1
|
Bajo-Grañeras R, Suárez-Pinilla AS, Torres M, Martín R. Acute Slice Patch-Clamp Recordings to Characterize Neural Populations in the Hippocampal Subgranular Zone. Methods Mol Biol 2025; 2899:263-274. [PMID: 40067630 DOI: 10.1007/978-1-0716-4386-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Whole-cell patch clamp allows the evaluation of neuronal excitability and characterization of synaptic transmission. With this technique, it is possible to characterize the neuron maturation level and its integration into the hippocampal circuit. This facilitates the identification of the different stages of neural progenitor cells in the adult brain and their contribution to hippocampal function.
Collapse
Affiliation(s)
- Raquel Bajo-Grañeras
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.
| | - Alberto Samuel Suárez-Pinilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
| | - Magdalena Torres
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
| | - Ricardo Martín
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
- Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
2
|
Crisci I, Bonzano S, Nicolas Z, Dallorto E, Peretto P, Krezel W, De Marchis S. Tamoxifen exerts direct and microglia-mediated effects preventing neuroinflammatory changes in the adult mouse hippocampal neurogenic niche. Glia 2024; 72:1273-1289. [PMID: 38515286 DOI: 10.1002/glia.24526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Tamoxifen-inducible systems are widely used in research to control Cre-mediated gene deletion in genetically modified animals. Beyond Cre activation, tamoxifen also exerts off-target effects, whose consequences are still poorly addressed. Here, we investigated the impact of tamoxifen on lipopolysaccharide (LPS)-induced neuroinflammatory responses, focusing on the neurogenic activity in the adult mouse dentate gyrus. We demonstrated that a four-day LPS treatment led to an increase in microglia, astrocytes and radial glial cells with concomitant reduction of newborn neurons. These effects were counteracted by a two-day tamoxifen pre-treatment. Through selective microglia depletion, we elucidated that both LPS and tamoxifen influenced astrogliogenesis via microglia mediated mechanisms, while the effects on neurogenesis persisted even in a microglia-depleted environment. Notably, changes in radial glial cells resulted from a combination of microglia-dependent and -independent mechanisms. Overall, our data reveal that tamoxifen treatment per se does not alter the balance between adult neurogenesis and astrogliogenesis but does modulate cellular responses to inflammatory stimuli exerting a protective role within the adult hippocampal neurogenic niche.
Collapse
Affiliation(s)
- Isabella Crisci
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Zinter Nicolas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Eleonora Dallorto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- NICO-Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| |
Collapse
|
3
|
Zhang R, Quan H, Wang Y, Luo F. Neurogenesis in primates versus rodents and the value of non-human primate models. Natl Sci Rev 2023; 10:nwad248. [PMID: 38025664 PMCID: PMC10659238 DOI: 10.1093/nsr/nwad248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/10/2023] [Indexed: 12/01/2023] Open
Abstract
Neurogenesis, the process of generating neurons from neural stem cells, occurs during both embryonic and adult stages, with each stage possessing distinct characteristics. Dysfunction in either stage can disrupt normal neural development, impair cognitive functions, and lead to various neurological disorders. Recent technological advancements in single-cell multiomics and gene-editing have facilitated investigations into primate neurogenesis. Here, we provide a comprehensive overview of neurogenesis across rodents, non-human primates, and humans, covering embryonic development to adulthood and focusing on the conservation and diversity among species. While non-human primates, especially monkeys, serve as valuable models with closer neural resemblance to humans, we highlight the potential impacts and limitations of non-human primate models on both physiological and pathological neurogenesis research.
Collapse
Affiliation(s)
- Runrui Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hongxin Quan
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yinfeng Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
4
|
Abstract
Nerves not only regulate the homeostasis and energetic metabolism of normal epithelial cells but also are critical for cancer, as cancer recapitulates the biology of neural regulation of epithelial tissues. Cancer cells rarely develop in denervated organs, and denervation affects tumorigenesis, in vivo and in humans. Axonogenesis occurs to supply the new malignant epithelial growth with nerves. Neurogenesis happens later, first in ganglia around organs or the spinal column and subsequently through recruitment of neuroblasts from the central nervous system. The hallmark of this stage is regulation of homeostasis and energetic metabolism. Perineural invasion is the most efficient interaction between cancer cells and nerves. The hallmark of this stage is increased proliferation and decreased apoptosis. Finally, carcinoma cells transdifferentiate into a neuronal profile in search of neural independence. The latter is the last stage in neuroepithelial interactions. Treatments for cancer must address the biology of neural regulation of cancer.
