1
|
Mahjoor M, Nobakht M, Ataei Kachouei F, Zalpoor H, Heidari F, Yari A, Joulai Veijouye S, Nazari H, Sajedi N. In Vitro differentiation of hair-follicle bulge stem cells into synaptophysin-expressing neurons: a potential new approach for neuro-regeneration. Hum Cell 2024; 38:19. [PMID: 39546092 DOI: 10.1007/s13577-024-01146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
Stem cells, particularly bulge hair follicle stem cells (HFSCs), have recently attracted significant interest due to their potential for tissue repair and regeneration. These cells, marked by their expression of Nestin (a neural stem cell marker), suggest the possibility of neural differentiation into neurons. This study investigated the use of retinoic acid (RA) and epidermal growth factor (EGF) to induce HFSC transformation into mature neurons, identified by synaptophysin expression. Rat whisker follicles were cultured in a medium suitable for HFSC survival and proliferation. Immunostaining techniques were used to identify HFSCs and assess their differentiation into neural cells. The addition of RA and EGF to the culture medium aimed to induce this differentiation. Findings demonstrate that HFSCs expressed Nestin, indicating their pluripotent nature. Treatment with RA and EGF resulted in synaptophysin expression, a marker of mature neurons, which was absent in the control group. However, this treatment group also displayed a decrease in the expression of other neural markers (βIII tubulin and NeuN). This study suggests that a combination of RA and EGF can accelerate HFSC differentiation into synaptophysin-positive cells in vitro. This research paves the way for further exploration of its potential application in neuro-regeneration.
Collapse
Affiliation(s)
- Mohamad Mahjoor
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Nobakht
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Education & Research Network (USERN), Universal Scientific, Tehran, Iran.
| | - Fatemeh Heidari
- Department of Anatomy, Faculty of Medicine, Qum University of Medical Sciences, Qom, Iran
| | - Abazar Yari
- Department of Anatomy, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| | | | - Hojjatollah Nazari
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia
| | - Nayereh Sajedi
- Department of Anatomy, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran.
| |
Collapse
|
2
|
Xing YZ, Guo HY, Xiang F, Li YH. Recent progress in hair follicle stem cell markers and their regulatory roles. World J Stem Cells 2024; 16:126-136. [PMID: 38455104 PMCID: PMC10915958 DOI: 10.4252/wjsc.v16.i2.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024] Open
Abstract
Hair follicle stem cells (HFSCs) in the bulge are a multipotent adult stem cell population. They can periodically give rise to new HFs and even regenerate the epidermis and sebaceous glands during wound healing. An increasing number of biomarkers have been used to isolate, label, and trace HFSCs in recent years. Considering more detailed data from single-cell transcriptomics technology, we mainly focus on the important HFSC molecular markers and their regulatory roles in this review.
Collapse
Affiliation(s)
- Yi-Zhan Xing
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| | - Hai-Ying Guo
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| | - Fei Xiang
- Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yu-Hong Li
- Department of Cell Biology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Global Research Status and Trends in Hair Follicle Stem Cells: a Bibliometric Analysis. Stem Cell Rev Rep 2022; 18:2002-2015. [PMID: 35802225 DOI: 10.1007/s12015-022-10404-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Hair follicle stem cells (HFSCs) are derived from the bulge region and are important autologous stem cell sources. Bibliometric is a statistical method that quantitatively analyses the research papers concerned about one special topic. This study aims to estimate the research status and trends of HFSCs worldwide by bibliometric analyses. METHODS Data were obtained from the Web of Science by searching keywords related to HFSCs. Publication distributions stratified by countries/regions, institutions, journals, and authors were systematically assessed. The frequency of keywords was assessed, and bibliometric mapping was employed to describe the development of HFSC research. RESULTS A total of 458 publications that met our screening criteria were included in this study, consisting of 423 (92.4%) articles and 35 (7.6%) reviews. The United States of America (USA) ranked first in the number of publications at 146 (31.9%), followed by China at 130 (28.4%), which is consistent with the rank of the H-index. Author keywords were classified into three clusters, namely, basic study, applied study, and biomarker; average publication time of keywords in applied study cluster is later than basic study cluster. The keywords "bulge", "nestin", and "skin" are the top three most frequent keywords in basic studies; "differentiation", "proliferation", and "alopecia" are the top three most frequent keywords in applied studies. With respect to the latest research hotspots, "apoptosis" and "tissue engineering" are relatively new keywords. CONCLUSIONS The USA and China were the most productive countries for research on HFSCs. The focus of keywords gradually shifted from basic study to applied study. Research on the differentiation/proliferation of HFSCs and the role of HFSCs in alopecia have been recent research focuses. Apoptosis and tissue engineering are recommended as promising research hotspots. Our study provides profound insights into the research history, current status, and future trend of HFSCs.
