1
|
Nicolini LF, Oliveira RC, Ribeiro M, Stoffel M, Markert B, Kobbe P, Hildebrand F, Trobisch P, Simões MS, de Mello Roesler CR, Fancello EA. Tether pre-tension within vertebral body tethering reduces motion of the spine and influences coupled motion: a finite element analysis. Comput Biol Med 2024; 169:107851. [PMID: 38113683 DOI: 10.1016/j.compbiomed.2023.107851] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Anterior Vertebral Body Tethering (VBT) is a novel fusionless treatment option for selected adolescent idiopathic scoliosis patients which is gaining widespread interest. The primary objective of this study is to investigate the effects of tether pre-tension within VBT on the biomechanics of the spine including sagittal and transverse parameters as well as primary motion, coupled motion, and stresses acting on the L2 superior endplate. For that purpose, we used a calibrated and validated Finite Element model of the L1-L2 spine. The VBT instrumentation was inserted on the left side of the L1-L2 segment with different cord pre-tensions and submitted to an external pure moment of 6 Nm in different directions. The range of motion (ROM) for the instrumented spine was measured from the initial post-VBT position. The magnitudes of the ROM of the native spine and VBT-instrumented with pre-tensions of 100 N, 200 N, and 300 N were, respectively, 3.29°, 2.35°, 1.90° and 1.61° in extension, 3.30°, 3.46°, 2.79°, and 2.17° in flexion, 2.11°, 1.67°, 1.33° and 1.06° in right axial rotation, and 2.10°, 1.88°, 1.48° and 1.16° in left axial rotation. During flexion-extension, an insignificant coupled lateral bending motion was observed in the native spine. However, VBT instrumentation with pre-tensions of 100 N, 200 N, and 300 N generated coupled right lateral bending of 0.85°, 0.81°, and 0.71° during extension and coupled left lateral bending of 0.32°, 0.24°, and 0.19° during flexion, respectively. During lateral bending, a coupled extension motion of 0.33-0.40° is observed in the native spine, but VBT instrumentation with pre-tensions of 100 N, 200 N, and 300 N generates coupled flexion of 0.67°, 0.58°, and 0.42° during left (side of the implant) lateral bending and coupled extension of 1.28°, 1.07°, and 0.87° during right lateral bending, respectively. Therefore, vertebral body tethering generates coupled motion. Tether pre-tension within vertebral body tethering reduces the motion of the spine.
Collapse
Affiliation(s)
- Luis Fernando Nicolini
- Group of Analysis and Mechanical Design - GRANTE, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil; Mechanical and Aerospace Technology Laboratory (NUMAE), Dep. of Mechanical Engineering, Federal University of Santa Maria, Brazil.
| | - Rafael Carreira Oliveira
- Group of Analysis and Mechanical Design - GRANTE, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil
| | - Marx Ribeiro
- Group of Analysis and Mechanical Design - GRANTE, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil; Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Marcus Stoffel
- Institute of General Mechanics (IAM), RWTH Aachen University, Germany
| | - Bernd Markert
- Institute of General Mechanics (IAM), RWTH Aachen University, Germany
| | - Philipp Kobbe
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | | | - Marcelo Simoni Simões
- Biomechanical Engineering Laboratory - LEBm, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil
| | - Carlos Rodrigo de Mello Roesler
- Group of Analysis and Mechanical Design - GRANTE, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil; Biomechanical Engineering Laboratory - LEBm, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil
| | - Eduardo Alberto Fancello
- Group of Analysis and Mechanical Design - GRANTE, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil; Biomechanical Engineering Laboratory - LEBm, Dep. of Mechanical Engineering, Federal University of Santa Catarina, Brazil
| |
Collapse
|
2
|
Alfraihat A, Samdani AF, Balasubramanian S. Predicting radiographic outcomes of vertebral body tethering in adolescent idiopathic scoliosis patients using machine learning. PLoS One 2024; 19:e0296739. [PMID: 38215180 PMCID: PMC10786366 DOI: 10.1371/journal.pone.0296739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024] Open
Abstract
Anterior Vertebral Body Tethering (AVBT) is a growing alternative treatment for adolescent idiopathic scoliosis (AIS), offering an option besides spinal fusion. While AVBT aims to correct spinal deformity through growth correction, its outcomes have been mixed. To improve surgical outcomes, this study aimed to develop a machine learning-based tool to predict short- and midterm spinal curve correction in AIS patients who underwent AVBT surgery, using the most predictive clinical, radiographic, and surgical parameters. After institutional review board approval and based on inclusion criteria, 91 AIS patients who underwent AVBT surgery were selected from the Shriners Hospitals for Children, Philadelphia. For all patients, longitudinal standing (PA or AP, and lateral) and side bending spinal Radiographs were retrospectively obtained at six visits: preop and first standing, one year, two years, five years postop, and at the most recent follow-up. Demographic, radiographic, and surgical features associated with curve correction were collected. The sequential backward feature selection method was used to eliminate correlated features and to provide a rank-ordered list of the most predictive features of the AVBT correction. A Gradient Boosting Regressor (GBR) model was trained and tested using the selected features to predict the final correction of the curve in AIS patients. Eleven most predictive features were identified. The GBR model predicted the final Cobb angle with an average error of 6.3 ± 5.6 degrees. The model also provided a prediction interval, where 84% of the actual values were within the 90% prediction interval. A list of the most predictive features for AVBT curve correction was provided. The GBR model, trained on these features, predicted the final curve magnitude with a clinically acceptable margin of error. This model can be used as a clinical tool to plan AVBT surgical parameters and improve outcomes.
Collapse
Affiliation(s)
- Ausilah Alfraihat
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States of America
- Hashemite University, Zarqa, Jordan
| | - Amer F. Samdani
- Shriners Hospitals for Children, Philadelphia, PA, United States of America
| | - Sriram Balasubramanian
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States of America
| |
Collapse
|
3
|
Bojairami IE, Driscoll M. Coordination Between Trunk Muscles, Thoracolumbar Fascia, and Intra-Abdominal Pressure Toward Static Spine Stability. Spine (Phila Pa 1976) 2022; 47:E423-E431. [PMID: 34545044 DOI: 10.1097/brs.0000000000004223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Numerical in-silico human spine stability finite element analysis. OBJECTIVE The purpose of this study was to investigate the contribution of major torso tissues toward static spine stability, mainly the thoracolumbar fascia (TLF), abdominal wall with its intra-abdominal pressure (IAP), and spinal muscles inclusive of their intramuscular pressure. SUMMARY OF BACKGROUND DATA Given the numerous redundancies involved in the spine, current methodologies for assessing static spinal stability are limited to specific tissues and could lead to inconclusive results. A three-dimensional finite element model of the spine, with structured analysis of major torso tissues, allows for objective investigation of static spine stability. METHODS A novel previously fully validated spine model was employed. Major torso tissues, mainly the muscles, TLF, and IAP were individually, and in combinations, activated under a 350N external spine perturbation. The stability contribution exerted by these tissues, or their ability to restore the spine to the unperturbed position, was assessed in different case-scenarios. RESULTS Individual activations recorded significantly different stability contributions, with the highest being the TLF at 75%. Combined or synergistic activations showed an increase of up to 93% stability contribution when all tissues were simultaneously activated with a corresponding decrease in the tensile load exerted by the tissues themselves. CONCLUSION This investigation demonstrated torso tissues exhibiting different roles toward static spine stability. The TLF appeared able to dissipate and absorb excessive loads, the muscles acted as antagonistic to external perturbations, and the IAP played a role limiting movement. Furthermore, the different combinations explored suggested an optimized engagement and coordination between different tissues to achieve a specific task, while minimizing individual work.Level of Evidence: N/A.
