1
|
Lemmens TP, Bröker V, Rijpkema M, Hughes CCW, Schurgers LJ, Cosemans JMEM. Fundamental considerations for designing endothelialized in vitro models of thrombosis. Thromb Res 2024; 236:179-190. [PMID: 38460307 DOI: 10.1016/j.thromres.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Endothelialized in vitro models for cardiovascular disease have contributed greatly to our current understanding of the complex molecular mechanisms underlying thrombosis. To further elucidate these mechanisms, it is important to consider which fundamental aspects to incorporate into an in vitro model. In this review, we will focus on the design of in vitro endothelialized models of thrombosis. Expanding our understanding of the relation and interplay between the different pathways involved will rely in part on complex models that incorporate endothelial cells, blood, the extracellular matrix, and flow. Importantly, the use of tissue-specific endothelial cells will help in understanding the heterogeneity in thrombotic responses between different vascular beds. The dynamic and complex responses of endothelial cells to different shear rates underlines the importance of incorporating appropriate shear in in vitro models. Alterations in vascular extracellular matrix composition, availability of bioactive molecules, and gradients in concentration and composition of these molecules can all regulate the function of both endothelial cells and perivascular cells. Factors modulating these elements in in vitro models should therefore be considered carefully depending on the research question at hand. As the complexity of in vitro models increases, so can the variability. A bottom-up approach to designing such models will remain an important tool for researchers studying thrombosis. As new techniques are continuously being developed and new pathways are brought to light, research question-dependent considerations will have to be made regarding what aspects of thrombosis to include in in vitro models.
Collapse
Affiliation(s)
- Titus P Lemmens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Vanessa Bröker
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Minke Rijpkema
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, and Department of Biomedical Engineering, University of California, Irvine, USA
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Zuñiga Martinez MDL, López Mendoza CM, Tenorio Salazar J, García Carrancá AM, Cerbón Cervantes MA, Alcántara-Quintana LE. Establishment, authenticity, and characterization of cervical cancer cell lines. Mol Cell Oncol 2022; 9:2078628. [PMID: 35692560 PMCID: PMC9176225 DOI: 10.1080/23723556.2022.2078628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cell lines have been considered excellent research models in many areas of biomedicine and, specifically, in the study of carcinogenesis. However, they cease to be effective models if their behavior changes. Although studies on the cross-contamination of cell lines originating from different tissues have been performed, little is known about cell lines derived from cervical neoplasia. We know that high-risk HPV (HR-HPV) is associated with the development of this type of cancer. This link between HPV infection and cancer was first established over 35 years ago when HPV16 DNA was found to be present in a large proportion of cervical cancer biopsies. The present review paper aims to report the status of the establishment, authenticity, and characterization of cervical cancer (CC) cell lines. This is a systematic review of articles on the establishment, authenticity, and characterization of CC cell lines, published from 1960 to date in the databases and in cell repository databases. 52 cell lines were identified in the literature. Only 25 cell lines were derived from cervical neoplasia, of which only 45.8% have a reported identity test (genomic fingerprint). Despite the increase in the establishment of cell lines of cervical neoplasia and the standards for the regulation of these study models, the criteria for their characterization continue to be diverse.
Collapse
Affiliation(s)
- Ma de Lourdes Zuñiga Martinez
- Posgrado en Ciencias Biomédicas Básicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México,Unidad de Innovación en Diagnóstico Celular y Molecular. Coordinación para la Innovación y la Aplicación de la Ciencia y Tecnología, San Luis Potosí, México
| | - Carlos Miguel López Mendoza
- Unidad de Innovación en Diagnóstico Celular y Molecular. Coordinación para la Innovación y la Aplicación de la Ciencia y Tecnología, San Luis Potosí, México
| | - Jared Tenorio Salazar
- Unidad de Innovación en Diagnóstico Celular y Molecular. Coordinación para la Innovación y la Aplicación de la Ciencia y Tecnología, San Luis Potosí, México
| | | | - Marco Antonio Cerbón Cervantes
- – Facultad de Química, Universidad Nacional Autónoma de MéxicoUnidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología “Isidro Espinosa de los Reyes” , Ciudad de México, México
| | - Luz Eugenia Alcántara-Quintana
- Catedra CONACYT, Unidad de Innovación en Diagnóstico Celular y Molecular. Coordinación para la Innovación y la Aplicación de la Ciencia y Tecnología, San LuisPotosí, México,CONTACT Luz Eugenia Alcántara-Quintana CIACYT, Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, C.P. 78210, Colonia Lomas Segunda Sección, San Luis Potosí, México
| |
Collapse
|
3
|
Dubois J, Sczakiel G. The human TRAM1 locus expresses circular RNAs. Sci Rep 2021; 11:22114. [PMID: 34764360 PMCID: PMC8586232 DOI: 10.1038/s41598-021-01548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Numerous indirect and in silico produced evidences suggest circular RNAs (circRNA) in mammals while thorough experimental proofs of their existence have rarely been reported. Biological studies of circRNA, however, should be based on experimentally verified circRNAs. Here, we describe the identification of two circRNAs originating from the gene locus of the translocation associated membrane protein 1 (TRAM1). Linear and potentially circular TRAM1-specific transcripts were identified in a transcriptome analysis of urine RNA of bladder cancer (BCa) patients versus healthy donors. Thus, we first focused on the topology of TRAM1-specific transcripts. We describe conclusive experimental evidence for the existence of TRAM1-specific circRNAs in the human BCa cell lines ECV-304 and RT-4. PCR-based methodology followed by cloning and sequencing strongly indicated the circular topology of two TRAM1 RNAs. Further, studies with exon fusion sequence-specific antisense oligonucleotides (asON) and RNase H as well as studies in the use of RNase R contribute to conclusive set of experiments supporting the circular topology of TRAM1 transcripts. On the biological side, TRAM1-specific circRNAs showed low expression levels and minor differences in BCa cell lines while linear TRAM1 transcripts displayed down-regulated expression in the higher cancer stage model ECV-304 versus more differentiated RT-4 cells.
