1
|
Copat C, Favara C, Tomasello MF, Sica C, Grasso A, Dominguez HG, Conti GO, Ferrante M. Astaxanthin in cancer therapy and prevention (Review). Biomed Rep 2025; 22:66. [PMID: 40017498 PMCID: PMC11865706 DOI: 10.3892/br.2025.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/27/2024] [Indexed: 03/01/2025] Open
Abstract
Astaxanthin (AXT), a carotenoid primarily derived from marine organisms such as shrimp, krill and the microalga Haematococcus pluvialis, has gained significant attention for its potent antioxidant, anti-inflammatory and anti-proliferative properties. The present comprehensive review explored the role of AXT in cancer prevention and treatment, emphasizing its cytotoxic mechanisms and modulation of key molecular pathways involved in cancer progression. AXT has demonstrated efficacy across a variety of cancer types, including nervous system, breast and gastrointestinal cancers, through its ability to induce apoptosis, inhibit metastasis and disrupt cell growth. The present review detailed both in vitro and in vivo studies highlighting the effectiveness of AXT in sensitizing cancer cells to chemotherapy, thereby enhancing therapeutic outcomes and potentially reducing treatment-related side effects. The incorporation of AXT in nanoparticle-based delivery systems has further improved its bioavailability and targeted action, showcasing its potential in advanced cancer therapies. However, despite promising experimental results, more comprehensive in vivo studies and clinical trials are necessary to validate the efficacy and safety of AXT in human populations. Such research would help standardize dosing, confirm interactions with conventional treatments and support the integration of AXT into clinical oncology as a natural, complementary approach to existing cancer treatments.
Collapse
Affiliation(s)
- Chiara Copat
- Department of Medical, Surgical and Advanced Technologies ‘G.F. Ingrassia’, University of Catania, Catania I-95123, Italy
| | - Claudia Favara
- Department of Medical, Surgical and Advanced Technologies ‘G.F. Ingrassia’, University of Catania, Catania I-95123, Italy
| | | | - Carmen Sica
- Department of Medical, Surgical and Advanced Technologies ‘G.F. Ingrassia’, University of Catania, Catania I-95123, Italy
| | - Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies ‘G.F. Ingrassia’, University of Catania, Catania I-95123, Italy
| | - Herminia Gonzalez Dominguez
- Department of Chemical Engineering, University of Vigo (Ourense Campus), Polytechnic Building, Ourense 32004, Spain
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies ‘G.F. Ingrassia’, University of Catania, Catania I-95123, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies ‘G.F. Ingrassia’, University of Catania, Catania I-95123, Italy
| |
Collapse
|
2
|
Masyita A, Hardinasinta G, Astuti AD, Firdayani F, Mayasari D, Hori A, Nisha INA, Nainu F, Kuraishi T. Natural pigments: innovative extraction technologies and their potential application in health and food industries. Front Pharmacol 2025; 15:1507108. [PMID: 39845791 PMCID: PMC11750858 DOI: 10.3389/fphar.2024.1507108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Natural pigments, or natural colorants, are frequently utilized in the food industry due to their diverse functional and nutritional attributes. Beyond their color properties, these pigments possess several biological activities, including antioxidant, anti-inflammatory, anticancer, antibacterial, and neuroprotective effects, as well as benefits for eye health. This review aims to provide a timely overview of the potential of natural pigments in the pharmaceutical, medical, and food industries. Special emphasis is placed on emerging technologies for natural pigment extraction (thermal technologies, non-thermal technologies, and supercritical fluid extraction), their pharmacological effects, and their potential application in intelligent food packaging and as food colorants. Natural pigments show several pharmaceutical prospects. For example, delphinidin (30 µM) significantly inhibited the growth of three cancer cell lines (B16-F10, EO771, and RM1) by at least 90% after 48 h. Furthermore, as an antioxidant agent, fucoxanthin at the highest concentration (50 μg/mL) significantly increased the ratio of glutathione to glutathione disulfide (p < 0.05). In the food industry, natural pigments have been used to improve the nutritional value of food without significantly altering the sensory experience. Moreover, the use of natural pH-sensitive pigments as food freshness indicators in intelligent food packaging is a cutting-edge technological advancement. This innovation could provide useful information to consumers, increase shelf life, and assist in evaluating the quality of packaged food by observing color variations over time. However, the use of natural pigments presents certain challenges, particularly regarding their stability and higher production costs compared to synthetic pigments. This situation underscores the need for further investigation into alternative pigment sources and improved stabilization methods. The instability of these natural pigments emphasizes their tendency to degrade and change color when exposed to various external conditions, including light, oxygen, temperature fluctuations, pH levels, and interactions with other substances in the food matrix.
Collapse
Affiliation(s)
- Ayu Masyita
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, Indonesia
| | - Gemala Hardinasinta
- Department of Agricultural Engineering, Faculty of Agricultural, Hasanuddin University, Makassar, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Firdayani Firdayani
- Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Bogor, Indonesia
| | - Dian Mayasari
- Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ira Nur Ainun Nisha
- Department of Biological Sciences, Faculty of Teacher Training and Education, Muslim Maros University, Maros, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Cunha FFMD, Tonon AP, Machado F, Travassos LR, Grazzia N, Possatto JF, Sant'ana AKCD, Lopes RDM, Rodrigues T, Miguel DC, Gadelha FR, Arruda DC. Astaxanthin induces autophagy and apoptosis in murine melanoma B16F10-Nex2 cells and exhibits antitumor activity in vivo. J Chemother 2024; 36:222-237. [PMID: 37800867 DOI: 10.1080/1120009x.2023.2264585] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Countless efforts have been made to prevent and suppress the formation and spread of melanoma. Natural astaxanthin (AST; extracted from the alga Haematococcus pluvialis) showed an antitumor effect on various cancer cell lines due to its interaction with the cell membrane. This study aimed to characterize the antitumor effect of AST against B16F10-Nex2 murine melanoma cells using cell viability assay and evaluate its mechanism of action using electron microscopy, western blotting analysis, terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and mitochondrial membrane potential determination. Astaxanthin exhibited a significant cytotoxic effect in murine melanoma cells with features of apoptosis and autophagy. Astaxanthin also decreased cell migration and invasion in vitro assays at subtoxic concentrations. In addition, assays were conducted in metastatic cancer models in mice where AST significantly decreased the development of pulmonary nodules. In conclusion, AST has cytotoxic effect in melanoma cells and inhibits cell migration and invasion, indicating a promising use in cancer treatment.