Collapse
Affiliation(s)
- Ibrahim El Bojairami
- Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
4
|
Pei B, Lu D, Wu X, Xu Y, Ma C, Wu S. Effects of Growing Rod Technique with Different Surgical Modes and Growth Phases on the Treatment Outcome of Early Onset Scoliosis: A 3-D Finite Element Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042057. [PMID: 35206246 PMCID: PMC8872610 DOI: 10.3390/ijerph19042057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Early onset scoliosis (EOS) is emerging as a serious threat to children’s health and is the third largest threat to their health after myopia and obesity. At present, the growing rod technique (GRT), which allows patients to regain a well-balanced sagittal profile, is commonly considered as an invasive surgical procedure for the treatment of EOS. However, the risk of postoperative complications and instrumentation breakage remains high, which is mainly related to the choice of fixed mode. Several authors have studied primary stability and instrumentation loads, neglecting the mechanical transmission of the spinal long-segment model in different growth phases, which is fundamental to building a complete biomechanical environment. The present study aimed to investigate the kinematic and biomechanical properties that occur after GRT, across the long spinal structure and the posterior instrumentation, which are affected by unilateral or bilateral fixation. Accordingly, spinal segments (C6-S1) were loaded under flexion (Flex), extension (Ext), left lateral bending (LB), right lateral bending (RB), left torsion (LT), and right torsion (RT) using 11 established spinal models, which were from three growth phases. The stress distribution, spinal and intervertebral range of motion (ROM), counter torque of the vertebra, and bracing force on the rods were measured. The results showed that bilateral posterior fixation (BPF) is more stable than unilateral posterior fixation (UPF), at the expense of more compensations for the superior adjacent segment (SAS), especially when the superior fixed segment is closer to the head. Additionally, the bracing force of the instrumentation on the spine increases as the Cobb angle decreases. Accordingly, this biomechanical analysis provides theoretical suggestions for the selection of BPF or UPF and fixed segments in different growing phases.
Collapse
Affiliation(s)
- Baoqing Pei
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (B.P.); (D.L.); (Y.X.); (C.M.)
| | - Da Lu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (B.P.); (D.L.); (Y.X.); (C.M.)
| | - Xueqing Wu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (B.P.); (D.L.); (Y.X.); (C.M.)
- Correspondence: (X.W.); (S.W.)
| | - Yangyang Xu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (B.P.); (D.L.); (Y.X.); (C.M.)
| | - Chenghao Ma
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (B.P.); (D.L.); (Y.X.); (C.M.)
| | - Shuqin Wu
- School of Big Data and Information, Shanxi College of Technology, Shuozhou 036000, China
- Correspondence: (X.W.); (S.W.)
| |
Collapse
|
5
|
Mandel W, Oulbacha R, Roy-Beaudry M, Parent S, Kadoury S. Image-Guided Tethering Spine Surgery With Outcome Prediction Using Spatio-Temporal Dynamic Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:491-502. [PMID: 33048671 DOI: 10.1109/tmi.2020.3030741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent fusionless surgical techniques for corrective spine surgery such as Anterior Vertebral Body Growth Modulation (AVBGM) allow to treat mild to severe spinal deformations by tethering vertebral bodies together, helping to preserve lower back flexibility. Forecasting the outcome of AVBGM from skeletally immature patients remains elusive with several factors involved in corrective vertebral tethering, but could help orthopaedic surgeons plan and tailor AVBGM procedures prior to surgery. We introduce an intra-operative framework forecasting the outcomes during AVBGM surgery in scoliosis patients. The method is based on spatial-temporal corrective networks, which learns the similarity in segmental corrections between patients and integrates a long-term shifting mechanism designed to cope with timing differences in onset to surgery dates, between patients in the training set. The model captures dynamic geometric dependencies in scoliosis patients, ensuring long-term dependency with temporal dynamics in curve evolution and integrated features from inter-vertebral disks extracted from T2-w MRI. The loss function of the network introduces a regularization term based on learned group-average piecewise-geodesic path to ensure the generated corrective transformations are coherent with regards to the observed evolution of spine corrections at follow-up exams. The network was trained on 695 3D spine models and tested on 72 operative patients using a set of 3D spine reconstructions as inputs. The spatio-temporal network predicted outputs with errors of 1.8 ± 0.8mm in 3D anatomical landmarks, yielding geometries similar to ground-truth spine reconstructions obtained at one and two year follow-ups and with significant improvements to comparative deep learning and biomechanical models.
Collapse
|
6
|
Floman Y, El-Hawary R, Lonner BS, Betz RR, Arnin U. Vertebral growth modulation by posterior dynamic deformity correction device in skeletally immature patients with moderate adolescent idiopathic scoliosis. Spine Deform 2021; 9:149-153. [PMID: 32827087 PMCID: PMC7775858 DOI: 10.1007/s43390-020-00189-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/10/2020] [Indexed: 01/16/2023]
Abstract
STUDY DESIGN Retrospective, comparative, multicenter. INTRODUCTION Growth modulating spinal implants are used in the management of scoliosis such as anterior vertebral body tethering. A motion-sparing posterior device (PDDC) was recently approved for the treatment of moderate AIS. The purpose of this study was to determine if the PDDC can modulate growth in skeletally immature patients with AIS. METHODS From a database of patients treated with the PDDC over 4 years, we identified those who had a minimum of 2 years follow-up. Pre-operative and post-operative Cobb angles and coronal plane wedging of the apical vertebra were evaluated on standing full length radiographs. Independent sample t test and one-way ANOVA with post-hoc Tukey HSD analysis was used to compare three groups in varying skeletal maturity: Risser 0-1, Risser 2-3, and Risser 4-5. RESULTS 45 patients (14.2-years old, 11-17) were evaluated with a mean pre-op curve of 46° (35°-66°). The average preoperative major curve magnitude, of either Lenke 1 or 5 curve type, was similar among the three groups 47.6°, 46° and 41.5°. Deformity correction was similar in the three groups, with reduction to 26.4°, 20.4° and 26.2°, respectively, at final follow-up [p < 0.05]. Pre-op wedging 7.4° (3.8°-15°) was reduced after surgery to 5.7° (1°-15°) (p < 0.05). Of those patients, Risser 0-1 (n = 16) had preoperative wedging of 9.5° (6°-14.5°) that was reduced to 5.4° (1°-8°) postoperatively (p < 0.05); Risser 2-3 (n = 15) had pre-op 7.7° (4°-15°) vs. post-op 7.0° (3°-15°); Risser 4-5 (n = 14) had pre-op 4.8° (3.8°-6.5°) vs. post-op 4.7° (3.7°-6.5°). Delta Wedging in Risser 0-1 stage was significantly different than for Risser 2-3 and for Risser 4-5. CONCLUSION The posterior dynamic deformity correction device was able to modulate vertebral body wedging in skeletally immature patients with AIS. This was most evident in patients who were Risser 0-1. In contrast, curve correction was similar among the three groups. This finding lends support to the device's ability to modulate growth.
Collapse
Affiliation(s)
- Yizhar Floman
- Israel Spine Center, Assuta Hospital, 20 Habarzel, Tel Aviv, Israel.
| | - Ron El-Hawary
- grid.414870.e0000 0001 0351 6983Division of Orthopedic Surgery, IWK Health Center, University Ave, PO Box 9700, Halifax, NS 5850 B3K-6R8 Canada
| | - Baron S. Lonner
- grid.416167.3Mount Sinai Hospital, 1468 Madison Ave, New York, NY 10029 USA
| | - Randal R. Betz
- Institute for Spine and Scoliosis, 3100 Princeton Pike, Lawrenceville, NJ USA
| | - Uri Arnin
- ApiFix LTD, Kochav Yokneam Bldg, 1 Hacarmel street, Yokneam Ilit, Israel
| |
Collapse
|
7
|
Thoracoscopic Vertebral Body Tethering for Adolescent Idiopathic Scoliosis: Follow-up Curve Behavior According to Sanders Skeletal Maturity Staging. Spine (Phila Pa 1976) 2020; 45:E1483-E1492. [PMID: 32756290 DOI: 10.1097/brs.0000000000003643] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective analysis of prospectively collected data. OBJECTIVE To report the follow-up curve behaviors in different Sanders staging groups. SUMMARY OF BACKGROUND DATA Vertebral body tethering (VBT) is a growth modulation technique that allows gradual spontaneous follow-up curve correction as the patient grows. There is a lack of scientific evidence regarding appropriate patient selection and timing of implantation. METHODS Patients were grouped into five as: Sanders 1, 2, 3, 4-5, and 6-7. Data were collected preoperatively, at the day before discharge, and at each follow-up. Outcome measures were pulmonary and mechanical complications, readmission, and reoperation rates. Demographic, perioperative, clinical, radiographic, and complication data were compared using Fisher-Freeman-Halton exact tests for categorical variables and Kruskal-Wallis tests for the continuous variables. RESULTS Thirty-one (29 F, 2 M) consecutive patients with a minimum of 12 months of follow-up were included. The mean age at surgery was 12.1 (10-14). The mean follow-up was 27.1 (12-62) months. The mean preoperative main thoracic curve magnitude was 47° ± 7.6°. For all curves, preoperative and first erect curve magnitudes, bending flexibility, and operative correction percentages were similar between groups (for all comparisons, P > 0.05). The median height gained during follow-up was different between groups (P < 0.001), which was reflected into median curve correction during follow-up. Total curve correction percentage was different between groups (P = 0.009). Four (12.9%) patients had pulmonary and six (19.4%) had mechanical complications. One (3.2%) patient required readmission and two (6.5%) required reoperation. Occurrence of pulmonary complications was similar in Sanders groups (P = 0.804), while mechanical complications and overcorrection was significantly higher in Sanders 2 patients (P = 0.002 and P = 0.018). CONCLUSION Follow-up curve behavior after VBT is different in patients having different Sanders stages. Sanders 2 patients experienced more overcorrection, thus timing and/or correction should be adjusted, since Sanders 3, 4, and 5 patients displayed a lesser risk of mechanical complications. LEVEL OF EVIDENCE 3.