Collapse
Affiliation(s)
- Josephine Dubois
- grid.4562.50000 0001 0057 2672Institut für Molekulare Medizin, Universität zu Lübeck and UKSH, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany ,grid.214458.e0000000086837370Present Address: Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI USA
| | - Georg Sczakiel
- Institut für Molekulare Medizin, Universität zu Lübeck and UKSH, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
4
|
Tantibhedhyangkul W, Matamnan S, Longkunan A, Boonwong C, Khowawisetsut L. Endothelial Activation in Orientia tsutsugamushi Infection Is Mediated by Cytokine Secretion From Infected Monocytes. Front Cell Infect Microbiol 2021; 11:683017. [PMID: 34368012 PMCID: PMC8340038 DOI: 10.3389/fcimb.2021.683017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Scrub typhus, caused by Orientia tsutsugamushi, is a common systemic infection in Asia. Delay in diagnosis and treatment can lead to vasculitis in the visceral organs and other complications. The mechanisms that drive endothelial activation and the inflammatory response in O. tsutsugamushi infection remain unknown. In addition, the interaction between monocytes and endothelial cells is still unclear. Here we demonstrate that O. tsutsugamushi-infected human dermal microvascular endothelial cells produced moderate levels of chemokines and low levels of IL-6 and IFN-β, but not TNF or IL-1β. Recombinant TNF and cytokine-rich supernatants from infected monocytes markedly enhanced chemokine production in infected endothelial cells. We also show that TNF and monocyte supernatants, but not O. tsutsugamushi infection of endothelial cells per se, upregulated the endothelial cell surface expression of ICAM-1, E-selectin, and tissue factor. This finding was consistent with the inability of O. tsutsugamushi to induce cytokine secretion from endothelial cells. The upregulation of surface molecules after stimulation with monocyte supernatants was significantly reduced by neutralizing anti-TNF antibodies. These results suggest that endothelial cell activation and response are mainly mediated by inflammatory cytokines secreted from monocytes.
Collapse
Affiliation(s)
- Wiwit Tantibhedhyangkul
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sutthicha Matamnan
- Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Asma Longkunan
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chawikan Boonwong
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Dubois J, Rueger J, Haubold B, Far RKK, Sczakiel G. Transcriptome analyses of urine RNA reveal tumor markers for human bladder cancer: validated amplicons for RT-qPCR-based detection. Oncotarget 2021; 12:1011-1023. [PMID: 34012513 PMCID: PMC8121610 DOI: 10.18632/oncotarget.27954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Non-invasive clinical diagnostics of bladder cancer is feasible via a set of chemically distinct molecules including macromolecular tumor markers such as polypeptides and nucleic acids. In terms of tumor-related aberrant gene expression, RNA transcripts are the primary indicator of tumor-specific gene expression as for polypeptides and their metabolic products occur subsequently. Thus, in case of bladder cancer, urine RNA represents an early potentially useful diagnostic marker. Here we describe a systematic deep transcriptome analysis of representative pools of urine RNA collected from healthy donors versus bladder cancer patients according to established SOPs. This analysis revealed RNA marker candidates reflecting coding sequences, non-coding sequences, and circular RNAs. Next, we designed and validated PCR amplicons for a set of novel marker candidates and tested them in human bladder cancer cell lines. We identified linear and circular transcripts of the S100 Calcium Binding Protein 6 (S100A6) and translocation associated membrane protein 1 (TRAM1) as highly promising potential tumor markers. This work strongly suggests exploiting urine RNAs as diagnostic markers of bladder cancer and it suggests specific novel markers. Further, this study describes an entry into the tumor-biology of bladder cancer and the development of gene-targeted therapeutic drugs.
Collapse
Affiliation(s)
- Josephine Dubois
- Institut für Molekulare Medizin, Universität zu Lübeck and UKSH, Campus Lübeck, Lübeck D-23538, Germany
| | - Jacqueline Rueger
- Institut für Molekulare Medizin, Universität zu Lübeck and UKSH, Campus Lübeck, Lübeck D-23538, Germany
| | - Bernhard Haubold
- Max-Planck-Institute for Evolutionary Biology, Department of Evolutionary Genetics, Ploen 24306, Germany
| | | | - Georg Sczakiel
- Institut für Molekulare Medizin, Universität zu Lübeck and UKSH, Campus Lübeck, Lübeck D-23538, Germany
| |
Collapse
|
6
|
Oncoprotein 18 is necessary for malignant cell proliferation in bladder cancer cells and serves as a G3-specific non-invasive diagnostic marker candidate in urinary RNA. PLoS One 2020; 15:e0229193. [PMID: 32614890 PMCID: PMC7332083 DOI: 10.1371/journal.pone.0229193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Background Urine-based diagnostics indicated involvement of oncoprotein 18 (OP18) in bladder cancer. In cell culture models we investigated the role of OP18 for malignant cell growth. Methods We analyzed 113 urine samples and investigated two human BCa cell lines as a dual model: RT-4 and ECV-304, which represented differentiated (G1) and poorly differentiated (G3) BCa. We designed specific siRNA for down-regulation of OP18 in both cell lines. Phenotypes were characterized by cell viability, proliferation, and expression of apoptosis-related genes. Besides, sensitivity to cisplatin treatment was evaluated. Results Analysis of urine samples from patients with urothelial BCa revealed a significant correlation of the RNA-ratio OP18:uroplakin 1A with bladder cancer. High urinary ratios were mainly found in moderately to poorly differentiated tumors (grade G2-3) that were muscle invasive (stage T2-3), whereas samples from patients with more differentiated non-invasive BCa (G1) showed low OP18:UPK1A RNA ratios. Down-regulation of OP18 expression in ECV-304 shifted its phenotype towards G1 state. Further, OP18-directed siRNA induced apoptosis and increased chemo-sensitivity to cisplatin. Conclusions This study provides conclusive experimental evidence for the link between OP18-derived RNA as a diagnostic marker for molecular staging of BCa in non-invasive urine-based diagnostics and the patho-mechanistic role of OP18 suggesting this gene as a therapeutic target.
