1
|
Iskandar M, Ruiz-Houston KM, Bracco SD, Sharkasi SR, Calabi Villarroel CL, Desai MN, Gerges AG, Ortiz Lopez NA, Xiao Barbero M, German AA, Moluguri VS, Walker SM, Silva Higashi J, Palma JM, Medina DZ, Patel M, Patel P, Valentin M, Diaz AC, Karthaka JP, Santiago AD, Skiles RB, Romero Umana LA, Ungrey MD, Wojtkowiak A, Howard DV, Nurge R, Woods KG, Nanjundan M. Deep-Sea Sponges and Corals off the Western Coast of Florida-Intracellular Mechanisms of Action of Bioactive Compounds and Technological Advances Supporting the Drug Discovery Pipeline. Mar Drugs 2023; 21:615. [PMID: 38132936 PMCID: PMC10744787 DOI: 10.3390/md21120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The majority of natural products utilized to treat a diverse array of human conditions and diseases are derived from terrestrial sources. In recent years, marine ecosystems have proven to be a valuable resource of diverse natural products that are generated to defend and support their growth. Such marine sources offer a large opportunity for the identification of novel compounds that may guide the future development of new drugs and therapies. Using the National Oceanic and Atmospheric Administration (NOAA) portal, we explore deep-sea coral and sponge species inhabiting a segment of the U.S. Exclusive Economic Zone, specifically off the western coast of Florida. This area spans ~100,000 km2, containing coral and sponge species at sea depths up to 3000 m. Utilizing PubMed, we uncovered current knowledge on and gaps across a subset of these sessile organisms with regards to their natural products and mechanisms of altering cytoskeleton, protein trafficking, and signaling pathways. Since the exploitation of such marine organisms could disrupt the marine ecosystem leading to supply issues that would limit the quantities of bioactive compounds, we surveyed methods and technological advances that are necessary for sustaining the drug discovery pipeline including in vitro aquaculture systems and preserving our natural ecological community in the future. Collectively, our efforts establish the foundation for supporting future research on the identification of marine-based natural products and their mechanism of action to develop novel drugs and therapies for improving treatment regimens of human conditions and diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (K.M.R.-H.); (S.D.B.); (S.R.S.); (C.L.C.V.); (M.N.D.); (A.G.G.); (N.A.O.L.); (M.X.B.); (A.A.G.); (V.S.M.); (S.M.W.); (J.S.H.); (J.M.P.); (D.Z.M.); (M.P.); (P.P.); (M.V.); (A.C.D.); (J.P.K.); (A.D.S.); (R.B.S.); (L.A.R.U.); (M.D.U.); (A.W.); (D.V.H.); (R.N.); (K.G.W.)
| |
Collapse
|
2
|
Yakhnenko A, Zinicovscaia I, Yushin N, Chaligava O, Nebesnykh I, Grozdov D, Khanaev I, Duliu OG, Maikova O, Kravchenko E. Endemic sponge Lubomirskia baikalensis as a bioindicator of chemical elements pollution in Lake Baikal. MARINE POLLUTION BULLETIN 2022; 182:114025. [PMID: 35963229 DOI: 10.1016/j.marpolbul.2022.114025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
To evaluate the prospects of using Baikal endemic sponges as bioindicators of chemical elements pollution, the elemental composition of sponges, water and substrate samples, collected in two areas with different levels of anthropogenic loading of the Baikal Lake, was determined using two analytical techniques. The content of Cl, Ca, V, Zn, As, Se, Ba, Cd, and Cu in the sponges collected in Listvennichny Bay was significantly higher than in Bolshye Koty Bay. The values of the pollution indices point at the slight to moderate pollution of the substrates. According to the bioaccumulation factor values, sponges accumulate mainly Cd, Cu and Br from the substrate, and the main part of the elements from water. The distribution of elements longwise the sponges and their intraspecific variation were evaluated. It was shown that Lubomirskia baikalensis sponges were suitable bioindicators to assess the pollution of Lake Baikal.
