Saloner
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California
| | - Mariana Cherner
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California
| | - Jennifer E. Iudicello
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California
| | - Robert K. Heaton
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California
| | - Scott L. Letendre
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California
| | - Ronald J. Ellis
- Department of Psychiatry, University of California, San Diego, HIV Neurobehavioral Research Program, San Diego, California
- Department of Neurosciences, University of California, San Diego
| |
Collapse
|
29
|
Human Immunodeficiency Virus Type 1 and Methamphetamine-Mediated Mitochondrial Damage and Neuronal Degeneration in Human Neurons. J Virol 2020; 94:JVI.00924-20. [PMID: 32796068 DOI: 10.1128/jvi.00924-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine, a potent psychostimulant, is a highly addictive drug commonly used by persons living with HIV (PLWH), and its use can result in cognitive impairment and memory deficits long after its use is discontinued. Although the mechanism(s) involved with persistent neurological deficits is not fully known, mitochondrial dysfunction is a key component in methamphetamine neuropathology. Specific mitochondrial autophagy (mitophagy) and mitochondrial fusion and fission are protective quality control mechanisms that can be dysregulated in HIV infection, and the use of methamphetamine can further negatively affect these protective cellular mechanisms. Here, we observed that treatment of human primary neurons (HPNs) with methamphetamine and HIV gp120 and Tat increase dynamin-related protein 1 (DRP1)-dependent mitochondrial fragmentation and neuronal degeneration. Methamphetamine and HIV proteins increased microtubule-associated protein 1 light chain 3 beta-II (LC3B-II) lipidation and induced sequestosome 1 (SQSTM1, p62) translocation to damaged mitochondria. Additionally, the combination inhibited autophagic flux, increased reactive oxygen species (ROS) production and mitochondrial damage, and reduced microtubule-associated protein 2 (MAP2) dendrites in human neurons. N-Acetylcysteine (NAC), a strong antioxidant and ROS scavenger, abrogated DRP1-dependent mitochondrial fragmentation and neurite degeneration. Thus, we show that methamphetamine combined with HIV proteins inhibits mitophagy and induces neuronal damage, and NAC reverses these deleterious effects on mitochondrial function.IMPORTANCE Human and animal studies show that HIV infection, combined with the long-term use of psychostimulants, increases neuronal stress and the occurrence of HIV-associated neurocognitive disorders (HAND). On the cellular level, mitochondrial function is critical for neuronal health. In this study, we show that in human primary neurons, the combination of HIV proteins and methamphetamine increases oxidative stress, DRP1-mediated mitochondrial fragmentation, and neuronal injury manifested by a reduction in neuronal network and connectivity. The use of NAC, a potent antioxidant, reversed the neurotoxic effects of HIV and methamphetamine, suggesting a novel approach to ameliorate the effects of HIV- and methamphetamine-associated cognitive deficits.
Collapse
|
30
|
Saloner R, Fields JA, Marcondes MCG, Iudicello JE, von Känel S, Cherner M, Letendre SL, Kaul M, Grant I. Methamphetamine and Cannabis: A Tale of Two Drugs and their Effects on HIV, Brain, and Behavior. J Neuroimmune Pharmacol 2020; 15:743-764. [PMID: 32929575 DOI: 10.1007/s11481-020-09957-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
HIV infection and drug use intersect epidemiologically, and their combination can result in complex effects on brain and behavior. The extent to which drugs affect the health of persons with HIV (PWH) depends on many factors including drug characteristics, use patterns, stage of HIV disease and its treatment, comorbid factors, and age. To consider the range of drug effects, we have selected two that are in common use by PWH: methamphetamine and cannabis. We compare the effects of methamphetamine with those of cannabis, to illustrate how substances may potentiate, worsen, or even buffer the effects of HIV on the CNS. Data from human, animal, and ex vivo studies provide insights into how these drugs have differing effects on the persistent inflammatory state that characterizes HIV infection, including effects on viral replication, immune activation, mitochondrial function, gut permeability, blood brain barrier integrity, glia and neuronal signaling. Moving forward, we consider how these mechanistic insights may inform interventions to improve brain outcomes in PWH. This review summarizes literature from clinical and preclinical studies demonstrating the adverse effects of METH, as well as the potentially beneficial effects of cannabis, on the interacting systemic (e.g., gut barrier leakage/microbial translocation, immune activation, inflammation) and CNS-specific (e.g., glial activation/neuroinflammation, neural injury, mitochondrial toxicity/oxidative stress) mechanisms underlying HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Rowan Saloner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA. .,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego , San Diego, CA, USA.
| | - Jerel Adam Fields
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | | - Jennifer E Iudicello
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Sofie von Känel
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Mariana Cherner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Marcus Kaul
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Igor Grant
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
31
|
Hambuchen MD, Berquist MD, Simecka CM, McGill MR, Gunnell MG, Hendrickson HP, Owens SM. Effect of Bile Duct Ligation-induced Liver Dysfunction on Methamphetamine Pharmacokinetics and Locomotor Activity in Rats. JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2020; 22:301-312. [PMID: 31329536 DOI: 10.18433/jpps30471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Methamphetamine (METH) abuse is associated with hepatic dysfunction related comorbidities such as HIV, hepatitis C, and polysubstance abuse with acetaminophen-containing opioid formulations. We aimed to develop a bile duct ligation (BDL)-induced hepatic dysfunction model for studying both METH and experimental treatments for METH abuse in this comorbidity. METHODS Sham or BDL surgery was performed in male Wistar rats on day 0. Liver function was measured throughout the study. On days 7 and 19, serum pharmacokinetics studies were performed with 1 mg/kg subcutaneous (sc) METH. On day 21, this dose was repeated to determine 2 h post-METH brain concentrations. METH-induced open field behaviors were measured every other day (days 12 - 16) with ascending sc doses (0.3 - 3 mg/kg). RESULTS BDL transiently increased alanine aminotransferase levels and altered liver structure, which resulted in significantly greater METH serum and brain exposure. In the BDL compared to sham group, there was a longer duration of METH-induced locomotor activity (after 1 and 3 mg/kg) and stereotypy (after 3 mg/kg). CONCLUSIONS In rats, liver dysfunction reduced METH clearance, increased brain METH concentrations, and enhanced METH effects on locomotor activity in a dose dependent manner. In addition, this model could be further developed to simulate the associated hepatic dysfunction of key METH abuse comorbidities for preclinical testing of novel pharmacotherapies for effectiveness and/or toxicity in vulnerable populations.