Collapse
|
7
|
Expression and Characterization of Human Vascular Endothelial Growth Factor Produced in SiHa Cells Transduced with Adenoviral Vector. Protein J 2019; 38:693-703. [DOI: 10.1007/s10930-019-09867-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Prieto P, Blaauboer BJ, de Boer AG, Boveri M, Cecchelli R, Clemedson C, Coecke S, Forsby A, Galla HJ, Garberg P, Greenwood J, Price A, Tähti H. Blood-Brain Barrier In Vitro Models and Their Application in Toxicology: The Report and Recommendations of ECVAM Workshop 49,. Altern Lab Anim 2019; 32:37-50. [PMID: 15603552 DOI: 10.1177/026119290403200107] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Pilar Prieto
- ECVAM, Institute for Health & Consumer Protection, European Commission Joint Research Centre, 21020 Ispra (VA), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Makin RD, Apicella I, Nagasaka Y, Kaneko H, Turner SD, Kerur N, Ambati J, Gelfand BD. RF/6A Chorioretinal Cells Do Not Display Key Endothelial Phenotypes. Invest Ophthalmol Vis Sci 2018; 59:5795-5802. [PMID: 30508043 PMCID: PMC6278239 DOI: 10.1167/iovs.18-25215] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/11/2018] [Indexed: 01/14/2023] Open
Abstract
Purpose The misuse of inauthentic cell lines is widely recognized as a major threat to the integrity of biomedical science. Whereas the majority of efforts to address this have focused on DNA profiling, we sought to anatomically, transcriptionally, and functionally authenticate the RF/6A chorioretinal cell line, which is widely used as an endothelial cell line to model retinal and choroidal angiogenesis. Methods Multiple vials of RF/6A cells obtained from different commercial distributors were studied to validate their genetic, transcriptomic, anatomic, and functional fidelity to bona fide endothelial cells. Results Transcriptomic profiles of RF/6A cells obtained either de novo or from a public data repository did not correspond to endothelial gene expression signatures. Expression of established endothelial markers were very low or undetectable in RF/6A compared to primary human endothelial cells. Importantly, RF/6A cells also did not display functional characteristics of endothelial cells such as uptake of acetylated LDL, expression of E-selectin in response to TNF-α exposure, alignment in the direction of shear stress, and AKT and ERK1/2 phosphorylation following VEGFA stimulation. Conclusions Multiple independent sources of RF/6A do not exhibit key endothelial cell phenotypes. Therefore, these cells appear unsuitable as surrogates for choroidal or retinal endothelial cells. Further, cell line authentication methods should extend beyond genomic profiling to include anatomic, transcriptional, and functional assessments.
Collapse
Affiliation(s)
- Ryan D. Makin
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Yosuke Nagasaka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Stephen D. Turner
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States
- Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Bradley D. Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
| |
Collapse
|
10
|
Ribeiro MC, Peruchetti DB, Silva LS, Silva-Filho JL, Souza MC, Henriques MDG, Caruso-Neves C, Pinheiro AAS. LPS Induces mTORC1 and mTORC2 Activation During Monocyte Adhesion. Front Mol Biosci 2018; 5:67. [PMID: 30073169 PMCID: PMC6058081 DOI: 10.3389/fmolb.2018.00067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
Monocyte adhesion is a crucial step in transmigration and can be induced by lipopolysaccharide (LPS). Here, we studied the role of mammalian target of rapamycin (mTOR) complexes, mTORC1 and mTORC2, and PKC in this process. We used THP-1 cells, a human monocytic cell line, to investigate monocyte adhesion under static and flow conditions. We observed that 1.0 μg/mL LPS increased PI3K/mTORC2 pathway and PKC activity after 1 h of incubation. WYE-354 10−6 M (mTORC2/mTORC1 inhibitor) and 10−6 M wortmannin avoided monocyte adhesion in culture plates. In addition, WYE also blocked LPS-induced CD11a expression. Interestingly, rapamycin and WYE-354 blocked both LPS-induced monocyte adhesion in a cell monolayer and actin cytoskeleton rearrangement, confirming mTORC1 involvement in this process. Once activated, PKC activates mTORC1/S6K pathway in a similar effect observed to LPS. Activation of the mTORC1/S6K pathway was attenuated by 10−6 M U0126, an MEK/ERK inhibitor, and 10−6 M calphostin C, a PKC inhibitor, indicating that the MEK/ERK/TSC2 axis acts as a mediator. In agreement, 80 nM PMA (a PKC activator) mimicked the effect of LPS on the activation of the MEK/ERK/TSC2/mTORC1/S6K pathway, monocyte adhesion to ECV cells and actin cytoskeleton rearrangement. Our findings show that LPS induces activation of mTOR complexes. This signaling pathway led to integrin expression and cytoskeleton rearrangement resulting in monocyte adhesion. These results describe a new molecular mechanism involved in monocyte adhesion in immune-based diseases.
Collapse
Affiliation(s)
- Marcelle C Ribeiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João L Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana C Souza
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Rio de Janeiro, Brazil
| | | | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Zuiverloon TC, de Jong FC, Costello JC, Theodorescu D. Systematic Review: Characteristics and Preclinical Uses of Bladder Cancer Cell Lines. Bladder Cancer 2018; 4:169-183. [PMID: 29732388 PMCID: PMC5929350 DOI: 10.3233/blc-180167] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bladder cancer (BC) cell lines are indispensable in basic and preclinical research. Currently, an up-to-date and comprehensive overview of available BC cell lines is not available. OBJECTIVE To provide an overview and resources on the origin, pathological and molecular characteristics of commonly used human, murine and canine BC cell lines. METHODS A PubMed search was performed for relevant articles published between 1980 and 2017 according to the following MeSH terms: cell line; cell line, tumor; urinary bladder neoplasms; carcinoma, transitional cell. The Cellosaurus database was searched, using the term "bladder" and/or "urothelial carcinoma". We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS We provide information on 157 human, murine and canine BC cell lines. 103 human BC cell lines have molecular data available, of which 69 have been profiled by at least one "omic" technology. We outline how these cell lines are currently being used for in vitro and in vivo experimental models. These results allow direct comparison of BC cell lines to patient samples, providing information needed to make informed decisions on the most genomically appropriate cell line to answer research questions. Furthermore, we show that cross-contamination remains an issue and describe guidelines for prevention. CONCLUSIONS In the BC field, multiple human, murine and canine BC cell lines have been developed and many have become indispensable for in vitro and in vivo research. High-throughput -omic technologies have dramatically increased the amount of molecular data on these cell lines. We synthesized a comprehensive overview of these data as a resource for the BC scientific community.
