1
|
Bauer F, Kächele J, Bernhard J, Hajiyianni M, Weinhold N, Sauer S, Grözinger M, Raab MS, Mai EK, Weber TF, Goldschmidt H, Schlemmer HP, Maier-Hein K, Delorme S, Neher P, Wennmann M. Advanced Automated Model for Robust Bone Marrow Segmentation in Whole-body MRI. Acad Radiol 2025; 32:2824-2835. [PMID: 39848889 DOI: 10.1016/j.acra.2024.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025]
Abstract
RATIONALE AND OBJECTIVES To establish an advanced automated bone marrow (BM) segmentation model on whole-body (WB-)MRI in monoclonal plasma cell disorders (MPCD), and to demonstrate its robust performance on multicenter datasets with severe myeloma-related pathologies. MATERIALS AND METHODS The study cohort comprised multi-vendor, multi-protocol imaging data acquired with varying field strength across 8 different centers. In total, 210 WB-MRIs of 207 MPCD patients were included. An nnU-Net algorithm was established for segmenting the individual bone marrow spaces (BMS) of the spine, pelvis, humeri and femora (advanced segmentation model). For this task, 186 T1-weighted (T1w) WB-MRIs from center 1 were used in the training set. Test sets included 12 T1w WB-MRIs from center 2 (I) and 9 T1w WB-MRIs from centers 3-8 (II). Example cases were included to showcase segmentation performance on T1w WB-MRIs with extensive tumor load. The segmentation accuracy of the advanced segmentation model was compared to a prior established basic segmentation model by calculating Dice scores and using the Wilcoxon signed-rank test. RESULTS The mean Dice score on the individual BMS was 0.89±0.13 (test set I) and 0.88±0.11 (test set II), significantly higher than the Dice scores of a prior basic model (p<0.05). Dice scores for the BMS of the individual bones ranged from 0.77 to 0.96 (test set I), and 0.81 to 0.95 (test set II). BM altered by myeloma-relevant pathologies, artifacts or low imaging quality was precisely segmented. CONCLUSION The advanced model performed reliable, automated segmentations, even on heterogeneously acquired multicenter WB-MRIs with severe pathologies.
Collapse
Affiliation(s)
- Fabian Bauer
- Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (F.B., M.G., H.P.S., S.D.); Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (F.B.).
| | - Jessica Kächele
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (J.K., J.B., K.M.H., P.N.); German Cancer Consortium (DKTK), Partner Site Heidelberg, 69120 Heidelberg, Germany (J.K., K.M.H., P.N.)
| | - Juliane Bernhard
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (J.K., J.B., K.M.H., P.N.)
| | - Marina Hajiyianni
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.H., N.W., S.S., M.S.R., E.K.M., H.G.)
| | - Niels Weinhold
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.H., N.W., S.S., M.S.R., E.K.M., H.G.)
| | - Sandra Sauer
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.H., N.W., S.S., M.S.R., E.K.M., H.G.)
| | - Martin Grözinger
- Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (F.B., M.G., H.P.S., S.D.)
| | - Marc-Steffen Raab
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.H., N.W., S.S., M.S.R., E.K.M., H.G.)
| | - Elias K Mai
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.H., N.W., S.S., M.S.R., E.K.M., H.G.)
| | - Tim F Weber
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany (T.F.W., M.W.)
| | - Hartmut Goldschmidt
- Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, 69120 Heidelberg, Germany (M.H., N.W., S.S., M.S.R., E.K.M., H.G.); National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany (H.G., K.M.H., P.N.)
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (F.B., M.G., H.P.S., S.D.)
| | - Klaus Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (J.K., J.B., K.M.H., P.N.); German Cancer Consortium (DKTK), Partner Site Heidelberg, 69120 Heidelberg, Germany (J.K., K.M.H., P.N.); National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany (H.G., K.M.H., P.N.); Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (K.M.H., P.N.)
| | - Stefan Delorme
- Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (F.B., M.G., H.P.S., S.D.)
| | - Peter Neher
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (J.K., J.B., K.M.H., P.N.); German Cancer Consortium (DKTK), Partner Site Heidelberg, 69120 Heidelberg, Germany (J.K., K.M.H., P.N.); National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany (H.G., K.M.H., P.N.); Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (K.M.H., P.N.)
| | - Markus Wennmann
- Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (F.B., M.G., H.P.S., S.D.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany (T.F.W., M.W.)
| |
Collapse
|
2
|
Yu N, Wan Y, Zuo L, Cao Y, Qu D, Liu W, Deng L, Zhang T, Wang W, Wang J, Lv J, Xiao Z, Feng Q, Zhou Z, Bi N, Niu T, Wang X. Multi-modal radiomics features to predict overall survival of locally advanced esophageal cancer after definitive chemoradiotherapy. BMC Cancer 2025; 25:596. [PMID: 40175977 PMCID: PMC11967038 DOI: 10.1186/s12885-025-13996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
PURPOSE To establish prediction models to predict 2-year overall survival (OS) and stratify patients with different risks based on radiomics features extracted from magnetic resonance imaging (MRI) and computed tomography (CT) before definite chemoradiotherapy (dCRT) in locally advanced esophageal squamous cell carcinoma (ESCC). METHODS Patients with locally advanced ESCC were recruited. We extracted 547 radiomics features from MRI and CT images. The least absolute shrinkage and selection operator (LASSO) for COX algorithm was used to obtain features highly correlated with survival outcomes in the training cohort. Based on MRI, CT, and the hybrid image data, three prediction models were built. The predictive performance of the radiomics models was evaluated in the training cohort and verified in the validation cohort using AUC values. RESULTS A total of 192 patients were included and randomized into the training and validation cohorts. In predicting 2-year OS, the AUCs of the CT-based model were 0.733 and 0.654 for the training and validation sets. The MRI radiomics-based model was observed with similar AUCs of 0.750 and 0.686 in the training and validation sets. The AUC values of hybrid model combining MRI and CT radiomics features in predicting 2-year OS were 0.792 and 0.715 in the training and validation cohorts. It showed significant differences in 2-year OS in the high-risk and low-risk groups divided by the best cutoff value in the hybrid radiomics-based model. CONCLUSIONS The hybrid radiomics-based model demontrated the best performance of predicting 2-year OS and can differentiate the high-risk and low-risk patients.
Collapse
Affiliation(s)
- Nuo Yu
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yidong Wan
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lijing Zuo
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Cao
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Qu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyang Liu
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Deng
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Zhang
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqing Wang
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianyang Wang
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jima Lv
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zefen Xiao
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinfu Feng
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongmei Zhou
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Bi
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianye Niu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Gaoke International Innovation Center, Guangqiao Road, Guangming District, Shenzhen, China.
| | - Xin Wang
- Department of Radiotherapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Zugni F, Mariani L, Lambregts DMJ, Maggioni R, Summers PE, Granata V, Pecchi A, Di Costanzo G, De Muzio F, Cardobi N, Giovagnoni A, Petralia G. Whole-body MRI in oncology: acquisition protocols, current guidelines, and beyond. LA RADIOLOGIA MEDICA 2024; 129:1352-1368. [PMID: 38990426 DOI: 10.1007/s11547-024-01851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Acknowledging the increasing use of whole-body magnetic resonance imaging (WB-MRI) in the oncological setting, we conducted a narrative review focusing on practical aspects of the examination and providing a synthesis of various acquisition protocols described in the literature. Firstly, we addressed the topic of patient preparation, emphasizing methods to enhance examination acceptance. This included strategies for reducing anxiety and patient distress, improving staff-patient interactions, and increasing overall patient comfort. Secondly, we analysed WB-MRI acquisition protocols recommended in existing imaging guidelines, such as MET-RADS-P, MY-RADS, and ONCO-RADS, and provided an overview of acquisition protocols reported in the literature regarding other expanding applications of WB-MRI in oncology, in patients with breast cancer, ovarian cancer, melanoma, colorectal and lung cancer, lymphoma, and cancers of unknown primary. Finally, we suggested possible acquisition parameters for whole-body images across MR systems from three different vendors.
Collapse
Affiliation(s)
- Fabio Zugni
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Leonardo Mariani
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Doenja M J Lambregts
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Roberta Maggioni
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paul E Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori Di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Annarita Pecchi
- Department of Radiology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Federica De Muzio
- Department of Radiology, Pineta Grande Hospital, Via Domitiana Km 30, Castel Volturno, Italy
| | - Nicolò Cardobi
- Radiology Unit, Department of Pathology and Diagnostics, University Hospital of Verona, Verona, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria Delle Marche", Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica Delle Marche, Ancona, Italy
| | - Giuseppe Petralia
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Cattabriga A, Renzetti B, Galuppi F, Bartalena L, Gaudiano C, Brocchi S, Rossi A, Schiavina R, Bianchi L, Brunocilla E, Spinozzi L, Catanzaro C, Castellucci P, Farolfi A, Fanti S, Tunariu N, Mosconi C. Multiparametric Whole-Body MRI: A Game Changer in Metastatic Prostate Cancer. Cancers (Basel) 2024; 16:2531. [PMID: 39061171 PMCID: PMC11274871 DOI: 10.3390/cancers16142531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Prostate cancer ranks among the most prevalent tumours globally. While early detection reduces the likelihood of metastasis, managing advanced cases poses challenges in diagnosis and treatment. Current international guidelines support the concurrent use of 99Tc-Bone Scintigraphy and Contrast-Enhanced Chest and Abdomen CT for the staging of metastatic disease and response assessment. However, emerging evidence underscores the superiority of next-generation imaging techniques including PSMA-PET/CT and whole-body MRI (WB-MRI). This review explores the relevant scientific literature on the role of WB-MRI in metastatic prostate cancer. This multiparametric imaging technique, combining the high anatomical resolution of standard MRI sequences with functional sequences such as diffusion-weighted imaging (DWI) and bone marrow relative fat fraction (rFF%) has proved effective in comprehensive patient assessment, evaluating local disease, most of the nodal involvement, bone metastases and their complications, and detecting the increasing visceral metastases in prostate cancer. It does have the advantage of avoiding the injection of contrast medium/radionuclide administration, spares the patient the exposure to ionizing radiation, and lacks the confounder of FLARE described with nuclear medicine techniques. Up-to-date literature regarding the diagnostic capabilities of WB-MRI, though still limited compared to PSMA-PET/CT, strongly supports its widespread incorporation into standard clinical practice, alongside the latest nuclear medicine techniques.
Collapse
Affiliation(s)
- Arrigo Cattabriga
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
| | - Benedetta Renzetti
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
| | - Francesco Galuppi
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
| | - Laura Bartalena
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
| | - Caterina Gaudiano
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
| | - Stefano Brocchi
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
| | - Alice Rossi
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Riccardo Schiavina
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Lorenzo Bianchi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Eugenio Brunocilla
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Luca Spinozzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Calogero Catanzaro
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Division of Urology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Paolo Castellucci
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.C.); (A.F.)
| | - Andrea Farolfi
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.C.); (A.F.)
| | - Stefano Fanti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.C.); (A.F.)
| | - Nina Tunariu
- Clinical Radiology, Royal Marsden Hospital & Institute of Cancer Research, London SW3 6JJ, UK;
| | - Cristina Mosconi
- Department of Radiology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (B.R.); (F.G.); (L.B.); (C.G.); (S.B.); (C.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40136 Bologna, Italy; (R.S.); (L.B.); (E.B.); (L.S.); (C.C.); (S.F.)
| |
Collapse
|
5
|
Agazzi GM, Di Meo N, Rondi P, Saeli C, Dalla Volta A, Vezzoli M, Berruti A, Borghesi A, Maroldi R, Ravanelli M, Farina D. Fat Fraction Extracted from Whole-Body Magnetic Resonance (WB-MR) in Bone Metastatic Prostate Cancer: Intra- and Inter-Reader Agreement of Single-Slice and Volumetric Measurements. Tomography 2024; 10:1014-1023. [PMID: 39058047 PMCID: PMC11280977 DOI: 10.3390/tomography10070075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND This study evaluates the repeatability and reproducibility of fat-fraction percentage (FF%) in whole-body magnetic resonance imaging (WB-MRI) of prostate cancer patients with bone metastatic hormone naive disease. METHODS Patients were selected from the database of a prospective phase-II trial. The treatment response was assessed using the METastasis Reporting and Data System for Prostate (MET-RADS-P). Two operators identified a Small Active Lesion (SAL, <10 mm) and a Large Active Lesion (LAL, ≥10 mm) per patient, performing manual segmentation of lesion volume and the largest cross-sectional area. Measurements were repeated by one operator after two weeks. Intra- and inter-reader agreements were assessed via Interclass Correlation Coefficient (ICC) on first-order radiomics features. RESULTS Intra-reader ICC showed high repeatability for both SAL and LAL in a single slice (SS) and volumetric (VS) measurements with values ranging from 0.897 to 0.971. Inter-reader ICC ranged from 0.641 to 0.883, indicating moderate to good reproducibility. Spearman's rho analysis confirmed a strong correlation between SS and VS measurements for SAL (0.817) and a moderate correlation for LAL (0.649). Both intra- and inter-rater agreement exceeded 0.75 for multiple first-order features across lesion sizes. CONCLUSION This study suggests that FF% measurements are reproducible, particularly for larger lesions in both SS and VS assessments.