Collapse
Affiliation(s)
- Gustavo Ayala
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, McGovern School of Medicine, Houston, Texas, USA;
| |
Collapse
|
5
|
Nwachukwu KN, Healey KL, Swartzwelder HS, Marshall SA. The Influence of Sex on Hippocampal Neurogenesis and Neurotrophic Responses on the Persistent Effects of Adolescent Intermittent Ethanol Exposure into Adulthood. Neuroscience 2022; 506:68-79. [PMID: 36343720 PMCID: PMC9764262 DOI: 10.1016/j.neuroscience.2022.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
In the United States, approximately 90% of alcohol consumed by adolescents is binge drinking. Binge-like ethanol exposure during adolescence promotes dysregulation of neurotrophic responses and neurogenesis in the hippocampus. These effects include changes in proliferation, regulation, differentiation, and maturation of neurons, and there is indication that such effects may be disproportionate between sexes. This study determined whether sex impacts neurotrophic responses and neurogenesis in adulthood after adolescent intermittent ethanol (AIE) exposure. To determine this, adolescent rats underwent AIE with ethanol (5 g/kg). In adulthood, animals were euthanized, and immunohistochemical techniques and ELISAs were utilized to determine AIE effects on sex-specific neurogenesis factors and neurotrophic markers, respectively. AIE exposure led to a significant decrease in neurogenesis in the dentate gyrus of the hippocampal formation indicated by reductions in the numbers of DCX+, SOX2+ and Ki-67+ cells in male and female AIE-exposed rats. Additionally, AIE increased markers for the pro-inflammatory cytokines, TNF-α and IL-1β, in the hippocampus into adulthood in male AIE-exposed rats only. No significant AIE-induced differences were observed in the anti-inflammatory cytokines, IL-10 and TGF-β, nor in the neurotrophic factors BDNF and GDNF. Altogether, our findings indicate that although AIE did not have a persistent effect on hippocampal neurotrophic levels, there was still a reduction in neurogenesis. The neurogenic impairment was not sex specific, but the neurogenic deficits in males may be attributed to an increase in pro-inflammatory cytokine expression. A persistent impairment in neurogenesis may have an impact on both behavioral maladaptations and neurodegeneration in adulthood.
Collapse
Affiliation(s)
- Kala N Nwachukwu
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, United States; Integrated Biosciences PhD Program, North Carolina Central University, Durham, NC 27707, USA
| | - Kati L Healey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27708, United States
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27708, United States
| | - S Alex Marshall
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, United States.
| |
Collapse
|
6
|
Oral and Injected Tamoxifen Alter Adult Hippocampal Neurogenesis in Female and Male Mice. eNeuro 2022; 9:ENEURO.0422-21.2022. [PMID: 35387845 PMCID: PMC9034758 DOI: 10.1523/eneuro.0422-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
Inducible Cre recombinase facilitates temporal control of genetic recombination in numerous transgenic model systems, a feature which has made it a popular tool for adult neurogenesis studies. One of the most common forms of inducible Cre, CreERT2, requires activation by the selective estrogen receptor modulator tamoxifen (TAM) to initiate recombination of LoxP-flanked sequences. To date, most studies deliver TAM via intraperitoneal injection. But the introduction of TAM-infused commercial chows has recently expanded the possible modes of TAM delivery. Despite the widespread use of TAM-inducible genetic models in adult neurogenesis research, the comparative efficiency and off-target effects of TAM administration protocols is surprisingly infrequently studied. Here, we compare a standard, 5 d TAM injection regimen with voluntary consumption of TAM-infused chow. First, we used adult NestinCreERT2;Rosa-LoxP-STOP-LoxP-EYFP reporter mice to show that two weeks of TAM chow and 5 d of injections led to LoxP recombination in a similar phenotypic population of neural stem and progenitor cells (NSPCs) in the adult dentate gyrus. However, TAM chow resulted in substantially less overall recombination than injections. TAM administration also altered adult neurogenesis, but in different ways depending on administration route: TAM injection disrupted neural progenitor cell proliferation three weeks after TAM, whereas TAM chow increased neuronal differentiation of cells generated during the diet period. These findings provide guidance for selection of TAM administration route and appropriate controls in adult neurogenesis studies using TAM-inducible Cre mice. They also highlight the need for better understanding of off-target effects of TAM in other neurologic processes and organ systems.
Collapse
|
7
|
Sheehy RN, Quintanilla LJ, Song J. Epigenetic regulation in the neurogenic niche of the adult dentate gyrus. Neurosci Lett 2022; 766:136343. [PMID: 34774980 PMCID: PMC8691367 DOI: 10.1016/j.neulet.2021.136343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
The adult dentate gyrus (DG) of the hippocampal formation is a specialized region of the brain that creates new adult-born neurons from a pool of resident adult neural stem and progenitor cells (aNSPCs) throughout life. These aNSPCs undergo epigenetic and epitranscriptomic regulation, including 3D genome interactions, histone modifications, DNA modifications, noncoding RNA mechanisms, and RNA modifications, to precisely control the neurogenic process. Furthermore, the specialized neurogenic niche also uses epigenetic mechanisms in mature neurons and glial cells to communicate signals to direct the behavior of the aNSPCs. Here, we review recent advances of epigenetic regulation in aNSPCs and their surrounding niche cells within the adult DG.