Collapse
Affiliation(s)
- Tahlita C.M. Zuiverloon
- Department of Urology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Surgery (Urology), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - Florus C. de Jong
- Department of Urology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - James C. Costello
- University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Theodorescu
- Department of Surgery (Urology), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
Formyl Peptide Receptor 1 Modulates Endothelial Cell Functions by NADPH Oxidase-Dependent VEGFR2 Transactivation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2609847. [PMID: 29743977 PMCID: PMC5884202 DOI: 10.1155/2018/2609847] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
In the vasculature, NADPH oxidase is the main contributor of reactive oxygen species (ROS) which play a key role in endothelial signalling and functions. We demonstrate that ECV304 cells express p47phox, p67phox, and p22phox subunits of NADPH oxidase, as well as formyl peptide receptors 1 and 3 (FPR1/3), which are members of the GPCR family. By RT-PCR, we also detected Flt-1 and Flk-1/KDR in these cells. Stimulation of FPR1 by N-fMLP induces p47phox phosphorylation, which is the crucial event for NADPH oxidase-dependent superoxide production. Transphosphorylation of RTKs by GPCRs is a biological mechanism through which the information exchange is amplified throughout the cell. ROS act as signalling intermediates in the transactivation mechanism. We show that N-fMLP stimulation induces the phosphorylation of cytosolic Y951, Y996, and Y1175 residues of VEGFR2, which constitute the anchoring sites for signalling molecules. These, in turn, activate PI3K/Akt and PLC-γ1/PKC intracellular pathways. FPR1-induced ROS production plays a critical role in this cross-talk mechanism. In fact, inhibition of FPR1 and/or NADPH oxidase functions prevents VEGFR2 transactivation and the triggering of the downstream signalling cascades. N-fMLP stimulation also ameliorates cellular migration and capillary-like network formation ability of ECV304 cells.
Collapse
|
13
|
Kuadkitkan A, Wikan N, Smith DR. Induced pluripotent stem cells: A new addition to the virologists armamentarium. J Virol Methods 2017; 235:191-195. [PMID: 27544025 DOI: 10.1016/j.jviromet.2016.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 12/01/2022]
Abstract
A significant amount of our understanding of the molecular events occurring during viral replication has originated from studies utilizing cell lines. These cell lines are normally obtained by the culture of samples from spontaneously occurring tumors or are derived by genetic manipulation of primary cells. The genetic events inducing immortalization and/or transformation to allow continual passage in culture can have profound effects resulting in a marked loss of cell type fidelity. The development of induced pluripotent stem cells (iPSCs) has revolutionized the field of developmental biology and is ushering in an era of personalized medicine for a wide range of inherited genetic diseases. Previously, development of iPSCs required dedicated facilities as well as highly detailed technical knowledge. The pace of development in this field however has been so rapid, that iPSCs are moving into an era of "off the shelf" use, whereby the use and manipulation of these cells is well within the ability of the majority of laboratories with standard tissue culture facilities. The introduction of iPSCs to studies in the field of virology is still in its infancy, and so far has been largely confined to viruses that are difficult to propagate in other experimental systems, but it is likely that this technology will become a standard methodology in the virologists armamentarium.
Collapse
Affiliation(s)
- Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
14
|
A Combination of Species Identification and STR Profiling Identifies Cross-contaminated Cells from 482 Human Tumor Cell Lines. Sci Rep 2017; 7:9774. [PMID: 28851942 PMCID: PMC5575032 DOI: 10.1038/s41598-017-09660-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/28/2017] [Indexed: 11/21/2022] Open
Abstract
Human tumor cell lines are extremely important tools for cancer research, but a significant percentage is cross-contaminated with other cells. Short tandem repeat (STR) profiling is the prevailing standard for authenticating cell lines that originate from human tissues. Based on the analysis of 482 different human tumor cell lines used in China by STR, up to 96 cell lines were misidentified. More importantly, the study has found that STR profiling alone is insufficient to exclude inter-species cross-contamination of human cell lines. Among the 386 cell lines which had a correct STR profile, 3 of them were inter-species cross-contaminated. Careful microscopic examination may be helpful in some cases to detect changes in morphology but additional testing is needed. Additionally, species verification by PCR could easily identify the contaminants, even with a low percentage of contaminating cells. Combining STR profiling with species identification by PCR, more than 20.5% (99/482) of tumor cell lines were revealed as having been incorrectly identified, including intra-species (14.5%), inter-species (4.4%) cross-contamination and contaminating cell lines (1.7%). Therefore, quality control of cell lines is a systemic issue. Each cell line should undergo a full QA (Quality Assurance) assessment before it is used for research.