Collapse
|
4
|
Olszewski C, Maassen J, Guenther R, Skazik-Voogt C, Gutermuth A. Mechanotransductive Differentiation of Hair Follicle Stem Cells Derived from Aged Eyelid Skin into Corneal Endothelial-Like Cells. Stem Cell Rev Rep 2021; 18:1668-1685. [PMID: 34515937 PMCID: PMC9209348 DOI: 10.1007/s12015-021-10249-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Corneal endothelial insufficiency is one of the leading causes of blindness. The main contemporary treatment for corneal blindness is endothelial keratoplasty, which, however, is unsatisfactory as a medical therapy due to the lack of donor corneas and graft rejection. Therefore, autologous stem cell-based corneal endothelial tissue substitutes may be a promising alternative to conventional grafts in the future. To address the age of most patients suffering from corneal endothelial deficiencies, we investigated the presence and potential of hair-derived stem cells from older tissue donors. Our studies revealed the presence of pluripotency- and neural crest-associated markers in tissue sections from blepharoplasty patients aged 50 to 80 years. In vitro outgrowths from eyelid hair follicles on collagen-coated tissue culture plates revealed a weak decrease in stem-cell potency. In contrast, cells within the spheres that spontaneously formed from the adherent cell layer retained full stem-cell potency and could be differentiated into cells of the ecto- meso and endodermal lineages. Although these highly potent hair follicle derived stem cells (HFSC) were only very slightly expandable, they were able to recognize the biomimicry of the Descemet’s-like topography and differentiate into corneal endothelial-like cells. In conclusion, HFSCs derived from epidermal skin of eyelid biopsies are a promising cell source to provide autologous corneal endothelial replacement for any age group of patients.
Collapse
Affiliation(s)
- Christian Olszewski
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Jessika Maassen
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Rebecca Guenther
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Claudia Skazik-Voogt
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany
| | - Angela Gutermuth
- Fraunhofer Institute for Production Technology, Steinbachstraße 17, 52074, Aachen, Germany.
| |
Collapse
|
5
|
Miri V, Asadi A, Sagha M, Najafzadeh N, Golmohammadi MG. Poly (L-lactic acid) nanofibrous scaffolds support the proliferation and neural differentiation of mouse neural stem and progenitor cells. Int J Dev Neurosci 2021; 81:438-447. [PMID: 33934403 DOI: 10.1002/jdn.10119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The distribution and growth of cells on nanofibrous scaffolds seem to be an indispensable precondition in cell tissue engineering. The potential use of biomaterial scaffolds in neural stem cell therapy is increasingly attracting attention. AIM In this study, we produced porous nanofibrous scaffolds fabricated from random poly-L-lactic acid (PLLA) to support neurogenic differentiation of neural stem and progenitor cells (NSPCs), isolated from the subventricular zone (SVZ) of the adult mouse brain. METHODS The viability and proliferation of the NSPCs on the nanofibrous PLLA scaffold were also tested by nuclear staining with 4, 6-diamidino-2-phenylindole dihydrochloride (DAPI), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and scanning electron microscopy (SEM). To investigate the differentiation potential of NSPCs on the scaffolds, the cells were treated with a neurogenic differentiation medium, and immunostaining was done to detect neuronal and glial cells after 14 and 21 days of cultivation. Furthermore, the morphology of differentiated cells on the scaffold was examined using SEM. RESULTS The DAPI staining revealed the proliferation of NSPCs onto the surface of the nanofibrous PLLA scaffold. DAPI-positive cells were counted on days 2 and 5 after cultivation. The mean number of cells in each microscopic field was significantly (p < .05) increased (51 ± 19 on day 2 compared to 77 ± 25 cells on day 5). The results showed that the cell viability on PLLA scaffolds significantly increased compared to control groups. Moreover, cell viability was significantly increased 5 days after culturing (262.3 ± 50.2) as compared to 2 days culture in Vitro (174.2 ± 28.3, p < .05). Scanning electron micrographs also showed that the NSPCs adhered and differentiated on PLLA scaffolds. We found that the neural cell markers, microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP), were expressed in NSPCs seeded on random PLLA scaffolds after 21 days of cultivation. CONCLUSION These results suggest that the PLLA nano-scaffolds, due to their biocompatible property, are an appropriate structure for the proliferation, differentiation, and normal growth of NSPCs.