Collapse
Affiliation(s)
- Ryan N. Sheehy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis J. Quintanilla
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Rieskamp JD, Sarchet P, Smith BM, Kirby ED. Estimation of the density of neural, glial, and endothelial lineage cells in the adult mouse dentate gyrus. Neural Regen Res 2021; 17:1286-1292. [PMID: 34782573 PMCID: PMC8643033 DOI: 10.4103/1673-5374.327354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The dentate gyrus subregion of the mammalian hippocampus is an adult neural stem cell niche and site of lifelong neurogenesis. Hypotheses regarding the role of adult-born neuron synaptic integration in hippocampal circuit function are framed by robust estimations of adult-born versus pre/perinatally-born neuron number. In contrast, the non-neurogenic functions of adult neural stem cells and their immediate progeny, such as secretion of bioactive growth factors and expression of extracellular matrix-modifying proteins, lack similar framing due to few estimates of their number versus other prominent secretory cells. Here, we apply immunohistochemical methods to estimate cell density of neural stem/progenitor cells versus other major classes of glial and endothelial cell types that are potentially secretory in the dentate gyrus of adult mice. Of the cell types quantified, we found that GFAP+SOX2+ stellate astrocytes were the most numerous, followed by CD31+ endothelia, GFAP–SOX2+ intermediate progenitors, Olig2+ oligodendrocytes, Iba1+ microglia, and GFAP+SOX2+ radial glia-like neural stem cells. We did not observe any significant sex differences in density of any cell population. Notably, neural stem/progenitor cells were present at a similar density as several cell types known to have potent functional roles via their secretome. These findings may be useful for refining hypotheses regarding the contributions of these cell types to regulating hippocampal function and their potential therapeutic uses. All experimental protocols were approved by the Ohio State University Institutional Animal Care and Use Committee (protocol# 2016A00000068) on July 14, 2016.
Collapse
Affiliation(s)
- Joshua D Rieskamp
- Neuroscience Graduate Program; Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Patricia Sarchet
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Bryon M Smith
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Elizabeth D Kirby
- Department of Psychology; Department of Neuroscience; Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Cardona HJ, Somasundaram A, Crabtree DM, Gadd SL, Becher OJ. Prenatal overexpression of platelet-derived growth factor receptor A results in central nervous system hypomyelination. Brain Behav 2021; 11:e2332. [PMID: 34480532 PMCID: PMC8553322 DOI: 10.1002/brb3.2332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Platelet-derived growth factor (PDGF) signaling, through the ligand PDGF-A and its receptor PDGFRA, is important for the growth and maintenance of oligodendrocyte progenitor cells (OPCs) in the central nervous system (CNS). PDGFRA signaling is downregulated prior to OPC differentiation into mature myelinating oligodendrocytes. By contrast, PDGFRA is often genetically amplified or mutated in many types of gliomas, including diffuse midline glioma (DMG) where OPCs are considered the most likely cell-of-origin. The cellular and molecular changes that occur in OPCs in response to unregulated PDGFRA expression, however, are not known. METHODS Here, we created a conditional knock-in (KI) mouse that overexpresses wild type (WT) human PDGFRA (hPDGFRA) in prenatal Olig2-expressing progenitors, and examined in vivo cellular and molecular consequences. RESULTS The KI mice exhibited stunted growth, ataxia, and a severe loss of myelination in the brain and spinal cord. When combined with the loss of p53, a tumor suppressor gene whose activity is decreased in DMG, the KI mice failed to develop tumors but still exhibited hypomyelination. RNA-sequencing analysis revealed decreased myelination gene signatures, indicating a defect in oligodendroglial development. Mice overexpressing PDGFRA in prenatal GFAP-expressing progenitors, which give rise to a broader lineage of cells than Olig2-progenitors, also developed myelination defects. CONCLUSION Our results suggest that embryonic overexpression of hPDGFRA in Olig2- or GFAP-progenitors is deleterious to OPC development and leads to CNS hypomyelination.