Collapse
Affiliation(s)
- Michael D Hambuchen
- Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, Huntington, WV, USA. Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Baek EJ, Kim H, Basova LA, Rosander A, Kesby JP, Semenova S, Marcondes MCG. Sex differences and Tat expression affect dopaminergic receptor expression and response to antioxidant treatment in methamphetamine-sensitized HIV Tat transgenic mice. Neuropharmacology 2020; 178:108245. [PMID: 32783894 DOI: 10.1016/j.neuropharm.2020.108245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/11/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Methamphetamine (Meth) abuse is a common HIV comorbidity. Males and females differ in their patterns of Meth use, associated behaviors, and responses, but the underlying mechanisms and impact of HIV infection are unclear. Transgenic mice with inducible HIV-1 Tat protein in the brain (iTat) replicate many neurological aspects of HIV infection in humans. We previously showed that Tat induction enhances the Meth sensitization response associated with perturbation of the dopaminergic system, in male iTat mice. Here, we used the iTat mouse model to investigate sex differences in individual and interactive effects of Tat and Meth challenge on locomotor sensitization, brain expression of dopamine receptors (DRDs) and regulatory adenosine receptors (ADORAs). Because Meth administration increases the production of reactive oxygen species (ROS), we also determined whether the effects of Meth could be rescued by concomitant treatment with the ROS scavenger N-acetyl cysteine (NAC). After Meth sensitization and a 7-day abstinence period, groups of Tat+ and Tat-male and female mice were challenged with Meth in combination with NAC. We confirmed that Tat expression and Meth challenge suppressed DRD mRNA and protein in males and females' brains, and showed that females were particularly susceptible to the effects of Meth on D1-like and D2-like DRD subtypes and ADORAs. The expression of these markers differed strikingly between males and females, and between females in different phases of the estrous cycle, in a Tat -dependent manner. NAC attenuated Meth-induced locomotor sensitization and preserved DRD expression in all groups except for Tat + females. These data identify complex interactions between sex, Meth use, and HIV infection on addiction responses, with potential implications for the treatment of male and female Meth users in the context of HIV, especially those with cognitive disorders.
Collapse
Affiliation(s)
- Eun Ji Baek
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hahoon Kim
- The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA; Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Liana A Basova
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA
| | - Ashley Rosander
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - James P Kesby
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, 4072, Australia; Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia; Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA
| | - Maria Cecilia Garibaldi Marcondes
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA; The Scripps Research Institute, Neurosciences Department, La Jolla, CA, 92037, USA.
| |
Collapse
|
33
|
Li S, Li Y, Deng B, Yan J, Wang Y. Identification of the Differentially Expressed Genes Involved in the Synergistic Neurotoxicity of an HIV Protease Inhibitor and Methamphetamine. Curr HIV Res 2020; 17:290-303. [PMID: 31550215 DOI: 10.2174/1570162x17666190924200354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The abuse of psychostimulants such as methamphetamine (METH) is common in human immunodeficiency virus (HIV)-infected individuals. Acquired immunodeficiency syndrome (AIDS) patients taking METH and antiretroviral drugs could suffer severe neurologic damage and cognitive impairment. OBJECTIVE To reveal the underlying neuropathologic mechanisms of an HIV protease inhibitor (PI) combined with METH, growth-inhibition tests of dopaminergic cells and RNA sequencing were performed. METHODS A combination of METH and PI caused more growth inhibition of dopaminergic cells than METH alone or a PI alone. Furthermore, we identified differentially expressed gene (DEG) patterns in the METH vs. untreated cells (1161 genes), PI vs. untreated cells (16 genes), METH-PI vs. PI (3959 genes), and METH-PI vs. METH groups (14 genes). RESULTS The DEGs in the METH-PI co-treatment group were verified in the brains of a mouse model using quantitative polymerase chain reaction and were involved mostly in the regulatory functions of cell proliferation and inflammation. CONCLUSION Such identification of key regulatory genes could facilitate the study of their neuroprotective potential in the users of METH and PIs.
Collapse
Affiliation(s)
- Sangsang Li
- Department of Forensic Science, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Immunology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yanfei Li
- Department of Forensic Science, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Immunology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bingpeng Deng
- Department of Forensic Science, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
34
|
Systems Biology Analysis of the Antagonizing Effects of HIV-1 Tat Expression in the Brain over Transcriptional Changes Caused by Methamphetamine Sensitization. Viruses 2020; 12:v12040426. [PMID: 32283831 PMCID: PMC7232389 DOI: 10.3390/v12040426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/06/2023] Open
Abstract
Methamphetamine (Meth) abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein, trans-activator of transcription (Tat), has been described to induce changes in brain gene transcription that can result in impaired reward circuitry, as well as in inflammatory processes. In transgenic mice with doxycycline-induced Tat protein expression in the brain, i.e., a mouse model of neuroHIV, we tested global gene expression patterns induced by Meth sensitization. Meth-induced locomotor sensitization included repeated daily Meth or saline injections for seven days and Meth challenge after a seven-day abstinence period. Brain samples were collected 30 min after the Meth challenge. We investigated global gene expression changes in the caudate putamen, an area with relevance in behavior and HIV pathogenesis, and performed pathway and transcriptional factor usage predictions using systems biology strategies. We found that Tat expression alone had a very limited impact in gene transcription after the Meth challenge. In contrast, Meth-induced sensitization in the absence of Tat induced a global suppression of gene transcription. Interestingly, the interaction between Tat and Meth broadly prevented the Meth-induced global transcriptional suppression, by maintaining regulation pathways, and resulting in gene expression profiles that were more similar to the controls. Pathways associated with mitochondrial health, initiation of transcription and translation, as well as with epigenetic control, were heavily affected by Meth, and by its interaction with Tat in anti-directional ways. A series of systems strategies have predicted several components impacted by these interactions, including mitochondrial pathways, mTOR/RICTOR, AP-1 transcription factor, and eukaryotic initiation factors involved in transcription and translation. In spite of the antagonizing effects of Tat, a few genes identified in relevant gene networks remained downregulated, such as sirtuin 1, and the amyloid precursor protein (APP). In conclusion, Tat expression in the brain had a low acute transcriptional impact but strongly interacted with Meth sensitization, to modify effects in the global transcriptome.