Collapse
|
15
|
Binder ZA, Wilson KM, Salmasi V, Orr BA, Eberhart CG, Siu IM, Lim M, Weingart JD, Quinones-Hinojosa A, Bettegowda C, Kassam AB, Olivi A, Brem H, Riggins GJ, Gallia GL. Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines. PLoS One 2016; 11:e0150271. [PMID: 27028405 PMCID: PMC4814135 DOI: 10.1371/journal.pone.0150271] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/11/2016] [Indexed: 11/24/2022] Open
Abstract
Objective Human tumor cell lines form the basis of the majority of present day laboratory cancer research. These models are vital to studying the molecular biology of tumors and preclinical testing of new therapies. When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity. Using a modified neural stem cell culture technique, here we report the characterization of GBM cell lines including GBM variants. Methods Tumor tissue samples were obtained intra-operatively and cultured in neural stem cell conditions containing growth factors. Tumor lines were characterized in vitro using differentiation assays followed by immunostaining for lineage-specific markers. In vivo tumor formation was assayed by orthotopic injection in nude mice. Genetic uniqueness was confirmed via short tandem repeat (STR) DNA profiling. Results Thirteen oncosphere lines derived from GBM and GBM variants, including a GBM with PNET features and a GBM with oligodendroglioma component, were established. All unique lines showed distinct genetic profiles by STR profiling. The lines assayed demonstrated a range of in vitro growth rates. Multipotency was confirmed using in vitro differentiation. Tumor formation demonstrated histologic features consistent with high grade gliomas, including invasion, necrosis, abnormal vascularization, and high mitotic rate. Xenografts derived from the GBM variants maintained histopathological features of the primary tumors. Conclusions We have generated and characterized GBM suspension lines derived from patients with GBMs and GBM variants. These oncosphere cell lines will expand the resources available for preclinical study.
Collapse
Affiliation(s)
- Zev A. Binder
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Johns Hopkins Physical Science Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Kelli M. Wilson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Vafi Salmasi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Brent A. Orr
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Charles G. Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - I-Mei Siu
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jon D. Weingart
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Alfredo Quinones-Hinojosa
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Amin B. Kassam
- Department of Neurosurgery, Aurora Neuroscience Innovation Institute, Milwaukee, WI, United States of America
| | - Alessandro Olivi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gregory J. Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gary L. Gallia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
16
|
Aoki T, Tsunekawa K, Araki O, Ogiwara T, Nara M, Sumino H, Kimura T, Murakami M. Type 2 Iodothyronine Deiodinase Activity Is Required for Rapid Stimulation of PI3K by Thyroxine in Human Umbilical Vein Endothelial Cells. Endocrinology 2015; 156:4312-24. [PMID: 26284425 PMCID: PMC4606755 DOI: 10.1210/en.2014-1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 08/12/2015] [Indexed: 02/06/2023]
Abstract
Thyroid hormones (THs) exert a number of physiological effects on the cardiovascular system. Some of the nongenomic actions of T3 are achieved by cross coupling the TH receptor (TR) with the phosphatidylinositol 3-kinase (PI3K)/protein kinase Akt (Akt) pathway. We observed that both T3 and T4 rapidly stimulated Akt phosphorylation and Ras-related C3 botulinum toxin substrate 1 (Rac1) activation, which resulted in cell migration, in a PI3K-dependent manner in human umbilical vein endothelial cells (HUVECs). We identified the expression of type 2 iodothyronine deiodinase (D2), which converts T4 to T3, and TRα1 in HUVECs. D2 activity was significantly stimulated by (Bu)2cAMP in HUVECs. The blockade of D2 activity through transfection of small interfering RNA (siRNA) specific to D2 as well as by addition of iopanoic acid, a potent D2 inhibitor, abolished Akt phosphorylation, Rac activation, and cell migration induced by T4 but not by T3. The inhibition of TRα1 expression by the transfection of siRNA for TRα1 canceled Akt phosphorylation, Rac activation, and cell migration induced by T3 and T4. These findings suggest that conversion of T4 to T3 by D2 is required for TRα1/PI3K-mediated nongenomic actions of T4 in HUVECs, including stimulation of Akt phosphorylation and Rac activation, which result in cell migration.
Collapse
Affiliation(s)
- Tomoyuki Aoki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Katsuhiko Tsunekawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Osamu Araki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Takayuki Ogiwara
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Makoto Nara
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Hiroyuki Sumino
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
17
|
New Insights into Antimetastatic and Antiangiogenic Effects of Cannabinoids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 314:43-116. [DOI: 10.1016/bs.ircmb.2014.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Superparamagnetic iron oxide nanoparticles impair endothelial integrity and inhibit nitric oxide production. Acta Biomater 2014; 10:4896-4911. [PMID: 25123083 DOI: 10.1016/j.actbio.2014.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/26/2014] [Accepted: 07/22/2014] [Indexed: 01/08/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are widely used both clinically and experimentally for diverse in vivo applications, such as contrast enhancement in magnetic resonance imaging, hyperthermia and drug delivery. Biomedical applications require particles to have defined physical and chemical properties, and to be stable in biological media. Despite a suggested low cytotoxic action, adverse reactions of SPION in concentrations relevant for biomedical use have not yet been studied in sufficient detail. In the present work we employed Endorem®, dextran-stabilized SPION approved as an intravenous contrast agent, and compared its action to a set of other nanoparticles with potential for magnetic resonance imaging applications. SPION in concentrations relevant for in vivo applications were rapidly taken up by endothelial cells and exhibited no direct cytotoxicity. Electric cell impedance sensing measurements demonstrated that SPION, but not BaSO4/Gd nanoparticles, impaired endothelial integrity, as was confirmed by increased intercellular gap formation in endothelial monolayers. These structural changes induced the subcellular translocation and inhibition of the cytoprotective and anti-atherosclerotic enzyme endothelial NO-synthase and reduced NO production. Lipopolysaccharide-induced inflammatory NO production of macrophages was not affected by SPION. In conclusion, our data suggest that SPION might substantially alter endothelial integrity and function at therapeutically relevant doses, which are not cytotoxic.