Collapse
|
8
|
Lalande V, Villemure I, Parent S, Aubin CÉ. Induced pressures on the epiphyseal growth plate with non segmental anterior spine tethering. Spine Deform 2020; 8:585-589. [PMID: 32096137 DOI: 10.1007/s43390-020-00070-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
Abstract
STUDY DESIGN Experimental biomechanical study of pressures exerted on the epiphyseal growth plates (GP) in tethered porcine cadaveric spines. OBJECTIVES To experimentally measure the pressure exerted on the vertebral end plates of a tethered porcine spine model. Flexible spine tethering is a novel fusionless surgical technique that aims to correct scoliotic deformities based on growth modulation due to the pressure exerted on vertebral body epiphyseal GP. The applied pressure resulting from spine tethering remains not well documented. METHODS The ligamentous thoracic segment (T1-T14) of four 3-months old Duroc Landrace pigs (female; 22 kg, range: 18-27 kg) was positioned in lateral decubitus in a custom-made stand. Vertebra T14 was clamped but the remaining spine was free to slide horizontally. For every specimen, six configurations were tested: three or five instrumented motion segments (T5-T10 or T7-T10) with applied compression of 22, 44 or 66 N. The pressure generated on the GPs in the tethered side was measured with a thin force sensor slid either at the proximal, apex or distal levels. The data were analyzed with an ANOVA. RESULTS The pressure was significantly different between three and five instrumented motion segments (averages of 0.76 MPa ± 0.03 and 0.60 MPa ± 0.03, respectively; p < 0.05), but the pressure exerted on each GP along the instrumented spine was not significantly different for a given number of instrumented levels. The pressure was linearly correlated to the tether tension. CONCLUSIONS Non segmental anterior spine tethering induced similar pressures on every instrumented level regardless of the number of instrumented levels, with 21% lesser pressures with 5 motion segments. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Viviane Lalande
- Polytechnique Montréal, Montreal, Canada.,CHU Sainte-Justine, Montreal, Canada
| | - Isabelle Villemure
- Polytechnique Montréal, Montreal, Canada.,CHU Sainte-Justine, Montreal, Canada
| | - Stefan Parent
- CHU Sainte-Justine, Montreal, Canada.,Université de Montréal, Montreal, Canada
| | - Carl-Éric Aubin
- Polytechnique Montréal, Montreal, Canada. .,CHU Sainte-Justine, Montreal, Canada. .,Université de Montréal, Montreal, Canada.
| |
Collapse
|
9
|
Murray E, Tung R, Sherman A, Schwend RM. Continued vertebral body growth in patients with juvenile idiopathic scoliosis following vertebral body stapling. Spine Deform 2020; 8:221-226. [PMID: 32026438 DOI: 10.1007/s43390-019-00019-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/05/2019] [Indexed: 11/30/2022]
Abstract
STUDY DESIGN Retrospective case series. OBJECTIVE To quantitatively measure the rate of growth of vertebral bodies in juvenile idiopathic scoliosis (JIS) treated with vertebral body stapling (VBS). VBS has been suggested to be a safe and effective method for modulating the growth of the young scoliotic spine, but few long-term studies have examined its efficacy. METHODS Seven patients with JIS 11 years of age or younger underwent VBS with a minimum 6-year follow-up. Vertebral body height on the unstapled and stapled aspects of the curve was measured from initial and final postoperative radiographs and converted into rate of growth per year. Known staple dimensions were used to standardize the measurements between radiographs. Interstaple distance was measured to demonstrate continued growth of the spine. Adjacent vertebral bodies without instrumentation served as an internal control of growth. Each vertebral body (n = 35) was analyzed as an individual experimental unit. RESULTS The average rate of growth was 0.86 mm/year (standard deviation [SD] 0.44, 95% confidence interval [CI] 0.71-1.0) per vertebral body on the stapled side and 0.83 mm/year (SD 0.46, 95% CI 0.67-0.98) per vertebral body on the unstapled side of the vertebral body. The adjacent vertebral body segments grew at a rate of 0.91 mm/year (SD 0.42, 95% CI 0.66-1.15) on the stapled side and 0.99 mm/year (SD 0.66, 95% CI 0.61-1.37) on the unstapled side, p < 0.01. The distance between staples increased significantly from 3.0 mm (SD 2.0, 95% CI 2.3-3.6) to 8.4 mm (SD 2.4, 95% CI 7.7-9.3). CONCLUSIONS Vertebral body growth in the presence of VBS occurred at a similar rate on the stapled and unstapled sides of the curve. The high standard deviation of instrumented segment growth further supports the conclusion that VBS is not a reliable method of growth modulation in the young scoliotic spine. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Erin Murray
- University of Missouri-Kansas City, 5100 Rockhill Rd, Kansas City, MO, 64110, USA
| | - Robert Tung
- University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Ashley Sherman
- Orthopaedics and Pediatrics, Children's Mercy Hospital, 2401 Gillham Road, 2nd floor Annex, Kansas City, MO, 64108, USA
| | - Richard M Schwend
- Orthopaedics and Pediatrics, Children's Mercy Hospital, 2401 Gillham Road, 2nd floor Annex, Kansas City, MO, 64108, USA.