Collapse
Affiliation(s)
- Vahideh Miri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohsen Sagha
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Ghasem Golmohammadi
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Lin B, Zhu J, Yin G, Liao M, Lin G, Yan Y, Huang D, Lu S. Transcription Factor DLX5 Promotes Hair Follicle Stem Cell Differentiation by Regulating the c-MYC/microRNA-29c-3p/NSD1 Axis. Front Cell Dev Biol 2021; 9:554831. [PMID: 34336814 PMCID: PMC8319474 DOI: 10.3389/fcell.2021.554831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 03/10/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Adult stem cell function has been one of the most intensively explored areas of biological and biomedical research, with hair follicle stem cells serving as one of the best model systems. This study explored the role of the transcription factor DLX5 in regulating hair follicle stem cell (HFSC) differentiation. Methods HFSCs were isolated, characterized, and assessed for their expression of DLX5, c-MYC, NSD1, and miR-29c-3p using RT-qPCR, Western blot analysis, or immunofluorescence. Next, the ability of HFSCs to proliferate as well as differentiate into either sebaceous gland cells or epidermal cells was determined. The binding of DLX5 to the c-MYC promoter region, the binding of c-MYC to the miR-29c-3p promoter region, and the binding of miR-29c-3p to the 3′-UTR of NSD1 mRNA were verified by luciferase activity assay and ChIP experiments. Results DLX5 was highly expressed in differentiated HFSCs. DLX5 transcriptionally activated c-MYC expression to induce HFSC differentiation. c-MYC was able to bind the miR-29c-3p promoter and thus suppressed its expression. Without miR-29c-3p mediated suppression, NSD1 was then able to promote HFSC differentiation. These in vitro experiments suggested that DLX5 could promote HFSC differentiation via the regulation of the c-MYC/miR-29c-3p/NSD1 axis. Discussion This study demonstrates that DLX5 promotes HFSC differentiation by modulating the c-MYC/miR-29c-3p/NSD1 axis and identifies a new mechanism regulating HFSC differentiation.
Collapse
Affiliation(s)
- Bojie Lin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiangying Zhu
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Academy of Humanities and Social Sciences, Guangxi Medical University, Nanning, China
| | - Guoqian Yin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingde Liao
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guanyu Lin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuyong Yan
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Huang
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siding Lu
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Peterson A, Nair L. Hair Follicle Stem Cells for Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:695-706. [PMID: 34238037 PMCID: PMC9419938 DOI: 10.1089/ten.teb.2021.0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the positive outcomes of various cell therapies currently under pre-clinical and clinical studies, there is a significant interest in novel stem cell sources with unique therapeutic properties. Studies over the past two decades or so demonstrated the feasibility to isolate multipotent/pluripotent stem cells from hair follicles. The easy accessibility, high proliferation and differentiation ability as well as lack of ethical concerns associated with this stem cell source make hair follicle stem cells (HFSCs) attractive candidate for cell therapy and tissue engineering. This review discusses the various stem cell types identified in rodent and human hair follicles and ongoing studies on the potential use of HFSCs for skin, bone, cardio-vascular, and nerve tissue engineering.