Collapse
Affiliation(s)
| | - Nunzia Di Meo
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy (A.B.); (R.M.); (M.R.); (D.F.)
| | - Paolo Rondi
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy (A.B.); (R.M.); (M.R.); (D.F.)
| | - Chiara Saeli
- Department of Radiology, University of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy;
| | - Alberto Dalla Volta
- Department of Oncology, University of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy; (A.D.V.)
| | - Marika Vezzoli
- Department of Molecular and Translational, University of Brescia, Piazza del Mercato 15, 25123 Brescia, Italy
| | - Alfredo Berruti
- Department of Oncology, University of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy; (A.D.V.)
| | - Andrea Borghesi
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy (A.B.); (R.M.); (M.R.); (D.F.)
| | - Roberto Maroldi
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy (A.B.); (R.M.); (M.R.); (D.F.)
| | - Marco Ravanelli
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy (A.B.); (R.M.); (M.R.); (D.F.)
| | - Davide Farina
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, P.le Spedali Civili 1, 25123 Brescia, Italy (A.B.); (R.M.); (M.R.); (D.F.)
| |
Collapse
|
6
|
Fei J, Liu Y, Zeng Y, Yang M, Chen S, Duan X, Lu L, Chen M. Cancer diagnosis and treatment platform based on manganese-based nanomaterials. Front Bioeng Biotechnol 2024; 12:1363569. [PMID: 38497051 PMCID: PMC10940866 DOI: 10.3389/fbioe.2024.1363569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
Cancer is a leading cause of death worldwide, and the development of new diagnostic and treatment methods is crucial. Manganese-based nanomaterials (MnNMs) have emerged as a focal point in the field of cancer diagnosis and treatment due to their multifunctional properties. These nanomaterials have been extensively explored as contrast agents for various imaging technologies such as magnetic resonance imaging (MRI), photoacoustic imaging (PAI), and near-infrared fluorescence imaging (NIR-FL). The use of these nanomaterials has significantly enhanced the contrast for precise tumor detection and localization. Moreover, MnNMs have shown responsiveness to the tumor microenvironment (TME), enabling innovative approaches to cancer treatment. This review provides an overview of the latest developments of MnNMs and their potential applications in tumor diagnosis and therapy. Finally, potential challenges and prospects of MnNMs in clinical applications are discussed. We believe that this review would serve as a valuable resource for guiding further research on the application of manganese nanomaterials in cancer diagnosis and treatment, addressing the current limitations, and proposing future research directions.
Collapse
Affiliation(s)
- Jia Fei
- Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, China
| | - Ya Zeng
- Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, China
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, China
| | - Xiaobing Duan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, China
| | - Muhe Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
7
|
Mirshahvalad SA, Kohan A, Metser U, Hinzpeter R, Ortega C, Farag A, Veit-Haibach P. Diagnostic performance of whole-body [ 18F]FDG PET/MR in cancer M staging: A systematic review and meta-analysis. Eur Radiol 2024; 34:673-685. [PMID: 37535156 DOI: 10.1007/s00330-023-10009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To calculate the pooled diagnostic performances of whole-body [18F]FDG PET/MR in M staging of [18F]FDG-avid cancer entities. METHODS A diagnostic meta-analysis was conducted on the [18F]FDG PET/MR in M staging, including studies: (1) evaluated [18F]FDG PET/MR in detecting distant metastasis; (2) compared[ 18F]FDG PET/MR with histopathology, follow-up, or asynchronous multimodality imaging as the reference standard; (3) provided data for the whole-body evaluation; (4) provided adequate data to calculate the meta-analytic performances. Pooled performances were calculated with their confidence interval. In addition, forest plots, SROC curves, and likelihood ratio scatterplots were drawn. All analyses were performed using STATA 16. RESULTS From 52 eligible studies, 2289 patients and 2072 metastases were entered in the meta-analysis. The whole-body pooled sensitivities were 0.95 (95%CI: 0.91-0.97) and 0.97 (95%CI: 0.91-0.99) at the patient and lesion levels, respectively. The pooled specificities were 0.99 (95%CI: 0.97-1.00) and 0.97 (95%CI: 0.90-0.99), respectively. Additionally, subgroup analyses were performed. The calculated pooled sensitivities for lung, gastrointestinal, breast, and gynecological cancers were 0.90, 0.93, 1.00, and 0.97, respectively. The pooled specificities were 1.00, 0.98, 0.97, and 1.00, respectively. Furthermore, the pooled sensitivities for non-small cell lung, colorectal, and cervical cancers were 0.92, 0.96, and 0.86, respectively. The pooled specificities were 1.00, 0.95, and 1.00, respectively. CONCLUSION [18F]FDG PET/MR was a highly accurate modality in M staging in the reported [18F]FDG-avid malignancies. The results showed high sensitivity and specificity in each reviewed malignancy type. Thus, our findings may help clinicians and patients to be confident about the performance of [18F]FDG PET/MR in the clinic. CLINICAL RELEVANCE STATEMENT Although [18F]FDG PET/MR is not a routine imaging technique in current guidelines, mostly due to its availability and logistic issues, our findings might add to the limited evidence regarding its performance, showing a sensitivity of 0.95 and specificity of 0.97. KEY POINTS • The whole-body [18F]FDG PET/MR showed high accuracy in detecting distant metastases at both patient and lesion levels. • The pooled sensitivities were 95% and 97% and pooled specificities were 99% and 97% at patient and lesion levels, respectively. • The results suggested that 18F-FDG PET/MR was a strong modality in the exclusion and confirmation of distant metastases.
Collapse
Affiliation(s)
- Seyed Ali Mirshahvalad
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada.
| | - Andres Kohan
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
| | - Ricarda Hinzpeter
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
| | - Claudia Ortega
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
| | - Adam Farag
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto General Hospital, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
| |
Collapse
|
8
|
Loibl S, Azim HA, Bachelot T, Berveiller P, Bosch A, Cardonick E, Denkert C, Halaska MJ, Hoeltzenbein M, Johansson ALV, Maggen C, Markert UR, Peccatori F, Poortmans P, Saloustros E, Saura C, Schmid P, Stamatakis E, van den Heuvel-Eibrink M, van Gerwen M, Vandecaveye V, Pentheroudakis G, Curigliano G, Amant F. ESMO Expert Consensus Statements on the management of breast cancer during pregnancy (PrBC). Ann Oncol 2023; 34:849-866. [PMID: 37572987 DOI: 10.1016/j.annonc.2023.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023] Open
Abstract
The management of breast cancer during pregnancy (PrBC) is a relatively rare indication and an area where no or little evidence is available since randomized controlled trials cannot be conducted. In general, advances related to breast cancer (BC) treatment outside pregnancy cannot always be translated to PrBC, because both the interests of the mother and of the unborn should be considered. Evidence remains limited and/or conflicting in some specific areas where the optimal approach remains controversial. In 2022, the European Society for Medical Oncology (ESMO) held a virtual consensus-building process on this topic to gain insights from a multidisciplinary group of experts and develop statements on controversial topics that cannot be adequately addressed in the current evidence-based ESMO Clinical Practice Guideline. The aim of this consensus-building process was to discuss controversial issues relating to the management of patients with PrBC. The virtual meeting included a multidisciplinary panel of 24 leading experts from 13 countries and was chaired by S. Loibl and F. Amant. All experts were allocated to one of four different working groups. Each working group covered a specific subject area with two chairs appointed: Planning, preparation and execution of the consensus process was conducted according to the ESMO standard operating procedures.
Collapse
Affiliation(s)
- S Loibl
- GBG c/o GBG Forschungs GmbH, Neu-Isenburg; Centre for Haematology and Oncology Bethanien, Frankfurt am Main, Frankfurt; Goethe University Frankfurt, Frankfurt am Main, Frankfurt, Germany.
| | - H A Azim
- Breast Cancer Center, School of Medicine, Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - T Bachelot
- Department of medical oncology, Centre Léon Bérard, Lyon, France
| | - P Berveiller
- Department of Gynecology and Obstetrics, Poissy-Saint Germain Hospital, Poissy; UMR 1198 - BREED, INRAE, Paris Saclay University, RHuMA, Montigny-Le-Bretonneux, France
| | - A Bosch
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund; Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - E Cardonick
- Cooper Medical School at Rowan University, Camden, USA
| | - C Denkert
- Philipps-University Marburg and Marburg University Hospital (UKGM), Marburg, Germany
| | - M J Halaska
- Department of Obstetrics and Gynaecology, Third Faculty of Medicine, Charles University in Prague and Universital Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - M Hoeltzenbein
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Embryotox Center of Clinical Teratology and Drug Safety in Pregnancy, Berlin, Germany
| | - A L V Johansson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Cancer Registry of Norway, Oslo, Norway
| | - C Maggen
- Department of Obstetrics and Prenatal Medicine, University Hospital Brussels, Brussels, Belgium
| | - U R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - F Peccatori
- Gynecologic Oncology Department, European Institute of Oncology IRCCS, Milan, Italy
| | - P Poortmans
- Iridium Netwerk, Antwerp; University of Antwerp, Antwerp, Belgium
| | - E Saloustros
- Department of Oncology, University General Hospital of Larissa, Larissa, Greece
| | - C Saura
- Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - P Schmid
- Cancer Institute, Queen Mary University London, London, UK
| | - E Stamatakis
- Department of Anesthesiology, 'Alexandra' General Hospital, Athens, Greece
| | | | - M van Gerwen
- Gynecologic Oncology, Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam; Department of Child and Adolescent Psychiatry and Psychosocial Care, Amsterdam UMC, University of Amsterdam; Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - V Vandecaveye
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - G Pentheroudakis
- European Society for Medical Oncology (ESMO), Lugano, Switzerland
| | - G Curigliano
- Division of Early Drug Development, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - F Amant
- Gynecologic Oncology, Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam; Division Gynaecologic Oncology, UZ Leuven, Belgium
| |
Collapse
|
9
|
Eltonbary HTAI, Elmashad NM, Khodair SA, Abou Khadrah RS. Suppression of background body signals in whole-body diffusion-weighted imaging for detection of bony metastases: a pilot study. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2023. [DOI: 10.1186/s43055-023-01012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Abstract
Background
Whole-body diffusion-weighted magnetic resonance is being developed as a tool for assessing tumor spread. Patients with known primary tumors require meticulous evaluation to assess metastasis for better staging; we attempted to detect bony metastasis without radiation exposure. Our study's goal was to use whole-body diffusion-weighted imaging with background body signal suppression (WB-DWBIS) to evaluate bony metastasis in confirmed patients who have primary tumors.
Results
Our study included 90 patients with known primary cancer, 10 patients were excluded as they had no bony metastasis, from 80 patients: 36 (45.0%) having one site of metastasis, 36 (45%) having two sites of metastasis, and 8 (10.0%) having three sites of metastasis. 56 (70.0%) of the metastasis sites were bony metastasis, and 76 were mixed both bony and non-bony, including 32(40.0%) lung, 16 (20.0%) liver, and 28 (35%) lymph nodes. Sensitivity of bone scanning in detecting metastasis was as follows: 95.1% sensitivity and 92.0% accuracy, while that of whole-body diffusion-weighted image with background signals suppression was 94.8% sensitivity and 91.7% accuracy, WB-DWBIS inter-observer agreement in the detection of bony metastatic deposits in cancer patients was good (0.7 45, agreement = 93.2%).
Conclusions
Using WB-DWBIS images, bone lesion identification and characterization (site and number) were improved, producing outcomes similar to bone scanning without the use of ionizing radiation.
Collapse
|
10
|
Karaarslan E, Alis D, Basar Y, Kumbasar B, Kalayci CB, Alpan B, Ozger H. The Role of Whole-Body Magnetic Resonance Imaging in Assessing Extrapulmonary Metastases in Osteosarcoma Staging and Restaging: A Pilot Study. J Comput Assist Tomogr 2023:00004728-990000000-00148. [PMID: 36944103 DOI: 10.1097/rct.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
OBJECTIVE The aim of the study is to investigate the role of whole-body magnetic resonance imaging (MRI) in assessing extrapulmonary metastases in primary osteosarcoma staging. METHODS We retrospectively reviewed medical data to identify primary osteosarcoma patients with available preoperative whole-body MRI obtained in the staging or restaging. Histopathology was the reference test for assessing the diagnostic performance, if available. Otherwise, oncology board decisions were used as the reference. In addition, the benefits of whole-body MRI to F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET-CT) and bone scintigraphy were investigated. RESULTS In all, 36 patients with osteosarcoma (24 staging, 12 restaging) with a mean age of 16.36 ± 5.63 years (range, 9-29 years) were included in the study. The median follow-up duration was 26.61 months (interquartile range, 33.3 months). Of 36 patients, 8 had skeletal, 1 had a lymph node, and 1 had a subcutaneous metastasis. Whole-body MRI correctly identified all patients with metastatic disease but incorrectly classified a bone infarct in one patient as a skeletal metastasis, equating a scan-level sensitivity, specificity, accuracy, negative predictive value, and positive predictive value of 100%, 96.3%, 97.3%, 100%, and 90.91%. Whole-body MRI contributed to bone scintigraphy by identifying a skeletal metastasis in one patient and positron emission tomography-computed tomography by ruling out a skeletal metastasis in another. CONCLUSIONS Whole-body MRI could accurately identify extrapulmonary metastases in primary osteosarcoma patients for staging or restaging. In addition, it might contribute to the standard whole-body imaging methods.
Collapse
Affiliation(s)
- Ercan Karaarslan
- From the Department of Radiology, Acibadem Mehmet Ali Aydinlar University, School of Medicine
| | - Deniz Alis
- From the Department of Radiology, Acibadem Mehmet Ali Aydinlar University, School of Medicine
| | - Yeliz Basar
- Department of Radiology, Acibadem Healthcare Group
| | | | | | - Bugra Alpan
- Department of Orthopedics and Traumatology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Harzem Ozger
- Department of Orthopedics and Traumatology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Evaluating prostate cancer bone metastasis using accelerated whole-body isotropic 3D T1-weighted Dixon MRI with compressed SENSE: a feasibility study. Eur Radiol 2023; 33:1719-1728. [PMID: 36269371 DOI: 10.1007/s00330-022-09181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The study aimed to assess the efficiency of whole-body high-resolution compressed sensing-sensitivity encoding isotropic T1-Weighted Dixon (CSI-T1W-Dixon) scans in evaluating bone metastasis. METHODS Forty-five high-risk prostate cancer patients with bone metastases were enrolled prospectively and underwent whole-body MRI sequences, which included the following: pre- and post-contrast CSI-T1W-Dixon and conventional multi-planar T1-Weighted Dixon (CMP-T1W-Dixon) (coronal, sagittal, and axial scans), short tau inversion recovery (STIR), and DWI. Comparison between the CMP-T1W-Dixon and CSI-T1W-Dixon images was done for the subjective image quality, the quantitative contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). Furthermore, the diagnostic performance based on per-lesion and per-patient basis utilizing non-contrast T1-weighted (T1)/T1+ contrasted T1-weighted (T1C)/T1 + T1C + STIR + DWI sequences was compared between the CSI-T1W-Dixon and CMP-T1W-Dixon methods using reference standards (combining biopsy data and 6-month imaging follow-up). RESULT The CSI-T1W-Dixon images produced fewer image artifacts in the axial and coronal planes compared to the CMP-T1W-Dixon images. Also, the CSI-T1W-Dixon images provided better a CNR in fat-only images of all three planes and water-only images of the axial plane (p < 0.05). The CSI-T1W-Dixon showed a higher sensitivity than the CMP-T1W-Dixon techniques in analyzing T1-only images on a per-lesion basis (82.7% vs. 53.8% for sensitivity, p = 0.03). On a per-patient basis, no difference was found in the diagnostic capacity between the CSI-T1W-Dixon and CMP-T1W-Dixon sequences either alone or in combinations (p = 0.57-1). CONCLUSION High-resolution CSI-T1W-Dixon with higher image quality and diagnostic capacity can replace the CMP-T1W-Dixon method in evaluating bone metastasis in clinical practice. KEY POINTS • Compressed sensing isotropic acquisition for 3D T1-weighted Dixon images can improve the image quality with fewer artifacts compared to the anisotropic multiplanar acquisition. • Compressed sensing isotropic acquisition can save 67% of scanning time compared to anisotropic multiplanar acquisition. • Compressed sensing isotropic 3D T1-weighted Dixon images can offer better diagnostic performance with higher sensitivity compared to anisotropic multiplanar images.