| |
Collapse
|
10
|
Lalande V, Villemure I, Vonthron M, Parent S, Aubin CÉ. Cyclically controlled vertebral body tethering for scoliosis: an in vivo verification in a pig model of the pressure exerted on vertebral end plates. Spine Deform 2020; 8:39-44. [PMID: 31981151 DOI: 10.1007/s43390-019-00021-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/22/2019] [Indexed: 11/29/2022]
Abstract
STUDY DESIGN Experimental in vivo study of the pressure exerted on the spine of a pig by a new cyclic anterior vertebral body tethering (AVBT) prototype. OBJECTIVES To evaluate the relationship between the tether tension and the pressures transmitted onto the vertebral end plates by a cyclic AVBT prototype. AVBT is a recent surgical technique for the treatment of pediatric scoliosis that compresses the convex side of the spine with a sustained tension, to modulate the growth to progressively correct the deformity over time. Previous studies demonstrated that cyclic compression has similar growth modulation capacity but with less detrimental effects on the integrity of the discs and growth plates. METHODS A 3-month-old healthy Duroc pig was anesthetized and a lateral thoracotomy was performed. The T7-T10 segment was instrumented and compressed during 50 s with the load oscillating (0.2 Hz) from + 30 to - 30% of the following mean tensions: 29, 35, 40, 44, and 49 N. The pressure exerted on T9 superior vertebral end plate was monitored during the cyclic loading. Three repetitions of each test were performed. RESULTS The resulting mean pressure exerted on the vertebral end plate was linearly correlated with the mean tether tension (r2 = 0.86). Each cycle translated in a hysteresis profile of the measured pressure and tension, with amplitudes varying between ± 11.5 and ± 29.9%. CONCLUSIONS This experimental study documented the relationship between the tether tension and the pressure. This study confirmed the feasibility of cyclic AVBT principle to transfer varying pressures on the vertebral end plates, which is intended to control vertebral growth, while keeping the spine flexibility and preserving the health of soft tissues such as the intervertebral discs and the growth plate but remained to be further verified. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Viviane Lalande
- Polytechnique Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.,CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Isabelle Villemure
- Polytechnique Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada.,CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Manuel Vonthron
- Polytechnique Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada
| | - Stefan Parent
- CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Université de Montréal, 2900, Boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Carl-Éric Aubin
- Polytechnique Montréal, 2900 Edouard Montpetit Blvd, Montreal, QC, H3T 1J4, Canada. .,CHU Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada. .,Université de Montréal, 2900, Boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
11
|
Fan Y, Zhou S, Xie T, Yu Z, Han X, Zhu L. Topping-off surgery vs posterior lumbar interbody fusion for degenerative lumbar disease: a finite element analysis. J Orthop Surg Res 2019; 14:476. [PMID: 31888664 PMCID: PMC6937696 DOI: 10.1186/s13018-019-1503-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adjacent segment disease (ASD) is a common complication after posterior lumbar interbody fusion (PLIF). Recently, a topping-off surgery (non-fusion with Coflex) has been developed to reduce the risk of ASD, yet whether and how the topping-off surgery can relieve ASD remains unclear. The purpose of this study was to explore the biomechanical effect of PLIF and Coflex on the adjacent segments via finite element (FE) analysis and discuss the efficacy of Coflex in preventing ASD. METHODS A FE model of L3-L5 segments was generated based on the CT of a healthy volunteer via three commercially available software. Coflex and PLIF devices were modeled and implanted together with the segment model in the FE software. In the FE model, a pre-compressive load of 500 N, equal to two-thirds of the human body mass, was applied on the top surface of the L3. In addition, four types of moments (anteflexion, rear protraction, bending, and axial rotation) set as 10 Nm were successively applied to the FE model combined with this pre-compressive load. Then, the range of motion (ROM), the torsional rigidity, and the maximum von Mises equivalent stress on the L3-L4 intervertebral disc and the implant were analyzed. RESULTS Both Coflex and PLIF reduced ROM. However, no significant difference was found in the maximum von Mises equivalent stress of adjacent segment disc between the two devices. Interestingly enough, both systems increased the torsional rigidity at the adjacent lumbar segment, and PLIF had a more significant increase. The Coflex implant had a larger maximum von Mises equivalent stress. CONCLUSIONS Both Coflex and PLIF reduced ROM at L3-L4, and thus improved the lumbar stability. Under the same load, both devices had almost the same maximum von Mises equivalent stress as the normal model on the adjacent intervertebral disc. But it is worthy to notice the torsional rigidity of PLIF was higher than that of Coflex, indicating that the lumbar treated with PLIF undertook a larger load to reach ROM of Coflex. Therefore, we presumed that ADS was related to a higher torsional rigidity.
Collapse
Affiliation(s)
- Yunpeng Fan
- Department of Orthopedic Surgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, 310006, China
| | - Shaobo Zhou
- The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Tao Xie
- The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zefeng Yu
- The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Han
- The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Liulong Zhu
- Department of Orthopedic Surgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, 310006, China. .,The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
12
|
Early-term postoperative thoracic outcomes of videothoracoscopic vertebral body tethering surgery. TURK GOGUS KALP DAMAR CERRAHISI DERGISI-TURKISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2019; 27:526-531. [PMID: 32082921 DOI: 10.5606/tgkdc.dergisi.2019.17889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/30/2019] [Indexed: 11/21/2022]
Abstract
Background This study aims to discuss the early-term postoperative thoracic complications in videothoracoscopic anterior vertebral body tethering surgery. Methods The study included 56 patients (3 males, 53 females; mean age 12.6 years; range, 10 to 16 years) operated with a total of 65 videothoracoscopic anterior vertebral body tethering surgeries between April 2014 and November 2018. Surgical indications were adolescents with different growth potentials, who had thoracic, thoracolumbar or double curves less than 70°. Surgical details and postoperative thoracic complications were recorded. Results Forty-two patients were administered thoracic tether, whereas five and nine patients were administered thoracolumbar tether and both approaches concomitantly, respectively. Two patients developed ipsilateral total atelectasis, one patient contralateral lobar atelectasis, one patient chylothorax, one patient pleural effusion, and one patient pneumothorax after chest drain removal. Overall thoracic complication rate was 9.2% and 30-day readmission rate was 1.8%. All patients achieved their rehabilitation goals. Conclusion Videothoracoscopy-assisted anterior vertebral body tethering is a safe and efficient technique that yields low complication rates. Early postoperative functional results are promising with high patient satisfaction. Pre- and postoperative respiratory rehabilitation may decrease thoracic complication rates.
Collapse
|
13
|
Prediction outcomes for anterior vertebral body growth modulation surgery from discriminant spatiotemporal manifolds. Int J Comput Assist Radiol Surg 2019; 14:1565-1575. [DOI: 10.1007/s11548-019-02041-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
|
14
|
Jobidon-Lavergne H, Kadoury S, Knez D, Aubin CÉ. Biomechanically driven intraoperative spine registration during navigated anterior vertebral body tethering. Phys Med Biol 2019; 64:115008. [PMID: 31018185 DOI: 10.1088/1361-6560/ab1bfa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The integration of pre-operative biomechanical planning with intra-operative imaging for navigated corrective spine surgery may improve surgical outcomes, as well as the accuracy and safety of manoeuvres such as pedicle screw insertion and cable tethering, as these steps are performed empirically by the surgeon. However, registration of finite element models (FEMs) of the spine remains challenging due to changes in patient positioning and imaging modalities. The purpose of this study was to develop and validate a new method registering a preoperatively constructed patient-specific FEM aimed to plan and assist anterior vertebral body tethering (AVBT) of scoliotic patients, to intraoperative cone beam computed tomography (CBCT) during navigated AVBT procedures. Prior to surgery, the 3D reconstruction of the patient's spine was obtained using biplanar radiographs, from which a patient-specific FEM was derived. The surgical plan was generated by first simulating the standing to intraoperative decubitus position change, followed by the AVBT correction techniques. Intraoperatively, a CBCT was acquired and an automatic segmentation method generated the 3D model for a series of vertebrae. Following a rigid initialization, a multi-level registration simulation using the FEM and the targeted positions of the corresponding reconstructed vertebrae from the CBCT allows for the refinement of the alignment between modalities. The method was tested with 18 scoliotic cases with a mean thoracic Cobb angle of 47° ± 7° having already undergone AVBT. The translation error of the registered FEM vertebrae to the segmented CBCT spine was 1.4 ± 1.2 mm, while the residual orientation error was 2.7° ± 2.6°, 2.8° ± 2.4° and 2.5° ± 2.8° in the coronal, sagittal, and axial planes, respectively. The average surface-to-surface distance was 1.5 ± 1.2 mm. The proposed method is a first attempt to use a patient-specific biomechanical FEM for navigated AVBT, allowing to optimize surgical strategies and screw placement during surgery.
Collapse
|
15
|
Biomechanics of Prophylactic Tethering for Proximal Junctional Kyphosis: Characterization of Spinous Process Tether Pretensioning and Pull-Out Force. Spine Deform 2019; 7:191-196. [PMID: 30660211 DOI: 10.1016/j.jspd.2018.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
STUDY DESIGN Biomechanical evaluation of cadaver functional spinal units (FSUs). OBJECTIVES Demonstrate the effect of increasing spinous process (SP) tether pretension on FSU flexion range of motion (ROM), intervertebral disc (IVD) pressure, and SP force. Quantify SP tether pull-out forces and relate them to SP forces generated at maximum flexion. SUMMARY OF BACKGROUND DATA There has been recent interest in the use of SP tethering for prophylactic treatment of proximal junctional kyphosis (PJK). There is currently no consensus on standard tethering technique and no biomechanical data on the effect of tether pretension. METHODS Nine T11-T12 FSUs were tested to 5 Nm of flexion-extension bending. A strain gauge was applied at the base of the T11 SP to measure force. Two custom pressure sensors were inserted into the anterior and posterior thirds of the IVD. Motion kinematics were measured by a motion capture system. An untethered test was done to describe baseline behavior. A 5-mm polyester tether was looped through holes drilled at the base of each SP and pretensioned to five different pretensions ranging from 0 to 88 N. Following ROM testing, specimens were dissected into individual vertebra and then SP pull-out testing was done at each level. RESULTS Increasing pretension significantly reduced flexion ROM, reduced IVD pressures, and increased SP force. All pretensions, including the minimum, significantly reduced flexion ROM. SP pull-out forces were significantly greater than SP forces generated at maximum flexion. CONCLUSIONS Tether pretension significantly affects segmental FSU biomechanics. Pretension should be considered an integral factor in the overall success of a tethering strategy. Efforts should be made to control and record pretension intraoperatively. LEVEL OF EVIDENCE Level V, biomechanical study.