Collapse
Affiliation(s)
- Alyssa Peterson
- University of Connecticut, 7712, Storrs, Connecticut, United States;
| | - Lakshmi Nair
- University of Connecticut Health Center, 21654, Orthopaedic Surgery, Farmington, Connecticut, United States;
| |
Collapse
|
8
|
Hoffman RM, Amoh Y. Hair Follicle-Associated Pluripotent(HAP) Stem Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:23-28. [PMID: 30470290 DOI: 10.1016/bs.pmbts.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The hair follicle has been known, since 1990, to contain stem cells located in the bulge area. In 2003, we reported a new type of stem cell in the hair follicle that expresses the brain stem-cell marker nestin. We have termed these cells as hair-follicle-associated pluripotent (HAP) stem cells. HAP stem cells can differentiate into neuronal and glial cells, beating cardiac-muscle cells, and other cell types in culture. HAP stem cells can be used for nerve and spinal-cord repair such that locomotor activity is recovered. A major function in situ of the HAP stem cells is for growth of the hair follicle sensory nerve. HAP stem cells have critical advantages over embryonic stem cells and induced pluripotent stem (IPS) cells for regenerative medicine in that they are highly accessible, require no genetic manipulation, are nontumorigenic, and do not present ethical issues.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer Inc., San Diego, CA, United States; Department of Surgery, University of California, San Diego, CA, United States.
| | - Yasuyuki Amoh
- Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
9
|
Generating inner ear organoids containing putative cochlear hair cells from human pluripotent stem cells. Cell Death Dis 2018; 9:922. [PMID: 30206231 PMCID: PMC6134051 DOI: 10.1038/s41419-018-0967-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Abstract
In view of the prevalence of sensorineural hearing defects in an ageing population, the development of protocols to generate cochlear hair cells and their associated sensory neurons as tools to further our understanding of inner ear development are highly desirable. We report herein a robust protocol for the generation of both vestibular and cochlear hair cells from human pluripotent stem cells which represents an advance over currently available methods that have been reported to generate vestibular hair cells only. Generating otic organoids from human pluripotent stem cells using a three-dimensional culture system, we show formation of both types of sensory hair cells bearing stereociliary bundles with active mechano-sensory ion channels. These cells share many morphological characteristics with their in vivo counterparts during embryonic development of the cochlear and vestibular organs and moreover demonstrate electrophysiological activity detected through single-cell patch clamping. Collectively these data represent an advance in our ability to generate cells of an otic lineage and will be useful for building models of the sensory regions of the cochlea and vestibule.
Collapse
|
10
|
Li X, Wu Y, Xie F, Zhang F, Zhang S, Zhou J, Chen D, Liu A. miR‑339‑5p negatively regulates loureirin A‑induced hair follicle stem cell differentiation by targeting DLX5. Mol Med Rep 2018; 18:1279-1286. [PMID: 29901112 PMCID: PMC6072140 DOI: 10.3892/mmr.2018.9110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
Our previous study indicated that loureirin A induces hair follicle stem cell (HFSC) differentiation through Wnt/β-catenin signaling pathway activation. However, if and how microRNAs (miRNAs/miRs) modulate loureirin A-induced differentiation remains to be elucidated. In the present study, HFSCs were separated from the vibrissae of rats and identified by CD34 and keratin, type 1 cytoskeletal (K)15 expression. Microarray-based miRNA profiling analysis revealed that miR-339-5p was downregulated in loureirin A-induced HFSC differentiation. miR-339-5p overexpression by transfection with miR-339-5p mimics markedly inhibited the expression of K10 and involucrin, which are markers of epidermal differentiation, whereas inhibition of miR-339-5p by miR-339-5p inhibitor transfection promoted the expression of K10 and involucrin. These results suggest that miR-339-5p is a negative regulator of HFSC differentiation following induction by loureirin A. These findings were confirmed by a luciferase assay. Homeobox protein DLX-5 (DLX5) was identified as a direct target of miR-339-5p. Furthermore, it was demonstrated that miR-339-5p inhibited DLX5. Overexpression of miR-339-5p by mimic transfection significantly inhibited protein Wnt-3a (Wnt3a) expression, while inhibition of miR-339-5p by inhibitor transfection significantly increased the expression of Wnt3a. Furthermore, small interfering RNA targeting DLX5 was transfected into HFSCs, and western blot analysis revealed that Wnt3a, involucrin and K10 expression was significantly downregulated. Taken together, these results suggest that miR-339-5p negatively regulated loureirin A-induced HFSC differentiation by targeting DLX5, resulting in Wnt/β-catenin signaling pathway inhibition. This may provide a possible therapeutic target for skin repair and regeneration.