Collapse
Affiliation(s)
- Herminio Joey Cardona
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Agila Somasundaram
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Donna M Crabtree
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA.,Office of Clinical Research, Duke University Medical Center, Durham, NC, USA
| | - Samantha L Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Oren J Becher
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA.,Department of Pediatrics, Northwestern University, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
10
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
11
|
VCAM1 Labels a Subpopulation of Neural Stem Cells in the Adult Hippocampus and Contributes to Spatial Memory. Stem Cell Reports 2021; 14:1093-1106. [PMID: 32521248 PMCID: PMC7355157 DOI: 10.1016/j.stemcr.2020.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Active neural stem cells (aNSCs) and quiescent neural stem cells (qNSCs) are two distinct subpopulations found in the adult hippocampal dentate gyrus (DG). However, to date, no cell surface marker has been established to identify and profile qNSCs in the adult hippocampus. Here, we identified expression of vascular cell adhesion molecule 1 (VCAM1) on the cell surface of NSCs, through which we identified a previously unrecognized subpopulation of NSCs in the adult mouse DG. Interestingly, most VCAM1-expressing NSCs were largely quiescent. By injecting virus into Ai14 reporter mice to conduct lineage tracing in the adult DG, we confirmed that VCAM1-expressing cells were multipotent and capable of generating neurons and astrocytes. Furthermore, depletion of Vcam1 during the embryonic or adult stage impaired spatial learning and memory in mice, accompanied by a reduced number of radial glial-like cells and proliferating NSCs in the subgranular zone of Vcam1 knockout mice.
Collapse
|
12
|
Manganas LN, Durá I, Osenberg S, Semerci F, Tosun M, Mishra R, Parkitny L, Encinas JM, Maletic-Savatic M. BASP1 labels neural stem cells in the neurogenic niches of mammalian brain. Sci Rep 2021; 11:5546. [PMID: 33692421 PMCID: PMC7970918 DOI: 10.1038/s41598-021-85129-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/04/2021] [Indexed: 11/08/2022] Open
Abstract
The mechanisms responsible for determining neural stem cell fate are numerous and complex. To begin to identify the specific components involved in these processes, we generated several mouse neural stem cell (NSC) antibodies against cultured mouse embryonic neurospheres. Our immunohistochemical data showed that the NSC-6 antibody recognized NSCs in the developing and postnatal murine brains as well as in human brain organoids. Mass spectrometry revealed the identity of the NSC-6 epitope as brain abundant, membrane-attached signal protein 1 (BASP1), a signaling protein that plays a key role in neurite outgrowth and plasticity. Western blot analysis using the NSC-6 antibody demonstrated multiple BASP1 isoforms with varying degrees of expression and correlating with distinct developmental stages. Herein, we describe the expression of BASP1 in NSCs in the developing and postnatal mammalian brains and human brain organoids, and demonstrate that the NSC-6 antibody may be a useful marker of these cells.
Collapse
Affiliation(s)
- Louis N Manganas
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA.
- Department of Neurology, Stony Brook University Medical Center, Health Sciences Center T-12, room 020, Stony Brook, NY, 11794, USA.
| | - Irene Durá
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sivan Osenberg
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Fatih Semerci
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Mehmet Tosun
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Rachana Mishra
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Luke Parkitny
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Juan M Encinas
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- The Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mirjana Maletic-Savatic
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA.
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Departments of Pediatrics, Neurology, and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children Hospital, 1250 Moursund St., Rm 1250, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Sharif A, Fitzsimons CP, Lucassen PJ. Neurogenesis in the adult hypothalamus: A distinct form of structural plasticity involved in metabolic and circadian regulation, with potential relevance for human pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:125-140. [PMID: 34225958 DOI: 10.1016/b978-0-12-819975-6.00006-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adult brain harbors specific niches where stem cells undergo substantial plasticity and, in some regions, generate new neurons throughout life. This phenomenon is well known in the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus and has recently also been described in the hypothalamus of several rodent and primate species. After a brief overview of preclinical studies illustrating the pathophysiologic significance of hypothalamic neurogenesis in the control of energy metabolism, reproduction, thermoregulation, sleep, and aging, we review current literature on the neurogenic niche of the human hypothalamus. A comparison of the organization of the niche between humans and rodents highlights some common features, but also substantial differences, e.g., in the distribution and extent of the hypothalamic neural stem cells. Exploring the full dynamics of hypothalamic neurogenesis in humans raises a formidable challenge however, given among others, inherent technical limitations. We close with discussing possible functional role(s) of the human hypothalamic niche, and how gaining more insights into this form of plasticity could be relevant for a better understanding of pathologies associated with disturbed hypothalamic function.
Collapse
Affiliation(s)
- Ariane Sharif
- Lille Neuroscience & Cognition, University of Lille, Lille, France.