Collapse
Affiliation(s)
- Alena Yakhnenko
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia; Limnological Institute SB RAS, 3 Ulan-Batorskaya Irkutsk, Russia
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia; Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str., MG-6, Bucharest-Magurele, Romania; Institute of Chemistry, Academiei Str. 2, 2002 Chisinau, Republic of Moldova.
| | - Nikita Yushin
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia
| | - Omari Chaligava
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia; Georgian Technical University, 77, Merab Kostava Street, Tbilisi 0175, Georgia
| | - Ivan Nebesnykh
- Limnological Institute SB RAS, 3 Ulan-Batorskaya Irkutsk, Russia
| | - Dmitrii Grozdov
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia
| | - Igor Khanaev
- Limnological Institute SB RAS, 3 Ulan-Batorskaya Irkutsk, Russia
| | - Octavian G Duliu
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia; University of Bucharest, Faculty of Physics, Department of Structure of Matter, Earth and Atmospheric Physics and Astrophysics, 405, Atomistilor Street, 077125 Magurele, Romania; Geological Institute of Romania, 1, Caransebes str. 012271 Bucharest, Romania
| | - Olga Maikova
- Limnological Institute SB RAS, 3 Ulan-Batorskaya Irkutsk, Russia
| | - Elena Kravchenko
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia
| |
Collapse
|
3
|
Cerrano C, Giovine M, Steindler L. Petrosia ficiformis (Poiret, 1789): an excellent model for holobiont and biotechnological studies. Curr Opin Biotechnol 2021; 74:61-65. [PMID: 34800848 DOI: 10.1016/j.copbio.2021.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022]
Abstract
The aggregation of prokaryotic and eukaryotic cells has resulted in evolution of organisms with remarkable abilities to synthetize natural bioactive compounds of biotechnological relevance. Marine sponges such as Petrosia ficiformis are examples of this evolutionary strategy. The P. ficiformis microbiome, which produces a diversity of chemical compounds, plays a fundamental role in this sponge's extraordinary adaptation to various ecological conditions. The microbial community of P. ficiformis seems representative of sponge microbiomes, but it has an unusual exclusively horizontal transmission. This uncommon feature, together with its wide environmental distribution, its ability to generate 3D cell cultures that host symbionts, and the availability of meta-omics and physiology information make this sponge an effective model to study the complexity of holobionts.
Collapse
Affiliation(s)
- Carlo Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; Stazione Zoologica Anthon Dohrn, 80121 Napoli, Italy; Fano Marine Center, 61032 Fano, Italy
| | - Marco Giovine
- DISTAV-Department of Sciences of Earth, Environment and Life, University of Genoa, Genova, Italy
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
4
|
Janetzki N, Benkendorff K, Fairweather PG. Lack of general associations between intertidal assemblages and rock hardness. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan Janetzki
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia5001Australia
| | - Kirsten Benkendorff
- Marine Ecology Research Centre School of Environment, Science and Engineering Southern Cross University Lismore New South Wales Australia
| | - Peter G. Fairweather
- College of Science and Engineering Flinders University GPO Box 2100 Adelaide South Australia5001Australia
| |
Collapse
|
5
|
Binnewerg B, Schubert M, Voronkina A, Muzychka L, Wysokowski M, Petrenko I, Djurović M, Kovalchuk V, Tsurkan M, Martinovic R, Bechmann N, Fursov A, Ivanenko VN, Tabachnick KR, Smolii OB, Joseph Y, Giovine M, Bornstein SR, Stelling AL, Tunger A, Schmitz M, Taniya OS, Kovalev IS, Zyryanov GV, Guan K, Ehrlich H. Marine biomaterials: Biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110566. [PMID: 32228987 DOI: 10.1016/j.msec.2019.110566] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/28/2019] [Accepted: 12/15/2019] [Indexed: 12/31/2022]
Abstract
Marine demosponges of the Verongiida order are considered a gold-mine for bioinspired materials science and marine pharmacology. The aim of this work was to simultaneously isolate selected bromotyrosines and unique chitinous structures from A. aerophoba and to propose these molecules and biomaterials for possible application as antibacterial and antitumor compounds and as ready-to-use scaffolds for cultivation of cardiomyocytes, respectively. Among the extracted bromotyrosines, the attention has been focused on aeroplysinin-1 that showed interesting unexpected growth inhibition properties for some Gram-negative clinical multi-resistant bacterial strains, such as A. baumannii and K. pneumoniae, and on aeroplysinin-1 and on isofistularin-3 for their anti-tumorigenic activity. For both compounds, the effects are cell line dependent, with significant growth inhibition activity on the neuroblastoma cell line SH-SY5Y by aeroplysinin-1 and on breast cancer cell line MCF-7 by isofistularin-3. In this study, we also compared the cultivation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) on the A. aerophoba chitinous scaffolds, in comparison to chitin structures that were pre-coated with Geltrex™, an extracellular matrix mimetic which is used to enhance iPSC-CM adhesion. The iPSC-CMs on uncoated and pure chitin structures started contracting 24 h after seeding, with comparable behaviour observed on Geltrex-coated cell culture plates, confirming the biocompatibility of the sponge biomaterial with this cell type. The advantage of A. aerophoba is that this source organism does not need to be collected in large quantities to supply the necessary amount for further pre-clinical studies before chemical synthesis of the active compounds will be available. A preliminary analysis of marine sponge bioeconomy as a perspective direction for application of biomaterials and secondary bioactive metabolites has been finally performed for the first time.