Collapse
|
12
|
Diffusion-weighted imaging (DWI) in diagnosis, staging, and treatment response assessment of multiple myeloma: a systematic review and meta-analysis. Skeletal Radiol 2023; 52:565-583. [PMID: 35881152 DOI: 10.1007/s00256-022-04119-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the role of diffusion-weighted imaging (DWI) in the initial diagnosis, staging, and assessment of treatment response in patients with multiple myeloma (MM). MATERIALS AND METHODS A systematic literature review was conducted in PubMed, the Cochrane Library, EMBASE, Scopus, and Web of Science databases. The primary endpoints were defined as the diagnostic performance of DWI for disease detection, staging of MM, and assessing response to treatment in these patients. RESULTS Of 5881 initially reviewed publications, 33 were included in the final qualitative and quantitative meta-analysis. The diagnostic performance of DWI in the detection of patients with MM revealed pooled sensitivity and specificity of 86% (95% CI: 84-89) and 63% (95% CI: 56-70), respectively, with a diagnostic odds ratio (OR) of 14.98 (95% CI: 4.24-52.91). The pooled risk difference of 0.19 (95% CI: - 0.04-0.42) was reported in favor of upstaging with DWI compared to conventional MRI (P value = 0.1). Treatment response evaluation and ADCmean value changes across different studies showed sensitivity and specificity of approximately 78% (95% CI: 72-83) and 73% (95% CI: 61-83), respectively, with a diagnostic OR of 7.21 in distinguishing responders from non-responders. CONCLUSIONS DWI is not only a promising tool for the diagnosis of MM, but it is also useful in the initial staging and re-staging of the disease and treatment response assessment. This can aid clinicians with earlier initiation or change in treatment strategy, which could have prognostic significance for patients.
Collapse
|
13
|
Busacchio D, Mazzoni D, Mazzocco K, Pricolo P, Summers PE, Petralia G, Pravettoni G. Psychological characteristics and satisfaction for the whole-body MRI in cancer screening. PSYCHOL HEALTH MED 2023; 28:548-554. [PMID: 36148490 DOI: 10.1080/13548506.2022.2126989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Whole-body magnetic resonance imaging (WB-MRI) is an all-in-one non-invasive technique that can be used also in early cancer diagnosis in asymptomatic individuals. The aim of this work was to identify the personal characteristics predicting the satisfaction for the WB-MRI in a sample of healthy subjects. Before undergoing a WB-MRI examination, 154 participants completed a questionnaire covering sociodemographics (age, gender, education), personality traits (agreeableness, conscientiousness, emotional stability, extroversion, openness), and expectations about the procedure (expected usefulness, risks, noise, lack of air, duration). After the examination, participants reported their satisfaction with the WB-MRI. Results showed that agreeableness had a significant and positive effect on satisfaction. Expectations about its utility and the possible noise had a positive effect on satisfaction. Expectations of lack of air showed a negative significant effect on satisfaction. Sociodemographics showed no significant effects. Our study confirmed the important impact of individuals' personality and expectations on satisfaction with the procedure. Moreover, it provides useful insights for developing consultations aimed at increasing the acceptability of the procedure.
Collapse
Affiliation(s)
- Derna Busacchio
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Davide Mazzoni
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ketti Mazzocco
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paul E Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Precision Imaging and Research Unit - Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Knill AK, Blackledge MD, Curcean A, Larkin J, Turajlic S, Riddell A, Koh DM, Messiou C, Winfield JM. Optimisation of b-values for the accurate estimation of the apparent diffusion coefficient (ADC) in whole-body diffusion-weighted MRI in patients with metastatic melanoma. Eur Radiol 2023; 33:863-871. [PMID: 36169688 PMCID: PMC9889461 DOI: 10.1007/s00330-022-09088-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To establish optimised diffusion weightings ('b-values') for acquisition of whole-body diffusion-weighted MRI (WB-DWI) for estimation of the apparent diffusion coefficient (ADC) in patients with metastatic melanoma (MM). Existing recommendations for WB-DWI have not been optimised for the tumour properties in MM; therefore, evaluation of acquisition parameters is essential before embarking on larger studies. METHODS Retrospective clinical data and phantom experiments were used. Clinical data comprised 125 lesions from 14 examinations in 11 patients with multifocal MM, imaged before and/or after treatment with immunotherapy at a single institution. ADC estimates from these data were applied to a model to estimate the optimum b-value. A large non-diffusing phantom was used to assess eddy current-induced geometric distortion. RESULTS Considering all tumour sites from pre- and post-treatment examinations together, metastases exhibited a large range of mean ADC values, [0.67-1.49] × 10-3 mm2/s, and the optimum high b-value (bhigh) for ADC estimation was 1100 (10th-90th percentile: 740-1790) s/mm2. At higher b-values, geometric distortion increased, and longer echo times were required, leading to reduced signal. CONCLUSIONS Theoretical optimisation gave an optimum bhigh of 1100 (10th-90th percentile: 740-1790) s/mm2 for ADC estimation in MM, with the large range of optimum b-values reflecting the wide range of ADC values in these tumours. Geometric distortion and minimum echo time increase at higher b-values and are not included in the theoretical optimisation; bhigh in the range 750-1100 s/mm2 should be adopted to maintain acceptable image quality but performance should be evaluated for a specific scanner. KEY POINTS • Theoretical optimisation gave an optimum high b-value of 1100 (10th-90th percentile: 740-1790) s/mm2 for ADC estimation in metastatic melanoma. • Considering geometric distortion and minimum echo time (TE), a b-value in the range 750-1100 s/mm2 is recommended. • Sites should evaluate the performance of specific scanners to assess the effect of geometric distortion and minimum TE.
Collapse
Affiliation(s)
- Annemarie K Knill
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Andra Curcean
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - James Larkin
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Samra Turajlic
- The Royal Marsden NHS Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| | | | - Dow Mu Koh
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Christina Messiou
- The Institute of Cancer Research, London, UK.
- The Royal Marsden NHS Foundation Trust, London, UK.
| | - Jessica M Winfield
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
15
|
Liang P, Yuan G, Li S, He K, Peng Y, Hu D, Li Z, Ma Z, Xu C. Non-invasive evaluation of the pathological and functional characteristics of chronic kidney disease by diffusion kurtosis imaging and intravoxel incoherent motion imaging: comparison with conventional DWI. Br J Radiol 2023; 96:20220644. [PMID: 36400040 PMCID: PMC10997028 DOI: 10.1259/bjr.20220644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To explore the diagnostic performance of diffusion kurtosis imaging (DKI) and incoherent intravoxel movement (IVIM) in evaluating the clinical and pathological characteristics in chronic kidney disease (CKD) compared to conventional diffusion-weighted imaging (DWI). METHODS Forty-nine CKD patients and 24 healthy volunteers were included in this retrospective study from September 2020 to September 2021. All participants underwent MRI examinations before percutaneous renal biopsy. Coronal T2WI, axial T1WI and T2WI, and DWI (including IVIM and DKI) sequences obtained in one scan. We measured the apparent diffusion coefficient (ADC), true diffusion coefficient (Dt), pseudo-diffusion coefficient (Dp), perfusion fraction (fp), mean kurtosis (MK), and mean diffusivity (MD) values. One-way analysis of variance, correlation analysis, and receiver operating characteristic curve analysis were used in our study. RESULTS Cortex and medulla ADC, MK, Dt, fp were significantly different between the healthy volunteers and CKD stages 1-2 (all p < 0.05). All diffusion parameters showed significant differences between CKD stages 1-2 and CKD stages 3-5 (all p < 0.05). Except for the uncorrelation between MDMedulla and vascular lesion score, all other diffusion parameters were low-to-moderately related to clinical and pathological indicators. fpMedulla was the best parameter to differentiate healthy volunteers from CKD stages 1-2. MKCortex was the best parameter to differentiate CKD stages 1-2 from that CKD stages 3-5. CONCLUSION Renal cortex and medulla fp, Dt, and MK can provide more valuable information than ADC values for the evaluation of clinical and pathological characteristics of CKD patients, and thus can provide auxiliary diagnosis for fibrosis assessment and clinical management of CKD patients. ADVANCES IN KNOWLEDGE IVIM and DKI can provide more diagnostic valuable information for CKD patients than conventional DWI.
Collapse
Affiliation(s)
- Ping Liang
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Guanjie Yuan
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Shichao Li
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Kangwen He
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Yang Peng
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Zufu Ma
- Department of Nephrology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| | - Chuou Xu
- Department of Radiology, Tongji Hospital, Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China
| |
Collapse
|
16
|
Santoni A, Simoncelli M, Franceschini M, Ciofini S, Fredducci S, Caroni F, Sammartano V, Bocchia M, Gozzetti A. Functional Imaging in the Evaluation of Treatment Response in Multiple Myeloma: The Role of PET-CT and MRI. J Pers Med 2022; 12:jpm12111885. [PMID: 36579605 PMCID: PMC9696713 DOI: 10.3390/jpm12111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Bone disease is among the defining characteristics of symptomatic Multiple Myeloma (MM). Imaging techniques such as fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET/CT) and magnetic resonance imaging (MRI) can identify plasma cell proliferation and quantify disease activity. This function renders these imaging tools as suitable not only for diagnosis, but also for the assessment of bone disease after treatment of MM patients. The aim of this article is to review FDG PET/CT and MRI and their applications, with a focus on their role in treatment response evaluation. MRI emerges as the technique with the highest sensitivity in lesions' detection and PET/CT as the technique with a major impact on prognosis. Their comparison yields different results concerning the best tool to evaluate treatment response. The inhomogeneity of the data suggests the need to address limitations related to these tools with the employment of new techniques and the potential for a complementary use of both PET/CT and MRI to refine the sensitivity and achieve the standards for minimal residual disease (MRD) evaluation.
Collapse
|
17
|
The potential of predictive and prognostic breast MRI (P2-bMRI). Eur Radiol Exp 2022; 6:42. [PMID: 35989400 PMCID: PMC9393116 DOI: 10.1186/s41747-022-00291-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
Magnetic resonance imaging (MRI) is an important part of breast cancer diagnosis and multimodal workup. It provides unsurpassed soft tissue contrast to analyse the underlying pathophysiology, and it is adopted for a variety of clinical indications. Predictive and prognostic breast MRI (P2-bMRI) is an emerging application next to these indications. The general objective of P2-bMRI is to provide predictive and/or prognostic biomarkers in order to support personalisation of breast cancer treatment. We believe P2-bMRI has a great clinical potential, thanks to the in vivo examination of the whole tumour and of the surrounding tissue, establishing a link between pathophysiology and response to therapy (prediction) as well as patient outcome (prognostication). The tools used for P2-bMRI cover a wide spectrum: standard and advanced multiparametric pulse sequences; structured reporting criteria (for instance BI-RADS descriptors); artificial intelligence methods, including machine learning (with emphasis on radiomics data analysis); and deep learning that have shown compelling potential for this purpose. P2-bMRI reuses the imaging data of examinations performed in the current practice. Accordingly, P2-bMRI could optimise clinical workflow, enabling cost savings and ultimately improving personalisation of treatment. This review introduces the concept of P2-bMRI, focusing on the clinical application of P2-bMRI by using semantic criteria.
Collapse
|
18
|
Sjöholm T, Kullberg J, Strand R, Engström M, Ahlström H, Malmberg F. Improved geometric accuracy of whole body diffusion-weighted imaging at 1.5T and 3T using reverse polarity gradients. Sci Rep 2022; 12:11605. [PMID: 35804034 PMCID: PMC9270424 DOI: 10.1038/s41598-022-15872-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/30/2022] [Indexed: 12/01/2022] Open
Abstract
Whole body diffusion-weighted imaging (WB-DWI) is increasingly used in oncological applications, but suffers from misalignments due to susceptibility-induced geometric distortion. As such, DWI and structural images acquired in the same scan session are not geometrically aligned, leading to difficulties in e.g. lesion detection and segmentation. In this work we assess the performance of the reverse polarity gradient (RPG) method for correction of WB-DWI geometric distortion. Multi-station DWI and structural magnetic resonance imaging (MRI) data of healthy controls were acquired at 1.5T (n = 20) and 3T (n = 20). DWI data was distortion corrected using the RPG method based on b = 0 s/mm2 (b0) and b = 50 s/mm2 (b50) DWI acquisitions. Mutual information (MI) between low b-value DWI and structural data increased with distortion correction (P < 0.05), while improvements in region of interest (ROI) based similarity metrics, comparing the position of incidental findings on DWI and structural data, were location dependent. Small numerical differences between non-corrected and distortion corrected apparent diffusion coefficient (ADC) values were measured. Visually, the distortion correction improved spine alignment at station borders, but introduced registration-based artefacts mainly for the spleen and kidneys. Overall, the RPG distortion correction gave an improved geometric accuracy for WB-DWI data acquired at 1.5T and 3T. The b0- and b50-based distortion corrections had a very similar performance.