Collapse
Affiliation(s)
| | - Angela Pedroso Tonon
- Instituto de Física e Biotecnologia, Universidade de São Paulo, São Carlos, Brazil
- Institute of Environmental Science and Technology, Autonomous University of Barcelona, Barcelona, Spain
| | - Fabricio Machado
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luis Rodolpho Travassos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Nathalia Grazzia
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Rayssa de Mello Lopes
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, UFABC, Santo André, Brazil
| | - Tiago Rodrigues
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, UFABC, Santo André, Brazil
| | - Danilo Ciccone Miguel
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | - Denise Costa Arruda
- Núcleo Integrado de Biotecnologia (NIB), Universidade de Mogi das Cruzes, UMC, Mogi das Cruzes, Brazil
| |
Collapse
|
4
|
Ranjbary F, Fathi F, Pakchin PS, Maleki S. Astaxanthin Binding Affinity to DNA: Studied By Fluorescence, Surface Plasmon Resonance and Molecular Docking Methods. J Fluoresc 2024; 34:755-764. [PMID: 37358756 DOI: 10.1007/s10895-023-03310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Carotenoid astaxanthin (Ax), a pink-red pigment, with its anti-oxidative feature, is useful as a therapeutic element for numerous diseases. The purpose of this study is to investigate the binding affinity of Ax to double strand (ds) DNA evaluated by using the fluorescence spectroscopy, surface plasmon resonance (SPR) and docking approaches. The fluorescence results show that Ax can quench the intensity of DNA fluorescence via a static quenching way. In the SPR method, for affinity evaluation, DNA molecules were attached on a gold sensor surface. Using different amounts of ds DNA, the kinetic values KD, KA, and Ka were calculated. The Van't Hoff equation was used to estimate thermodynamic parameters including enthalpy (∆H), entropy (∆S) and Gibbs free energy (∆G) changes. The obtained results for KD in SPR (6.89×10-5 M) and fluorescence (KD=0.76×10-5 M) methods were in line with each other. Thermodynamic studies were carried out at four different temperatures, and the resulted negative data for ΔH and ΔS displayed that the main binding strength in the interaction of Ax with DNA was hydrogen bonding. ΔG value calculated by fluorescence method was near -38 kJ. mol-1 and using the docking method, estimated -9.95 kcal. mol-1 (-41.63 kJ. mol-1) which shows the binding behavior has an exothermic and spontaneous mechanism. Molecular docking results confirmed that the side chains of Ax interact specifically with base pairs and the DNA backbone.
Collapse
Affiliation(s)
- Farideh Ranjbary
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaiyeh Maleki
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Fayez D, Youssif A, Sabry S, Ghozlan H, El-Sayed F. Some novel bioactivities of Virgibacillus halodenitrificans carotenoids, isolated from Wadi El-Natrun lakes. Saudi J Biol Sci 2023; 30:103825. [PMID: 37869364 PMCID: PMC10587757 DOI: 10.1016/j.sjbs.2023.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Carotenoids come in second among the most frequent natural pigments and are utilized in medications, nutraceuticals, cosmetics, food pigments, and feed supplements. Based on recent complementary work, Virgibacillus was announced for the first time as a member of Wadi El-Natrun salt and soda lakes microbiota, identified as Virgibacillus halodenitrificans, and named V. halodenitrificans DASH; hence, this work aimed to investigate several in vitro medicinal bioactivities of V. halodenitrificans DASH carotenoids. The carotenoid methanolic extract showed antioxidant activity based on diphenylpicrylhydrazyl (DPPH) scavenging capacity with a half-maximal concentration (IC50) of 1.6 mg/mL as well as nitric oxide (NO) scavenging action expressed by an IC50 of 46.4 µg/mL. The extract showed considerable inhibitory activity for alpha-amylase (α-amylase) and alpha-glucosidase (α-glucosidase) enzymes (IC50 of 100 and 173.4 μg/mL, respectively). Moreover, the extract displayed selective anticancer activity against Caco-2 (IC50 = 138.96 µg/mL) and HepG-2 cell lines (IC50 = 31.25 µg/mL), representing colorectal adenocarcinoma and hepatoblastoma. Likewise, the extract showed 98.9 % clearance for human hepatitis C virus (HCV) using reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), HCV-NS5B polymerase activity inhibition (IC50 = 27.4 µg/mL), and selective inhibitory activity against human coronavirus (HCoV 229E) using the plaque reduction assay (IC50 = 53.5 µg/mL). As far as we can tell, the anticancer, antiviral, and antidiabetic attributes of Virgibacillus carotenoids are, de novo, reported in this work which accordingly invokes further exploration of the other medicinal, biotechnological, and industrial applications of Virgibacillus and haloalkaliphilic bacteria carotenoids.
Collapse
Affiliation(s)
- Doaa Fayez
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Asmaa Youssif
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Soraya Sabry
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Hanan Ghozlan
- Botany and Microbiology Department, Faculty of Science, University of Alexandria, Egypt
| | - Fatma El-Sayed
- Cell Culture Unit, Medical Technology Center, Medical Research Institute, University of Alexandria, Egypt
| |
Collapse
|
6
|
Mamedov VA, Zhukova NA, Voloshina AD, Syakaev VV, Beschastnova T, Lyubina AP, Amerhanova SK, Samigullina AI, Gubaidullin AT, Buzyurova DN, Rizvanov I, Sinyashin OG. Synthesis of Morpholine-, Piperidine-, and N-Substituted Piperazine-Coupled 2-(Benzimidazol-2-yl)-3-arylquinoxalines as Novel Potent Antitumor Agents. ACS Pharmacol Transl Sci 2022; 5:945-962. [PMID: 36268120 PMCID: PMC9578144 DOI: 10.1021/acsptsci.2c00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/29/2022]
Abstract
A novel series of 2-(benzimidazol-2-yl)quinoxalines with three types of pharmacophore groups, namely, piperazine, piperidine, and morpholine moieties, which are part of known antitumor drugs, was designed and synthesized. The compounds have been characterized by NMR and IR spectroscopy, high- and low-resolution mass spectrometry, and X-ray crystallography. 2-(Benzimidazol-2-yl)quinoxalines with N-methylpiperazine substituents showed promising activity against a wide range of cancer lines, without causing hemolysis and showing little cytotoxicity against normal human Wi-38 cells (human fetal lung). A mixture of regioisomers 2-(benzimidazol-2-yl)-3-(4-fluorophenyl)-6(and 7)-(4-methylpiperazin-1-yl)quinoxalines (mri BIQ 13da/14da) showed a highly selective cytotoxic effect against human lung adenocarcinoma (cell line A549) with a half-maximal inhibitory concentration at the level of doxorubicin with a selectivity index of 12. The data obtained by flow cytometry, fluorescence microscopy, and multiparametric fluorescence analysis suggested that the mechanism of the cytotoxic effect of the mri BIQ 13da/14da on A549 cells may be associated with the stopping of the cell cycle in phase S and inhibition of DNA synthesis as well as with the induction of mithochondrial apoptosis. Thus, mri BIQ 13da/14da can be considered as a leading compound deserving further study, optimization, and development as a new anticancer agent.