Collapse
|
35
|
Li Y, Li S, Xia Y, Li X, Chen T, Yan J, Wang Y. Alteration of liver immunity by increasing inflammatory response during co-administration of methamphetamine and atazanavir. Immunopharmacol Immunotoxicol 2020; 42:237-245. [PMID: 32249638 DOI: 10.1080/08923973.2020.1745829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: Use of methamphetamine (METH) is prevalent among HIV-infected individuals. Previous research has shown that both METH and HIV protease inhibitors exert influences on mitochondrial respiratory metabolism and hepatic nervous system. This study aims to study the joint effect of METH and HIV protease inhibitors on hepatic immune function.Materials and methods: Based on the differentially expressed genes obtained from RNA-seq of the liver from mouse model, the expression levels of CD48 and Macrophage Receptor with Collagenous Structure (MARCO) were examined using qRT-PCR and flow cytometry, and the expression and secretion of cytokines IL-1β, IL-6, IL-8, IL-10, IFN-γ, IFN-β, and TNF-α were determined using qRT-PCR and ELISA in THP-1-derived macrophages.Results: Our results indicated that compared with the control group, CD48 molecules were significantly down-regulated by METH-atazanavir co-treatment, and the expression level of CD48 decreased as METH concentration increases. MARCO molecules were increased, especially at larger doses of METH and atazanavir treatment. In addition, in the presence of METH-atazanavir, the expression and secretion of a series of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8 increased while the expression and secretion of anti-inflammatory cytokine IL-10 decreased.Conclusion: These results demonstrated that METH and atazanavir had a combined impact on the liver immunity, suggesting that the co-treatment could enhance inflammatory response and suppress NK cell activation via CD48.
Collapse
Affiliation(s)
- Yanfei Li
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China.,Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Sangsang Li
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Yang Xia
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Xiangrong Li
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Tingjun Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
36
|
Mele AR, Marino J, Dampier W, Wigdahl B, Nonnemacher MR. HIV-1 Tat Length: Comparative and Functional Considerations. Front Microbiol 2020; 11:444. [PMID: 32265877 PMCID: PMC7105873 DOI: 10.3389/fmicb.2020.00444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
37
|
Salahuddin MF, Qrareya AN, Mahdi F, Jackson D, Foster M, Vujanovic T, Box JG, Paris JJ. Combined HIV-1 Tat and oxycodone activate the hypothalamic-pituitary-adrenal and -gonadal axes and promote psychomotor, affective, and cognitive dysfunction in female mice. Horm Behav 2020; 119:104649. [PMID: 31821792 PMCID: PMC7071558 DOI: 10.1016/j.yhbeh.2019.104649] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/26/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
The majority of HIV+ patients present with neuroendocrine dysfunction and ~50% experience co-morbid neurological symptoms including motor, affective, and cognitive dysfunction, collectively termed neuroHIV. In preclinical models, the neurotoxic HIV-1 regulatory protein, trans-activator of transcription (Tat), promotes neuroHIV pathology that can be exacerbated by opioids. We and others find gonadal steroids, estradiol (E2) or progesterone (P4), to rescue Tat-mediated pathology. However, the combined effects of Tat and opioids on neuroendocrine function and the subsequent ameliorative capacity of gonadal steroids are unknown. We found that conditional HIV-1 Tat expression in naturally-cycling transgenic mice dose-dependently potentiated oxycodone-mediated psychomotor behavior. Tat increased depression-like behavior in a tail-suspension test among proestrous mice, but decreased it among diestrous mice (who already demonstrated greater depression-like behavior); oxycodone reversed these effects. Combined Tat and oxycodone produced apparent behavioral disinhibition of anxiety-like responding which was greater on diestrus than on proestrus. These mice made more central entries in an open field, but spent less time there and demonstrated greater circulating corticosterone. Tat increased the E2:P4 ratio of circulating steroids on diestrus and acute oxycodone attenuated this effect, but repeated oxycodone exacerbated it. Corticotropin-releasing factor was increased by Tat expression, acute oxycodone exposure, and was greater on diestrus compared to proestrus. In human neuroblastoma cells, Tat exerted neurotoxicity that was ameliorated by E2 (1 or 10 nM) or P4 (100, but not 10 nM) independent of oxycodone. Oxycodone decreased gene expression of estrogen and κ-opioid receptors. Thus, neuroendocrine function may be an important target for HIV-1 Tat/opioid interactions.