Collapse
|
19
|
Bicker J, Alves G, Fortuna A, Falcão A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur J Pharm Biopharm 2014; 87:409-32. [PMID: 24686194 DOI: 10.1016/j.ejpb.2014.03.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 02/05/2023]
Abstract
During the research and development of new drugs directed at the central nervous system, there is a considerable attrition rate caused by their hampered access to the brain by the blood-brain barrier. Throughout the years, several in vitro models have been developed in an attempt to mimic critical functionalities of the blood-brain barrier and reliably predict the permeability of drug candidates. However, the current challenge lies in developing a model that retains fundamental blood-brain barrier characteristics and simultaneously remains compatible with the high throughput demands of pharmaceutical industries. This review firstly describes the roles of all elements of the neurovascular unit and their influence on drug brain penetration. In vitro models, including non-cell based and cell-based models, and in vivo models are herein presented, with a particular emphasis on their methodological aspects. Lastly, their contribution to the improvement of brain drug delivery strategies and drug transport across the blood-brain barrier is also discussed.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Ana Fortuna
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
20
|
|
21
|
Zhou Y, Li S, Huang Q, Xie L, Zhu X. Nanog suppresses cell migration by downregulating thymosin β4 and Rnd3. J Mol Cell Biol 2013; 5:239-49. [PMID: 23329853 DOI: 10.1093/jmcb/mjt002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nanog, Sox2, and Oct4 are key transcription factors critical for the pluripotency and self-renewal of embryonic stem (ES) cells. Their downregulations lead to differentiation, accompanied with changes in cell motility. Whether these factors impact cell motility directly, however, is not clear. Here we addressed this question by initially assessing their effect in non-stem cells. We found that the ectopic expression of Nanog, Sox2, or Oct4 markedly inhibited ECV304 cell migration. Detailed examinations revealed that Nanog induced disorganizations of the actin cytoskeleton and peripheral localizations of focal adhesions. These effects required its DNA-binding domain and are thus transcription dependent. Furthermore, thymosin β4 and Rnd3 were identified as its downstream targets. Their depletions in ECV304 cells by RNAi phenocopied the ectopic expression of Nanog in both cell motility and actin organization, whereas their ectopic expressions rescued the migration defect of Nanog overexpression. Both proteins were upregulated during mouse ES cell differentiation. Their levels in the pluripotent mouse P19 cells also increased upon Nanog ablation, coincident with an increase in cell motility. Moreover, persistent expression of Nanog in zebrafish embryos suppressed gastrulation and cell migration. These results indeed suggest a dual role of certain transcription factors in the orchestration of differentiation and motility.
Collapse
Affiliation(s)
- Yizhuo Zhou
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
22
|
Stavik B, Tinholt M, Sletten M, Skretting G, Sandset PM, Iversen N. TFPIα and TFPIβ are expressed at the surface of breast cancer cells and inhibit TF-FVIIa activity. J Hematol Oncol 2013; 6:5. [PMID: 23320987 PMCID: PMC3556101 DOI: 10.1186/1756-8722-6-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/10/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tissue factor (TF) pathway inhibitor-1 (TFPI) is expressed in several malignant tissues- and cell lines and we recently reported that it possesses anti-tumor effects in breast cancer cells, indicating a biological role of TFPI in cancer. The two main splice variants of TFPI; TFPIα and TFPIβ, are both able to inhibit TF-factor VIIa (FVIIa) activity in normal cells, but only TFPIα circulates in plasma. The functional importance of TFPIβ is therefore largely unknown, especially in cancer cells. We aimed to characterize the expression and function of TFPIα, TFPIβ, and TF in a panel of tumor derived breast cancer cell lines in comparison to normal endothelial cells. METHODS TFPIα, TFPIβ, and TF mRNA and protein measurements were conducted using qRT-PCR and ELISA, respectively. Cell-associated TFPI was detected after phosphatidylinositol-phospholipase C (PI-PLC) and heparin treatment by flow cytometry, immunofluorescence, and Western blotting. The potential anticoagulant activity of cell surface TFPI was determined in a factor Xa activity assay. RESULTS The expression of both isoforms of TFPI varied considerably among the breast cancer cell lines tested, from no expression in Sum149 cells to levels above or in the same range as normal endothelial cells in Sum102 and MDA-MB-231 cells. PI-PLC treatment released both TFPIα and TFPIβ from the breast cancer cell membrane and increased TF activity on the cell surface, showing TF-FVIIa inhibitory activity of the glycosylphosphatidylinositol- (GPI-) anchored TFPI. Heparin treatment released TFPIα without decreasing the cell surface levels, thus indicating the presence of intracellular storage pools of TFPIα in the breast cancer cells. CONCLUSION GPI-attached TFPI located at the surface of breast cancer cells inhibited TF activity and could possibly reduce TF signaling and breast cancer cell growth locally, indicating a therapeutic potential of the TFPIβ isoform.
Collapse
Affiliation(s)
- Benedicte Stavik
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, BOX 4956 Nydalen, Oslo, N-0424, Norway
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Hundreds of misleading reports are published every year containing data on human cancer cell lines that are derived from some other species, tissue or individual to that claimed. In consequence, millions of dollars provided for cancer research are being spent on the production of misleading data. This review describes how cross-contamination occurs, catalogues the use of false cell lines in leading biomedical journals, and suggests ways to resolve the problem.