Collapse
Affiliation(s)
- Xiangjun Li
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yuqiong Wu
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Fangfang Xie
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Fengxue Zhang
- The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Saixia Zhang
- The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianhong Zhou
- The Research Centre of Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Aijun Liu
- Department of Histology and Embryology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
11
|
Human nail stem cells are retained but hypofunctional during aging. J Mol Histol 2018; 49:303-316. [PMID: 29633149 PMCID: PMC5942356 DOI: 10.1007/s10735-018-9769-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
The nail is a continuous skin appendage. Cells located around the nails, which display coordinated homeostatic dynamics and release a flow of stem cells in response to regeneration, have been identified in mice. However, very few studies regarding human nail stem cells exist in the literature. Using specimens isolated from humans, we detected an unreported population of cells within the basal layer of postnatal human nail proximal folds (NPFs) and the nail matrix around the nail root. These cells were multi-expressing and expressed stem cell markers, such as keratin 15 (K15), keratin 14 (K14), keratin 19 (K19), CD29, CD34, and leucine-rich repeat-containing G protein-coupled receptor 6 (Lgr6). These cells were very similar to mouse nail stem cells in terms of cell marker expression and their location within the nail. We also found that the putative nail stem cells maintained their abundance with advancing age, but cell proliferation and nail growth rate were decreased on comparison of young and aged specimens. To summarize, we found a putative population of stem cells in postnatal human nails located at NPFs and the nail matrix. These cells may have potential for cell differentiation and be capable of responding to injury, and were retained, but may be hypofunctional during aging.
Collapse
|
12
|
de Castro RVG, Tavares MR, Bressan FF, Pieri NCG, Baracho Trindade Hill A, Souza AF, da R N Cruz N, Martins DS, Ambrósio CE, Meirelles FV, Garcia JM. In vitro identification of a stem cell population from canine hair follicle bulge region. Tissue Cell 2017; 50:43-50. [PMID: 29429517 DOI: 10.1016/j.tice.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/03/2023]
Abstract
Skin is an extensive and easily accessible organ possessing various cell types that are constantly renewed. Previous studies have suggested the presence of a stem cell niche at the bulge region of the hair follicle, which contains cells positive for CD200 and CD34. Thus, this study sought to identify these cell populations in canine skin cells using the following methods 1- collecting samples of adult and fetal skin and isolating and culturing these cells using a method of simple enzymatic digestion and 2- testing the cell cultures for CD200 and CD34 in vitro and comparing them with skin tissue samples (in situ). Immunofluorescence results were negative for both CD200 and CD34 in frozen and paraffin embedded tissue, whereas the analysis showed that cultured cells positive for CD34, CD200 and double positive cells could be visualized in different percentages. Additionally, the pluripotency marker OCT4 was positive in the isolated cells. Analysis of CD34, CD200 and OCT4 by RT-qPCR showed that there is expression in fetal and adult cells, although no difference was observed between groups. Our results suggest that bulge stem cells from both fetuses and adult dogs were reported with the use of CD34 and CD200 markers in this study, and further techniques for cell isolation and in vitro cultivation are needed in order to obtain enriched populations of skin stem cells in dogs.
Collapse
Affiliation(s)
- Raquel V G de Castro
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal/SP, Brazil.
| | - Mariana R Tavares
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal/SP, Brazil
| | - Fabiana F Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga/SP, Brazil; Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo/SP, Brazil
| | - Naira C G Pieri
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo/SP, Brazil
| | - Amanda Baracho Trindade Hill
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal/SP, Brazil
| | - Aline F Souza
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga/SP, Brazil
| | - Nathan da R N Cruz
- Department of Veterinary Clinical and Surgery, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal/SP, Brazil
| | - Daniele S Martins
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga/SP, Brazil; Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo/SP, Brazil
| | - Carlos E Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga/SP, Brazil
| | - Flávio V Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga/SP, Brazil
| | - Joaquim M Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal/SP, Brazil
| |
Collapse
|
13
|
Sarkhani E, Najafzadeh N, Tata N, Dastan M, Mazani M, Arzanlou M. Molecular mechanisms of methylsulfonylmethane and allicin in the inhibition of CD44 ± breast cancer cells growth. J Funct Foods 2017; 39:50-57. [DOI: 10.1016/j.jff.2017.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
14
|
Sagha M, Najafzadeh N. Highly Efficient Neural Differentiation of CD34-Positive Hair-Follicle-Associated Pluripotent Stem Cells Induced by Retinoic Acid and Serum-Free Medium. Methods Mol Biol 2016; 1453:161-172. [PMID: 27431256 DOI: 10.1007/978-1-4939-3786-8_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Neural differentiation of hair-follicle-associated pluripotent (HAP) stem cells residing in the bulge area is a promising autologous source for stem cell therapy. In the present chapter, we describe the identification and enrichment of CD34(+) HAP stem cells by magnetic-activated cell sorting (MACS), and induce them to differentiate into neuronal and glial cells using defined neural-induction media. The different neural cell populations arising during in vitro differentiation from HAP stem cells are characterized by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry assay.