Collapse
Affiliation(s)
- Mohammed F Salahuddin
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - Alaa N Qrareya
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - Dejun Jackson
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - Matthew Foster
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - Tamara Vujanovic
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - J Gaston Box
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA
| | - Jason J Paris
- Department of BioMolecular Sciences, University of Mississippi, School of Pharmacy, University, MS 38677-1848, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
38
|
Kesby JP, Chang A, Najera JA, Marcondes MCG, Semenova S. Brain Reward Function after Chronic and Binge Methamphetamine Regimens in Mice Expressing the HIV-1 TAT Protein. Curr HIV Res 2020; 17:126-133. [PMID: 31269883 DOI: 10.2174/1570162x17666190703165408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Methamphetamine abuse and human immunodeficiency virus (HIV) are common comorbidities. HIV-associated proteins, such as the regulatory protein TAT, may contribute to brain reward dysfunction, inducing an altered sensitivity to methamphetamine reward and/or withdrawal in this population. OBJECTIVE These studies examined the combined effects of TAT protein expression and, chronic and binge methamphetamine regimens on brain reward function. METHODS Transgenic mice with inducible brain expression of the TAT protein were exposed to either saline, a chronic, or a binge methamphetamine regimen. TAT expression was induced via doxycycline treatment during the last week of methamphetamine exposure. Brain reward function was assessed daily throughout the regimens, using the intracranial self-stimulation procedure, and after a subsequent acute methamphetamine challenge. RESULTS Both methamphetamine regimens induced withdrawal-related decreases in reward function. TAT expression substantially, but not significantly increased the withdrawal associated with exposure to the binge regimen compared to the chronic regimen, but did not alter the response to acute methamphetamine challenge. TAT expression also led to persistent changes in adenosine 2B receptor expression in the caudate putamen, regardless of methamphetamine exposure. These results suggest that TAT expression may differentially affect brain reward function, dependent on the pattern of methamphetamine exposure. CONCLUSION The subtle effects observed in these studies highlight that longer-term TAT expression, or its induction at earlier stages of methamphetamine exposure, may be more consequential at inducing behavioral and neurochemical effects.
Collapse
Affiliation(s)
- James P Kesby
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, United States.,Queensland Brain Institute, The University of Queensland, St. Lucia, Qld, Australia.,UQ Centre for Clinical Research, The University of Queensland, Brisbane, Qld, Australia
| | - Ariel Chang
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Julia A Najera
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Maria Cecilia G Marcondes
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States.,San Diego Biomedical Research Institute, San Diego, CA 92121, United States
| | - Svetlana Semenova
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
39
|
Duggan EW, Vadlamudi R, Spektor B, Sharifpour M. Abdominal Surgery With Bilateral Rectus Sheath Block: A Case Report. A A Pract 2020; 13:278-280. [PMID: 31361662 DOI: 10.1213/xaa.0000000000001055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 44-year-old man, American Society of Anesthesiologists physical status class IV, presented for fulguration of anal condyloma and diverting colostomy. The patient's medical history includes World Health Organization (WHO) class I pulmonary hypertension (PH), right heart failure, and bilateral lower extremity paralysis due to Pott's disease. The patient was not a candidate for neuraxial anesthesia due to sacral decubitus ulcers, and alternative options to general anesthesia (GA) were considered to avoid the high risk of right ventricular (RV) failure and ensuing complications. The case was successfully performed under sedation with dexmedetomidine infusion and bilateral rectus sheath blocks for surgical anesthesia.
Collapse
Affiliation(s)
- Elizabeth W Duggan
- From the Department of Anesthesiology, Emory University Hospital, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | |
Collapse
|
40
|
Pregnane steroidogenesis is altered by HIV-1 Tat and morphine: Physiological allopregnanolone is protective against neurotoxic and psychomotor effects. Neurobiol Stress 2020; 12:100211. [PMID: 32258256 PMCID: PMC7109513 DOI: 10.1016/j.ynstr.2020.100211] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Pregnane steroids, particularly allopregnanolone (AlloP), are neuroprotective in response to central insult. While unexplored in vivo, AlloP may confer protection against the neurological dysfunction associated with human immunodeficiency virus type 1 (HIV-1). The HIV-1 regulatory protein, trans-activator of transcription (Tat), is neurotoxic and its expression in mice increases anxiety-like behavior; an effect that can be ameliorated by progesterone, but not when 5α-reduction is blocked. Given that Tat's neurotoxic effects involve mitochondrial dysfunction and can be worsened with opioid exposure, we hypothesized that Tat and/or combined morphine would perturb steroidogenesis in mice, promoting neuronal death, and that exogenous AlloP would rescue these effects. Like other models of neural injury, conditionally inducing HIV-1 Tat in transgenic mice significantly increased the central synthesis of pregnenolone and progesterone's 5α-reduced metabolites, including AlloP, while decreasing central deoxycorticosterone (independent of changes in plasma). Morphine significantly increased brain and plasma concentrations of several steroids (including progesterone, deoxycorticosterone, corticosterone, and their metabolites) likely via activation of the hypothalamic-pituitary-adrenal stress axis. Tat, but not morphine, caused glucocorticoid resistance in primary splenocytes. In neurons, Tat depolarized mitochondrial membrane potential and increased cell death. Physiological concentrations of AlloP (0.1, 1, or 10 nM) reversed these effects. High-concentration AlloP (100 nM) was neurotoxic in combination with morphine. Tat induction in transgenic mice potentiated the psychomotor effects of acute morphine, while exogenous AlloP (1.0 mg/kg, but not 0.5 mg/kg) was ameliorative. Data demonstrate that steroidogenesis is altered by HIV-1 Tat or morphine and that physiological AlloP attenuates resulting neurotoxic and psychomotor effects.