| | - Carlos P Fitzsimons
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Zhao X, van Praag H. Steps towards standardized quantification of adult neurogenesis. Nat Commun 2020; 11:4275. [PMID: 32848155 PMCID: PMC7450090 DOI: 10.1038/s41467-020-18046-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
New neurons are generated in adult mammals. Adult hippocampal neurogenesis is considered to play an important role in cognition and mental health. The number and properties of newly born neurons are regulatable by a broad range of physiological and pathological conditions. To begin to understand the underlying cellular mechanisms and functional relevance of adult neurogenesis, many studies rely on quantification of adult-born neurons. However, lack of standardized methods to quantify new neurons is impeding research reproducibility across laboratories. Here, we review the importance of stereology, and propose why and how it should be applied to the study of adult neurogenesis.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center and University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Henriette van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
15
|
Seki T. Understanding the Real State of Human Adult Hippocampal Neurogenesis From Studies of Rodents and Non-human Primates. Front Neurosci 2020; 14:839. [PMID: 32848586 PMCID: PMC7432251 DOI: 10.3389/fnins.2020.00839] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The concept of adult hippocampal neurogenesis (AHN) has been widely accepted, and a large number of studies have been performed in rodents using modern experimental techniques, which have clarified the nature and developmental processes of adult neural stem/progenitor cells, the functions of AHN, such as memory and learning, and its association with neural diseases. However, a fundamental problem is that it remains unclear as to what extent AHN actually occurs in humans. The answer to this is indispensable when physiological and pathological functions of human AHN are deduced from studies of rodent AHN, but there are controversial data on the extent of human AHN. In this review, studies on AHN performed in rodents and humans will be briefly reviewed, followed by a discussion of the studies in non-human primates. Then, how data of rodent and non-human primate AHN should be applied for understanding human AHN will be discussed.
Collapse
Affiliation(s)
- Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
16
|
Yamakawa M, Santosa SM, Chawla N, Ivakhnitskaia E, Del Pino M, Giakas S, Nadel A, Bontu S, Tambe A, Guo K, Han KY, Cortina MS, Yu C, Rosenblatt MI, Chang JH, Azar DT. Transgenic models for investigating the nervous system: Currently available neurofluorescent reporters and potential neuronal markers. Biochim Biophys Acta Gen Subj 2020; 1864:129595. [PMID: 32173376 DOI: 10.1016/j.bbagen.2020.129595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Recombinant DNA technologies have enabled the development of transgenic animal models for use in studying a myriad of diseases and biological states. By placing fluorescent reporters under the direct regulation of the promoter region of specific marker proteins, these models can localize and characterize very specific cell types. One important application of transgenic species is the study of the cytoarchitecture of the nervous system. Neurofluorescent reporters can be used to study the structural patterns of nerves in the central or peripheral nervous system in vivo, as well as phenomena involving embryologic or adult neurogenesis, injury, degeneration, and recovery. Furthermore, crucial molecular factors can also be screened via the transgenic approach, which may eventually play a major role in the development of therapeutic strategies against diseases like Alzheimer's or Parkinson's. This review describes currently available reporters and their uses in the literature as well as potential neural markers that can be leveraged to create additional, robust transgenic models for future studies.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Matthew Del Pino
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sebastian Giakas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arnold Nadel
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Sneha Bontu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Arjun Tambe
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Maria Soledad Cortina
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
17
|
Poor Concordance of Floxed Sequence Recombination in Single Neural Stem Cells: Implications for Cell Autonomous Studies. eNeuro 2020; 7:ENEURO.0470-19.2020. [PMID: 32079584 PMCID: PMC7086402 DOI: 10.1523/eneuro.0470-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 11/24/2022] Open
Abstract
To manipulate target gene function in specific adult cell populations, tamoxifen (TAM)-dependent CreERT2 is widely used to drive inducible, site-specific recombination of loxP flanked sequences. In studies of cell autonomous target gene function, it is common practice to combine these CreERT2-lox systems with a ubiquitously expressed stop-floxed fluorescent reporter gene to identify single cells supposedly undergoing target gene recombination. Here, we studied the reliability of using Cre-induced recombination of one gene to predict recombination in another gene at the single-cell level in adult hippocampal neural stem and progenitor cells (NSPCs). Using both probabilistic predictions in a generic experimental paradigm, as well as a mouse model with two separate stop-floxed reporters plus a Nestin promoter-driven CreERT2, we found that, in individual cells, recombination of one gene was a poor predictor of recombination in another. This poor concordance in floxed sequence recombination across genes suggests that use of stop-floxed reporters to investigate cell autonomous gene function may not be universally reliable and could lead to false conclusions.
Collapse
|
18
|
Chen K, Baluya D, Tosun M, Li F, Maletic-Savatic M. Imaging Mass Spectrometry: A New Tool to Assess Molecular Underpinnings of Neurodegeneration. Metabolites 2019; 9:E135. [PMID: 31295847 PMCID: PMC6681116 DOI: 10.3390/metabo9070135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are prevalent and devastating. While extensive research has been done over the past decades, we are still far from comprehensively understanding what causes neurodegeneration and how we can prevent it or reverse it. Recently, systems biology approaches have led to a holistic examination of the interactions between genome, metabolome, and the environment, in order to shed new light on neurodegenerative pathogenesis. One of the new technologies that has emerged to facilitate such studies is imaging mass spectrometry (IMS). With its ability to map a wide range of small molecules with high spatial resolution, coupled with the ability to quantify them at once, without the need for a priori labeling, IMS has taken center stage in current research efforts in elucidating the role of the metabolome in driving neurodegeneration. IMS has already proven to be effective in investigating the lipidome and the proteome of various neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, multiple sclerosis, and amyotrophic lateral sclerosis. Here, we review the IMS platform for capturing biological snapshots of the metabolic state to shed more light on the molecular mechanisms of the diseased brain.