Collapse
Affiliation(s)
- T Sjöholm
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - J Kullberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Antaros Medical AB, Mölndal, Sweden
| | - R Strand
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - M Engström
- Applied Science Laboratory, GE Healthcare, Uppsala, Sweden
| | - H Ahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Antaros Medical AB, Mölndal, Sweden
| | - F Malmberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Information Technology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Na Kim J, Jin Park H, Yeon Won S, Kim M, Woo Hong S, Kim E, Jin Park S, Taek Lee Y. Whole-body MRI for preventive health screening in a general population: Prevalence of incidental findings around the hip. Eur J Radiol 2022; 150:110239. [DOI: 10.1016/j.ejrad.2022.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/27/2022] [Accepted: 03/05/2022] [Indexed: 11/26/2022]
|
20
|
Mazzei MA, Bagnacci G, Gentili F, Capitoni I, Mura G, Marrelli D, Petrioli R, Brunese L, Cappabianca S, Catarci M, Degiuli M, De Manzoni G, De Prizio M, Donini A, Romario UF, Funicelli L, Laghi A, Minetti G, Morgagni P, Petrella E, Pittiani F, Rausei S, Romanini L, Rosati R, Ianora AAS, Tiberio GAM, Volterrani L, Roviello F, Grassi R. Structured and shared CT radiological report of gastric cancer: a consensus proposal by the Italian Research Group for Gastric Cancer (GIRCG) and the Italian Society of Medical and Interventional Radiology (SIRM). Eur Radiol 2022; 32:938-949. [PMID: 34383148 PMCID: PMC8359760 DOI: 10.1007/s00330-021-08205-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Written radiological report remains the most important means of communication between radiologist and referring medical/surgical doctor, even though CT reports are frequently just descriptive, unclear, and unstructured. The Italian Society of Medical and Interventional Radiology (SIRM) and the Italian Research Group for Gastric Cancer (GIRCG) promoted a critical shared discussion between 10 skilled radiologists and 10 surgical oncologists, by means of multi-round consensus-building Delphi survey, to develop a structured reporting template for CT of GC patients. METHODS Twenty-four items were organized according to the broad categories of a structured report as suggested by the European Society of Radiology (clinical referral, technique, findings, conclusion, and advice) and grouped into three "CT report sections" depending on the diagnostic phase of the radiological assessment for the oncologic patient (staging, restaging, and follow-up). RESULTS In the final round, 23 out of 24 items obtained agreement ( ≥ 8) and consensus ( ≤ 2) and 19 out 24 items obtained a good stability (p > 0.05). CONCLUSIONS The structured report obtained, shared by surgical and medical oncologists and radiologists, allows an appropriate, clearer, and focused CT report essential to high-quality patient care in GC, avoiding the exclusion of key radiological information useful for multidisciplinary decision-making. KEY POINTS • Imaging represents the cornerstone for tailored treatment in GC patients. • CT-structured radiology report in GC patients is useful for multidisciplinary decision making.
Collapse
Affiliation(s)
- Maria Antonietta Mazzei
- Department of Medical, Surgical and Neuro Sciences, University of Siena and Department of Radiological Sciences, Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- SIRM, Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, Milan, Italy
| | - Giulio Bagnacci
- Department of Medical, Surgical and Neuro Sciences, University of Siena and Department of Radiological Sciences, Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- SIRM, Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, Milan, Italy
| | - Francesco Gentili
- SIRM, Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, Milan, Italy.
- Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy.
| | - Iacopo Capitoni
- Department of Medical, Surgical and Neuro Sciences, University of Siena and Department of Radiological Sciences, Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Gianni Mura
- Department of Surgery, Division of General Surgery, Arezzo Hospital, Arezzo, Italy
| | - Daniele Marrelli
- Department of Medicine, Surgery and Neuroscience, Unit of General Surgery and Surgical Oncology, University of Siena, Siena, Italy
| | - Roberto Petrioli
- Department of Oncology, Unit of Medical Oncology, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Luca Brunese
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
- SIRM, Italian College of Oncology, Italian Society of Medical and Interventional Radiology, Milan, Italy
| | - Salvatore Cappabianca
- SIRM, Italian College of Oncology, Italian Society of Medical and Interventional Radiology, Milan, Italy
- Division of Radiology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marco Catarci
- FACS; UOC Chirurgia Generale; Ospedale Sandro Pertini - ASL Roma 2, Roma, Italy
| | - Maurizio Degiuli
- Surgical Oncology and Digestive Surgery Unit, Department of Oncology, University of Turin; San Luigi University Hospital, Orbassano, Italy
| | | | - Marco De Prizio
- Department of Surgery, Division of General Surgery, Arezzo Hospital, Arezzo, Italy
| | - Annibale Donini
- Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | | - Luigi Funicelli
- SIRM, Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, Milan, Italy
- SIRM, Italian College of Oncology, Italian Society of Medical and Interventional Radiology, Milan, Italy
- Digestive Surgery, IEO European Institute of Oncology - IRCCS, Milan, Italy
| | - Andrea Laghi
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Rome, Italy
- SIRM, Italian College of Gastroenterology, Italian Society of Medical and Interventional Radiology, Milan, Italy
| | - Giuseppe Minetti
- SIRM, Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, Milan, Italy
- Radiology Department, Ospedale Policlinico San Martino, IRCCS per L'Oncologia e le Neuroscienze, Genoa, Italy
| | - Paolo Morgagni
- General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Enrico Petrella
- Radiology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Frida Pittiani
- SIRM, Italian College of Computed Tomography, Italian Society of Medical and Interventional Radiology, Milan, Italy
- Department of Radiology, ASST Spedali Civili Brescia, Brescia, Italy
| | - Stefano Rausei
- Department of Surgery, ASST Valle Olona, Gallarate, Varese, Italy
| | | | - Riccardo Rosati
- Endocrine Unit, Department of Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Amato Antonio Stabile Ianora
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari, Bari, Italy
| | - Guido A M Tiberio
- Surgical Unit, Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Luca Volterrani
- Department of Medical, Surgical and Neuro Sciences, University of Siena and Department of Radiological Sciences, Unit of Diagnostic Imaging, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- SIRM, Italian College of Oncology, Italian Society of Medical and Interventional Radiology, Milan, Italy
| | - Franco Roviello
- Department of Medicine, Surgery and Neuroscience, Unit of General Surgery and Surgical Oncology, University of Siena, Siena, Italy
| | - Roberto Grassi
- Division of Radiology, University of Campania Luigi Vanvitelli, Naples, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology, Milan, Italy
| |
Collapse
|
21
|
Whole-Body MRI Surveillance—Baseline Findings in the Swedish Multicentre Hereditary TP53-Related Cancer Syndrome Study (SWEP53). Cancers (Basel) 2022; 14:cancers14020380. [PMID: 35053544 PMCID: PMC8773910 DOI: 10.3390/cancers14020380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
A surveillance strategy of the heritable TP53-related cancer syndrome (hTP53rc), commonly referred to as the Li–Fraumeni syndrome (LFS), is studied in a prospective observational nationwide multi-centre study in Sweden (SWEP53). The aim of this sub-study is to evaluate whole-body MRI (WB-MRI) regarding the rate of malignant, indeterminate, and benign imaging findings and the associated further workup generated by the baseline examination. Individuals with hTP53rc were enrolled in a surveillance program including annual whole-body MRI (WB-MRI), brain-MRI, and in female carriers, dedicated breast MRI. A total of 68 adults ≥18 years old have been enrolled to date. Of these, 61 fulfilled the inclusion criteria for the baseline MRI scan. In total, 42 showed a normal scan, while 19 (31%) needed further workup, of whom three individuals (3/19 = 16%) were diagnosed with asymptomatic malignant tumours (thyroid cancer, disseminated upper GI cancer, and liver metastasis from a previous breast cancer). Forty-three participants were women, of whom 21 had performed risk-reducing mastectomy prior to inclusion. The remaining were monitored with breast MRI, and no breast tumours were detected on baseline MRI. WB-MRI has the potential to identify asymptomatic tumours in individuals with hTP53rc syndrome. The challenge is to adequately and efficiently investigate all indeterminate findings. Thus, a multidisciplinary team should be considered in surveillance programs for individuals with hTP53rc syndrome.
Collapse
|
22
|
Review of imaging techniques for evaluating morphological and functional responses to the treatment of bone metastases in prostate and breast cancer. Clin Transl Oncol 2022; 24:1290-1310. [PMID: 35152355 PMCID: PMC9192443 DOI: 10.1007/s12094-022-02784-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/20/2022] [Indexed: 12/27/2022]
Abstract
Bone metastases are very common complications associated with certain types of cancers that frequently negatively impact the quality of life and functional status of patients; thus, early detection is necessary for the implementation of immediate therapeutic measures to reduce the risk of skeletal complications and improve survival and quality of life. There is no consensus or universal standard approach for the detection of bone metastases in cancer patients based on imaging. Endorsed by the Spanish Society of Medical Oncology (SEOM), the Spanish Society of Medical Radiology (SERAM), and the Spanish Society of Nuclear Medicine and Molecular Imaging (SEMNIM) a group of experts met to discuss and provide an up-to-date review of our current understanding of the biological mechanisms through which tumors spread to the bone and describe the imaging methods available to diagnose bone metastasis and monitor their response to oncological treatment, focusing on patients with breast and prostate cancer. According to current available data, the use of next-generation imaging techniques, including whole-body diffusion-weighted MRI, PET/CT, and PET/MRI with novel radiopharmaceuticals, is recommended instead of the classical combination of CT and bone scan in detection, staging and response assessment of bone metastases from prostate and breast cancer.Clinical trial registration: Not applicable.
Collapse
|
23
|
Hoffman RJ, Stanborough RO, Garner HW. Diagnostic Imaging Approach to Solitary Bone Lesions. Semin Roentgenol 2022; 57:241-251. [DOI: 10.1053/j.ro.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 11/11/2022]
|
24
|
Nardone V, Reginelli A, Grassi R, Boldrini L, Vacca G, D'Ippolito E, Annunziata S, Farchione A, Belfiore MP, Desideri I, Cappabianca S. Delta radiomics: a systematic review. Radiol Med 2021; 126:1571-1583. [PMID: 34865190 DOI: 10.1007/s11547-021-01436-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Radiomics can provide quantitative features from medical imaging that can be correlated with various biological features and clinical endpoints. Delta radiomics, on the other hand, consists in the analysis of feature variation at different acquisition time points, usually before and after therapy. The aim of this study was to provide a systematic review of the different delta radiomics approaches. METHODS Eligible articles were searched in Embase, PubMed, and ScienceDirect using a search string that included free text and/or Medical Subject Headings (MeSH) with three key search terms: "radiomics", "texture", and "delta". Studies were analysed using QUADAS-2 and the RQS tool. RESULTS Forty-eight studies were finally included. The studies were divided into preclinical/methodological (five studies, 10.4%); rectal cancer (six studies, 12.5%); lung cancer (twelve studies, 25%); sarcoma (five studies, 10.4%); prostate cancer (three studies, 6.3%), head and neck cancer (six studies, 12.5%); gastrointestinal malignancies excluding rectum (seven studies, 14.6%), and other disease sites (four studies, 8.3%). The median RQS of all studies was 25% (mean 21% ± 12%), with 13 studies (30.2%) achieving a quality score < 10% and 22 studies (51.2%) < 25%. CONCLUSIONS Delta radiomics shows potential benefit for several clinical endpoints in oncology (differential diagnosis, prognosis and prediction of treatment response, and evaluation of side effects). Nevertheless, the studies included in this systematic review suffer from the bias of overall low quality, so that the conclusions are currently heterogeneous, not robust, and not replicable. Further research with prospective and multicentre studies is needed for the clinical validation of delta radiomics approaches.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luca Boldrini
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giovanna Vacca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Emma D'Ippolito
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Salvatore Annunziata
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Alessandra Farchione
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia - Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
25
|
Ippolito D, Giandola T, Maino C, Gandola D, Ragusi M, Brambilla P, Bonaffini PA, Sironi S. Diagnostic Value of Whole-Body MRI Short Protocols in Bone Lesion Detection in Multiple Myeloma Patients. Diagnostics (Basel) 2021; 11:1053. [PMID: 34201122 PMCID: PMC8226715 DOI: 10.3390/diagnostics11061053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
The aim of the study is to evaluate the effectiveness of short whole-body magnetic resonance imaging (WBMRI) protocols for the overall assessment of bone marrow involvement in patients with multiple myeloma (MM), in comparison with standard whole-body MRI protocol. Patients with biopsy-proven MM, who underwent a WBMRI with full-body coverage (from vertex to feet) were retrospectively enrolled. WBMRI images were independently evaluated by two expert radiologists, in terms of infiltration patterns (normal, focal, diffuse, and combined), according to location (the whole skeleton was divided into six anatomic districts: skull, spine, sternum and ribs, upper limbs, pelvis and proximal two-thirds of the femur, remaining parts of lower limbs) and lytic lesions number (<5, 5-20, and >20). The majority of patients showed focal and combined infiltration patterns with bone lesions predominantly distributed in the spine and pelvis. As skull and lower limbs are less frequently involved by focal bone lesions, excluding them from the standard MRI protocol allows to obtain a shorter protocol, maintaining a good diagnostic value.
Collapse
Affiliation(s)
- Davide Ippolito
- Department of Diagnostic Radiology, “San Gerardo” Hospital, Via Pergolesi 33, 20900 Monza, MB, Italy; (T.G.); (C.M.); (D.G.); (M.R.)
- School of Medicine, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
| | - Teresa Giandola
- Department of Diagnostic Radiology, “San Gerardo” Hospital, Via Pergolesi 33, 20900 Monza, MB, Italy; (T.G.); (C.M.); (D.G.); (M.R.)
- School of Medicine, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
| | - Cesare Maino
- Department of Diagnostic Radiology, “San Gerardo” Hospital, Via Pergolesi 33, 20900 Monza, MB, Italy; (T.G.); (C.M.); (D.G.); (M.R.)
- School of Medicine, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
| | - Davide Gandola
- Department of Diagnostic Radiology, “San Gerardo” Hospital, Via Pergolesi 33, 20900 Monza, MB, Italy; (T.G.); (C.M.); (D.G.); (M.R.)
- School of Medicine, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
| | - Maria Ragusi
- Department of Diagnostic Radiology, “San Gerardo” Hospital, Via Pergolesi 33, 20900 Monza, MB, Italy; (T.G.); (C.M.); (D.G.); (M.R.)