Collapse
Affiliation(s)
- Mohsen Sagha
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
15
|
Induction of differentiation of human embryonic stem cells into functional hair-cell-like cells in the absence of stromal cells. Int J Biochem Cell Biol 2015; 81:208-222. [PMID: 26615761 DOI: 10.1016/j.biocel.2015.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/27/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023]
Abstract
Sensorineural hearing loss and vestibular dysfunction have become the most common forms of sensory defects. Stem cell-based therapeutic strategies for curing hearing loss are being developed. Several attempts to develop hair cells by using chicken utricle stromal cells as feeder cells have resulted in phenotypic conversion of stem cells into inner ear hair-cell-like cells. Here, we induced the differentiation of human embryonic stem cells (hESCs) into otic epithelial progenitors (OEPs), and further induced the differentiation of OEPs into hair-cell-like cells using different substrates. Our results showed that OEPs cultured on the chicken utricle stromal cells with the induction medium could differentiate into hair-cell-like cells with stereociliary bundles. Co-culture with stromal cells, however, may be problematic for subsequent examination of the induced hair-cell-like cells. In order to avoid the interference from stromal cells, we cultured OEPs on laminin with different induction media and examined the effects of the induction medium on the differentiation potentials of OEPs into hair-cell-like cells. The results revealed that the culture of OEPs on laminin with the conditioned medium from chicken utricle stromal cells supplemented with EGF and all-trans retinoic acid (RA) could promote the organization of cells into epithelial clusters displaying hair-cell-like cells with stereociliary bundles. These cells also displayed the expected electrophysiological properties.
Collapse
|
16
|
Najafzadeh N, Esmaeilzade B, Dastan Imcheh M. Hair follicle stem cells: In vitro and in vivo neural differentiation. World J Stem Cells 2015; 7:866-872. [PMID: 26131317 PMCID: PMC4478633 DOI: 10.4252/wjsc.v7.i5.866] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/22/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Hair follicle stem cells (HFSCs) normally give rise to keratinocytes, sebocytes, and transient amplifying progenitor cells. Along with the capacity to proliferate rapidly, HFSCs provide the basis for establishing a putative source of stem cells for cell therapy. HFSCs are multipotent stem cells originating from the bulge area. The importance of these cells arises from two important characteristics, distinguishing them from all other adult stem cells. First, they are accessible and proliferate for long periods. Second, they are multipotent, possessing the ability to differentiate into mesodermal and ectodermal cell types. In addition to a developmental capacity in vitro, HFSCs display an ability to form differentiated cells in vivo. During the last two decades, numerous studies have led to the development of an appropriate culture condition for producing various cell lineages from HFSCs. Therefore, these stem cells are considered as a novel source for cell therapy of a broad spectrum of neurodegenerative disorders. This review presents the current status of human, rat, and mouse HFSCs from both the cellular and molecular biology and cell therapy perspectives. The first section of this review highlights the importance of HFSCs and in vitro differentiation, while the final section emphasizes the significance of cell differentiation in vivo.
Collapse
Affiliation(s)
- Nowruz Najafzadeh
- Nowruz Najafzadeh, Maryam Dastan Imcheh, Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran
| | - Banafshe Esmaeilzade
- Nowruz Najafzadeh, Maryam Dastan Imcheh, Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran
| | - Maryam Dastan Imcheh
- Nowruz Najafzadeh, Maryam Dastan Imcheh, Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran
| |
Collapse
|