Collapse
Affiliation(s)
- Kevin Chen
- Department of Biosciences, Rice University, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Dodge Baluya
- Chemical Imaging Research Core at MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Mehmet Tosun
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Feng Li
- Center for Drug Discovery and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
- Department of Neuroscience and Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Abstract
Over the past decade, advances in systems biology or 'omics techniques have enabled unprecedented insights into the biological processes that occur in cells, tissues, and on the organism level. One of these technologies is the metabolomics, which examines the whole content of the metabolites in a given sample. In a biological system, a stem cell for instance, there are thousands of single components, such as genes, RNA, proteins, and metabolites. These multiple molecular species interact with each other and these interactions may change over the life-time of a cell or in response to specific stimuli, adding to the complexity of the system. Using metabolomics, we can obtain an instantaneous snapshot of the biological status of a cell, tissue, or organism and gain insights on the pattern(s) of numerous analytes, both known and unknown, that result because of a given biological condition. Here, we outline the main methods to study the metabolism of stem cells, including a relatively recent technology of mass spectrometry imaging. Given the abundant and increasing interest in stem cell metabolism in both physiological and pathological conditions, we hope that this chapter will provide incentives for more research in these areas to ultimately reach wide network of applications in biomedical, pharmaceutical, and nutritional research and clinical medicine.
Collapse
|
20
|
Heterogeneity of Stem Cells in the Hippocampus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:31-53. [DOI: 10.1007/978-3-030-24108-7_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Custodio RJP, Botanas CJ, de la Peña JB, Dela Peña IJ, Kim M, Sayson LV, Abiero A, Ryoo ZY, Kim BN, Kim HJ, Cheong JH. Overexpression of the Thyroid Hormone-Responsive (THRSP) Gene in the Striatum Leads to the Development of Inattentive-like Phenotype in Mice. Neuroscience 2018; 390:141-150. [PMID: 30138648 DOI: 10.1016/j.neuroscience.2018.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/03/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects 8-12% of children globally. Factor analyses have divided ADHD symptoms into two domains: inattention and a combination of hyperactivity and impulsivity. The identification of domain-specific genetic risk variants may help uncover potential genetic mechanisms underlying ADHD. We have previously identified that thyroid hormone-responsive (THRSP) gene expression is upregulated in spontaneously hypertensive rats (SHR/NCrl) and Wistar-Kyoto (WKY/NCrl) rats which exhibited inattention behavior. Thus, we established a line of THRSP overexpressing (OE) mice and assessed their behavior through an array of behavioral tests. The gene and protein overexpression of THRSP in the striatum (STR) was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The THRSP OE mice exhibited inattention in the novel-object recognition and Y-maze test, but not hyperactivity in the open-field test and impulsivity in the cliff-avoidance and delay-discounting task. We have also found that expression of dopamine-related genes (dopamine transporter, tyrosine hydroxylase, and dopamine D1 and D2 receptors) in the STR increased. Treatment with methylphenidate (5 mg/kg), the most commonly used medication for ADHD, improved attention and normalized expression levels of dopamine-related genes in THRSP OE mice. Our findings suggest that THRSP plays a role in the inattention phenotype of ADHD and that the THRSP OE mice may be used as an animal model to elucidate the genetic mechanisms of the disorder.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea; Department of Biological Sciences, University of Texas Dallas, Richardson, TX 75080, United States
| | - Irene Joy Dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Mikyung Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Arvie Abiero
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu 41566, Republic of Korea
| | - Bung-Nyun Kim
- Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea.
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea.
| |
Collapse
|
22
|
Hua R, Yu S, Liu M, Li H. A PCR-Based Method for RNA Probes and Applications in Neuroscience. Front Neurosci 2018; 12:266. [PMID: 29770110 PMCID: PMC5942160 DOI: 10.3389/fnins.2018.00266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/06/2018] [Indexed: 11/18/2022] Open
Abstract
In situ hybridization (ISH) is a powerful technique that is used to detect the localization of specific nucleic acid sequences for understanding the organization, regulation, and function of genes. However, in most cases, RNA probes are obtained by in vitro transcription from plasmids containing specific promoter elements and mRNA-specific cDNA. Probes originating from plasmid vectors are time-consuming and not suitable for the rapid gene mapping. Here, we introduce a simplified method to prepare digoxigenin (DIG)-labeled non-radioactive RNA probes based on polymerase chain reaction (PCR) amplification and applications in free-floating mouse brain sections. Employing a transgenic reporter line, we investigate the expression of the somatostatin (SST) mRNA in the adult mouse brain. The method can be applied to identify the colocalization of SST mRNA and proteins including corticotrophin-releasing hormone (CRH) and protein kinase C delta type (PKC-δ) using double immunofluorescence, which is useful for understanding the organization of complex brain nuclei. Moreover, the method can also be incorporated with retrograde tracing to visualize the functional connection in the neural circuitry. Briefly, the PCR-based method for non-radioactive RNA probes is a useful tool that can be substantially utilized in neuroscience studies.