Collapse
Affiliation(s)
- Björn Binnewerg
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden 01307, Germany
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden 01307, Germany
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine
| | - Liubov Muzychka
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv 02094, Ukraine
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland; Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany.
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
| | - Mirko Djurović
- Institute of Marine Biology, University of Montenegro, Kotor 85330, Montenegro
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
| | - Rajko Martinovic
- Institute of Marine Biology, University of Montenegro, Kotor 85330, Montenegro
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
| | - Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Konstantin R Tabachnick
- P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow 117997, Russia; International Institute of Biomineralogy GmbH, Freiberg 09599, Germany
| | - Oleg B Smolii
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv 02094, Ukraine
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Genova 16132, Italy
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Diabetes and Nutritional Sciences Division, King's College London, London WC2R 2LS, UK
| | - Allison L Stelling
- Duke University Medical Center, Department of Biochemistry, Durham, NC, USA
| | - Antje Tunger
- National Center for Tumor Diseases, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Marc Schmitz
- National Center for Tumor Diseases, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Olga S Taniya
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg 620002, Russia; Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620219, Russia
| | - Igor S Kovalev
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg 620002, Russia
| | - Grigory V Zyryanov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg 620002, Russia; Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Yekaterinburg 620219, Russia
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden 01307, Germany.
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, Technische Universität Bergakademie Freiberg, Freiberg 09599, Germany.
| |
Collapse
|
6
|
Conkling M, Hesp K, Munroe S, Sandoval K, Martens DE, Sipkema D, Wijffels RH, Pomponi SA. Breakthrough in Marine Invertebrate Cell Culture: Sponge Cells Divide Rapidly in Improved Nutrient Medium. Sci Rep 2019; 9:17321. [PMID: 31754216 PMCID: PMC6872747 DOI: 10.1038/s41598-019-53643-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/04/2019] [Indexed: 02/02/2023] Open
Abstract
Sponges (Phylum Porifera) are among the oldest Metazoa and considered critical to understanding animal evolution and development. They are also the most prolific source of marine-derived chemicals with pharmaceutical relevance. Cell lines are important tools for research in many disciplines, and have been established for many organisms, including freshwater and terrestrial invertebrates. Despite many efforts over multiple decades, there are still no cell lines for marine invertebrates. In this study, we report a breakthrough: we demonstrate that an amino acid-optimized nutrient medium stimulates rapid cell division in 9 sponge species. The fastest dividing cells doubled in less than 1 hour. Cultures of 3 species were subcultured from 3 to 5 times, with an average of 5.99 population doublings after subculturing, and a lifespan from 21 to 35 days. Our results form the basis for developing marine invertebrate cell models to better understand early animal evolution, determine the role of secondary metabolites, and predict the impact of climate change to coral reef community ecology. Furthermore, sponge cell lines can be used to scale-up production of sponge-derived chemicals for clinical trials and develop new drugs to combat cancer and other diseases.
Collapse
Affiliation(s)
- Megan Conkling
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Kylie Hesp
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
| | - Stephanie Munroe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
| | - Kenneth Sandoval
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Shirley A Pomponi
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA.
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Schubert M, Binnewerg B, Voronkina A, Muzychka L, Wysokowski M, Petrenko I, Kovalchuk V, Tsurkan M, Martinovic R, Bechmann N, Ivanenko VN, Fursov A, Smolii OB, Fromont J, Joseph Y, Bornstein SR, Giovine M, Erpenbeck D, Guan K, Ehrlich H. Naturally Prefabricated Marine Biomaterials: Isolation and Applications of Flat Chitinous 3D Scaffolds from Ianthella labyrinthus (Demospongiae: Verongiida). Int J Mol Sci 2019; 20:E5105. [PMID: 31618840 PMCID: PMC6829448 DOI: 10.3390/ijms20205105] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics.
Collapse
Affiliation(s)
- Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Björn Binnewerg
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, 21018 Vinnytsia, Ukraine.
| | - Lyubov Muzychka
- V.P Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, 02094 Kyiv, Ukraine.
| | - Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsya, 21018 Vinnytsia, Ukraine.
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany.
| | - Rajko Martinovic
- Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro.