- School of Medicine, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
| | - Paolo Brambilla
- Department of Diagnostic Radiology, H Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, BG, Italy;
| | - Pietro Andrea Bonaffini
- School of Medicine, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
- Department of Diagnostic Radiology, H Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, BG, Italy;
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
- Department of Diagnostic Radiology, H Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, BG, Italy;
| |
Collapse
|
26
|
Busacchio D, Mazzocco K, Radice D, Summers PE, Pricolo P, Pravettoni G, Petralia G. Value Attribution in the Decision to Use of Whole Body MRI for Early Cancer Diagnosis. Diagnostics (Basel) 2021; 11:diagnostics11060972. [PMID: 34071199 PMCID: PMC8227751 DOI: 10.3390/diagnostics11060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/01/2022] Open
Abstract
This study aimed to identify the main factors that asymptomatic individuals considered when deciding to undergo self-referred Whole-body MRI (WB-MRI) for early cancer diagnosis and the subjective values attributed to each mentioned factor in a Decision tree analysis. Personal characteristics such as risk perception and personality were investigated as possible factors affecting value attribution. Seventy-four volunteers (mean age 56.4; male = 47) filled a simplified decision tree by expressing the expected factors and related subjective values associated with two screening options for early cancer diagnosis (standard procedures vs. WB-MRI+standard procedures) while waiting for a WB-MRI examination. Questionnaires on risk perception and personality traits were also administered. Expected factors were summarized in 5 clusters: diagnostic certainty, psychological well-being, safety, test validity and time/cost. Test validity and time/cost were evaluated as potential losses in both procedures. Diagnostic Certainty and safety were evaluated as losses in standard screening, and as an advantage when considering WB-MRI+standard screening. Forty-five percent of participants considered WB-MRI+standard screening as beneficial for their psychological well-being. Finally, personal absolute and comparative risk to get cancer was associated with a positive value attribution to WB-MRI (p < 0.05). Our results showed the addition of WB-MRI to be generally considered a good option to increase individuals’ perceptions of diagnostic certainty and the safety of the exam, and to increase psychological well-being. The positive value of such a screening option increased with the individual’s cancer risk perception.
Collapse
Affiliation(s)
- Derna Busacchio
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (K.M.); (G.P.)
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.E.S.); (P.P.)
- Correspondence: ; Tel.: +39-0257489207
| | - Ketti Mazzocco
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (K.M.); (G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Davide Radice
- Division of Epidemiology and Biostatistics, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Paul E. Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.E.S.); (P.P.)
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.E.S.); (P.P.)
| | - Gabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (K.M.); (G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
27
|
Arrigoni F, Izzo A, Bruno F, Palumbo P, De Filippo M, Zugaro L, Masciocchi C, Barile A. Musculoskeletal Interventional Radiology in the Pediatric Population: State of the Art. Semin Musculoskelet Radiol 2021; 25:176-183. [PMID: 34020477 DOI: 10.1055/s-0041-1730326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Interventional radiology procedures have been proven to be as effective as traditional surgery but usually are characterized by lower morbidity rates. In this article, the most diffuse IR treatments for pediatric lesions are reviewed with the aim of describing main advantages and drawbacks. Ablation procedures (in particular RFA and MRgFUS) are widely used for the management of osteoid osteoma and osteoblastoma whereas intracystic injection of methylprednisolone acetate is performed for simple bone cysts. Sclerosing agents and where possible, selective arterial embolization are used for treatment of aneurysmal bone cysts and other vascular malformations. In the management of malignant muscoloskeletal tumors, the role interventional radiology is mainly represented by percutaneous biopsies, and by adiuvant selective embolizations in presence of hypervascular lesions to be submitted to surgery.
Collapse
Affiliation(s)
- Francesco Arrigoni
- Emergency and Interventional Radiology, San Salvatore Hospital, L'Aquila, Italy
| | - Antonio Izzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federico Bruno
- Emergency and Interventional Radiology, San Salvatore Hospital, L'Aquila, Italy
| | - Pierpaolo Palumbo
- Emergency and Interventional Radiology, San Salvatore Hospital, L'Aquila, Italy
| | - Massimo De Filippo
- Department of Medicine and Surgery, Unit of Radiology, University of Parma, Parma, Italy
| | - Luigi Zugaro
- Emergency and Interventional Radiology, San Salvatore Hospital, L'Aquila, Italy
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
28
|
Colombo A, Bombelli L, Summers PE, Saia G, Zugni F, Marvaso G, Grimm R, Jereczek-Fossa BA, Padhani AR, Petralia G. Effects of Sex and Age on Fat Fraction, Diffusion-Weighted Image Signal Intensity and Apparent Diffusion Coefficient in the Bone Marrow of Asymptomatic Individuals: A Cross-Sectional Whole-Body MRI Study. Diagnostics (Basel) 2021; 11:diagnostics11050913. [PMID: 34065459 PMCID: PMC8161193 DOI: 10.3390/diagnostics11050913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/23/2023] Open
Abstract
We aimed to describe the relationships between the relative fat fraction (%FF), muscle-normalized diffusion-weighted (DW) image signal intensity and water apparent diffusion coefficient (ADC), sex and age for normal bone marrow, in the normal population. Our retrospective cohort consisted of 100 asymptomatic individuals, equally divided by sex and 10-year age groups, who underwent whole-body MRI at 1.5 T for early cancer detection. Semi-automated segmentation of global bone marrow volume was performed using the DW images and the resulting segmentation masks were projected onto the ADC and %FF maps for extraction of parameter values. Differences in the parameter values between sexes at age ranges were assessed using the Mann–Whitney and Kruskal–Wallis tests. The Spearman correlation coefficient r was used to assess the relationship of each imaging parameter with age, and of %FF with ADC and normalized DW signal intensity values. The average %FF of normal bone marrow was 65.6 ± 7.2%, while nSIb50, nSIb900 and ADC were 1.7 ± 0.5, 3.2 ± 0.9 and 422 ± 67 μm2/s, respectively. The bone marrow %FF values increased with age in both sexes (r = 0.63 and r = 0.64, respectively, p < 0.001). Values of nSIb50 and nSIb900 were higher in younger women compared to men of the same age groups (p < 0.017), but this difference decreased with age. In our cohort of asymptomatic individuals, the values of bone marrow relative %FF, normalized DW image signal intensity and ADC indicate higher cellularity in premenopausal women, with increasing bone marrow fat with aging in both sexes.
Collapse
Affiliation(s)
- Alberto Colombo
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (L.B.); (P.E.S.); (G.S.); (F.Z.)
- Correspondence:
| | - Luca Bombelli
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (L.B.); (P.E.S.); (G.S.); (F.Z.)
| | - Paul E. Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (L.B.); (P.E.S.); (G.S.); (F.Z.)
| | - Giulia Saia
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (L.B.); (P.E.S.); (G.S.); (F.Z.)
| | - Fabio Zugni
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (L.B.); (P.E.S.); (G.S.); (F.Z.)
| | - Giulia Marvaso
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Robert Grimm
- MR Applications Pre-Development, Siemens Healthcare, 91052 Erlangen, Germany;
| | - Barbara A. Jereczek-Fossa
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Anwar R. Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood HA6 2RN, UK;
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
29
|
Ippolito D, Giandola T, Maino C, Gandola D, Ragusi M, Bonaffini PA, Sironi S. Whole Body Low Dose Computed Tomography (WBLDCT) Can Be Comparable to Whole-Body Magnetic Resonance Imaging (WBMRI) in the Assessment of Multiple Myeloma. Diagnostics (Basel) 2021; 11:857. [PMID: 34064594 PMCID: PMC8150749 DOI: 10.3390/diagnostics11050857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
Aim of the study is to compare the agreement between whole-body low-dose computed tomography (WBLDCT) and magnetic resonance imaging (WBMRI) in the evaluation of bone marrow involvement in patients with multiple myeloma (MM). Patients with biopsy-proven MM, who underwent both WBLDCT and WBMRI were retrospectively enrolled. After identifying the presence of focal bone involvement (focal infiltration pattern), the whole skeleton was divided into five anatomic districts (skull, spine, sternum and ribs, pelvis, and limbs). Patients were grouped according to the number and location of the lytic lesions (<5, 5-20, and >20) and Durie and Salmon staging system. The agreement between CT and MRI regarding focal pattern, staging, lesion number, and distribution was assessed using the Cohen Kappa statistics. The majority of patients showed focal involvement. According to the distribution of the focal lesions and Durie Salmon staging, the agreement between CT and MRI was substantial or almost perfect (all κ > 0.60). The agreement increased proportionally with the number of lesions in the pelvis and spine (κ = 0.373 to κ = 0.564, and κ = 0.469-0.624), while for the skull the agreement proportionally decreased without reaching a statistically significant difference (p > 0.05). In conclusion, WBLDCT showed an almost perfect agreement in the evaluation of focal involvement, staging, lesion number, and distribution of bone involvement in comparison with WBMRI.
Collapse
Affiliation(s)
- Davide Ippolito
- Department of Diagnostic Radiology, “San Gerardo” Hospital, via Pergolesi 33, 20900 Monza, MB, Italy; (T.G.); (C.M.); (D.G.); (M.R.)
- School of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
| | - Teresa Giandola
- Department of Diagnostic Radiology, “San Gerardo” Hospital, via Pergolesi 33, 20900 Monza, MB, Italy; (T.G.); (C.M.); (D.G.); (M.R.)
- School of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
| | - Cesare Maino
- Department of Diagnostic Radiology, “San Gerardo” Hospital, via Pergolesi 33, 20900 Monza, MB, Italy; (T.G.); (C.M.); (D.G.); (M.R.)
- School of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
| | - Davide Gandola
- Department of Diagnostic Radiology, “San Gerardo” Hospital, via Pergolesi 33, 20900 Monza, MB, Italy; (T.G.); (C.M.); (D.G.); (M.R.)
- School of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
| | - Maria Ragusi
- Department of Diagnostic Radiology, “San Gerardo” Hospital, via Pergolesi 33, 20900 Monza, MB, Italy; (T.G.); (C.M.); (D.G.); (M.R.)
- School of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
| | - Pietro Andrea Bonaffini
- School of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
- Department of Diagnostic Radiology, H Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, BG, Italy
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy; (P.A.B.); (S.S.)
- Department of Diagnostic Radiology, H Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, BG, Italy
| |
Collapse
|
30
|
Colombo A, Saia G, Azzena AA, Rossi A, Zugni F, Pricolo P, Summers PE, Marvaso G, Grimm R, Bellomi M, Jereczek-Fossa BA, Padhani AR, Petralia G. Semi-Automated Segmentation of Bone Metastases from Whole-Body MRI: Reproducibility of Apparent Diffusion Coefficient Measurements. Diagnostics (Basel) 2021; 11:diagnostics11030499. [PMID: 33799913 PMCID: PMC7998160 DOI: 10.3390/diagnostics11030499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/15/2023] Open
Abstract
Using semi-automated software simplifies quantitative analysis of the visible burden of disease on whole-body MRI diffusion-weighted images. To establish the intra- and inter-observer reproducibility of apparent diffusion coefficient (ADC) measures, we retrospectively analyzed data from 20 patients with bone metastases from breast (BCa; n = 10; aged 62.3 ± 14.8) or prostate cancer (PCa; n = 10; aged 67.4 ± 9.0) who had undergone examinations at two timepoints, before and after hormone-therapy. Four independent observers processed all images twice, first segmenting the entire skeleton on diffusion-weighted images, and then isolating bone metastases via ADC histogram thresholding (ADC: 650–1400 µm2/s). Dice Similarity, Bland-Altman method, and Intraclass Correlation Coefficient were used to assess reproducibility. Inter-observer Dice similarity was moderate (0.71) for women with BCa and poor (0.40) for men with PCa. Nonetheless, the limits of agreement of the mean ADC were just ±6% for women with BCa and ±10% for men with PCa (mean ADCs: 941 and 999 µm2/s, respectively). Inter-observer Intraclass Correlation Coefficients of the ADC histogram parameters were consistently greater in women with BCa than in men with PCa. While scope remains for improving consistency of the volume segmented, the observer-dependent variability measured in this study was appropriate to distinguish the clinically meaningful changes of ADC observed in patients responding to therapy, as changes of at least 25% are of interest.
Collapse
Affiliation(s)
- Alberto Colombo
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.S.); (F.Z.); (P.P.); (P.E.S.); (M.B.)
- Correspondence:
| | - Giulia Saia
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.S.); (F.Z.); (P.P.); (P.E.S.); (M.B.)
| | - Alcide A. Azzena
- Postgraduate School in Radiodiagnostics, University of Milan, 20122 Milan, Italy;
| | - Alice Rossi
- Radiology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Fabio Zugni
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.S.); (F.Z.); (P.P.); (P.E.S.); (M.B.)
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.S.); (F.Z.); (P.P.); (P.E.S.); (M.B.)
| | - Paul E. Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.S.); (F.Z.); (P.P.); (P.E.S.); (M.B.)
| | - Giulia Marvaso
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Robert Grimm
- MR Applications Pre-Development, Siemens Healthcare, 91052 Erlangen, Germany;
| | - Massimo Bellomi
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.S.); (F.Z.); (P.P.); (P.E.S.); (M.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Barbara A. Jereczek-Fossa
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Anwar R. Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood HA6 2RN, UK;
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
- Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
31
|
Vandecaveye V, Amant F, Lecouvet F, Van Calsteren K, Dresen RC. Imaging modalities in pregnant cancer patients. Int J Gynecol Cancer 2021; 31:423-431. [PMID: 33649009 PMCID: PMC7925814 DOI: 10.1136/ijgc-2020-001779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer during pregnancy is increasingly diagnosed due to the trend of delaying pregnancy to a later age and probably also because of increased use of non-invasive prenatal testing for fetal aneuploidy screening with incidental finding of maternal cancer. Pregnant women pose higher challenges in imaging, diagnosis, and staging of cancer. Physiological tissue changes related to pregnancy makes image interpretation more difficult. Moreover, uncertainty about the safety of imaging modalities, fear of (unnecessary) fetal radiation, and lack of standardized imaging protocols may result in underutilization of the necessary imaging tests resulting in suboptimal staging. Due to the absence of radiation exposure, ultrasound and MRI are obvious first-line imaging modalities for detailed locoregional disease assessment. MRI has the added advantage of a more reproducible comprehensive organ or body region assessment, the ability of distant staging through whole-body evaluation, and the combination of anatomical and functional information by diffusion-weighted imaging which obviates the need for a gadolinium-based contrast-agent. Imaging modalities with inherent radiation exposure such as CT and nuclear imaging should only be performed when the maternal benefit outweighs fetal risk. The cumulative radiation exposure should not exceed the fetal radiation threshold of 100 mGy. Imaging should only be performed when necessary for diagnosis and likely to guide or change management. Radiologists play an important role in the multidisciplinary team in order to select the most optimal imaging strategies that balance maternal benefit with fetal risk and that are most likely to guide treatment decisions. Our aim is to provide an overview of possibilities and concerns in current clinical applications and developments in the imaging of patients with cancer during pregnancy.