Collapse
Affiliation(s)
- Ruifang Hua
- Ministry of Education Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Shanshan Yu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mugen Liu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haohong Li
- Ministry of Education Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Pellegrino G, Trubert C, Terrien J, Pifferi F, Leroy D, Loyens A, Migaud M, Baroncini M, Maurage CA, Fontaine C, Prévot V, Sharif A. A comparative study of the neural stem cell niche in the adult hypothalamus of human, mouse, rat and gray mouse lemur (Microcebus murinus). J Comp Neurol 2018; 526:1419-1443. [PMID: 29230807 DOI: 10.1002/cne.24376] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
The adult brain contains niches of neural stem cells that continuously add new neurons to selected circuits throughout life. Two niches have been extensively studied in various mammalian species including humans, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. Recently, studies conducted mainly in rodents have identified a third neurogenic niche in the adult hypothalamus. In order to evaluate whether a neural stem cell niche also exists in the adult hypothalamus in humans, we performed multiple immunofluorescence labeling to assess the expression of a panel of neural stem/progenitor cell (NPC) markers (Sox2, nestin, vimentin, GLAST, GFAP) in the human hypothalamus and compared them with the mouse, rat and a non-human primate species, the gray mouse lemur (Microcebus murinus). Our results show that the adult human hypothalamus contains four distinct populations of cells that express the five NPC markers: (a) a ribbon of small stellate cells that lines the third ventricular wall behind a hypocellular gap, similar to that found along the lateral ventricles, (b) ependymal cells, (c) tanycytes, which line the floor of the third ventricle in the tuberal region, and (d) a population of small stellate cells in the suprachiasmatic nucleus. In the mouse, rat and mouse lemur hypothalamus, co-expression of NPC markers is primarily restricted to tanycytes, and these species lack a ventricular ribbon. Our work thus identifies four cell populations with the antigenic profile of NPCs in the adult human hypothalamus, of which three appear specific to humans.
Collapse
Affiliation(s)
- Giuliana Pellegrino
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Claire Trubert
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Jérémy Terrien
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Fabien Pifferi
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Danièle Leroy
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France
| | - Anne Loyens
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France
| | - Martine Migaud
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France; Université de Tours, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), Nouzilly, France
| | - Marc Baroncini
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France.,Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Claude-Alain Maurage
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France.,Department of Neuropathology, Lille University Hospital, Lille, France
| | - Christian Fontaine
- University of Lille, School of Medicine, Lille Cedex, France.,Laboratory of Anatomy, Lille University Hospital, Lille, France
| | - Vincent Prévot
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Ariane Sharif
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| |
Collapse
|
24
|
Gandy K, Kim S, Sharp C, Dindo L, Maletic-Savatic M, Calarge C. Pattern Separation: A Potential Marker of Impaired Hippocampal Adult Neurogenesis in Major Depressive Disorder. Front Neurosci 2017; 11:571. [PMID: 29123464 PMCID: PMC5662616 DOI: 10.3389/fnins.2017.00571] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/29/2017] [Indexed: 12/26/2022] Open
Abstract
Adult neurogenesis involves the generation of new neurons, particularly in the dentate gyrus of the hippocampus. Decreased hippocampal neurogenesis has been implicated in both animal models of depression and in patients with major depressive disorder (MDD), despite some inconsistency in the literature. Here, we build upon current models to generate a new testable hypothesis, linking impaired neurogenesis to downstream psychological outcomes commonly observed in MDD. We contend that disruption in adult neurogenesis impairs pattern separation, a hippocampus-dependent function requiring the careful discrimination and storage of highly similar, but not identical, sensory inputs. This, in turn, can affect downstream processing and response selection, of relevance to emotional wellbeing. Specifically, disrupted pattern separation leads to misperceived stimuli (i.e., stimulus confusion), triggering the selection and deployment of established responses inappropriate for the actual stimuli. We speculate that this may be akin to activation of automatic thoughts, described in the Cognitive Behavior Theory of MDD. Similarly, this impaired ability to discriminate information at a fundamental sensory processing level (e.g., impaired pattern separation) could underlie impaired psychological flexibility, a core component of Acceptance and Commitment Therapy of MDD. We propose that research is needed to test this model by examining the relationship between cognitive functioning (e.g., pattern separation ability), psychological processes (e.g., perseveration and psychological inflexibility), and neurogenesis, taking advantage of emerging magnetic resonance spectroscopy-based imaging that measures neurogenesis in-vivo.