Collapse
|
16
|
Contribution of Lateral Decubitus Positioning and Cable Tensioning on Immediate Correction in Anterior Vertebral Body Growth Modulation. Spine Deform 2019; 6:507-513. [PMID: 30122385 DOI: 10.1016/j.jspd.2018.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/22/2017] [Accepted: 01/29/2018] [Indexed: 11/23/2022]
Abstract
STUDY DESIGN Computational simulation of lateral decubitus and anterior vertebral body growth modulation (AVBGM). OBJECTIVES To biomechanically evaluate lateral decubitus and cable tensioning contributions on intra- and postoperative correction. SUMMARY OF BACKGROUND DATA AVBGM is a compression-based fusionless procedure to treat progressive pediatric scoliosis. During surgery, the patient is positioned in lateral decubitus, which reduces spinal curves. The deformity is further corrected with the application of compression by cable tensioning. Predicting postoperative correction following AVBGM installation remains difficult. METHODS Twenty pediatric scoliotic patients instrumented with AVBGM were recruited. Three-dimensional (3D) reconstructions obtained from calibrated biplanar radiographs were used to generate a personalized finite element model. Intraoperative lateral decubitus position and installation of AVBGM were simulated to evaluate the intraoperative positioning and cable tensioning (100 / 150 / 200 N) relative contribution on intra- and postoperative correction. RESULTS Average Cobb angles prior to surgery were 56° ± 10° (thoracic) and 38° ± 8° (lumbar). Simulated presenting growth plate's stresses were of 0.86 MPa (concave side) and 0.02 MPa (convex side). The simulated lateral decubitus reduced Cobb angles on average by 30% (thoracic) and 18% (lumbar). Cable tensioning supplementary contribution on intraoperative spinal correction was of 15%, 18%, and 24% (thoracic) for 100, 150, and 200 N, respectively. Simulated Cobb angles for the postoperative standing position were 39°, 37°, and 33° (thoracic) and 30°, 29°, and 28° (lumbar), respectively, whereas growth plate's stresses were of 0.54, 0.53, and 0.51 MPa (concave side) and 0.36, 0.53, and 0.68 MPa (convex side) for the three tensions. CONCLUSION The majority of curve correction was achieved by lateral decubitus positioning. The main role of the cable was to apply supplemental periapical correction and secure the intraoperative positioning correction. Increases in cable tensioning furthermore rebalanced initially asymmetric compressive stresses. This study could help improve the design of AVBGM by understanding the contributions of the surgical procedure components to the overall correction achieved. LEVEL OF EVIDENCE Level III.
Collapse
|
17
|
Cobetto N, Aubin CE, Parent S. Surgical Planning and Follow-up of Anterior Vertebral Body Growth Modulation in Pediatric Idiopathic Scoliosis Using a Patient-Specific Finite Element Model Integrating Growth Modulation. Spine Deform 2019; 6:344-350. [PMID: 29886903 DOI: 10.1016/j.jspd.2017.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022]
Abstract
STUDY DESIGN Numerical planning and simulation of immediate and post-two-year growth modulation effects of Anterior Vertebral Body Growth Modulation (AVBGM). OBJECTIVES To develop a planning tool based on a patient-specific finite element model (FEM) of pediatric scoliosis integrating growth to computationally assess the 3D biomechanical effects of AVBGM. SUMMARY OF BACKGROUND DATA AVBGM is a recently introduced fusionless compression-based approach for pediatric scoliotic patients presenting progressive curves. Surgical planning is mostly empirical, with reported issues including overcorrection (inversion of the side) of the curve and a lack of control on 3D correction. METHODS Twenty pediatric scoliotic patients instrumented with AVBGM were assessed. An osseoligamentous FEM of the spine, rib cage, and pelvis was generated before surgery using the patient's 3D reconstruction obtained from calibrated biplanar radiographs. For each case, different scenarios of AVBGM and two years of vertebral growth and growth modulation due to gravitational loads and forces from AVBGM were simulated. Simulated correction indices in the coronal, sagittal, and transverse planes for the retained scenario were computed and a posteriori compared to actual patient's postoperative and two years' follow-up data. RESULTS The simulated immediate postoperative Cobb angles were on average within 3° of that of the actual correction, while it was ±5° for kyphosis/lordosis angles, and ±5° for apical axial rotation. For the simulated 2-year postoperative follow-up, correction results were predicted at ±3° for Cobb angles and ±5° for kyphosis/lordosis angles, ±2% for T1-L5 height, and ±4° for apical axial rotation. CONCLUSION A numeric model simulating immediate and post-two-year effects of AVBGM enabled to assess different implant configurations to support surgical planning. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Nikita Cobetto
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada; Research Center, Sainte-Justine University Hospital Center, 3175 Côte-Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada
| | - Carl-Eric Aubin
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada; Research Center, Sainte-Justine University Hospital Center, 3175 Côte-Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada.
| | - Stefan Parent
- Research Center, Sainte-Justine University Hospital Center, 3175 Côte-Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
18
|
Clin J, Le Navéaux F, Driscoll M, Mac-Thiong JM, Labelle H, Parent S, Shah SA, Lonner BS, Newton PO, Serhan H. Biomechanical Comparison of the Load-Sharing Capacity of High and Low Implant Density Constructs With Three Types of Pedicle Screws for the Instrumentation of Adolescent Idiopathic Scoliosis. Spine Deform 2019; 7:2-10. [PMID: 30587316 DOI: 10.1016/j.jspd.2018.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 10/27/2022]
Abstract
STUDY DESIGN Biomechanical numerical simulation analysis of implant design and density in adolescent idiopathic scoliosis posterior instrumentation. OBJECTIVES To evaluate the combined effect of pedicle screw design and density on deformity correction and construct load-sharing capacity. SUMMARY OF BACKGROUND DATA Screw density is an area of popular study because of the impact of cost and potential patient morbidity of higher-density constructs. Using fewer screws raises concern about reduced correction and greater forces on each screw. METHODS Personalized spinal numerical models were created for five patients. The correction techniques from five spine surgeons using both a high- and a low-density implant pattern (2 vs. 1.4 ± 0.22 screws/level) with uniaxial, multiaxial, and favored angle screws were simulated. The predicted correction and forces sustained by the implants were compared. The postoperative load-sharing capacity of a high- and a low-density construct, with or without crosslinks, was compared by simulating daily activities motions. RESULTS The major coronal curve correction was similar with high- and low-density constructs (73% ± 10% vs. 72% ± 10%; p > .05) but was higher when using uniaxial (77% ± 8%) compared to multiaxial (69% ± 11%) and favored angle screws (71% ± 10%; p = .009). High- and low-density constructs sustained similar intraoperative peak forces (305 ± 61 N vs. 301 ± 73 N; p = .23) regardless of screw design (all p > .05). Multiaxial and favored angle screws reduced the peak axial force by 23% and 38% compared to uniaxial screws (p = .007). The high-density construct reduced the postoperative loads sustained by each implant by 31% (p = .006). Crosslinks had no effect on load sharing (p = .23). CONCLUSION High- and low-density implant patterns achieved similar coronal correction with equivalent capacity to share corrective forces regardless of the screw design. Increased degrees of freedom of the screw head reduces the capacity to correct coronal deformity but generates lower bone-screw forces. The reduced number of screws increased the postoperative forces sustained by each screw, but its effect on potential complications requires further investigations. LEVEL OF EVIDENCE Level 4.