Collapse
Affiliation(s)
- Vincent Vandecaveye
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Frédéric Amant
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Gynecological Oncology, Academic Medical Centre Amsterdam-University of Amsterdam and The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Frédéric Lecouvet
- Department of Radiology, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Kristel Van Calsteren
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Raphaëla Carmen Dresen
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
De Cataldo C, Bruno F, Palumbo P, Di Sibio A, Arrigoni F, Clemente A, Bafile A, Gravina GL, Cappabianca S, Barile A, Splendiani A, Masciocchi C, Di Cesare E. Apparent diffusion coefficient magnetic resonance imaging (ADC-MRI) in the axillary breast cancer lymph node metastasis detection: a narrative review. Gland Surg 2021; 9:2225-2234. [PMID: 33447575 DOI: 10.21037/gs-20-546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of axillary lymph nodes metastases in breast cancer is the most significant prognostic factor, with a great impact on morbidity, disease-related survival and management of oncological therapies; for this reason, adequate imaging evaluation is strictly necessary. Physical examination is not enough sensitive to assess breast cancer nodal status; axillary ultrasonography (US) is commonly used to detect suspected or occult nodal metastasis, providing exclusively morphological evaluation, with low sensitivity and positive predictive value. Currently, sentinel lymph node biopsy (SLNB) and/or axillary dissection are the milestone for the diagnostic assessment of axillary lymph node metastases, although its related morbidity. The impact of magnetic resonance imaging (MRI) in the detection of nodal metastases has been widely investigated, as it continues to represent the most promising imaging modality in the breast cancer management. In particular, diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) values represent additional reliable non-contrast sequences, able to improve the diagnostic accuracy of breast cancer MRI evaluation. Several studies largely demonstrated the usefulness of implementing DWI/ADC MRI in the characterization of breast lesions. Herein, in the light of our clinical experience, we perform a review of the literature regarding the diagnostic performance and accuracy of ADC value as potential pre-operative tool to define metastatic involvement of nodal structures in breast cancer patients. For the purpose of this review, PubMed, Web of Science, and SCOPUS electronic databases were searched with different combinations of "axillary lymph node", "breast cancer", "MRI/ADC", "breast MRI" keywords. All original articles, reviews and metanalyses were included.
Collapse
Affiliation(s)
- Camilla De Cataldo
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federico Bruno
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Pierpaolo Palumbo
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Francesco Arrigoni
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alfredo Clemente
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Giovanni Luca Gravina
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Antonio Barile
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandra Splendiani
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carlo Masciocchi
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ernesto Di Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
33
|
Vacca G, Reginelli A, Urraro F, Sangiovanni A, Bruno F, Di Cesare E, Cappabianca S, Vanzulli A. Magnetic resonance severity index assessed by T1-weighted imaging for acute pancreatitis: correlation with clinical outcomes and grading of the revised Atlanta classification-a narrative review. Gland Surg 2021; 9:2312-2320. [PMID: 33447582 DOI: 10.21037/gs-20-554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acute pancreatitis (AP) is a common disease that may involve pancreas and peripancreatic tissues with a prevalence of up to 50 per 100,000 individuals for year. The Atlanta classification was assessed for the first time in 1992 and modified in 2012 in order to describe morphological features of AP and its complications. AP can be morphologically distinguished in two main types: interstitial edematous pancreatitis (IEP) and necrotizing pancreatitis (NEP). This classification is very important because the presence of necrosis is directly linked to local or systemic complications, hospital stays and death. Magnetic resonance (MR) is very useful to characterize morphological features in AP and its abdominal complications. Particularly we would like to underline the diagnostic, staging and prognostic role of T1-weighted images with fat suppression that could be significant to assess many features of the AP inflammatory process and its complications (detection of the pancreatic contour, pancreatic necrosis, presence of haemorrhage). Signs of inflammatory and edema are instead observed by T1-weighted images. MR cholangiopancreatography (MRCP) is necessary to study the main pancreatic duct and the extrahepatic biliary tract and contrast-enhancement magnetic resonance imaging (MRI) allows to assess the extent of necrosis and vascular injuries.
Collapse
Affiliation(s)
- Giovanna Vacca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Fabrizio Urraro
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Angelo Sangiovanni
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Federico Bruno
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ernesto Di Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Angelo Vanzulli
- Department of Radiology, University "La Statale" of Milan, Milan, Italy
| |
Collapse
|
34
|
Summers P, Saia G, Colombo A, Pricolo P, Zugni F, Alessi S, Marvaso G, Jereczek-Fossa BA, Bellomi M, Petralia G. Whole-body magnetic resonance imaging: technique, guidelines and key applications. Ecancermedicalscience 2021; 15:1164. [PMID: 33680078 PMCID: PMC7929776 DOI: 10.3332/ecancer.2021.1164] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Whole-body magnetic resonance imaging (WB-MRI) is an imaging method without ionising radiation that can provide WB coverage with a core protocol of essential imaging contrasts in less than 40 minutes, and it can be complemented with sequences to evaluate specific body regions as needed. In many cases, WB-MRI surpasses bone scintigraphy and computed tomography in detecting and characterising lesions, evaluating their response to therapy and in screening of high-risk patients. Consequently, international guidelines now recommend the use of WB-MRI in the management of patients with multiple myeloma, prostate cancer, melanoma and individuals with certain cancer predisposition syndromes. The use of WB-MRI is also growing for metastatic breast cancer, ovarian cancer and lymphoma as well as for cancer screening amongst the general population. In light of the increasing interest from clinicians and patients in WB-MRI as a radiation-free technique for guiding the management of cancer and for cancer screening, we review its technical basis, current international guidelines for its use and key applications.
Collapse
Affiliation(s)
- Paul Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giulia Saia
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy.,Advanced Screening Centers, ASC Italia, 24060 Castelli Calepio, Bergamo, Italy
| | - Alberto Colombo
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Fabio Zugni
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Sarah Alessi
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Giulia Marvaso
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Massimo Bellomi
- Division of Radiology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy.,Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
35
|
Michoux NF, Ceranka JW, Vandemeulebroucke J, Peeters F, Lu P, Absil J, Triqueneaux P, Liu Y, Collette L, Willekens I, Brussaard C, Debeir O, Hahn S, Raeymaekers H, de Mey J, Metens T, Lecouvet FE. Repeatability and reproducibility of ADC measurements: a prospective multicenter whole-body-MRI study. Eur Radiol 2021; 31:4514-4527. [PMID: 33409773 DOI: 10.1007/s00330-020-07522-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Multicenter oncology trials increasingly include MRI examinations with apparent diffusion coefficient (ADC) quantification for lesion characterization and follow-up. However, the repeatability and reproducibility (R&R) limits above which a true change in ADC can be considered relevant are poorly defined. This study assessed these limits in a standardized whole-body (WB)-MRI protocol. METHODS A prospective, multicenter study was performed at three centers equipped with the same 3.0-T scanners to test a WB-MRI protocol including diffusion-weighted imaging (DWI). Eight healthy volunteers per center were enrolled to undergo test and retest examinations in the same center and a third examination in another center. ADC variability was assessed in multiple organs by two readers using two-way mixed ANOVA, Bland-Altman plots, coefficient of variation (CoV), and the upper limit of the 95% CI on repeatability (RC) and reproducibility (RDC) coefficients. RESULTS CoV of ADC was not influenced by other factors (center, reader) than the organ. Based on the upper limit of the 95% CI on RC and RDC (from both readers), a change in ADC in an individual patient must be superior to 12% (cerebrum white matter), 16% (paraspinal muscle), 22% (renal cortex), 26% (central and peripheral zones of the prostate), 29% (renal medulla), 35% (liver), 45% (spleen), 50% (posterior iliac crest), 66% (L5 vertebra), 68% (femur), and 94% (acetabulum) to be significant. CONCLUSIONS This study proposes R&R limits above which ADC changes can be considered as a reliable quantitative endpoint to assess disease or treatment-related changes in the tissue microstructure in the setting of multicenter WB-MRI trials. KEY POINTS • The present study showed the range of R&R of ADC in WB-MRI that may be achieved in a multicenter framework when a standardized protocol is deployed. • R&R was not influenced by the site of acquisition of DW images. • Clinically significant changes in ADC measured in a multicenter WB-MRI protocol performed with the same type of MRI scanner must be superior to 12% (cerebrum white matter), 16% (paraspinal muscle), 22% (renal cortex), 26% (central zone and peripheral zone of prostate), 29% (renal medulla), 35% (liver), 45% (spleen), 50% (posterior iliac crest), 66% (L5 vertebra), 68% (femur), and 94% (acetabulum) to be detected with a 95% confidence level.
Collapse
Affiliation(s)
- Nicolas F Michoux
- Institut de Recherche Expérimentale & Clinique (IREC) - Radiology Department, Université Catholique de Louvain (UCLouvain) - Cliniques Universitaires Saint Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium.
| | - Jakub W Ceranka
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jef Vandemeulebroucke
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frank Peeters
- Institut de Recherche Expérimentale & Clinique (IREC) - Radiology Department, Université Catholique de Louvain (UCLouvain) - Cliniques Universitaires Saint Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Pierre Lu
- Institut de Recherche Expérimentale & Clinique (IREC) - Radiology Department, Université Catholique de Louvain (UCLouvain) - Cliniques Universitaires Saint Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Julie Absil
- Radiology Department, Université libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Perrine Triqueneaux
- Institut de Recherche Expérimentale & Clinique (IREC) - Radiology Department, Université Catholique de Louvain (UCLouvain) - Cliniques Universitaires Saint Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| | - Yan Liu
- European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | - Laurence Collette
- European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | | | | | - Olivier Debeir
- LISA (Laboratories of Image Synthesis and Analysis), Ecole Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Stephan Hahn
- LISA (Laboratories of Image Synthesis and Analysis), Ecole Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | | | | | - Thierry Metens
- Radiology Department, Université libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Frédéric E Lecouvet
- Institut de Recherche Expérimentale & Clinique (IREC) - Radiology Department, Université Catholique de Louvain (UCLouvain) - Cliniques Universitaires Saint Luc, Avenue Hippocrate 10, B-1200, Brussels, Belgium
| |
Collapse
|
36
|
Wehrse E, Sawall S, Klein L, Glemser P, Delorme S, Schlemmer HP, Kachelrieß M, Uhrig M, Ziener CH, Rotkopf LT. Potential of ultra-high-resolution photon-counting CT of bone metastases: initial experiences in breast cancer patients. NPJ Breast Cancer 2021; 7:3. [PMID: 33398008 PMCID: PMC7782694 DOI: 10.1038/s41523-020-00207-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Conventional CT scanners use energy-integrating detectors (EIDs). Photon-counting detector (PCD) computed tomography (CT) utilizes a CT detector technology based on smaller detector pixels capable of counting single photons and in addition discriminating their energy. Goal of this study was to explore the potential of higher spatial resolution for imaging of bone metastases. Four female patients with histologically confirmed breast cancer and bone metastases were included between July and October 2019. All patients underwent conventional EID CT scans followed by a high resolution non-contrast experimental PCD CT scan. Ultra-high resolution (UHR) reconstruction kernels were used to reconstruct axial slices with voxel sizes of 0.3 mm × 0.3 mm (inplane) × 1 mm (z-direction). Four radiologists blinded for patient identity assessed the images and compared the quality to conventional CT using a qualitative Likert scale. In this case series, we present images of bone metastases in breast cancer patients using an experimental PCD CT scanner and ultra-high-resolution kernels. A tendency to both a smaller inter-reader variability in the structural assessment of lesion sizes and in the readers' opinion to an improved visualization of lesion margins and content was observed. In conclusion, while further studies are warranted, PCD CT has a high potential for therapy monitoring in breast cancer.
Collapse
Affiliation(s)
- E Wehrse
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany.
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.
| | - S Sawall
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center, Heidelberg, Germany
| | - L Klein
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center, Heidelberg, Germany
| | - P Glemser
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - S Delorme
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - H-P Schlemmer
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - M Kachelrieß
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
- Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center, Heidelberg, Germany
| | - M Uhrig
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - C H Ziener
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - L T Rotkopf
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
37
|
Isaac A, Lecouvet F, Dalili D, Fayad L, Pasoglou V, Papakonstantinou O, Ahlawat S, Messiou C, Weber MA, Padhani AR. Detection and Characterization of Musculoskeletal Cancer Using Whole-Body Magnetic Resonance Imaging. Semin Musculoskelet Radiol 2020; 24:726-750. [PMID: 33307587 DOI: 10.1055/s-0040-1719018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whole-body magnetic resonance imaging (WB-MRI) is gradually being integrated into clinical pathways for the detection, characterization, and staging of malignant tumors including those arising in the musculoskeletal (MSK) system. Although further developments and research are needed, it is now recognized that WB-MRI enables reliable, sensitive, and specific detection and quantification of disease burden, with clinical applications for a variety of disease types and a particular application for skeletal involvement. Advances in imaging techniques now allow the reliable incorporation of WB-MRI into clinical pathways, and guidelines recommending its use are emerging. This review assesses the benefits, clinical applications, limitations, and future capabilities of WB-MRI in the context of other next-generation imaging modalities, as a qualitative and quantitative tool for the detection and characterization of skeletal and soft tissue MSK malignancies.