Collapse
Affiliation(s)
- Vakhid A. Mamedov
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Nataliya A. Zhukova
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Alexandra D. Voloshina
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Victor V. Syakaev
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Tat’yana
N. Beschastnova
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Anna P. Lyubina
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Syumbelya K. Amerhanova
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Aida I. Samigullina
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Aidar T. Gubaidullin
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Daina N. Buzyurova
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Il′dar
Kh. Rizvanov
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Oleg G. Sinyashin
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| |
Collapse
|
7
|
Song B, Park EY, Kim KJ, Ki SH. Repurposing of Benzimidazole Anthelmintic Drugs as Cancer Therapeutics. Cancers (Basel) 2022; 14:cancers14194601. [PMID: 36230527 PMCID: PMC9559625 DOI: 10.3390/cancers14194601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Although non-prescription anthelmintics are often used for cancer treatment, there is a lack of information regarding their anti-cancer effects in clinical settings. The aims of our review are to describe the possibilities and limitations of the anti-cancer effects of benzimidazole anthelmintics and to suggest ways to overcome these limitations. The results of the current review illustrate the potential development of anthelmintics as a useful strategy for cancer treatment based on much preclinical evidence. Furthermore, they suggest that more rigorous studies on whole anti-cancer pathways and development strategies, including formulations, could result in significantly enhanced anti-cancer effects of benzimidazoles as a repurposed cancer therapy in clinical settings. Abstract Benzimidazoles have shown significant promise for repurposing as a cancer therapy. The aims of this review are to investigate the possibilities and limitations of the anti-cancer effects of benzimidazole anthelmintics and to suggest ways to overcome these limitations. This review included studies on the anti-cancer effects of 11 benzimidazoles. Largely divided into three parts, i.e., preclinical anti-cancer effects, clinical anti-cancer effects, and pharmacokinetic properties, we examine the characteristics of each benzimidazole and attempt to elucidate its key properties. Although many studies have demonstrated the anti-cancer effects of benzimidazoles, there is limited evidence regarding their effects in clinical settings. This might be because the clinical trials conducted using benzimidazoles failed to restrict their participants with specific criteria including cancer entities, cancer stages, and genetic characteristics of the participants. In addition, these drugs have limitations including low bioavailability, which results in insufficient plasma concentration levels. Additional studies on whole anti-cancer pathways and development strategies, including formulations, could result significant enhancements of the anti-cancer effects of benzimidazoles in clinical situations.
Collapse
Affiliation(s)
- Bomi Song
- Graduate School of Clinical Pharmacy, Chosun University, Gwangju 61452, Korea
| | - Eun Young Park
- College of Pharmacy, Mokpo National University, Mokpo 58554, Korea
| | - Kwang Joon Kim
- College of Pharmacy, Mokpo National University, Mokpo 58554, Korea
- Correspondence: (K.J.K.); (S.H.K.); Tel.: +82-61-450-2334 (K.J.K.); +82-62-230-6639 (S.H.K.)
| | - Sung Hwan Ki
- Graduate School of Clinical Pharmacy, Chosun University, Gwangju 61452, Korea
- Correspondence: (K.J.K.); (S.H.K.); Tel.: +82-61-450-2334 (K.J.K.); +82-62-230-6639 (S.H.K.)
| |
Collapse
|
8
|
Cicekdal MB, Thomas PB, Guvenc Tuna B, Charehsaz M, Aydin A, Yilmaz B, Cleary MP, Dogan S. Effects of Different Calorie Restriction Protocols on Oxidative Stress Parameters in a Transgenic Mouse Model of Breast Cancer. Cureus 2022; 14:e27895. [PMID: 36120244 PMCID: PMC9467500 DOI: 10.7759/cureus.27895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
Aging and diseases related to aging, such as cancer, have been linked to oxidative stress. On the other hand, calorie restriction (CR) is one of the most effective interventions to slow down aging and prevent a variety of diseases such as cancer in preclinical models. CR has also been reported to modify oxidative stress. The aim of this study was to investigate the effects of different CR protocols and aging on oxidative stress parameters in the MMTV-TGF-α breast cancer mouse model in a cross-sectional study. Female mice were randomly enrolled in three groups: ad libitum (AL), chronic calorie restriction (CCR, 15% CR) or intermittent calorie restriction (ICR, three weeks AL followed by one week 60% CR in cyclic periods) starting at the age of 10 weeks until 81/82 weeks of age. Liver samples were analyzed for malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-Px) levels. At week 49/50, the GSH level increased significantly in the CCR group compared to the AL and ICR-R groups which had higher mammary tumor (MT) incidence rates. Additionally, liver MDA levels in ICR groups were significantly increased, while aging led to decreased CAT and SOD activities in all CR groups. The application of different CR protocols did not have any significant effect on MDA, CAT, and SOD parameters in the liver at week 81/82. These results suggest that although GSH may interfere with MT development at the systemic level, many of the oxidative stress parameters may have more local effects on tumor development than the systemic effects.