Collapse
Affiliation(s)
- Julien Clin
- Spinologics, Inc., 6750 Avenue de l'Esplanade #290, Montréal, Quebec, H2V 1A2, Canada
| | - Franck Le Navéaux
- Spinologics, Inc., 6750 Avenue de l'Esplanade #290, Montréal, Quebec, H2V 1A2, Canada.
| | - Mark Driscoll
- Spinologics, Inc., 6750 Avenue de l'Esplanade #290, Montréal, Quebec, H2V 1A2, Canada
| | - Jean-Marc Mac-Thiong
- Spinologics, Inc., 6750 Avenue de l'Esplanade #290, Montréal, Quebec, H2V 1A2, Canada
| | - Hubert Labelle
- Spinologics, Inc., 6750 Avenue de l'Esplanade #290, Montréal, Quebec, H2V 1A2, Canada
| | - Stefan Parent
- Spinologics, Inc., 6750 Avenue de l'Esplanade #290, Montréal, Quebec, H2V 1A2, Canada
| | - Suken A Shah
- Nemours Alfred I. Dupont Hospital for Children, 1600 Rockland Rd, Wilmington, DE 19803, USA
| | - Baron S Lonner
- Mount Sinai Hospital, E 101st St, New York, NY 10029, USA
| | - Peter O Newton
- Rady Children's Hospital, 3020 Children's Way, San Diego, CA 92123, USA
| | - Hassan Serhan
- DePuy Synthes Spine Inc., 325 Paramount Drive, Raynham, MA 02767, USA
| |
Collapse
|
19
|
Mustafy T, Arnoux PJ, Benoit A, Bianco RJ, Aubin CE, Villemure I. Load-sharing biomechanics at the thoracolumbar junction under dynamic loadings are modified by anatomical features in adolescent and pediatric vs adult functional spinal units. J Mech Behav Biomed Mater 2018; 88:78-91. [DOI: 10.1016/j.jmbbm.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/10/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
|
20
|
Shin JK, Lim BY, Goh TS, Son SM, Kim HS, Lee JS, Lee CS. Effect of the screw type (S2-alar-iliac and iliac), screw length, and screw head angle on the risk of screw and adjacent bone failures after a spinopelvic fixation technique: A finite element analysis. PLoS One 2018; 13:e0201801. [PMID: 30114271 PMCID: PMC6095501 DOI: 10.1371/journal.pone.0201801] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/23/2018] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Spinopelvic fixations involving the S2-alar-iliac (S2AI) and iliac screws are commonly used in various spinal fusion surgeries. This study aimed to compare the biomechanical characteristics, specifically the risk of screw and adjacent bone failures of S2AI screw fixation with those of iliac screw fixation using a finite element analysis (FEA). METHODS A three-dimensional finite element (FE) model of a healthy spinopelvis was generated. The pedicle screws were placed on the L3-S1 with three different lengths of the S2AI and iliac screws (60 mm, 75 mm, and 90 mm). In particular, two types of the S2AI screw, 15°- and 30°-angled polyaxial screw, were adopted. Physiological loads, such as a combination of compression, torsion, and flexion/extension loads, were applied to the spinopelvic FE model, and the stress distribution as well as the maximum von Mises equivalent stress values were calculated. RESULTS For the iliac screw, the highest stress on the screw was observed with the 75-mm screw, rather than the 60-mm screw. The bones around the iliac screw indicated that the maximum equivalent stress decreased as the screw length increased. For the S2AI screw, the lowest stress was observed in the 90-mm screw length with a 30° head angle. The bones around the S2AI screw indicated that the lowest stress was observed in the 90-mm screw length and a 15° head angle. CONCLUSIONS It was found that the S2AI screw, rather than the iliac screw, reduced the risk of implant failure for the spinopelvic fixation technique, and the 90-mm screw length with a 15° head angle for the S2AI screw could be biomechanically advantageous.
Collapse
Affiliation(s)
- Jong Ki Shin
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Department of Orthopaedic Surgery, Myung Eun Hospital, Busan, Republic of Korea
| | - Beop-Yong Lim
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Tae Sik Goh
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Seung Min Son
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Hyung-Sik Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Chi-Seung Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- School of Medicine, Pusan National University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
21
|
|
22
|
Cobetto N, Parent S, Aubin CE. 3D correction over 2years with anterior vertebral body growth modulation: A finite element analysis of screw positioning, cable tensioning and postoperative functional activities. Clin Biomech (Bristol, Avon) 2018; 51:26-33. [PMID: 29169117 DOI: 10.1016/j.clinbiomech.2017.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Anterior vertebral body growth modulation is a fusionless instrumentation to correct scoliosis using growth modulation. The objective was to biomechanically assess effects of cable tensioning, screw positioning and post-operative position on tridimensional correction. METHODS The design of experiments included two variables: cable tensioning (150/200N) and screw positioning (lateral/anterior/triangulated), computationally tested on 10 scoliotic cases using a personalized finite element model to simulate spinal instrumentation, and 2years growth modulation with the device. Dependent variables were: computed Cobb angles, kyphosis, lordosis, axial rotation and stresses exerted on growth plates. Supine functional post-operative position was simulated in addition to the reference standing position to evaluate corresponding growth plate's stresses. FINDINGS Simulated cable tensioning and screw positioning had a significant impact on immediate and after 2years Cobb angle (between 5°-11°, p<0.01). Anterior screw positioning significantly increased kyphosis after 2years (6°-8°, p=0.02). Triangulated screw positioning did not significantly impact axial rotation but significantly reduced kyphosis (8°-10°, p=0.001). Growth plates' stresses were increased by 23% on the curve's convex side with cable tensioning, while screw positioning rather affected anterior/posterior distributions. Supine position significantly affected stress distributions on the apical vertebra compared to standing position (respectively 72% of compressive stresses on convex side vs 55%). INTERPRETATION This comparative numerical study showed the biomechanical possibility to adjust the fusionless instrumentation parameters to improve correction in frontal and sagittal planes, but not in the transverse plane. The convex side stresses increase in the supine position may suggest that growth modulation could be accentuated during nighttime.
Collapse
Affiliation(s)
- Nikita Cobetto
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada; Research Center, Sainte-Justine University Hospital Center, 3175 Côte-Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada
| | - Stefan Parent
- Research Center, Sainte-Justine University Hospital Center, 3175 Côte-Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada
| | - Carl-Eric Aubin
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Downtown Station, Montreal, Quebec H3C 3A7, Canada; Research Center, Sainte-Justine University Hospital Center, 3175 Côte-Sainte-Catherine Road, Montreal, Quebec H3T 1C5, Canada.
| |
Collapse
|
23
|
Aubin CÉ, Clin J, Rawlinson J. Biomechanical simulations of costo-vertebral and anterior vertebral body tethers for the fusionless treatment of pediatric scoliosis. J Orthop Res 2018; 36:254-264. [PMID: 28685857 DOI: 10.1002/jor.23648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/30/2017] [Indexed: 02/04/2023]
Abstract
Compression-based fusionless tethers are an alternative to conventional surgical treatments of pediatric scoliosis. Anterior approaches place an anterior (ANT) tether on the anterolateral convexity of the deformed spine to modify growth. Posterior, or costo-vertebral (CV), approaches have not been assessed for biomechanical and corrective effectiveness. The objective was to biomechanically assess CV and ANT tethers using six patient-specific, finite element models of adolescent scoliotic patients (11.9 ± 0.7 years, Cobb 34° ± 10°). A validated algorithm simulated the growth and Hueter-Volkmann growth modulation over a period of 2 years with the CV and ANT tethers at two initial tensions (100, 200 N). The models without tethering also simulated deformity progression with Cobb angle increasing from 34° to 56°, axial rotation 11° to 13°, and kyphosis 28° to 32° (mean values). With the CV tether, the Cobb angle was reduced to 27° and 20° for tensions of 100 and 200 N, respectively, kyphosis to 21° and 19°, and no change in axial rotation. With the ANT tether, Cobb was reduced to 32° and 9° for 100 and 200 N, respectively, kyphosis unchanged, and axial rotation to 3° and 0°. While the CV tether mildly corrected the coronal curve over a 2-year growth period, it had sagittal lordosing effect, particularly with increasing initial axial rotation (>15°). The ANT tether achieved coronal correction, maintained kyphosis, and reduced the axial rotation, but over-correction was simulated at higher initial tensions. This biomechanical study captured the differences between a CV and ANT tether and indicated the variability arising from the patient-specific characteristics. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:254-264, 2018.