Collapse
|
41
|
de Guglielmo G, Fu Y, Chen J, Larrosa E, Hoang I, Kawamura T, Lorrai I, Zorman B, Bryant J, George O, Sumazin P, Lefebvre C, Repunte-Canonigo V, Sanna PP. Increases in compulsivity, inflammation, and neural injury in HIV transgenic rats with escalated methamphetamine self-administration under extended-access conditions. Brain Res 2020; 1726:146502. [PMID: 31605699 PMCID: PMC7195807 DOI: 10.1016/j.brainres.2019.146502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
The abuse of stimulants, such as methamphetamine (METH), is associated with treatment non-compliance, a greater risk of viral transmission, and the more rapid clinical progression of immunological and central nervous system human immunodeficiency virus (HIV) disease. The behavioral effects of METH in the setting of HIV remain largely uncharacterized. We used a state-of-the-art paradigm of the escalation of voluntary intravenous drug self-administration in HIV transgenic (Tg) and wildtype rats. The rats were first allowed to self-administer METH under short-access (ShA) conditions, which is characterized by a nondependent and more "recreational" pattern of METH use, and then allowed to self-administer METH under long-access (LgA) conditions, which leads to compulsive (dependent) METH intake. HIV Tg and wildtype rats self-administered equal amounts of METH under ShA conditions. HIV Tg rats self-administered METH under LgA conditions following a 4-week enforced abstinence period to model the intermittent pattern of stimulant abuse in humans. These HIV Tg rats developed greater motivation to self-administer METH and self-administered larger amounts of METH. Impairments in function of the medial prefrontal cortex (mPFC) contribute to compulsive drug and alcohol intake. Gene expression profiling of the mPFC in HIV Tg rats with a history of escalated METH self-administration under LgA conditions showed transcriptional evidence of increased inflammation, greater neural injury, and impaired aerobic glucose metabolism than wildtype rats that self-administered METH under LgA conditions. The detrimental effects of the interaction between neuroHIV and escalated METH intake on the mPFC are likely key factors in the greater vulnerability to excessive drug intake in the setting of HIV.
Collapse
Affiliation(s)
- Giordano de Guglielmo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Jihuan Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Estefania Larrosa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ivy Hoang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tomoya Kawamura
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Bryant
- University of Maryland and Institute of Human Virology, Baltimore, MD, United States
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Bioinformatics and Computational Biology, Servier, Paris, France
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
42
|
Heinzerling KG, Briones M, Thames AD, Hinkin CH, Zhu T, Wu YN, Shoptaw SJ. Randomized, Placebo-Controlled Trial of Targeting Neuroinflammation with Ibudilast to Treat Methamphetamine Use Disorder. J Neuroimmune Pharmacol 2019; 15:238-248. [PMID: 31820289 DOI: 10.1007/s11481-019-09883-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/27/2019] [Indexed: 01/08/2023]
Abstract
Methamphetamine (MA) triggers neuroinflammation and medications that counteract MA-induced neuroinflammation may reduce MA-induced neurodegeneration and improve neurocognition and treatment outcomes in MA use disorder. We performed a randomized, placebo-controlled trial to determine the safety and efficacy of ibudilast (IBUD), a phosphodiesterase inhibitor that reduces neuroinflammation, for the treatment of MA use disorder. Treatment-seeking volunteers with MA use disorder were randomly assigned to receive 12 weeks of IBUD 50 mg twice daily (N = 64) or placebo (N = 61) with medication management counseling. Participants visited the outpatient research clinic twice weekly to provide urine specimens for drug screens and undergo study assessments. The primary outcome was end of treatment MA-abstinence (EOTA) during weeks 11 and 12 of treatment. Serum IBUID levels were measured for IBUD participants during week 3 of treatment. There was no difference in EOTA for IBUD (14%) versus placebo (16%, p > 0.05). There was no correlation between serum IBUD levels and MA use during treatment and mean IBUD levels for participants with (mean = 51.3, SD = 20.3) and without (mean = 54.7, SD = 33.0, p = 0.70) EOTA. IBUD was well tolerated. IBUD did not facilitate MA abstinence in this outpatient trial. Whether targeting neuroinflammation, either with IBUD in other subgroups of MA users or clinical trial designs, or with other anti-inflammatory medications, is an effective strategy for treating MA use disorder is not clear. Graphical Abstract The proportion of urine drug screens negative for methamphetamine (MA) during the two week lead-in period (weeks -2 and - 1) and the 12 week medication treatment period (weeks 1-12) for ibudilast versus placebo.