Collapse
Affiliation(s)
- Amanda Isaac
- School of Biomedical Engineering & Imaging Sciences, Kings College London, United Kingdom.,Guy's & St Thomas' Hospitals, London, United Kingdom
| | - Frederic Lecouvet
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Danoob Dalili
- School of Biomedical Engineering & Imaging Sciences, Kings College London, United Kingdom.,Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Laura Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, John's Hopkins School of Medicine, Baltimore, Maryland
| | - Vasiliki Pasoglou
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Olympia Papakonstantinou
- 2nd Department of Radiology, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Shivani Ahlawat
- The Russell H. Morgan Department of Radiology and Radiological Science, John's Hopkins School of Medicine, Baltimore, Maryland
| | - Christina Messiou
- The Royal Marsden Hospital, London, United Kingdom.,The Institute of Cancer Research, London, United Kingdom
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, Paediatric Radiology and Neuroradiology, University Medical Centre Rostock, Rostock, Germany
| | - Anwar R Padhani
- The Institute of Cancer Research, London, United Kingdom.,Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, United Kingdom
| |
Collapse
|
38
|
Palumbo P, Manetta R, Izzo A, Bruno F, Arrigoni F, De Filippo M, Splendiani A, Di Cesare E, Masciocchi C, Barile A. Biparametric (bp) and multiparametric (mp) magnetic resonance imaging (MRI) approach to prostate cancer disease: a narrative review of current debate on dynamic contrast enhancement. Gland Surg 2020; 9:2235-2247. [PMID: 33447576 DOI: 10.21037/gs-20-547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prostate cancer is the most common malignancy in male population. Over the last few years, magnetic resonance imaging (MRI) has proved to be a robust clinical tool for identification and staging of clinically significant prostate cancer. Though suggestions by the European Society of Urogenital Radiology to use complete multiparametric (mp) T2-weighted/diffusion weighted imaging (DWI)/dynamic contrast enhancement (DCE) acquisition for all prostate MRI examinations, the real advantage of functional DCE remains a matter of debate. Recent studies demonstrate that biparametric (bp) and mp approaches have similar accuracy, but controversial evidences remain, and the specific potential benefits of contrast medium administration are still poorly discussed in literature. The bp approach is in fact sufficient in most cases to adequately identify a negative test, or to accurately define the degree of aggressiveness of a lesion, especially if larger or with major characteristics of malignancy. This feature would give the DCE a secondary role, probably limited to a second evaluation of the lesion location, for detecting small cancer or in case of controversy. However, DCE has proved to increase the sensitivity of prostate MRI, though a less specificity. Therefore, an appropriate decision algorithm is needed to standardize the MRI approach. Aim of this review study was to provide a schematic description of bpMRI and mpMRI approaches in the study of prostatic anatomy, focusing on comparative validity and current DCE application. Additional theoretical considerations on prostate MRI are provided.
Collapse
Affiliation(s)
- Pierpaolo Palumbo
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rosa Manetta
- Radiology Unit, San Salvatore Hospital, L'Aquila, Italy
| | - Antonio Izzo
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Federico Bruno
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Arrigoni
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Massimo De Filippo
- Department of Medicine and Surgery (DiMec), Section of Radiology, University of Parma, Maggiore Hospital, Parma, Italy
| | - Alessandra Splendiani
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ernesto Di Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carlo Masciocchi
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Barile
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
39
|
Ziglioli F, Maestroni U, Manna C, Negrini G, Granelli G, Greco V, Pagnini F, De Filippo M. Multiparametric MRI in the management of prostate cancer: an update-a narrative review. Gland Surg 2020; 9:2321-2330. [PMID: 33447583 DOI: 10.21037/gs-20-561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The growing interest in multiparametric MRI is leading to important changes in the diagnostic process of prostate cancer. MRI-targeted biopsy is likely to become a standard for the diagnosis of prostate cancer in the next years. Despite it is well known that MRI has no role as a staging technique, it is clear that multiparametric MRI may be of help in active surveillance protocols. Noteworthy, MRI in active surveillance is not recommended, but a proper understanding of its potential may be of help in achieving the goals of a delayed treatment strategy. Moreover, the development of minimally invasive techniques, like laparoscopic and robotic surgery, has led to greater expectations as regard to the functional outcomes of radical prostatectomy. Multiparametric MRI may play a role in planning surgical strategies, with the aim to provide the highest oncologic outcome with a minimal impact on the quality of life. We maintain that a proper anatomic knowledge of prostate lesions may allow the surgeon to achieve a better result in planning as well as in performing surgery and help the surgeon and the patient engage in a shared decision in planning a more effective strategy for prostate cancer control and treatment. This review highlights the advantages and the limitations of multiparametric MRI in prostate cancer diagnosis, in active surveillance and in planning surgery.
Collapse
Affiliation(s)
| | | | - Carmelinda Manna
- Department of Radiology, University-Hospital of Parma, Parma, Italy
| | - Giulio Negrini
- Department of Radiology, University-Hospital of Parma, Parma, Italy
| | - Giorgia Granelli
- Department of Urology, University-Hospital of Parma, Parma, Italy
| | - Valentina Greco
- Department of Radiology, University-Hospital of Parma, Parma, Italy
| | | | | |
Collapse
|
40
|
Bicci E, Cozzi D, Ferrari R, Grazzini G, Pradella S, Miele V. Pancreatic neuroendocrine tumours: spectrum of imaging findings. Gland Surg 2020; 9:2215-2224. [PMID: 33447574 DOI: 10.21037/gs-20-537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pancreatic neuroendocrine tumours (pNETs) are rare and heterogeneous group of neoplasms presenting with a wide variety of symptoms and biological behaviour, from indolent to aggressive ones. pNETs are stratified into functional or non-functional, because of their ability to produce metabolically active hormones. pNETs can be an isolate phenomenon or a part of a hereditary syndrome like von Hippel-Lindau syndrome or neurofibromatosis-1. The incidence has increased in the last years, also because of the improvement of cross-sectional imaging. Computed tomography (CT), magnetic resonance imaging (MRI) and functional imaging are the mainstay imaging modalities used for tumour detection and disease extension assessment, due to easy availability and better contrast/spatial resolution. Radiological imaging plays a fundamental role in detection, characterization and surveillance of pNETs and is involved in almost every stage of patients' management. Moreover, with specific indications and techniques, interventional radiology can also play a role in therapeutic management. Surgery is the treatment of choice, consisting of either partial pancreatectomy or enucleation of the primary tumour. This article reviews the radiologic features of different pNETs as well as imaging mimics, in order to help radiologists to avoid potential pitfalls, to reach the correct diagnosis and to support the multidisciplinary team in establishing the right treatment.
Collapse
Affiliation(s)
- Eleonora Bicci
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Diletta Cozzi
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Riccardo Ferrari
- Department of Emergency Radiology, San Camillo Forlanini Hospital, Rome, Italy
| | - Giulia Grazzini
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Silvia Pradella
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| | - Vittorio Miele
- Department of Emergency Radiology, Careggi University Hospital, Florence, Italy
| |
Collapse
|
41
|
Martino M, Fodor D, Fresilli D, Guiban O, Rubini A, Cassoni A, Ralli M, De Vincentiis C, Arduini F, Celletti I, Pacini P, Polti G, Polito E, Greco A, Valentini V, Sorrenti S, D'Andrea V, Masciocchi C, Barile A, Cantisani V. Narrative review of multiparametric ultrasound in parotid gland evaluation. Gland Surg 2020; 9:2295-2311. [PMID: 33447581 DOI: 10.21037/gs-20-530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disorders affecting parotid gland represent a heterogeneous group comprising congenital, inflammatory and neoplastic diseases which show a focal or diffuse pattern of appearance. The differentiation of neoplastic from non-neoplastic conditions of parotid glands is pivotal for the diagnostic imaging. Frequently there is evidence of overlapping between the clinical and the imaging appearance of the various pathologies. The parotid gland is also often object of study with the combination of different techniques [ultrasound-computed tomography-magnetic resonance imaging (US-CT-MRI), ex.]. Compared to other dominant methods of medical imaging, US has several advantages providing images in real-time at lower cost, and without harmful use of ionizing radiation and of contrast enhancement. B-mode US, and the microvascular pattern color Doppler are usually used as first step evaluation of parotid lesions. Elastography and contrast-enhanced US (CEUS) has opened further possible perspectives to improve the differentiation between benign and malignant parotid lesions. The characterization of the parotid tumors plays a crucial role for their treatment planning and for the prediction of possible surgical complications. We present, here an updated review of the most recurrent pathologies of parotid gland focusing on the diagnostic power of multiparametric US including CEUS and ultrasound elastography (USE); limitations, advantages and the main key-points will be presented.
Collapse
Affiliation(s)
- Milvia Martino
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Daniela Fodor
- 2nd Internal Medicine Department, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniele Fresilli
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - Olga Guiban
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | | | - Andrea Cassoni
- Department of Maxillofacial Surgery, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | | | - Federico Arduini
- Department of Radiology, Ospedale Santa Maria del Carmine, Rovereto, Italy
| | - Ilaria Celletti
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - Patrizia Pacini
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - Giorgia Polti
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - Eleonora Polito
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Valentino Valentini
- Department of Maxillofacial Surgery, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| | - Salvatore Sorrenti
- Department of Surgical Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Vito D'Andrea
- Department of Surgical Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vito Cantisani
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
42
|
Busacchio D, Mazzocco K, Gandini S, Pricolo P, Masiero M, Summers PE, Pravettoni G, Petralia G. Preliminary observations regarding the expectations, acceptability and satisfaction of whole-body MRI in self-referring asymptomatic subjects. Br J Radiol 2020; 94:20191031. [PMID: 33237810 DOI: 10.1259/bjr.20191031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate the satisfaction of asymptomatic subjects who self-referring Whole-Body Magnetic Resonance Imaging (WB-MRI) for early cancer diagnosis. METHODS Subjects completed a pre-examination questionnaire, while waiting for their WB-MRI examination, recording demographics, expected discomfort, perceived knowledge and usefulness of the procedure and health risk perceptions, as well as a post-examination questionnaire, measuring discomfort experienced, acceptability and satisfaction with WB-MRI. We examined which factors influenced discomfort and satisfaction associated with WB-MRI. RESULTS 65 asymptomatic subjects (median age 51; 29 females) completed the questionnaire. Before WB-MRI, 29% of subjects expected discomfort of some form with claustrophobia (27.7%) and exam duration (24.6%) being the most common concerns. Experienced discomfort due to shortness of breath was significantly lower than expected. This difference was significantly associated with the personal risk perception to get a disease (p = 0.01) and educational level (p = 0.002). More specifically, higher level of perceived personal risk of getting a disease and lower level of education were associated with higher expected than experienced discomfort. Similarly, experiencing less claustrophobia than expected was significantly associated with gender (p = 0.005) and more pronounced among females. A majority (83%) of subjects expressed high levels of satisfaction with WB-MRI for early cancer diagnosis and judged it more acceptable than other diagnostic exams. CONCLUSIONS Asymptomatic subjects self-referring to WB-MRI for early cancer diagnosis showed high levels of satisfaction and acceptability with the examination. Nevertheless, a relevant proportion of participants reported some form of discomfort. Interestingly, participants with higher perceived personal risk to get a disease, lower education and females showed to expect higher discomfort than experienced. ADVANCES IN KNOWLEDGE Scope exists for measures to assess expected feelings and develop personalized interventions to reduce the stress anticipated by individuals deciding to undergo WB-MRI for early cancer diagnosis.
Collapse
Affiliation(s)
- Derna Busacchio
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Ketti Mazzocco
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCSS, Milan, Italy
| | - Paola Pricolo
- Division of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marianna Masiero
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Paul Eugene Summers
- Division of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Grabriella Pravettoni
- Applied Research Division for Cognitive and Psychological Science, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Precision Imaging and Research Unit - Department of Medical Imaging and Radiation Sciences, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
43
|
Tunariu N, Blackledge M, Messiou C, Petralia G, Padhani A, Curcean S, Curcean A, Koh DM. What's New for Clinical Whole-body MRI (WB-MRI) in the 21st Century. Br J Radiol 2020; 93:20200562. [PMID: 32822545 PMCID: PMC8519652 DOI: 10.1259/bjr.20200562] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Whole-body MRI (WB-MRI) has evolved since its first introduction in the 1970s as an imaging technique to detect and survey disease across multiple sites and organ systems in the body. The development of diffusion-weighted MRI (DWI) has added a new dimension to the implementation of WB-MRI on modern scanners, offering excellent lesion-to-background contrast, while achieving acceptable spatial resolution to detect focal lesions 5 to 10 mm in size. MRI hardware and software advances have reduced acquisition times, with studies taking 40-50 min to complete.The rising awareness of medical radiation exposure coupled with the advantages of MRI has resulted in increased utilization of WB-MRI in oncology, paediatrics, rheumatological and musculoskeletal conditions and more recently in population screening. There is recognition that WB-MRI can be used to track disease evolution and monitor response heterogeneity in patients with cancer. There are also opportunities to combine WB-MRI with molecular imaging on PET-MRI systems to harness the strengths of hybrid imaging. The advent of artificial intelligence and machine learning will shorten image acquisition times and image analyses, making the technique more competitive against other imaging technologies.