Collapse
Affiliation(s)
- Carl-Éric Aubin
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec, Canada H3C 3A7.,Sainte-Justine University Hospital Center, 3175 Côte-Ste-Catherine Rd., Montréal, Québec, Canada H3T 1C5
| | - Julien Clin
- Department of Mechanical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montréal, Québec, Canada H3C 3A7.,Sainte-Justine University Hospital Center, 3175 Côte-Ste-Catherine Rd., Montréal, Québec, Canada H3T 1C5
| | - Jeremy Rawlinson
- Medtronic, Spinal Applied Research, 1800 Pyramid Place, Memphis 38132, Tennessee
| |
Collapse
|
24
|
Driscoll M. Fascia – The unsung hero of spine biomechanics. J Bodyw Mov Ther 2018; 22:90-91. [DOI: 10.1016/j.jbmt.2017.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/24/2022]
|
25
|
Peters JR, Chandrasekaran C, Robinson LF, Servaes SE, Campbell RM, Balasubramanian S. Age- and gender-related changes in pediatric thoracic vertebral morphology. Spine J 2015; 15:1000-20. [PMID: 25681580 DOI: 10.1016/j.spinee.2015.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/08/2014] [Accepted: 01/10/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Although it is well known that the growth of thoracic spine changes significantly with age, gender, and vertebral level in the skeletally normal pediatric population, there have been very few studies attempting to comprehensively quantify such variations. Biomechanical and computational models of the growing thoracic spine have provided insight into safety and efficacy of surgical and noninvasive treatments for spinal deformity. However, many of these models only consider growth of the vertebral body and pedicles and assume a consistent growth rate for these structures across thoracic levels. PURPOSE To enhance the understanding of age-, gender-, and level-related growth dynamics of the pediatric thoracic spine by comprehensively quantifying the thoracic vertebral morphology for subjects between 1 and 19 years. STUDY DESIGN A retrospective computed tomography (CT) image analysis study. METHODS Retrospectively obtained chest CT scans from 100 skeletally normal pediatric subjects (45 males and 55 females between the ages 1 and 19 years) were digitally reconstructed using medical imaging software. Surface point clouds of thoracic vertebrae were extracted and 26 vertebral geometry parameters were measured using 25 semiautomatically identified surface landmarks and anatomical slices from each thoracic vertebra (T1-T12). Data were assessed for normality, symmetry, and age-, gender-, and level-related differences in geometric measures and growth. Linear regression was performed to estimate of the rates of variation with age for each measurement. RESULTS Asymmetries (bilateral, superior-inferior, and anteroposterior) were observed in vertebral body heights, end plate widths and depths, and interfacet widths. Within genders, significant interlevel differences were observed for all geometric measures, and significant differences in the rates of growth were found across thoracic levels for most parameters. Significant differences were observed between genders for pedicle, spinous process, and facet measurements. Growth rates of the pedicles and vertebral bodies were also found to vary significantly between genders. CONCLUSIONS The rates of growth for most thoracic vertebral structures varied between genders and across vertebral levels. These growth rates followed trends similar to those of their associated vertebral dimensions and this indicates that, across levels and between genders, larger vertebral structures grow at faster rates, whereas smaller structures grow at a slower rate. Such level- and gender-specific information could be used to inform clinical decisions about spinal deformity treatment and adapted for use in biomechanical and computational modeling of thoracic growth and growth modulation.
Collapse
Affiliation(s)
- James R Peters
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St, Bossone 718, Philadelphia, PA 19104, USA
| | - Charanya Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St, Bossone 718, Philadelphia, PA 19104, USA
| | - Lucy F Robinson
- Department of Epidemiology and Biostatistics, School of Public Health, Drexel University, Nesbitt Hall, 3215 Market St. Philadelphia, PA 19104, USA
| | - Sabah E Servaes
- Department of Radiology, The Children's Hospital of Philadelphia, 34th St and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Robert M Campbell
- Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, 34th St and Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Sriram Balasubramanian
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St, Bossone 718, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Biomechanical simulation and analysis of scoliosis correction using a fusionless intravertebral epiphyseal device. Spine (Phila Pa 1976) 2015; 40:369-76. [PMID: 25584943 DOI: 10.1097/brs.0000000000000777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Computer simulations to analyze the biomechanics of a novel compression-based fusionless device (hemistaple) that does not cross the disc for the treatment of adolescent idiopathic scoliosis. OBJECTIVE To biomechanically model, simulate, and analyze the hemistaple action using a human finite element model (FEM). SUMMARY OF BACKGROUND DATA A new fusionless growth sparing instrumentation device (hemistaple), which locally compresses the growth plate without spanning the disc, was previously developed and successively tested on different animal models. METHODS Patient-specific FEMs of the spine, rib cage, and pelvis were built using radiographs of 10 scoliotic adolescents (11.7 ± 0.9 yr; Cobb thoracic: 35° ± 7°, lumbar: 24° ± 6°). A validated algorithm allowed simulating the growth (0.8-1.1 mm/yr/vertebra) and growth modulation process (Hueter-Volkmann principle) during a period of 2 years. Four instrumentation configurations on the convex curves were individually simulated (Config 1: 5 thoracic vertebrae with hemistaples on superior endplates; Config 2: same as Config 1 with hemistaples on both endplates; Config 3: same as Config 1 + 4 lumbar vertebrae; Config 4: same as Config 2 + 4 lumbar vertebrae). RESULTS Without hemistaples, on average the thoracic and lumbar Cobb angles, respectively, progressed from 35° to 56° and 24° to 30°, whereas the vertebral wedging at curve apices progressed from 5° to 12°. With the hemistaple Config 1, the Cobb angles progressed but were limited to 42° and 26°, whereas the wedging ended at 8°. With Config 3, Cobb and wedging were kept nearly constant (38°, 21°, 7°). With hemistaples on both endplates (Config 2, Config 4), the Cobb and wedging were all reduced (thoracic Cobb for Config 2 and 4: 24° and 15°; lumbar Cobb: 21° and 11°; wedging: 2° and 1°). CONCLUSION This study suggests that the hemistaple has the biomechanical potential to control the scoliosis progression and highlights the importance of the instrumentation configuration to correct the spinal deformities. It biomechanically supports the new fusionless device concept as an alternative for the early treatment of idiopathic scoliosis. LEVEL OF EVIDENCE 5.
Collapse
|
27
|
Wang X, Xu J, Zhu Y, Li J, Zhou S, Tian S, Xiang Y, Liu X, Zheng Y, Pan T. Biomechanical analysis of a newly developed shape memory alloy hook in a transforaminal lumbar interbody fusion (TLIF) in vitro model. PLoS One 2014; 9:e114326. [PMID: 25474112 PMCID: PMC4256230 DOI: 10.1371/journal.pone.0114326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/06/2014] [Indexed: 01/04/2023] Open
Abstract
Objective The objective of this biomechanical study was to evaluate the stability provided by a newly developed shape memory alloy hook (SMAH) in a cadaveric transforaminal lumbar interbody fusion (TLIF) model. Methods Six human cadaveric spines (L1-S2) were tested in an in vitro flexibility experiment by applying pure moments of ±8 Nm in flexion/extension, left/right lateral bending, and left/right axial rotation. After intact testing, a TLIF was performed at L4-5. Each specimen was tested for the following constructs: unilateral SMAH (USMAH); bilateral SMAH (BSMAH); unilateral pedicle screws and rods (UPS); and bilateral pedicle screws and rods (BPS). The L3–L4, L4–L5, and L5-S1 range of motion (ROM) were recorded by a Motion Analysis System. Results Compared to the other constructs, the BPS provided the most stability. The UPS significantly reduced the ROM in extension/flexion and lateral bending; the BSMAH significantly reduced the ROM in extension/flexion, lateral bending, and axial rotation; and the USMAH significantly reduced the ROM in flexion and left lateral bending compared with the intact spine (p<0.05). The USMAH slightly reduced the ROM in extension, right lateral bending and axial rotation (p>0.05). Stability provided by the USMAH compared with the UPS was not significantly different. ROMs of adjacent segments increased in all fixed constructs (p>0.05). Conclusions Bilateral SMAH fixation can achieve immediate stability after L4–5 TLIF in vitro. Further studies are required to determine whether the SMAH can achieve fusion in vivo and alleviate adjacent segment degeneration.