Collapse
Affiliation(s)
- Kellen Gandy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Sohye Kim
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
- Department of Obstetrics and Gynecology, Baylor College of Medicine and Center for Reproductive Psychiatry, Pavilion for Women, Texas Children's Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Carla Sharp
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Lilian Dindo
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
- Dan and Jan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Chadi Calarge
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
25
|
Li B, Sierra A, Deudero JJ, Semerci F, Laitman A, Kimmel M, Maletic-Savatic M. Multitype Bellman-Harris branching model provides biological predictors of early stages of adult hippocampal neurogenesis. BMC SYSTEMS BIOLOGY 2017; 11:90. [PMID: 28984196 PMCID: PMC5629620 DOI: 10.1186/s12918-017-0468-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adult hippocampal neurogenesis, the process of formation of new neurons, occurs throughout life in the hippocampus. New neurons have been associated with learning and memory as well as mood control, and impaired neurogenesis has been linked to depression, schizophrenia, autism and cognitive decline during aging. Thus, understanding the biological properties of adult neurogenesis has important implications for human health. Computational models of neurogenesis have attempted to derive biologically relevant knowledge, hard to achieve using experimentation. However, the majority of the computational studies have predominantly focused on the late stages of neurogenesis, when newborn neurons integrate into hippocampal circuitry. Little is known about the early stages that regulate proliferation, differentiation, and survival of neural stem cells and their immediate progeny. RESULTS Here, based on the branching process theory and biological evidence, we developed a computational model that represents the early stage hippocampal neurogenic cascade and allows prediction of the overall efficiency of neurogenesis in both normal and diseased conditions. Using this stochastic model with a simulation program, we derived the equilibrium distribution of cell population and simulated the progression of the neurogenic cascade. Using BrdU pulse-and-chase experiment to label proliferating cells and their progeny in vivo, we quantified labeled newborn cells and fit the model on the experimental data. Our simulation results reveal unknown but meaningful biological parameters, among which the most critical ones are apoptotic rates at different stages of the neurogenic cascade: apoptotic rates reach maximum at the stage of neuroblasts; the probability of neuroprogenitor cell renewal is low; the neuroblast stage has the highest temporal variance within the cell types of the neurogenic cascade, while the apoptotic stage is short. CONCLUSION At a practical level, the stochastic model and simulation framework we developed will enable us to predict overall efficiency of hippocampal neurogenesis in both normal and diseased conditions. It can also generate predictions of the behavior of the neurogenic system under perturbations such as increase or decrease of apoptosis due to disease or treatment.
Collapse
Affiliation(s)
- Biao Li
- Departments of Bioengineering and Statistics, Rice University, Houston, Texas, 77005 USA
| | - Amanda Sierra
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030 USA
| | - Juan Jose Deudero
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030 USA
| | - Fatih Semerci
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - Andrew Laitman
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - Marek Kimmel
- Departments of Bioengineering and Statistics, Rice University, Houston, Texas, 77005 USA
- Systems Engineering Group, Silesian University of Technology, Gliwice, 44–100 Poland
- Department of Statistics, Rice University, Houston, Texas, 77005 USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, 77030 USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, 77030 USA
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, 77030 USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, 77030 USA
| |
Collapse
|
26
|
Semerci F, Choi WTS, Bajic A, Thakkar A, Encinas JM, Depreux F, Segil N, Groves AK, Maletic-Savatic M. Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance. eLife 2017; 6. [PMID: 28699891 PMCID: PMC5531831 DOI: 10.7554/elife.24660] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe (Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the ‘mother’ cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate. DOI:http://dx.doi.org/10.7554/eLife.24660.001
Collapse
Affiliation(s)
- Fatih Semerci
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - William Tin-Shing Choi
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, United States
| | - Aleksandar Bajic
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Aarohi Thakkar
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States
| | - Juan Manuel Encinas
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Achucarro Basque Center for Neuroscience and Ikerbasque, The Basque Science Foundation, Bizkaia, Spain
| | - Frederic Depreux
- Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, Chicago, United States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, United States.,Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, United States
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Mirjana Maletic-Savatic
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
27
|
Abstract
Ever since the discovery of neural stem cells in the mammalian brain, the possibility of brain tissue regeneration has captured the minds of scientists, clinicians, and the public. Neural stem cells have been envisioned as a source of donor cells for transplantation and vectors for the delivery of gene therapy. Over the past decade, many researchers have contributed to characterizing these cells and their lineages, providing the foundation for their utilization as therapeutic devices. In a new study, Azim and colleagues took a different approach: using pharmacogenomics to focus on neural stem cell lineage, they identified specific compounds that can direct neural stem cell fate toward a specific lineage in vivo, both in physiological and pathological conditions. Their work opens new avenues for treatment of neurodegenerative and demyelinating disorders.
Collapse
Affiliation(s)
- Mirjana Maletic-Savatic
- Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|