Collapse
Affiliation(s)
- John R Masters
- Prostate Cancer Research Centre, UCL, London, U.K. (E-mail,
| |
Collapse
|
24
|
Reimer J, Bien S, Ameling S, Hammer E, Völker U, Hempel G, Boos J, Kroemer HK, Ritter CA. Antineoplastic agent busulfan regulates a network of genes related to coagulation and fibrinolysis. Eur J Clin Pharmacol 2012; 68:923-35. [PMID: 22286157 DOI: 10.1007/s00228-011-1209-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/29/2011] [Indexed: 11/28/2022]
Abstract
Purpose Hepatic veno-occlusive disease (HVOD) is one of the major complications following hematopoietic stem cell transplantation (HSCT). Although high-dose busulfan is associated with the development of HVOD, the underlying molecular mechanisms are still unknown.Methods Transcriptional gene regulation by busulfan was profiled using Affymetrix GeneChip® Human Genome U133 Plus 2.0 arrays. Messenger RNA (mRNA) expression of regulated genes was assessed by TaqMan real-time polymerase chain reaction (PCR), and protein expression and secretion was determined by enzyme-linked immunosorbent assay (ELISA)in cell supernatants, lysates, and patient plasma.Results Plasma levels of plasminogen activator inhibitor(PAI)-1 significantly increased 48 h after starting busulfan treatment IV in children preconditioned for HSCT. In vitro,busulfan significantly induced plasminogen activator inhibitor-1 (PAI-1) expression in endothelium-like ECV304 cells in a concentration- and time-dependent manner. Comparative transcriptional profiling of busulfan-treated and control ECV304 cells identified differential expression of genes related to coagulation and fibrinolysis, including tissue factor, tissue factor pathway inhibitor-1, protein S, thrombospondin-1, urokinase receptor, and PAI-1, as well as activin A and transforming growth factor beta 1 (TGF-β1). Ingenuity pathway analysis (IPA) suggested TGF-β1 as a central modulator of gene regulation by busulfan. Consequently, expression of tissue factor, urokinase receptor, and PAI-1 mRNA and PAI-1 protein secretion induced by busulfan were significantly reduced by the activin A/TGF-β1 inhibitor SB 431542 in ECV304 and primary endothelial cells.Conclusions This is the first report that directly relates busulfan exposure to antifibrinolytic activity by PAI-1 and hypercoagulation possibly mediated by members of the TGF-β1 family. This suggests further research to evaluate activin A and TGF-β1 as potential targets for HVOD treatment.
Collapse
Affiliation(s)
- Janka Reimer
- Research Center of Pharmacology and Experimental Therapeutics,Department of Pharmacology, Ernst-Moritz-Arndt-Universityof Greifswald,Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Roles for endothelial cells in dengue virus infection. Adv Virol 2012; 2012:840654. [PMID: 22952474 PMCID: PMC3431041 DOI: 10.1155/2012/840654] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/19/2012] [Indexed: 02/06/2023] Open
Abstract
Dengue viruses cause two severe diseases that alter vascular fluid barrier functions, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The endothelium is the primary fluid barrier of the vasculature and ultimately the effects of dengue virus infection that cause capillary leakage impact endothelial cell (EC) barrier functions. The ability of dengue virus to infect the endothelium provides a direct means for dengue to alter capillary permeability, permit virus replication, and induce responses that recruit immune cells to the endothelium. Recent studies focused on dengue virus infection of primary ECs have demonstrated that ECs are efficiently infected, rapidly produce viral progeny, and elicit immune enhancing cytokine responses that may contribute to pathogenesis. Furthermore, infected ECs have also been implicated in enhancing viremia and immunopathogenesis within murine dengue disease models. Thus dengue-infected ECs have the potential to directly contribute to immune enhancement, capillary permeability, viremia, and immune targeting of the endothelium. These effects implicate responses of the infected endothelium in dengue pathogenesis and rationalize therapeutic targeting of the endothelium and EC responses as a means of reducing the severity of dengue virus disease.
Collapse
|
26
|
Qian L, Zhu S, Shen J, Han X, Gao J, Wu M, Yu Y, Lu H, Han W. Expression and purification of recombinant human Mig in Escherichia coli and its comparison with murine Mig. Protein Expr Purif 2012; 82:205-11. [DOI: 10.1016/j.pep.2011.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
|
27
|
|
28
|
Affiliation(s)
- Armando Rojas
- Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
29
|
Heparin affects the interaction of kininogen on endothelial cells. Biochimie 2011; 93:1839-45. [DOI: 10.1016/j.biochi.2011.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 07/04/2011] [Indexed: 11/21/2022]
|
30
|
Rojas A. Comment on "Endothelial ICAM-1 protein induction is regulated by cytosolic phospholipase A2α via both NF-κB and CREB transcription factors". JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:2041; author reply 2041. [PMID: 21856941 DOI: 10.4049/jimmunol.1190045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Rojas A, Gonzalez I, Romero J, Figueroa H. Identity crisis--bladder cells in vascular biology. Toxicol In Vitro 2011; 25:999. [PMID: 20096343 DOI: 10.1016/j.tiv.2010.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 01/14/2010] [Indexed: 02/07/2023]
|
32
|
Detzer A, Engel C, Wünsche W, Sczakiel G. Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells. Nucleic Acids Res 2010; 39:2727-41. [PMID: 21148147 PMCID: PMC3074141 DOI: 10.1093/nar/gkq1216] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Various kinds of stress on human cells induce the formation of endogenous stress granules (SGs). Human Argonaute 2 (hAgo2), the catalytic core component of the RNA-induced silencing complex (RISC), can be recruited to SGs as well as P-bodies (PBs) indicating that the dynamic intracellular distribution of hAgo2 in SGs, in PBs or at other sub-cellular sites could be related to the efficiency of the RNA interference (RNAi) machinery. Here, we studied the influence of heat shock, sodium arsenite (NaAsO2), cycloheximide (CHX) and LipofectamineTM 2000-mediated transfection of phosphorothioate (PS)-modified oligonucleotides (ON) on the intracellular localization of hAgo2 and the efficiency of RNAi. Fluorescence microscopy and sedimentation analysis of cell fractions indicate stress-induced accumulation of hAgo2 in SGs and the loss of distinctly composed complexes containing hAgo2 or their sub-cellular context. Transfection of cells with PS-ON induces cell stress that is phenotypically similar to the established inducers heat shock and NaAsO2. The intracellular re-distribution of hAgo2 is related to its increased metabolic stability and to decreased RNAi directed by microRNA or by short interfering RNA. Here, we propose a functional model of the relationship between cell stress, translocation of hAgo2 to SGs providing a depot function, and loss of RNAi activity.