Collapse
Affiliation(s)
- Xi Wang
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jing Xu
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yuexing Zhu
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jiukun Li
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Si Zhou
- Department of Anatomy, Guilin Medical College, Guilin, PR China
| | - Shunliang Tian
- Department of Anatomy, Guilin Medical College, Guilin, PR China
| | - Yucheng Xiang
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Xingmo Liu
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Ying Zheng
- Department of Nutrition, Guangdong General Hospital, Guangzhou, PR China
| | - Tao Pan
- Department of Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
- * E-mail:
| |
Collapse
|
28
|
The Use of Finite Element Models to Assist Understanding and Treatment For Scoliosis: A Review Paper. Spine Deform 2014; 2:10-27. [PMID: 27927438 DOI: 10.1016/j.jspd.2013.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Scoliosis is a complex spinal deformity whose etiology is still unknown, and its treatment presents many challenges. Finite element modeling (FEM) is one of the analytical techniques that has been used to elucidate the mechanism of scoliosis and the effects of various treatments. METHODS A literature review on the application of FEM in scoliosis evaluation and treatment has been undertaken. A literature search was performed in each of three major electronic databases (Google Scholar, Web of Science, and Ovid) using the key words "scoliosis" and "finite element methods/model". Articles using FEM and having a potential impact on clinical practice were included. RESULTS A total of 132 abstracts were retrieved. The query returned 105 articles in which the abstracts appeared to correspond to this review's focus, and 85 papers were retained. The current state of the art of FEM related to the biomechanical analysis of scoliosis is discussed in 4 sections: the etiology of adolescent idiopathic scoliosis, brace treatment, instrumentation treatment, and sensitivity studies of FEM. The limitations of FEM and suggested future work are also discussed.
Collapse
|
29
|
Development of a detailed volumetric finite element model of the spine to simulate surgical correction of spinal deformities. BIOMED RESEARCH INTERNATIONAL 2013; 2013:931741. [PMID: 23991426 PMCID: PMC3749538 DOI: 10.1155/2013/931741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 11/30/2022]
Abstract
A large spectrum of medical devices exists; it aims to correct deformities associated with spinal disorders. The development of a detailed volumetric finite element model of the osteoligamentous spine would serve as a valuable tool to assess, compare, and optimize spinal devices. Thus the purpose of the study was to develop and initiate validation of a detailed osteoligamentous finite element model of the spine with simulated correction from spinal instrumentation. A finite element of the spine from T1 to L5 was developed using properties and geometry from the published literature and patient data. Spinal instrumentation, consisting of segmental translation of a scoliotic spine, was emulated. Postoperative patient and relevant published data of intervertebral disc stress, screw/vertebra pullout forces, and spinal profiles was used to evaluate the models validity. Intervertebral disc and vertebral reaction stresses respected published in vivo, ex vivo, and in silico values. Screw/vertebra reaction forces agreed with accepted pullout threshold values. Cobb angle measurements of spinal deformity following simulated surgical instrumentation corroborated with patient data. This computational biomechanical analysis validated a detailed volumetric spine model. Future studies seek to exploit the model to explore the performance of corrective spinal devices.
Collapse
|
30
|
Abolaeha OA, Weber J, Ross LT. Finite element simulation of a scoliotic spine with periodic adjustments of an attached growing rod. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:5781-5. [PMID: 23367243 DOI: 10.1109/embc.2012.6347308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early Onset Scoliosis (EOS) is a deformity of spine which occurs during growth. Spinal growing rod instrumentation is currently a procedure of early onset scoliosis management and newer technologies to treat scoliosis without fusion hold the exciting promise of a new paradigm in spinal deformity care. A Finite Element Model (FEM) of a scoliotic spine was created and enhanced to simulate spine growth after the attachment of a growing rod. Growing rod instrumentation was included utilizing FEA to accurately simulate the required 3D forces and moments to achieve the desired correction. We measured forces on the rods and the spine during adjustment periods (for correction of the spinal deformity) and during growth periods. For this study, a two-year period was simulated with adjustments at six month intervals. The FEM allowed us to collect data during growth periods from sensors which are only accessible during the surgical procedures.
Collapse
Affiliation(s)
- O A Abolaeha
- Electrical Engineering Department, University of Dayton, Dayton, OH 45469, USA.
| | | | | |
Collapse
|
31
|
Biomechanical Assessment of Reduction Forces Measured During Scoliotic Instrumentation Using Two Different Screw Designs. Spine Deform 2013; 1:94-101. [PMID: 27927436 DOI: 10.1016/j.jspd.2013.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 11/22/2022]
Abstract
STUDY DESIGN Biomechanical finite element models simulated deformity correction using pedicle screw instrumentation and measured forces at the screw-vertebra interface. OBJECTIVES Compare 2 different screw designs with respect to reaction forces at screw-vertebra interfaces during scoliosis correction maneuvers. SUMMARY OF BACKGROUND DATA Pedicle screw developments strive to enhance surgical techniques and improve patient safety. It is believed that a screw with increased lateral angulation and reduction tabs enables a more gradual correction, more effectively distributes corrective forces over multiple levels, and reduces forces at screw-vertebra interfaces compared with standard polyaxial screws. METHODS We selected 3 scoliotic patients and reconstructed their preoperative spinal profiles as finite element models using radiographic clinical measures. The osteoligamentous models were programmed and validated with mechanical properties from published literature. We used postoperative radiographs to determine instrumented levels and calibrate disc properties to corroborate simulated results with clinical data. We alternatively examined favored angle (FA) screws and polyaxial (PA) screws using correction steps characteristic to their design. We also explored sensitivity of screw forces consequent to misalignment with adjacent screws. RESULTS Simulated postoperative spinal profiles on average adhered to clinical measures within 5°. We observed no significant differences in simulated corrective profiles between screw types (5° or less). Compared with PA screws, FA screws reduced peak pullout and lateral forces by 27% and 35%, respectively, and correspondingly reduced mean pullout and lateral forces by 48% and 40%, respectively. Changes in peak and average pullout forces resulting from screw misalignment were 56% and 82% less, respectively, with FA screws. CONCLUSIONS This analysis demonstrated reduced screw-vertebra peak and mean forces when using a pedicle screw with a favored angle bias and reduction tabs to correct scoliosis. Compared with PA screws, FA screws provide similar correction, decrease forces applied at the screw-vertebra interface, and are more forgiving if misaligned.
Collapse
|
32
|
Accuracy and efficacy of thoracic pedicle screws in scoliosis with patient-specific drill template. Med Biol Eng Comput 2012; 50:751-8. [PMID: 22467276 DOI: 10.1007/s11517-012-0900-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/17/2012] [Indexed: 12/20/2022]
Abstract
With the rapid increase in the use of thoracic pedicle screws in scoliosis, accurate and safe placement of screw within the pedicle is a crucial step during the scoliosis surgery. To make thoracic pedicle screw placement safer various techniques are used, Patient-specific drill template with pre-planned trajectory has been thought as a promising solution, it is critical to assess the efficacy, safety profile with this technique. In this paper, we develop and validate the accuracy and safety of thoracic transpedicular screw placement with patient-specific drill template technique in scoliosis. Patients with scoliosis requiring instrumentation were recruited. Volumetric CT scan was performed on each desired thoracic vertebra and a 3-D reconstruction model was generated from the CT scan data. The optimal screw size and orientation were determined and a drill template was designed with a surface that is the inverse of the posterior vertebral surface. The drill template and its corresponding vertebra were manufactured using rapid prototyping technique and tested for violations. The navigational template was sterilized and used intraoperatively to assist with the placement of thoracic screws. After surgery, the positions of the pedicle screws were evaluated using CT scan and graded for validation. This method showed its ability to customize the placement and the size of each pedicle screw based on the unique morphology of the thoracic vertebra. In all the cases, it was relatively very easy to manually place the drill template on the lamina of the vertebral body during the surgery. This method significantly reduces the operation time and radiation exposure for the members of the surgical team, making it a practical, simple and safe method. The potential use of such a navigational template to insert thoracic pedicle screws in scoliosis is promising. The use of surgical navigation system successfully reduced the perforation rate and insertion angle errors, demonstrating the clear advantage in safe and accurate pedicle screw placement of scoliosis surgery.
Collapse
|