Collapse
Affiliation(s)
- Keith G Heinzerling
- Department of Family Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Marisa Briones
- Department of Family Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - April D Thames
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Charles H Hinkin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA
| | - Tianle Zhu
- Department of Statistics, UCLA, Los Angeles, CA, USA
| | - Ying Nian Wu
- Department of Statistics, UCLA, Los Angeles, CA, USA
| | - Steven J Shoptaw
- Department of Family Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
43
|
Alvarez-Carbonell D, Ye F, Ramanath N, Garcia-Mesa Y, Knapp PE, Hauser KF, Karn J. Cross-talk between microglia and neurons regulates HIV latency. PLoS Pathog 2019; 15:e1008249. [PMID: 31887215 PMCID: PMC6953890 DOI: 10.1371/journal.ppat.1008249] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/10/2020] [Accepted: 12/01/2019] [Indexed: 12/30/2022] Open
Abstract
Despite effective antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are found in nearly one-third of patients. Using a cellular co-culture system including neurons and human microglia infected with HIV (hμglia/HIV), we investigated the hypothesis that HIV-dependent neurological degeneration results from the periodic emergence of HIV from latency within microglial cells in response to neuronal damage or inflammatory signals. When a clonal hμglia/HIV population (HC69) expressing HIV, or HIV infected human primary and iPSC-derived microglial cells, were cultured for a short-term (24 h) with healthy neurons, HIV was silenced. The neuron-dependent induction of latency in HC69 cells was recapitulated using induced pluripotent stem cell (iPSC)-derived GABAergic cortical (iCort) and dopaminergic (iDopaNer), but not motor (iMotorNer), neurons. By contrast, damaged neurons induce HIV expression in latently infected microglial cells. After 48-72 h co-culture, low levels of HIV expression appear to damage neurons, which further enhances HIV expression. There was a marked reduction in intact dendrites staining for microtubule associated protein 2 (MAP2) in the neurons exposed to HIV-expressing microglial cells, indicating extensive dendritic pruning. To model neurotoxicity induced by methamphetamine (METH), we treated cells with nM levels of METH and suboptimal levels of poly (I:C), a TLR3 agonist that mimics the effects of the circulating bacterial rRNA found in HIV infected patients. This combination of agents potently induced HIV expression, with the METH effect mediated by the σ1 receptor (σ1R). In co-cultures of HC69 cells with iCort neurons, the combination of METH and poly(I:C) induced HIV expression and dendritic damage beyond levels seen using either agent alone, Thus, our results demonstrate that the cross-talk between healthy neurons and microglia modulates HIV expression, while HIV expression impairs this intrinsic molecular mechanism resulting in the excessive and uncontrolled stimulation of microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nirmala Ramanath
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Pamela E. Knapp
- Departments of Pharmacology and Toxicology and Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Kurt F. Hauser
- Departments of Pharmacology and Toxicology and Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
44
|
Giacometti LL, Barker JM. Comorbid HIV infection and alcohol use disorders: Converging glutamatergic and dopaminergic mechanisms underlying neurocognitive dysfunction. Brain Res 2019; 1723:146390. [PMID: 31421128 PMCID: PMC6766419 DOI: 10.1016/j.brainres.2019.146390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Alcohol use disorders (AUDs) are highly comorbid with human immunodeficiency virus (HIV) infection, occurring at nearly twice the rate in HIV positive individuals as in the general population. Individuals with HIV who consume alcohol show worse long-term prognoses and may be at elevated risk for the development of HIV-associated neurocognitive disorders. The direction of this relationship is unclear, and likely multifactorial. Chronic alcohol exposure and HIV infection independently promote cognitive dysfunction and further may interact to exacerbate neurocognitive deficits through effects on common targets, including corticostriatal glutamate and dopamine neurotransmission. Additionally, drug and alcohol use is likely to reduce treatment adherence, potentially resulting in accelerated disease progression and subsequent neurocognitive impairment. The development of neurocognitive impairments may further reduce cognitive control over behavior, resulting in escalating alcohol use. This review will examine the complex relationship between HIV infection and alcohol use, highlighting impacts on dopamine and glutamate systems by which alcohol use and HIV act independently and in tandem to alter corticostriatal circuit structure and function to dysregulate cognitive function.
Collapse
Affiliation(s)
- Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| |
Collapse
|
45
|
Mimiaga MJ, Pantalone DW, Biello KB, White Hughto JM, Frank J, O’Cleirigh C, Reisner SL, Restar A, Mayer KH, Safren SA. An initial randomized controlled trial of behavioral activation for treatment of concurrent crystal methamphetamine dependence and sexual risk for HIV acquisition among men who have sex with men. AIDS Care 2019; 31:1083-1095. [PMID: 30887824 PMCID: PMC6625920 DOI: 10.1080/09540121.2019.1595518] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
Men who have sex with men (MSM) continue to be the largest risk group for HIV infections in the U.S., where crystal methamphetamine abuse heightens risk for HIV infection through greater engagement in condomless anal sex (CAS). Existing treatments lack attention to replacement activities or the role of depressed mood. Behavioral activation (BA) is an evidence-based approach for depression that involves identifying and participating in pleasurable, goal-directed activities. We hypothesize, for MSM abusing crystal methamphetamine, re-learning how to engage in non-drug-using aspects of life would facilitate their ability to benefit from sexual risk reduction (SRR) counseling. Project IMPACT was a pilot randomized-controlled-trial. Forty-six MSM at sexual risk of acquiring HIV who met DSM-IV criteria for crystal methamphetamine dependence were enrolled. Of those MSM, 41 were randomized: 21 were assigned to the intervention, two sessions of SRR, ten sessions of BA with SRR, and one session of relapse prevention; 20 participants were assigned to a control condition (two sessions of SRR). At the acute post-intervention visit, intervention participants reported an average of 3.2 CAS acts with men who were HIV-infected or whose status they did not know, compared to 4.5 among control participants (β = -0.36; 95% CI: -0.69, -0.02; p = 0.035). At the 6-month post-intervention visit, intervention participants reported 1.1 CAS acts with men who were HIV-infected or whose status they did not know compared to 2.8 among control participants (β = -0.95; 95% CI: -1.44, -0.46; p < 0.0001). Similarly, intervention participants reported 1.0 CAS acts under the influence of crystal methamphetamine with men who were HIV-infected or whose status they did not know compared to 2.5 among control participants (β = -0.87; 95% CI: -1.38, -0.36; p = 0.0005). Lastly, intervention participants reported more continuous days abstaining from crystal methamphetamine compared to control (50.1 vs. 39.0, respectively) (β = 0.25; 95% CI: 0.16, 0.34; p < 0.0001). Findings are encouraging, provide evidence of feasibility and acceptability, and demonstrate initial efficacy for reducing sexual risk for HIV and crystal methamphetamine use.