Collapse
|
9
|
Sharma M, Maheshwari N, Khan FH, Mahmood R. Carbendazim toxicity in different cell lines and mammalian tissues. J Biochem Mol Toxicol 2022; 36:e23194. [PMID: 35929398 DOI: 10.1002/jbt.23194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/25/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
The extensive production and use of harmful pesticides in agriculture to improve crop yield has raised concerns about their potential threat to living components of the environment. Pesticides cause serious environmental and health problems both to humans and animals. Carbendazim (CBZ) is a broad spectrum fungicide that is used to control or effectively kill pathogenic microorganisms. CBZ is a significant contaminant found in food, soil and water. It exerts immediate and delayed harmful effects on humans, invertebrates, aquatic animals and soil microbes when used extensively and repeatedly. CBZ is a teratogenic, mutagenic and aneugenic agent that imparts its toxicity by enhancing generation of reactive oxygen species generation. It elevates the oxidation of thiols, proteins and lipids and decreases the activities of antioxidant enzymes. CBZ is cytotoxic causing hematological abnormalities, mitotic spindle deformity, inhibits mitosis and alters cell cycle events which lead to apoptosis. CBZ is known to cause endocrine-disruption, embryo toxicity, infertility, hepatic dysfunction and has been reported to be one of the leading causes of neurodegenerative disorders. CBZ is dangerous to human health, the most common side effects upon chronic exposure are thyroid gland dysfunction and oxidative hepato-nephrotoxicity. In mammals, CBZ has been shown to disrupt the antioxidant defense system. In this review, CBZ-induced toxicity in different cells, tissues and organisms, under in vitro and in vivo conditions, has been systematically discussed.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Nikhil Maheshwari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
10
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Alateyah N, Ahmad SMS, Gupta I, Fouzat A, Thaher MI, Das P, Al Moustafa AE, Ouhtit A. Haematococcus pluvialis Microalgae Extract Inhibits Proliferation, Invasion, and Induces Apoptosis in Breast Cancer Cells. Front Nutr 2022; 9:882956. [PMID: 35634400 PMCID: PMC9130701 DOI: 10.3389/fnut.2022.882956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignant cancer in females worldwide. Drug resistance, toxicity, and the failure of current therapies to completely cure BC has challenged conventional medicine. Consequently, complementary alternative medicine has become popular due to its safety and efficacy. Haematococcus pluvialis (H. pulvialis) is a green microalga living in fresh water, and its crude extract is rich of bioactives, including carotenoids, known to inhibit cancer cell growth. In the present study, we investigated the effects of a methanol crude extract called “T1” of H. pulvialis on cell growth and migration/invasion of the BC cell line MDA-MB-231 in comparison to the fibroblast control cells. TI significantly suppressed BC cell growth, inhibited migration and invasion and induced apoptosis. Interestingly, apoptosis was mediated by a significant loss of mutant p53 protein, and increased Bax/Bcl2 ratio. Our findings support our hypothesis that T1 exerts its anti-cancer effects by inhibiting BC invasion and inducing apoptosis mediated, at least, via the p53/Bax/Bcl2 pathway. Ongoing experiments aim to identify the molecular mechanisms underpinning T1-inhibited BC cell invasion using pre-designed metastasis gene-based array method.
Collapse
Affiliation(s)
- Nouralhuda Alateyah
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Salma M. S. Ahmad
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, Qatar University, Doha, Qatar
| | - Arij Fouzat
- College of Pharmacy, Qatar University, Doha, Qatar
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha, Qatar
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Allal Ouhtit
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- *Correspondence: Allal Ouhtit,
| |
Collapse
|
12
|
Astaxanthin decreases the growth-inhibitory dose of cytarabine and inflammatory response in the acute lymphoblastic leukemia cell line NALM-6. Mol Biol Rep 2022; 49:6415-6422. [PMID: 35441937 DOI: 10.1007/s11033-022-07452-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND In spite of the great progress in acute lymphoblastic leukemia (ALL) treatment, a large number of patients still suffer from chemotherapy drug toxicity. As a routine medication for ALL treatment, cytarabine (Ara-C) has many side effects on the patients. Astaxanthin (ASX), on the other hand, is a carotenoid with antioxidant, anti-inflammatory and anti-cancer properties. PURPOSE The present study investigated the effects of ASX in combination with Ara-C on cell proliferation, apoptosis induction, and cell cycle arrest in NALM-6 cell line. METHODS NALM6 cells were treated with different concentrations of ASX, Ara-C, and their co-treatment. Cytotoxic effects were evaluated using MTT assay. After treating the cells with the IC50 dose of ASX, Ara-C and their co-treatment, we studied apoptosis induction, cell cycle arrest, and expression of apoptotic, anti-apoptotic, and inflammatory genes. RESULT MTT assay demonstrated that co-treatment of cytarabine and ASX had greater cytotoxicity effects compared with the IC50 dose of Ara-C alone. After 48 h of treatment of NALM-6 cells with the combination dose, expression levels of apoptotic genes (P53, caspase-8, 3), the anti-apoptotic gene (Bcl-xL) and inflammatory genes (IL-6, TNF-α) changed significantly compared to the untreated group (p < 0.05). CONCLUSIONS Co-treatment of ASX and Ara-C has synergism effects on apoptosis pathways, cell proliferation inhibition, and decreased inflammation.