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| | - Oleg B Smolii
- V.P Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, 02094 Kyiv, Ukraine.
| | - Jane Fromont
- Aquatic Zoology Department, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia.
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- Diabetes and Nutritional Sciences Division, King's College London, London WC2R 2LS, UK.
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy.
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany.
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| |
Collapse
|
8
|
Pozzolini M, Scarfì S, Gallus L, Castellano M, Vicini S, Cortese K, Gagliani MC, Bertolino M, Costa G, Giovine M. Production, Characterization and Biocompatibility Evaluation of Collagen Membranes Derived from Marine Sponge Chondrosia reniformis Nardo, 1847. Mar Drugs 2018; 16:111. [PMID: 29596370 PMCID: PMC5923398 DOI: 10.3390/md16040111] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
Abstract
Collagen is involved in the formation of complex fibrillar networks, providing the structural integrity of tissues. Its low immunogenicity and mechanical properties make this molecule a biomaterial that is extremely suitable for tissue engineering and regenerative medicine (TERM) strategies in human health issues. Here, for the first time, we performed a thorough screening of four different methods to obtain sponge collagenous fibrillar suspensions (FSs) from C. reniformis demosponge, which were then chemically, physically, and biologically characterized, in terms of protein, collagen, and glycosaminoglycans content, viscous properties, biocompatibility, and antioxidant activity. These four FSs were then tested for their capability to generate crosslinked or not thin sponge collagenous membranes (SCMs) that are suitable for TERM purposes. Two types of FSs, of the four tested, were able to generate SCMs, either from crosslinking or not, and showed good mechanical properties, enzymatic degradation resistance, water binding capacity, antioxidant activity, and biocompatibility on both fibroblast and keratinocyte cell cultures. Finally, our results demonstrate that it is possible to adapt the extraction procedure in order to alternatively improve the mechanical properties or the antioxidant performances of the derived biomaterial, depending on the application requirements, thanks to the versatility of C. reniformis extracellular matrix extracts.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Lorenzo Gallus
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genova, Via Dodecaneso 31, 16146 Genova, Italy.
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genova, Via Dodecaneso 31, 16146 Genova, Italy.
| | - Katia Cortese
- Department of Experimental Medicine (DIMES), Human Anatomy Section, University of Genova, Via De Toni 14, 16132 Genova, Italy.
| | - Maria Cristina Gagliani
- Department of Experimental Medicine (DIMES), Human Anatomy Section, University of Genova, Via De Toni 14, 16132 Genova, Italy.
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Gabriele Costa
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| |
Collapse
|
9
|
Pozzolini M, Scarfì S, Gallus L, Ferrando S, Cerrano C, Giovine M. Silica-induced fibrosis: an ancient response from the early metazoans. J Exp Biol 2017; 220:4007-4015. [PMID: 29093191 DOI: 10.1242/jeb.166405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
Abstract
Exposure to crystalline silica particles causes silicosis, an occupational disease leading to an overproduction of collagen in the lung. The first step of this pathology is characterized by the release of inflammatory mediators. Tumour necrosis factor (TNF) is a pro-inflammatory cytokine directly involved in silica-induced pulmonary fibrosis. The marine demosponge Chondrosia reniformis is able to incorporate silica grains and partially dissolve the crystalline forms apparently without toxic effects. In the present work, C. reniformis tissue explants were treated with fine quartz dust and the expression level of fibrogenic genes was assayed by qPCR, demonstrating an overexpression of a fibrillar and a non-fibrillar collagen and of prolyl-4-hydroxylase enzyme. The deposition of new collagen could also be documented in quartz-treated sponge explants. Furthermore, TNF pro-inflammatory cytokine overexpression and involvement in silica-induced sponge collagen biosynthesis was demonstrated in quartz-treated explants as compared with controls by means of specific TNF inhibitors affecting the fibrogenic gene response. As no documentable detrimental effect was observed in treated explants, we conclude that the C. reniformis unique quartz engulfment and erosion is physiological and beneficial to the animal, leading to new collagen synthesis and strengthening of the body stiffness. Thus, we put forward the hypothesis that an ancient physiological behaviour from the lowest of the Metazoa, persisting through evolution via the same molecular mediators such as TNF, may have become the cause of disease in the specialized tissues of higher animals such as mammals.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, 16132 Genoa, Italy
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, 16132 Genoa, Italy
| | - Lorenzo Gallus
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, 16132 Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, 16132 Genoa, Italy
| | - Carlo Cerrano
- Department of Life and Environmental Sciences (DiSVA), Polytechnic University of Marche, 60131 Ancona, Italy