Collapse
Affiliation(s)
| | - Matthew Blackledge
- Department of Radiotherapy, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London, UK
| | - Christina Messiou
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, London, UK
| | - Giuseppe Petralia
- Department of Radiology, European Institute of Oncology, Via Ripamonti, 435 - 20141 Milan, Italy
| | - Anwar Padhani
- Mount Vernon Hospital, The Paul Strickland Scanner Centre, Rickmansworth Road, Northwood, Middlesex, UK
| | - Sebastian Curcean
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, London, UK
| | | | - Dow-Mu Koh
- Drug Development Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London, UK
| |
Collapse
|
44
|
Whole-body magnetic resonance imaging (WB-MRI) reporting with the METastasis Reporting and Data System for Prostate Cancer (MET-RADS-P): inter-observer agreement between readers of different expertise levels. Cancer Imaging 2020; 20:77. [PMID: 33109268 PMCID: PMC7590732 DOI: 10.1186/s40644-020-00350-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The METastasis Reporting and Data System for Prostate Cancer (MET-RADS-P) guidelines are designed to enable reproducible assessment in detecting and quantifying metastatic disease response using whole-body magnetic resonance imaging (WB-MRI) in patients with advanced prostate cancer (APC). The purpose of our study was to evaluate the inter-observer agreement of WB-MRI examination reports produced by readers of different expertise when using the MET-RADS-P guidelines. METHODS Fifty consecutive paired WB-MRI examinations, performed from December 2016 to February 2018 on 31 patients, were retrospectively examined to compare reports by a Senior Radiologist (9 years of experience in WB-MRI) and Resident Radiologist (after a 6-months training) using MET-RADS-P guidelines, for detection and for primary/dominant and secondary response assessment categories (RAC) scores assigned to metastatic disease in 14 body regions. Inter-observer agreement regarding RAC score was evaluated for each region by using weighted-Cohen's Kappa statistics (K). RESULTS The number of metastatic regions reported by the Senior Radiologist (249) and Resident Radiologist (251) was comparable. For the primary/dominant RAC pattern, the agreement between readers was excellent for the metastatic findings in cervical, dorsal, and lumbosacral spine, pelvis, limbs, lungs and other sites (K:0.81-1.0), substantial for thorax, retroperitoneal nodes, other nodes and liver (K:0.61-0.80), moderate for pelvic nodes (K:0.56), fair for primary soft tissue and not assessable for skull due to the absence of findings. For the secondary RAC pattern, agreement between readers was excellent for the metastatic findings in cervical spine (K:0.93) and retroperitoneal nodes (K:0.89), substantial for those in dorsal spine, pelvis, thorax, limbs and pelvic nodes (K:0.61-0.80), and moderate for lumbosacral spine (K:0.44). CONCLUSIONS We found inter-observer agreement between two readers of different expertise levels to be excellent in bone, but mixed in other body regions. Considering the importance of bone metastases in patients with APC, our results favor the use of MET-RADS-P in response to the growing clinical need for monitoring of metastasis in these patients.
Collapse
|
45
|
Whole-body magnetic resonance imaging (WB-MRI) in oncology: an Italian survey. Radiol Med 2020; 126:299-305. [PMID: 32572763 DOI: 10.1007/s11547-020-01242-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/07/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE To perform a survey among all members of the Italian Society of Medical and Interventional Radiology (SIRM) to assess how whole-body MRI (WB-MRI) is performed in oncologic patients in Italy. METHODS On March 2019, we administered an online poll to all SIRM members about their use of WB-MRI in 2018 asking 15 questions regarding oncologic indications, imaging protocol, use of contrast media, experience in WB-MRI, duration of scan time and reporting time. RESULTS Forty-eight members participated to the survey. WB-MRIs/total MRIs ratio was 1%. Lymphoma was the most common indication (17/48, 35%), followed by myeloma and prostate cancer, with these three tumors representing the most common indication in 39/48 of cases (81%). WB-MRI acquisition time and reporting time were 46-60 min in 22/48 centers (46%) and 20-30 min in 19/48 (40%), respectively. WB-MRIs were mostly performed in 1.5T scanners (43/48, 90%), with surface coils (22/48, 46%) being preferred to Q-body (15/48, 31%) and integrated coils (11/48, 23%). Contrast media were injected in 22/48 of the centers (46%), mainly used for breast cancer (13/22, 59%). DWI was the most used sequence (45/48, 94%), mostly with b800 (27/48, 56%), b0 (24/48, 50%) and b1000 (20/48, 42%) values. In about half of cases, radiologists started evaluating WB-MRI non-contrast morphologic sequences, then checking DWI and post-contrast images. CONCLUSION WB-MRI was mainly performed at 1.5T unit, with lymphoma, myeloma and prostate cancer having been the most common indications. The extreme variability in the choice of imaging protocols and use of contrast agents demonstrates the need of a standardization of WB-MRI application in clinical practice.
Collapse
|
46
|
Messina C, Bignone R, Bruno A, Bruno A, Bruno F, Calandri M, Caruso D, Coppolino P, De Robertis R, Gentili F, Grazzini I, Natella R, Scalise P, Barile A, Grassi R, Albano D. Diffusion-Weighted Imaging in Oncology: An Update. Cancers (Basel) 2020; 12:1493. [PMID: 32521645 PMCID: PMC7352852 DOI: 10.3390/cancers12061493] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
To date, diffusion weighted imaging (DWI) is included in routine magnetic resonance imaging (MRI) protocols for several cancers. The real additive role of DWI lies in the "functional" information obtained by probing the free diffusivity of water molecules into intra and inter-cellular spaces that in tumors mainly depend on cellularity. Although DWI has not gained much space in some oncologic scenarios, this non-invasive tool is routinely used in clinical practice and still remains a hot research topic: it has been tested in almost all cancers to differentiate malignant from benign lesions, to distinguish different malignant histotypes or tumor grades, to predict and/or assess treatment responses, and to identify residual or recurrent tumors in follow-up examinations. In this review, we provide an up-to-date overview on the application of DWI in oncology.
Collapse
Affiliation(s)
- Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milano, Italy;
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milano, Italy
| | - Rodolfo Bignone
- Radiology Unit, University of Palermo, 90127 Palermo, Italy; (R.B.); (A.B.)
| | - Alberto Bruno
- Radiology Unit, University of Palermo, 90127 Palermo, Italy; (R.B.); (A.B.)
| | - Antonio Bruno
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, S.Orsola-Malpighi Hospital, 40126 Bologna, Italy;
| | - Federico Bruno
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.B.)
| | - Marco Calandri
- Radiology Unit, A.O.U. San Luigi Gonzaga di Orbassano, Department of Oncology, University of Torino, 10043 Turin, Italy;
| | - Damiano Caruso
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Sant’Andrea University Hospital, 00161 Rome, Italy;
| | - Pietro Coppolino
- Department of Medical Surgical Sciences and Advanced Technologies “G.F. Ingrassia”-Radiology I Unit, University Hospital “Policlinico-Vittorio Emanuele”, 95123 Catania, Italy;
| | - Riccardo De Robertis
- Department of Radiology, Ospedale Civile Maggiore, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Francesco Gentili
- Section of Radiology, Unit of Surgical Sciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Irene Grazzini
- Department of Radiology, Section of Neuroradiology, San Donato Hospital, 52100 Arezzo, Italy;
| | - Raffaele Natella
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (R.N.); (R.G.)
| | - Paola Scalise
- Department of Diagnostic Imaging, Pisa University Hospital, 56124 Pisa, Italy;
| | - Antonio Barile
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.B.); (A.B.)
| | - Roberto Grassi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (R.N.); (R.G.)
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milano, Italy;
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Section of Radiological Sciences, University of Palermo, 90127 Palermo, Italy
| | | |
Collapse
|
47
|
Zugni F, Padhani AR, Koh DM, Summers PE, Bellomi M, Petralia G. Whole-body magnetic resonance imaging (WB-MRI) for cancer screening in asymptomatic subjects of the general population: review and recommendations. Cancer Imaging 2020; 20:34. [PMID: 32393345 PMCID: PMC7216394 DOI: 10.1186/s40644-020-00315-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/03/2020] [Indexed: 12/28/2022] Open
Abstract
Background The number of studies describing the use of whole-body magnetic resonance imaging (WB-MRI) for screening of malignant tumours in asymptomatic subjects is increasing. Our aim is to review the methodologies used and the results of the published studies on per patient and per lesion analysis, and to provide recommendations on the use of WB-MRI for cancer screening. Main body We identified 12 studies, encompassing 6214 WB-MRI examinations, which provided the rates of abnormal findings and findings suspicious for cancer in asymptomatic subjects, from the general population. Eleven of 12 studies provided imaging protocols that included T1- and T2-weighted sequences, while only five included diffusion weighted imaging (DWI) of the whole body. Different categorical systems were used for the classification and the management of abnormal findings. Of 17,961 abnormal findings reported, 91% were benign, while 9% were oncologically relevant, requiring further investigations, and 0.5% of lesions were suspicious for cancer. A per-subject analysis showed that just 5% of subjects had no abnormal findings, while 95% had abnormal findings. Findings requiring further investigation were reported in 30% of all subjects, though in only 1.8% cancer was suspected. The overall rate of histologically confirmed cancer was 1.1%. Conclusion WB-MRI studies of cancer screening in the asymptomatic general population are too heterogeneous to draw impactful conclusions regarding efficacy. A 5-point lesion scale based on the oncological relevance of findings appears the most appropriate for risk-based management stratification. WB-MRI examinations should be reported by experienced oncological radiologists versed on WB-MRI reading abnormalities and on onward referral pathways.
Collapse
Affiliation(s)
- Fabio Zugni
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy.
| | - Anwar Roshanali Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Rickmansworth Rd, Northwood, HA6 2RN, UK
| | - Dow-Mu Koh
- Department of Radiology, The Royal Marsden Hospital (Surrey), Downs Rd, Sutton, SM2 5PT, UK
| | - Paul Eugene Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| | - Massimo Bellomi
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Via S. Sofia, 9/1, 20122, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Via S. Sofia, 9/1, 20122, Milan, Italy.,Precision Imaging and Research Unit, Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti 435, 20141, Milan, Italy
| |
Collapse
|
48
|
Park HY, Kim KW, Yoon MA, Lee MH, Chae EJ, Lee JH, Chung HW, Yoon DH. Role of whole-body MRI for treatment response assessment in multiple myeloma: comparison between clinical response and imaging response. Cancer Imaging 2020; 20:14. [PMID: 32000858 PMCID: PMC6993415 DOI: 10.1186/s40644-020-0293-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Whole-body MRI (WB-MRI) including diffusion-weighted image (DWI) have been widely used in patients with multiple myeloma. However, evidence for the value of WB-MRI in the evaluation of treatment response remains sparse. Therefore, we evaluated the role of WB-MRI in the response assessment. METHODS In our WB-MRI registry, we searched multiple myeloma patients treated with chemotherapy who underwent both baseline and follow-up WB-MRI scans. Clinical responses were categorized as complete response (CR), partial response (PR), stable disease (SD), or progressive disease (PD), using IMWG criteria. Using RECIST 1.1, MD Anderson (MDA) criteria, and MDA-DWI criteria, imaging responses on WB-MRI were rated as CR, PR, SD, or PD by two radiologists independently. Then, discrepancy cases were resolved by consensus. Weighted Kappa analysis was performed to evaluate agreement between the imaging and clinical responses. The diagnostic accuracy of image responses in the evaluation of clinical CR, objective response (CR and PR), and PD was calculated. RESULTS Forty-two eligible patients were included. There was moderate agreement between imaging and clinical responses (κ = 0.54 for RECIST 1.1, κ = 0.58 for MDA criteria, κ = 0.69 for MDA-DWI criteria). WB-MRI showed excellent diagnostic accuracy in assessment of clinical PD (sensitivity 88.9%, specificity 94.7%, positive predictive value [PPV] 84.2%, negative predictive value [NPV] 96.4% in all three imaging criteria). By contrast, WB-MRI showed low accuracy in assessment of clinical CR (sensitivity 4.5%, specificity 98.1%, PPV 50.0%, NPV 71.2% in all three imaging criteria). As to the clinical objective response, the diagnostic accuracy was higher in MDA-DWI criteria than RECIST 1.1 and MDA criteria (sensitivity/specificity/PPV/NPV, 84.2%/94.4%/98.0%/65.4, 54.4%/100%/100%/40.9, and 61.4%/94.4%/97.2%/43.6%, respectively). CONCLUSIONS In the imaging response assessment of multiple myeloma, WB-MRI showed excellent performance in the evaluation of PD, but not in the assessment of CR or objective response. When adding DWI to imaging response criteria, diagnostic accuracy for objective response was improved and agreement between imaging and clinical responses was increased.
Collapse
Affiliation(s)
- Ho Young Park
- Department of Radiology and Research Institute of Radiology, Asan Image Metrics, Clinical Trial Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Kyung Won Kim
- Department of Radiology and Research Institute of Radiology, Asan Image Metrics, Clinical Trial Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| | - Min A Yoon
- Department of Radiology and Research Institute of Radiology, Asan Image Metrics, Clinical Trial Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Min Hee Lee
- Department of Radiology and Research Institute of Radiology, Asan Image Metrics, Clinical Trial Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Eun Jin Chae
- Department of Radiology and Research Institute of Radiology, Asan Image Metrics, Clinical Trial Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jeong Hyun Lee
- Department of Radiology and Research Institute of Radiology, Asan Image Metrics, Clinical Trial Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Hye Won Chung
- Department of Radiology and Research Institute of Radiology, Asan Image Metrics, Clinical Trial Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
49
|
Our patients have spoken: keep radiologists in the centre of AI imaging ecosystems. Eur Radiol 2019; 30:1031-1032. [PMID: 31728690 DOI: 10.1007/s00330-019-06531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
|
50
|
Whole-body diffusion-weighted imaging with background body signal suppression in the detection of osseous and extra-osseous metastases. Pol J Radiol 2019; 84:e453-e458. [PMID: 31969965 PMCID: PMC6964352 DOI: 10.5114/pjr.2019.90057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose To assess the reproducibility of detection of osseous and extra-osseous metastases in cancer patients using whole-body diffusion-weighted imaging with background body signal suppression (WB-DWIBS). Material and methods A prospective study was conducted on 39 consecutive patients (21 females, 18 males; mean age 48 years) with metastases, who underwent WB-DWIBS on a 1.5-T MR scanner. Image analysis was performed independently by two blinded observers. Inter-observer agreement was assessed for the detection of osseous (spinal, appendicular) and extra-osseous (hepatic, pulmonary, nodal, and peritoneal) metastases. Results The overall inter-observer agreement of WB-DWIBS in the detection of osseous and extra-osseous metastases was excellent (κ = 0.887, agreement = 94.44%, p = 0.001). There was excellent inter-observer agreement of both observers for the detection of osseous spinal (κ = 0.846, agreement = 92.3%), osseous appendicular (κ = 0.898, agreement = 94.8 %), hepatic (κ = 0.847, agreement = 92.3%), pulmonary (κ = 0.938, agreement = 97.4%), nodal metastases (κ = 0.856, agreement = 94.9%), and peritoneal metastasis (κ = 0.772, agreement = 94.9%). Conclusion We concluded that WB-DWIBS is reproducible for detection of osseous and extra-osseous metastases in cancer patients.
Collapse
|