Collapse
|
13
|
Shin J, Nile A, Saini RK, Oh JW. Astaxanthin Sensitizes Low SOD2-Expressing GBM Cell Lines to TRAIL Treatment via Pathway Involving Mitochondrial Membrane Depolarization. Antioxidants (Basel) 2022; 11:antiox11020375. [PMID: 35204257 PMCID: PMC8869337 DOI: 10.3390/antiox11020375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Carotenoids have been suggested to have either anti- or pro-oxidative effects in several cancer cells, and those effects can trigger an unbalanced reactive oxygen species (ROS) production resulting in an apoptotic response. Our study aimed to evaluate the effect of the well-known carotenoid 3, 3′-dihydroxy-β, β’-carotene-4, 4-dione (astaxanthin, AXT) on glioblastoma multiforme (GBM) cells, especially as a pretreatment of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), that was previously shown to increase ROS and to induce apoptosis in cancer cells. We found that AXT by itself did not trigger apoptosis in four investigated GBM cell lines upon a 24 h treatment at various concentrations from 2.5 to 50 µM. However, in U251-MG and T98-MG GBM cells, pretreatment of 2.5 to 10 µM AXT sensitized cells to TRAIL treatment in a statistically significant manner (p < 0.05) while it did not affect CRT-MG and U87-MG GBM cells. We further compared AXT-sensitive U251-MG and -insensitive CRT-MG response to AXT and showed that 5 µM AXT treatment had a beneficial effect on both cell lines, as it enhanced mitochondrial potential and TRAIL treatment had the opposite effect, as it decreased mitochondrial potential. Interestingly, in U251-MG, 5 µM AXT pretreatment to TRAIL-treated cells mitochondrial potential further decreased compared to TRAIL alone cells. In addition, while 25 and 50 ng/mL TRAIL treatment increased ROS for both cell lines, pretreatment of 5 µM AXT induced a significant ROS decrease in CRT-MG (p < 0.05) while less effective in U251-MG. We found that in U251-MG, superoxide dismutase (SOD) 2 expression and enzymatic activity were lower compared to CRT-MG and that overexpression of SOD2 in U251-MG abolished AXT sensitization to TRAIL treatment. Taken together, these results suggest that while AXT acts as an ROS scavenger in GBM cell lines, it also has some role in decreasing mitochondrial potential together with TRAIL in a pathway that can be inhibited by SOD2.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (J.S.); (A.N.)
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (J.S.); (A.N.)
| | | | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (J.S.); (A.N.)
- Correspondence:
| |
Collapse
|
14
|
A Emara A, H Mohamed M, S Nada E, A Hashem N, S Mahmoud E, M Abd-Elmonem A, Y Talab E, N Hameed A, M Dabbash O, Amir S, A Abd-Elgwad M, H Mohamed A, S Othman A, S Mansour M, A Ali A, A Hussein M. Astaxanthin Attenuates D-Galactosamine-Induced Pancreatic Injury by Activating Antioxidant Enzymes and Inhibiting VEGF-C Gene Expression. Pak J Biol Sci 2022; 25:191-200. [PMID: 35234009 DOI: 10.3923/pjbs.2022.191.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Astaxanthin (3,3'-dihydroxy-β-β-carotene-4,4'-dione) is a carotenoid, commonly found in marine environments has been reported to possess versatile biological properties including anti-inflammatory and antioxidant. In this study, the pancreatic protective effect of astaxanthin was investigated in D-Galactosamine-induced pancreas injury in rats. <b>Materials and Methods:</b> In this experimental study, MTT assay was used to determine cytotoxic effects of the Astaxanthin on pnc1 cells. A total of 30 adult albino rats divided into 5 groups, six rats in each. Group I was given an equal amount of distilled water, group II was received 400 mg kg<sup>1</sup> b.wt. D-galactosamine on 15th day, groups III-V were treated with astaxanthin (50 and 100 mg kg<sup>1</sup>) and/or silymarin (50 mg kg<sup>1</sup>) for 14 days + 400 mg kg<sup>1</sup> b.wt. D-galactosamine on the 15th day, respectively. <b>Results:</b> IC<sub>50 </sub>of Astaxanthin against the pnc1 cell line was 92.9 μg mL<sup>1</sup>. The daily oral administration of astaxanthin (50 and 100 mg kg<sup>1</sup>) as well as silymarin (50 mg kg<sup>1</sup>) for 14 days to rats treated with D-galactosamine resulted in a significant improvement in plasma AST, ALT, ALP as well as pancreatic TNF-α, IL-1β, IL-10, NO and VEGF-C gene expression. On the other hand, inducible oral administration of astaxanthin increased the activity of pancreatic GSH, SOD, GPx, GR, CAT and the level of TBARs in D-galactosamine-treated pancreatic of rats. Furthermore, Astaxanthin almost normalized these effects in pancreatic tissue histoarchitecture and MRI examination. <b>Conclusion:</b> The obtained results showed that Astaxanthin protected experimental animals against D-galactosamine-induced pancreatic injury through activation of antioxidant enzymes and IL-10 and inhibition of VEGF-C activation.
Collapse
|
15
|
Giani M, Montoyo-Pujol YG, Peiró G, Martínez-Espinosa RM. Halophilic Carotenoids and Breast Cancer: From Salt Marshes to Biomedicine. Mar Drugs 2021; 19:md19110594. [PMID: 34822465 PMCID: PMC8625793 DOI: 10.3390/md19110594] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the leading cause of death among women worldwide. Over the years, oxidative stress has been linked to the onset and progression of cancer. In addition to the classical histological classification, breast carcinomas are classified into phenotypes according to hormone receptors (estrogen receptor-RE-/progesterone receptor-PR) and growth factor receptor (human epidermal growth factor receptor-HER2) expression. Luminal tumors (ER/PR-positive/HER2-negative) are present in older patients with a better outcome. However, patients with HER2-positive or triple-negative breast cancer (TNBC) (ER/PR/HER2-negative) subtypes still represent highly aggressive behavior, metastasis, poor prognosis, and drug resistance. Therefore, new alternative therapies have become an urgent clinical need. In recent years, anticancer agents based on natural products have been receiving huge interest. In particular, carotenoids are natural compounds present in fruits and vegetables, but algae, bacteria, and archaea also produce them. The antioxidant properties of carotenoids have been studied during the last years due to their potential in preventing and treating multiple diseases, including cancer. Although the effect of carotenoids on breast cancer during in vitro and in vivo studies is promising, clinical trials are still inconclusive. The haloarchaeal carotenoid bacterioruberin holds great promise to the future of biomedicine due to its particular structure, and antioxidant activity. However, much work remains to be performed to draw firm conclusions. This review summarizes the current knowledge on pre-clinical and clinical analysis on the use of carotenoids as chemopreventive and chemotherapeutic agents in breast cancer, highlighting the most recent results regarding the use of bacterioruberin from haloarchaea.