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DiSTAV), University of Genova, 16132 Genoa, Italy
| |
Collapse
|
10
|
Pozzolini M, Mussino F, Cerrano C, Scarfì S, Giovine M. Sponge cell cultivation: Optimization of the model Petrosia ficiformis (Poiret 1789). JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 2014; 454:70-77. [DOI: 10.1016/j.jembe.2014.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
11
|
Mussino F, Pozzolini M, Valisano L, Cerrano C, Benatti U, Giovine M. Primmorphs cryopreservation: a new method for long-time storage of sponge cells. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:357-367. [PMID: 23151942 DOI: 10.1007/s10126-012-9490-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
The possibility to cryopreserve cells allows for wide opportunities of flexible handling of cell cultures from different sponge species. Primmorphs model, a multicellular 3D aggregate formed by dissociated sponge cells, is considered one of the best approaches to establish sponge cell culture but, in spite of the available protocols for freezing sponge cells, there is no information regarding the ability of the latter to form primmorphs after thawing. In the present work, we demonstrate that, after a freezing and thawing cycle using dissociated Petrosia ficiformis cells as a model, cells viability was high but it was not possible to obtain primmorphs. The same protocol for cryopreservation was then used to directly freeze primmorphs. In this second case, after thawing, viability and the cellular proliferative level were similar to unfrozen standard primmorphs. Spiculogenesis in thawed primmorphs was evaluated by quantifying the silicatein gene expression level and by assaying the silica amount in the newly formed spicules, then compared with the correspondent values obtained in standard unfrozen primmorphs. Results indicate that the freezing cycle does not affect the spiculogenesis rate. Finally, the expression level of heat shock protein 70, a well-known stress marker, was assayed and the results showed no differences between frozen and unfrozen samples. These findings are likely to promote relevant improvements in sponge cell culture technique, allowing for a worldwide exchange of living biological material, paving the way for cell banking of Porifera.
Collapse
|
12
|
Müller WEG, Schröder HC, Feng Q, Schlossmacher U, Link T, Wang X. Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation. J Tissue Eng Regen Med 2013; 9:E39-50. [DOI: 10.1002/term.1745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/12/2013] [Accepted: 03/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Centre; Johannes Gutenberg University; Mainz Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Centre; Johannes Gutenberg University; Mainz Germany
| | - Qingling Feng
- School of Materials Science and Engineering; Tsinghua University; Beijing People's Republic of China
| | - Ute Schlossmacher
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Centre; Johannes Gutenberg University; Mainz Germany
| | - Thorben Link
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Centre; Johannes Gutenberg University; Mainz Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group, Institute for Physiological Chemistry, University Medical Centre; Johannes Gutenberg University; Mainz Germany
- National Research Centre for Geoanalysis; Chinese Academy of Geological Sciences; Beijing People's Republic of China
| |
Collapse
|
13
|
Giovine M, Scarfì S, Pozzolini M, Penna A, Cerrano C. Cell reactivity to different silica. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2013; 54:143-174. [PMID: 24420713 DOI: 10.1007/978-3-642-41004-8_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interaction between mineral structures and living beings is increasingly attracting the interest of research. The formation of skeletons, geomicrobiology, the study of the origin of life, soil biology, benthos biology, human and mammalian diseases generated by the inhalation of dust and biomaterials are some examples of scientific areas where the topic has a relevance. In this chapter we focus on cell reactivity to siliceous rocks and to the various forms of silicon dioxide, in particular. The examples here reported carefully review how such minerals may strongly affect different living beings, from simple ones to humans. The biomineralogy concept is explained, focusing on the effects of rocks on cell growth and development. The toxic action of silicon dioxide in mammalian lungs is the oldest evidence of crystalline silica bioactivity. More recently, we could demonstrate that crystalline silica has a deep impact on cell biology throughout the whole animal kingdom. One of the most illustrative case studies is the marine sponge Chondrosia reniformis, which has the amazing ability to incorporate and etch crystalline silica releasing dissolved silicates in the medium. This specific and selective action is due to the chemical reaction of ascorbic acid with quartz surfaces. One consequence of this is an increased production of collagen. The discovery of this mechanism opened the door to a new understanding of silica toxicity for animal cells and mammalian cells in particular. The presence of silica in sea water and substrates also affects processes like the settlement of larvae and the growth of diatoms. The following sections review all such aspects.
Collapse
Affiliation(s)
- Marco Giovine
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genoa, Italy,
| | | | | | | | | |
Collapse
|