Collapse
Affiliation(s)
- Matthew J. Mimiaga
- Center for Health Equity Research, Brown University, Providence, RI, USA
- Departments of Behavioral & Social Health Sciences and Epidemiology, Brown University School of Public Health, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Brown University Alpert Medical School, Providence, RI, USA
- The Fenway Institute, Fenway Health, Boston, MA, USA
| | - David W. Pantalone
- The Fenway Institute, Fenway Health, Boston, MA, USA
- Department of Psychology, University of Massachusetts, Boston, MA, USA
| | - Katie B. Biello
- Center for Health Equity Research, Brown University, Providence, RI, USA
- Departments of Behavioral & Social Health Sciences and Epidemiology, Brown University School of Public Health, Providence, RI, USA
- The Fenway Institute, Fenway Health, Boston, MA, USA
| | - Jackie M. White Hughto
- The Fenway Institute, Fenway Health, Boston, MA, USA
- Department of Epidemiology, Yale University School of Public Health, New Haven, CT, USA
| | - John Frank
- Center for Health Equity Research, Brown University, Providence, RI, USA
- Departments of Behavioral & Social Health Sciences and Epidemiology, Brown University School of Public Health, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Brown University Alpert Medical School, Providence, RI, USA
| | - Conall O’Cleirigh
- The Fenway Institute, Fenway Health, Boston, MA, USA
- Department of Psychiatry, Behavioral Medicine Service, Harvard Medical School/Massachusetts General Hospital, Boston, MA, USA
| | - Sari L. Reisner
- The Fenway Institute, Fenway Health, Boston, MA, USA
- Division of General Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Arjee Restar
- Center for Health Equity Research, Brown University, Providence, RI, USA
- Departments of Behavioral & Social Health Sciences and Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Kenneth H. Mayer
- The Fenway Institute, Fenway Health, Boston, MA, USA
- Department of Infectious Diseases, Harvard Medical School/Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Steven A. Safren
- The Fenway Institute, Fenway Health, Boston, MA, USA
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
46
|
Liśkiewicz A, Przybyła M, Park M, Liśkiewicz D, Nowacka-Chmielewska M, Małecki A, Barski J, Lewin-Kowalik J, Toborek M. Methamphetamine-associated cognitive decline is attenuated by neutralizing IL-1 signaling. Brain Behav Immun 2019; 80:247-254. [PMID: 30885840 PMCID: PMC7210788 DOI: 10.1016/j.bbi.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/10/2019] [Accepted: 03/14/2019] [Indexed: 11/28/2022] Open
Abstract
Methamphetamine (METH) abusers are prone to develop a variety of comorbidities, including cognitive disabilities, and the immunological responses have been recognized as an important component involved in the toxicity of this drug. Cytokines are among the key mediators between systemic inflammatory status and tissue responses. One of these, interleukin 1 (IL-1), has been hypothesized to be involved in cognitive functions and also appears to play a pivotal role among inflammatory molecules. In the present study, we demonstrate that exposure of mice to METH markedly increased the protein level of IL-1β in hippocampal tissue. Additionally, METH administration induced a decline in spatial learning as determined by the Morris water maze test. We next evaluated the hypothesis that blocking IL-1β signaling can protect against METH-induced loss of cognitive functioning. The results indicated that METH-induced impaired spatial learning abilities were attenuated by co-administration of mouse IL-1 Trap, a dimeric fusion protein that incorporates the extracellular domains of both of the IL-1 receptor components required for IL-1 signaling (IL-1 receptor type 1 and IL-1 receptor accessory protein), linked to the Fc portion of murine IgG2a. This effect was associated with a decrease in hippocampal IL-1β level. The current study indicates for the first time that the loss of METH-related cognitive decline can be attenuated by neutralizing IL-1 signaling. Our findings suggest a potential new therapeutic pathway for treatment of altered cognitive abilities that occur in METH abusing individuals.
Collapse
Affiliation(s)
- Arkadiusz Liśkiewicz
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department of Physiology, Medical University of Silesia, Katowice 40-752, Poland.
| | - Marta Przybyła
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department for Experimental Medicine, Medical University of Silesia, Katowice 40-752, Poland
| | - Minseon Park
- Department of Biochemistry and Molecular Biology, University of Miami, School of Medicine, 1011 NW 15th Street, Miami, FL 33136, USA
| | - Daniela Liśkiewicz
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department for Experimental Medicine, Medical University of Silesia, Katowice 40-752, Poland
| | - Marta Nowacka-Chmielewska
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department for Experimental Medicine, Medical University of Silesia, Katowice 40-752, Poland
| | - Andrzej Małecki
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland
| | - Jarosław Barski
- Department for Experimental Medicine, Medical University of Silesia, Katowice 40-752, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, Medical University of Silesia, Katowice 40-752, Poland
| | - Michal Toborek
- Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice 40-065, Poland; Department of Biochemistry and Molecular Biology, University of Miami, School of Medicine, 1011 NW 15th Street, Miami, FL 33136, USA.
| |
Collapse
|
47
|
Fernandes N, Pulliam L. Inflammatory Mechanisms and Cascades Contributing to Neurocognitive Impairment in HIV/AIDS. Curr Top Behav Neurosci 2019; 50:77-103. [PMID: 31385260 DOI: 10.1007/7854_2019_100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurocognitive impairment caused by chronic human immunodeficiency virus (HIV) infection is a growing concern. In this chapter we discuss the inflammatory mechanisms underlying the pathology of asymptomatic and mild neurocognitive impairment in the context of antiretroviral therapy. We discuss the role of HIV, viral proteins, and virally infected cells on the development of neuroinflammation and the effect of viral proteins on the cells of the central nervous system.We examine how these collective factors result in an inflammatory context that triggers the development of neurocognitive impairment in HIV. We assess the contribution of antiretrovirals and drugs of abuse, including methamphetamine, cannabis, and opioids, to the neurotoxic and neuroinflammatory milieu that leads to the development of neurocognitive impairment in HIV-infected individuals. We also examined circulating biomarkers, NF-L, sCD163, and sCD14, pertinent to identifying changes in the CNS that could indicate real-time changes in patient physiology. Lastly, we discuss future studies, such as exosomes and the microbiome, which could play a role in the HIV-induced neuroinflammation that eventually manifests as cognitive impairment.