Collapse
Affiliation(s)
- Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Correspondence:
| | - Yoel Genaro Montoyo-Pujol
- Breast Cancer Research Group, Research Unit, Alicante Institute for Health and Biomedical Research (ISABIAL) Hospital General Universitario, Pintor Baeza 12, E-03010 Alicante, Spain;
| | - Gloria Peiró
- Department of Pathology, Alicante Institute for Health and Biomedical Research (ISABIAL) Hospital General Universitario, Pintor Baeza 12, E-03010 Alicante, Spain;
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
16
|
Zhou C, Huang Y, Wu J, Wei Y, Chen X, Lin Z, Nie S. A narrative review of multiple mechanisms of progranulin in cancer: a potential target for anti-cancer therapy. Transl Cancer Res 2021; 10:4207-4216. [PMID: 35116716 PMCID: PMC8798827 DOI: 10.21037/tcr-20-2972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Progranulin (PGRN) is an autocrine growth factor and has important effects on regulation of cell growth, motility, tissue repair and embryonic development. Recent years, several researches found the expression of PGRN was at higher levels in a number of cancer cells and its high levels are associated with poor outcome of patients. More and more studies investigated the role of PGRN in cancer and found PGRN exerted various biological functions in cancer cells, such as promoting proliferation, inhibiting apoptosis, inducing migration and invasion of cells, accelerating angiogenesis and enhancing the effectiveness of chemoresistance and radiation. Now the effects of PGRN have been demonstrated in several cancers, including breast cancer, lung cancer, and bladder cancer. In addition, several signaling pathways and molecules are involved in the effects of PGRN on cancer cells, including Akt, mitogen-activated protein kinase (MAPK), vascular endothelial growth factor (VEGF) and cyclin D1. Therefore, PGRN is probably a significant diagnostic and prognostic biomarker for cancer and may be a potential target for anti-cancer therapy. Here, we reviewed the advancing field of PGRN in cancer as well as several signaling pathways activated by PGRN and confirmed PGRN is a key role in cancer. Moreover, future studies are still necessary to elucidate the biological functions and signaling pathways of PGRN in cancer.
Collapse
Affiliation(s)
- Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Jingmi Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Yiting Wei
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Xiaosheng Chen
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University School of Medicine, Ningbo, China
| | - Zhiqing Lin
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| |
Collapse
|
17
|
Wan FC, Zhang C, Jin Q, Wei C, Zhao HB, Zhang XL, You W, Liu XM, Liu GF, Liu YF, Tan XW. Protective effects of astaxanthin on lipopolysaccharide-induced inflammation in bovine endometrial epithelial cells†. Biol Reprod 2021; 102:339-347. [PMID: 31566218 DOI: 10.1093/biolre/ioz187] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/21/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Astaxanthin (AST), a natural antioxidant carotenoid, has been shown to exert anti-inflammatory effects. However, to our knowledge, no study has specifically addressed the potential protective effects of AST against bovine endometritis. The purpose of this study was to examine whether treatment with AST could protect endometrial epithelial cells against lipopolysaccharide (LPS)-induced inflammatory injury. Treatment of bovine endometrial (BEND) epithelial cell line with AST reduced LPS-induced production of interleukin-6 and tumor necrosis factor-alpha, increased the cellular activity of superoxide dismutase and catalase, decreased the proportion of apoptotic cells, and promoted the production of insulin-like growth factor and epithelial growth factor. The effects of AST were mediated through the downregulation of B-cell lymphoma 2 (Bcl-2) associated X, apoptosis regulator (Bax), and cleaved caspase-3 and through the upregulation of Bcl-2. Moreover, AST significantly increased the expression of the tight junction proteins (TJP) claudin, cadherin-1, and TJP1, which play an essential role in the maintenance of host endometrial defense barrier against pathogen infection. Collectively, these results demonstrated that treatment with AST protected against oxidative stress, prevented cell apoptosis, promoted BEND cells viability, and increased the production of growth factors, in addition to activating the endometrial defense barrier. Therefore, AST is a promising therapeutic agent for the prevention and treatment of endometritis. This finding is of utmost importance in the present times when the excessive use of antibiotics has resulted in the development of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Fa-Chun Wan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China.,College of Life Sciences, Shandong Normal University, Ji'nan City, China
| | - Chen Zhang
- College of Life Sciences, Shandong Normal University, Ji'nan City, China
| | - Qing Jin
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Chen Wei
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Hong-Bo Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Xiang-Lun Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Wei You
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Xiao-Mu Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Gui-Fen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Yi-Fan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| | - Xiu-Wen Tan
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Ji'nan City, China.,Shandong Key Lab of Animal Disease Control and Breeding, Ji'nan City, China.,Shandong Provincial Testing Center of Beef Cattle Performance, Ji'nan City, China
| |
Collapse
|
18
|
Comparison of Different Methods for Extracting the Astaxanthin from Haematococcus pluvialis: Chemical Composition and Biological Activity. Molecules 2021; 26:molecules26123569. [PMID: 34208026 PMCID: PMC8230668 DOI: 10.3390/molecules26123569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/20/2023] Open
Abstract
In this study, the impact of different cell disruption techniques (high-pressure micro fluidization (HPMF), ionic liquids (ILs), multi-enzyme (ME), and hydrochloric acid (HCl)) on the chemical composition and biological activity of astaxanthin (AST) obtained from Haematococcus pluvialis was investigated. Results indicated that all cell disruption techniques had a significant effect on AST composition, which were confirmed by TLC and UPC2 analysis. AST recovery from HCl (HCl-AST) and ILs (ILs-AST) cell disruption techniques was dominant by free and monoesters AST, while AST recovery from HPMF (HPMF-AST) and ME (ME-AST) cell disruption techniques was composed of monoesters, diesters, and free AST. Further biological activity analysis displayed that HCl-AST showed the highest ABTS and DPPH activity, while ILs-AST showed better results against the ORAC assay. Additionally, ILs-AST exhibits a stronger anti-proliferation of HepG2 cells in a dose-dependent manner, which was ascribed to AST-induced ROS in to inhibit the proliferative of cancer cells.
Collapse
|
19
|
Ferdous UT, Yusof ZNB. Medicinal Prospects of Antioxidants From Algal Sources in Cancer Therapy. Front Pharmacol 2021; 12:593116. [PMID: 33746748 PMCID: PMC7973026 DOI: 10.3389/fphar.2021.593116] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Though cancer therapeutics can successfully eradicate cancerous cells, the effectiveness of these medications is mostly restricted to several deleterious side effects. Therefore, to alleviate these side effects, antioxidant supplementation is often warranted, reducing reactive species levels and mitigating persistent oxidative damage. Thus, it can impede the growth of cancer cells while protecting the normal cells simultaneously. Moreover, antioxidant supplementation alone or in combination with chemotherapeutics hinders further tumor development, prevents chemoresistance by improving the response to chemotherapy drugs, and enhances cancer patients' quality of life by alleviating side effects. Preclinical and clinical studies have been revealed the efficacy of using phytochemical and dietary antioxidants from different sources in treating chemo and radiation therapy-induced toxicities and enhancing treatment effectiveness. In this context, algae, both micro and macro, can be considered as alternative natural sources of antioxidants. Algae possess antioxidants from diverse groups, which can be exploited in the pharmaceutical industry. Despite having nutritional benefits, investigation and utilization of algal antioxidants are still in their infancy. This review article summarizes the prospective anticancer effect of twenty-three antioxidants from microalgae and their potential mechanism of action in cancer cells, as well as usage in cancer therapy. In addition, antioxidants from seaweeds, especially from edible species, are outlined, as well.
Collapse
Affiliation(s)
- Umme Tamanna Ferdous
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
20
|
Dell’Acqua G, Richards A, Thornton MJ. The Potential Role of Nutraceuticals as an Adjuvant in Breast Cancer Patients to Prevent Hair Loss Induced by Endocrine Therapy. Nutrients 2020; 12:nu12113537. [PMID: 33217935 PMCID: PMC7698784 DOI: 10.3390/nu12113537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nutraceuticals, natural dietary and botanical supplements offering health benefits, provide a basis for complementary and alternative medicine (CAM). Use of CAM by healthy individuals and patients with medical conditions is rapidly increasing. For the majority of breast cancer patients, treatment plans involve 5–10 yrs of endocrine therapy, but hair loss/thinning is a common side effect. Many women consider this significant, severely impacting on quality of life, even leading to non-compliance of therapy. Therefore, nutraceuticals that stimulate/maintain hair growth can be proposed. Although nutraceuticals are often available without prescription and taken at the discretion of patients, physicians can be reluctant to recommend them, even as adjuvants, since potential interactions with endocrine therapy have not been fully elucidated. It is, therefore, important to understand the modus operandi of ingredients to be confident that their use will not interfere/interact with therapy. The aim is to improve clinical/healthcare outcomes by combining specific nutraceuticals with conventional care whilst avoiding detrimental interactions. This review presents the current understanding of nutraceuticals beneficial to hair wellness and outcomes concerning efficacy/safety in breast cancer patients. We will focus on describing endocrine therapy and the role of estrogens in cancer and hair growth before evaluating the effects of natural ingredients on breast cancer and hair growth.
Collapse
Affiliation(s)
| | | | - M. Julie Thornton
- Centre for Skin Sciences, University of Bradford, Bradford BD17 7DF, UK
- Correspondence:
| |
Collapse
|
21
|
Hosseini SF, Rezaei M, McClements DJ. Bioactive functional ingredients from aquatic origin: a review of recent progress in marine-derived nutraceuticals. Crit Rev Food Sci Nutr 2020; 62:1242-1269. [DOI: 10.1080/10408398.2020.1839855] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Seyed Fakhreddin Hosseini
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | | |
Collapse
|
22
|
Du X, Wang C, Wu L, Li Z, Sadiq FA, Jiang Z, Chen F, Ni H, Li Q. Two-dimensional liquid chromatography analysis of all-trans-, 9-cis-, and 13-cis-astaxanthin in raw extracts from Phaffia rhodozyma. J Sep Sci 2020; 43:3206-3215. [PMID: 32506706 DOI: 10.1002/jssc.202000257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 11/09/2022]
Abstract
An effective two-dimensional liquid chromatography method has been established for the analysis of all-trans-astaxanthin and its geometric isomers from Phaffia rhodozyma employing a C18 column at the first dimension and a C30 column in the second dimension, connected by a 10-port valve using the photo-diode array detector. The regression equation of astaxanthin calibration curve was established, and the precision and accuracy values were found to be in the range of 0.32-1.14% and 98.21-106.13%, respectively. By using two-dimensional liquid chromatography, it was found that day light, ultrasonic treatment, and heat treatment have significant influence on the content of all-trans-astaxanthin in the extract from P. rhodozyma due to the transformation of all-trans-astaxanthin to cis-astaxanthin. The day light and ultrasonic treatments more likely transform all-trans-astaxanthin to 9-cis-astaxanthin, and the thermal treatment transforms all-trans-astaxanthin to 13-cis-astaxanthin. These results indicate that the two-dimensional liquid chromatography method can facilitate monitoring astaxanthin isomerization in the raw extract from P. rhodozyma. In addition, the study will provide a general reference for monitoring other medicals and bioactive chemicals with geometric isomers.
Collapse
Affiliation(s)
- Xiping Du
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Chun Wang
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| | - Ling Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, P. R. China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, P. R. China
| |
Collapse
|
23
|
Faraone I, Sinisgalli C, Ostuni A, Armentano MF, Carmosino M, Milella L, Russo D, Labanca F, Khan H. Astaxanthin anticancer effects are mediated through multiple molecular mechanisms: A systematic review. Pharmacol Res 2020; 155:104689. [PMID: 32057895 DOI: 10.1016/j.phrs.2020.104689] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
During the latest decades, the interest on the effectiveness of natural compounds and their impact on human health constantly increased, especially on those demonstrating to be effective on cancer. Molecules coming from nature are currently used in chemotherapy like Taxol, Vincristine or Vinblastine, and several other natural substances have been showed to be active in reducing cancer cell progression and migration. Among them, astaxanthin, a xanthophyll red colored carotenoid, displayed different biological activities including, antinflammatory, antioxidant, proapoptotic, and anticancer effects. It can induce apoptosis through downregulation of antiapoptotic protein (Bcl-2, p-Bad, and survivin) expression and upregulation of proapoptotic ones (Bax/Bad and PARP). Thanks to these mechanisms, it can exert anticancer effects towards colorectal cancer, melanoma, or gastric carcinoma cell lines. Moreover, it possesses antiproliferative activity in many experimental models and enhances the effectiveness of conventional chemotherapic drugs on tumor cells underling its potential future use. This review provides an overview of the current knowledge on the anticancer potential of astaxanthin by modulating several molecular targets. While it has been clearly demonstrated its multitarget activity in the prevention and regression of malignant cells in in vitro or in preclinical investigations, further clinical studies are needed to assess its real potential as anticancer in humans.