Collapse
Affiliation(s)
- Nicole Fernandes
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA, USA.,University of California, San Francisco, San Francisco, CA, USA
| | - Lynn Pulliam
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA, USA. .,University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
48
|
Papageorgiou M, Raza A, Fraser S, Nurgali K, Apostolopoulos V. Methamphetamine and its immune-modulating effects. Maturitas 2018; 121:13-21. [PMID: 30704560 DOI: 10.1016/j.maturitas.2018.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022]
Abstract
The recreational use of methamphetamine (METH, or ice) is a global burden. It pervades and plagues contemporary society; it has been estimated that there are up to 35 million users worldwide. METH is a highly addictive psychotropic compound which acts on the central nervous system, and chronic use can induce psychotic behavior. METH has the capacity to modulate immune cells, giving the drug long-term effects which may manifest as neuropsychiatric disorders, and that increase susceptibility to communicable diseases, such as HIV. In addition, changes to the cytokine balance have been associated with compromise of the blood-brain barrier, resulting to alterations to brain plasticity, creating lasting neurotoxicity. Immune-related signaling pathways are key to further evaluating how METH impacts host immunity through these neurological and peripheral modifications. Combining this knowledge with current data on inflammatory responses will improve understanding of how the adaptive and innate immunity responds to METH, how this can activate premature-ageing processes and how METH exacerbates disturbances that lead to non-communicable age-related diseases, including cardiovascular disease, stroke, depression and dementia.
Collapse
Affiliation(s)
- Marco Papageorgiou
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Ali Raza
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Regenerative Medicine and StemCells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
| | | |
Collapse
|
49
|
Savin MJ, Frank-Pearce SG, Pulvers K, Vidrine DJ. The association between lifetime polytobacco use and intention to quit among HIV-positive cigarette smokers. Drug Alcohol Depend 2018; 191:152-158. [PMID: 30107321 PMCID: PMC6709522 DOI: 10.1016/j.drugalcdep.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND This secondary analysis aims to describe, over time, the relationship between HIV disease progression and intention to quit cigarette smoking among current monocigarette users with and without a lifetime history of polytobacco use. METHODS Participants completed a baseline assessment at the time of HIV care initiation and four follow-up assessments (3, 6, 9, and 12-months). Assessments included biochemically verified smoking status and audio computer-assisted self-interviews assessing psychosocial, substance use, and clinical variables known to influence smoking behaviors. Using linear and generalized linear fixed-effects models, we modeled the covariance structure for the repeated outcome measures (intention to quit and 7-day point prevalence smoking abstinence) across the study time points and included a three-way interaction term to examine the effects of disease stage and tobacco product use. RESULTS Participants (N = 357) were 73.1% male, 67.3% black/African American, and had a mean (SD) age of 38.7 (10.6) years. At baseline, lifetime polytobacco users reported significantly worse HIV-related symptoms and burdens, illness perception, social support, and nicotine dependence. Intention to quit, but not smoking abstinence, was predicted by a three-way interaction between time from HIV care initiation, disease progression, and tobacco product use (p = .04). Overall, progressive HIV was associated with greater intention to quit smoking cigarettes. However, the relationship differed over time between the two tobacco product groups. CONCLUSION Future studies should consider tailoring the timing of cessation interventions upon disease stage and lifetime history of polytobacco use.
Collapse
Affiliation(s)
| | | | - Kim Pulvers
- HIV Neurobehavioral Research Center, Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., San Diego, CA 92093, USA.
| | | |
Collapse
|
50
|
Zeng XF, Li Q, Li J, Wong N, Li Z, Huang J, Yang G, Sham PC, Li SB, Lu G. HIV-1 Tat and methamphetamine co-induced oxidative cellular injury is mitigated by N-acetylcysteine amide (NACA) through rectifying mTOR signaling. Toxicol Lett 2018; 299:159-171. [PMID: 30261225 DOI: 10.1016/j.toxlet.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023]
Abstract
Methamphetamine (Meth) is an addictive psychostimulant whose abuse is intimately linked to increased risks for HIV-1 infection. Converging lines of evidence indicate that Meth also aggravates the symptoms of HIV-associated neurocognitive disorders (HAND), though the underlying mechanisms remain poorly understood. By using the lipophilic antioxidant N-acetylcysteine amide (NACA) as an interventional agent, we examined the roles of oxidative stress in autophagy and apoptosis induced by HIV-Tat (the transactivator of transcription), Meth or their combined treatment in human SH-SY5Y neuroblastoma cells and in the rat striatum. Oxidative stress was monitored in terms of the production of intracellular reactive oxygen species (ROS) and antioxidant reserves including glutathione peroxidase (GPx) and Cu,Zn-superoxide dismutase (SOD). NACA significantly reduced the level of ROS and restored GPx and SOD to levels comparable to that of normal control, implying a cytoprotective effect of NACA against oxidative stress elicited by Tat- and/or Meth. Protein expression of mammalian target of rapamycin (mTOR) was measured in SH-SY5Y cells and in the rat striatum to further explore the underlying mechanism of NACA protect against oxidative stress. The results support a beneficial effect of NACA in vivo and in vitro through rectification of the mTOR signaling pathway. Collectively, our study shows that NACA protects against Meth and/or Tat-induced cellular injury in vitro and in the rat striatum in vivo by attenuating oxidative stress, apoptosis and autophagy, at least in part, via modulation of mTOR signaling.
Collapse
Affiliation(s)
- Xiao-Feng Zeng
- School of Forensic Medicine, Xi,an Jiaotong University, Xi'an, Shanxi Province, China; School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Qi Li
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Juan Li
- School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Naikei Wong
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Shenzhen University, Shenzhen 518112, Hong Kong, China
| | - Zhen Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian Huang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Genmeng Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Center for Genomic Sciences, The University of Hong Kong, Hong Kong, China
| | - Sheng-Bin Li
- School of Forensic Medicine, Xi,an Jiaotong University, Xi'an, Shanxi Province, China.
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| |
Collapse
|