Collapse
Affiliation(s)
- Immacolata Faraone
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10 85100 Potenza, Italy; BioActiPlant s.r.l., Via dell'Ateneo lucano, 10 85100, Potenza, Italy
| | - Chiara Sinisgalli
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10 85100 Potenza, Italy; BioActiPlant s.r.l., Via dell'Ateneo lucano, 10 85100, Potenza, Italy
| | - Angela Ostuni
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10 85100 Potenza, Italy; BioActiPlant s.r.l., Via dell'Ateneo lucano, 10 85100, Potenza, Italy
| | - Maria Francesca Armentano
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10 85100 Potenza, Italy; BioActiPlant s.r.l., Via dell'Ateneo lucano, 10 85100, Potenza, Italy
| | - Monica Carmosino
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10 85100 Potenza, Italy; BioActiPlant s.r.l., Via dell'Ateneo lucano, 10 85100, Potenza, Italy
| | - Luigi Milella
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10 85100 Potenza, Italy.
| | - Daniela Russo
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10 85100 Potenza, Italy; BioActiPlant s.r.l., Via dell'Ateneo lucano, 10 85100, Potenza, Italy
| | - Fabiana Labanca
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10 85100 Potenza, Italy.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| |
Collapse
|
24
|
Al Khawli F, Martí-Quijal FJ, Ferrer E, Ruiz MJ, Berrada H, Gavahian M, Barba FJ, de la Fuente B. Aquaculture and its by-products as a source of nutrients and bioactive compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 92:1-33. [PMID: 32402442 DOI: 10.1016/bs.afnr.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Underutilized marine resources (e.g., algae, fish, and shellfish processing by-products), as sustainable alternatives to livestock protein and interesting sources of bioactive compounds, have attracted the attention of the researchers. Aquatic products processing industries are growing globally and producing huge amounts of by-products that often discarded as waste. However, recent studies pointed out that marine waste contains several valuable components including high-quality proteins, lipids, minerals, vitamins, enzymes, and bioactive compounds that can be used against cancer and some cardiovascular disorders. Besides, previously conducted studies on algae have shown the presence of some unique biologically active compounds and valuable proteins. Hence, this chapter points out recent advances in this area of research and discusses the importance of aquaculture and fish processing by-products as alternative sources of proteins and bioactive compounds.
Collapse
Affiliation(s)
- Fadila Al Khawli
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Francisco J Martí-Quijal
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain.
| | - Emilia Ferrer
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - María-José Ruiz
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Houda Berrada
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Beatriz de la Fuente
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
25
|
Wang A, Mahai G, Wan Y, Jiang Y, Meng Q, Xia W, He Z, Xu S. Neonicotinoids and carbendazim in indoor dust from three cities in China: Spatial and temporal variations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133790. [PMID: 31422335 DOI: 10.1016/j.scitotenv.2019.133790] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/14/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Neonicotinoid insecticides (NNIs) are a relatively new class of insecticides, and carbendazim (CBDZ) is a representative antifungal biocide. The occurrence of them in indoor dust was not documented in China. In this study, 336 indoor dust samples were collected from 3 cities, including Taiyuan (October 2016), Wuhan (October 2016 and 2018), and Shenzhen (February 2019), located in North, Central, and South China, for determination of the residues of six NNIs, two of their metabolites, and CBDZ. Acetamiprid (ACE), imidacloprid (IMI), and CBDZ were found to be the major target analytes in dust samples from all selected cities with detection frequencies of 98.8%, 99.7%, and 95.2%, respectively. At least one target NNI was detected for all of the dust samples, with the median concentration of 25.8 ng/g for the imidacloprid-equivalent total neonicotinoids (IMIeq: generated by the relative potency factor method), and the median for CBDZ was 35.8 ng/g. Higher levels of several NNIs and CBDZ were found in urban areas of Taiyuan and Wuhan than those in rural areas. A significant increase of the NNI residues was observed in dust of Wuhan from 2016 to 2018 (while not significant for CBDZ). Finally, the estimated daily intake (EDI) of IMIeq and CBDZ for infants and toddlers were higher than that found in other age groups through dust ingestion, which indicated that infants and toddlers may be susceptible to current residue of NNIs and CBDZ in indoor dust, and dust ingestion of NNIs might be <1% of that reported for dietary intakes in China. This is the first study to report the residue levels of NNIs and CBDZ in dust samples from indoor environment in China.
Collapse
Affiliation(s)
- Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430015, PR China; CDC of Yangtze River Administration and Navigational Affairs, General Hospital of the Yangtze River Shipping, Wuhan 430019, PR China.
| | - Ying Jiang
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong 518054, PR China
| | - Qianqian Meng
- China Institute for Radiation Protection, Taiyuan, Shanxi 030006, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430015, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
26
|
Research progress on extraction, biological activities and delivery systems of natural astaxanthin. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Cicekdal MB, Tuna BG, Charehsaz M, Cleary MP, Aydin A, Dogan S. Effects of long‐term intermittent versus chronic calorie restriction on oxidative stress in a mouse cancer model. IUBMB Life 2019; 71:1973-1985. [DOI: 10.1002/iub.2145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/22/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Munevver B. Cicekdal
- Department of Medical BiologyYeditepe University, School of Medicine Istanbul Turkey
| | - Bilge G. Tuna
- Department of BiophysicsYeditepe University, School of Medicine Istanbul Turkey
| | - Mohammad Charehsaz
- Department of Pharmaceutical ToxicologyYeditepe University, School of Pharmacy Istanbul Turkey
| | - Margot P. Cleary
- Hormel Institute Medical Research CenterUniversity of Minnesota Austin Minnesota
| | - Ahmet Aydin
- Department of Pharmaceutical ToxicologyYeditepe University, School of Pharmacy Istanbul Turkey
| | - Soner Dogan
- Department of Medical BiologyYeditepe University, School of Medicine Istanbul Turkey
| |
Collapse
|