Collapse
Affiliation(s)
- Anke Detzer
- Institut für Molekulare Medizin, Centre for Structural and Cell Biology in Medicine (CSCM), Universität zu Lübeck and UK S-H, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | |
Collapse
|
33
|
Schwarz N, Pruessmeyer J, Hess FM, Dreymueller D, Pantaler E, Koelsch A, Windoffer R, Voss M, Sarabi A, Weber C, Sechi AS, Uhlig S, Ludwig A. Requirements for leukocyte transmigration via the transmembrane chemokine CX3CL1. Cell Mol Life Sci 2010; 67:4233-48. [PMID: 20559678 PMCID: PMC11115548 DOI: 10.1007/s00018-010-0433-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 01/21/2023]
Abstract
The surface-expressed transmembrane CX3C chemokine ligand 1 (CX3CL1/fractalkine) induces firm adhesion of leukocytes expressing its receptor CX3CR1. After shedding by the disintegrins and metalloproteinases (ADAM) 10 and 17, CX3CL1 also acts as soluble leukocyte chemoattractant. Here, we demonstrate that transmembrane CX3CL1 expressed on both endothelial and epithelial cells induces leukocyte transmigration. To investigate the underlying mechanism, we generated CX3CR1 variants lacking the intracellular aspartate-arginine-tyrosine (DRY) motif or the intracellular C-terminus which led to a defect in intracellular calcium response and impaired ligand uptake, respectively. While both variants effectively mediated firm cell adhesion, they failed to induce transmigration and rather mediated retention of leukocytes on the CX3CL1-expressing cell layer. Targeting of ADAM10 led to increased adhesion but reduced transmigration in response to transmembrane CX3CL1, while transmigration towards soluble CX3CL1 was not affected. Thus, transmembrane CX3CL1 mediates leukocyte transmigration via the DRY motif and C-terminus of CX3CR1 and the activity of ADAM10.
Collapse
Affiliation(s)
- Nicole Schwarz
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Jessica Pruessmeyer
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Franz M. Hess
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Elena Pantaler
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Anne Koelsch
- Institute for Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Reinhard Windoffer
- Institute for Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Voss
- Institute for Immunology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Alisina Sarabi
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Christian Weber
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Antonio S. Sechi
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
34
|
Nims RW, Sykes G, Cottrill K, Ikonomi P, Elmore E. Short tandem repeat profiling: part of an overall strategy for reducing the frequency of cell misidentification. In Vitro Cell Dev Biol Anim 2010; 46:811-9. [PMID: 20927602 PMCID: PMC2995877 DOI: 10.1007/s11626-010-9352-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/13/2010] [Indexed: 11/16/2022]
Abstract
The role of cell authentication in biomedical science has received considerable attention, especially within the past decade. This quality control attribute is now beginning to be given the emphasis it deserves by granting agencies and by scientific journals. Short tandem repeat (STR) profiling, one of a few DNA profiling technologies now available, is being proposed for routine identification (authentication) of human cell lines, stem cells, and tissues. The advantage of this technique over methods such as isoenzyme analysis, karyotyping, human leukocyte antigen typing, etc., is that STR profiling can establish identity to the individual level, provided that the appropriate number and types of loci are evaluated. To best employ this technology, a standardized protocol and a data-driven, quality-controlled, and publically searchable database will be necessary. This public STR database (currently under development) will enable investigators to rapidly authenticate human-based cultures to the individual from whom the cells were sourced. Use of similar approaches for non-human animal cells will require developing other suitable loci sets. While implementing STR analysis on a more routine basis should significantly reduce the frequency of cell misidentification, additional technologies may be needed as part of an overall authentication paradigm. For instance, isoenzyme analysis, PCR-based DNA amplification, and sequence-based barcoding methods enable rapid confirmation of a cell line's species of origin while screening against cross-contaminations, especially when the cells present are not recognized by the species-specific STR method. Karyotyping may also be needed as a supporting tool during establishment of an STR database. Finally, good cell culture practices must always remain a major component of any effort to reduce the frequency of cell misidentification.
Collapse
Affiliation(s)
- Raymond W. Nims
- RMC Pharmaceutical Solutions, Inc, 2150 Miller Drive, Suite A, Longmont, CO 80501 USA
| | - Greg Sykes
- ATCC, 10801 University Blvd., Manassas, VA 20110 USA
| | | | | | - Eugene Elmore
- Department of Radiation Oncology, University of California, Medical Sciences I, B146D, Irvine, CA 92697 USA
| |
Collapse
|
35
|
Larrayoz IM, Huang JD, Lee JW, Pascual I, Rodríguez IR. 7-ketocholesterol-induced inflammation: involvement of multiple kinase signaling pathways via NFκB but independently of reactive oxygen species formation. Invest Ophthalmol Vis Sci 2010; 51:4942-55. [PMID: 20554621 DOI: 10.1167/iovs.09-4854] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE 7-Ketocholesterol (7KCh) accumulates in oxidized lipoprotein deposits and is known to be involved in macrophage foam cell formation and atherosclerosis. 7-KCh is present in the primate retina and is associated with oxidized lipoprotein deposits located in the choriocapillaris, Bruch's membrane, and retinal pigment epithelium (RPE). 7-KCh can also be formed in the retina as a consequence of light-induced iron release. The purpose of this study was to examine the signaling pathways involved in the 7KCh-mediated inflammatory response focusing on three cytokines, VEGF, IL-6, and IL-8. METHODS ARPE-19 cells were treated with 7KCh solubilized in hydroxypropyl-β-cyclodextrin. Cytokines were quantified by qRT-PCR (mRNA) and ELISA (protein) using commercially available products. NFκB activation was determined by IκBα mRNA induction. RESULTS Treatment of ARPE-19 cells with 15 μM 7KCh markedly induced the expression of VEGF, IL-6, and IL-8. No increase in NOX-4 expression or ROS formation was detected. 7KCh induced the phosphorylation of ERK1/2 and p38MAPK, and inhibitors to these kinases markedly reduced the cytokine expression but did not affect the IκBα mRNA expression. By contrast, inhibition of PI3K and PKCζ significantly decreased the cytokine and IκBα mRNA expression. Inhibition of the IκB kinase complex essentially ablated all cytokine induction. CONCLUSIONS 7KCh induces cytokines via three kinase signaling pathways, AKT-PKCζ-NFκB, p38 MAPK, and ERK. The MAPK/ERK pathways seem to preferentially enhance cytokine induction downstream from NFκB activation. The results of this study suggest that 7KCh activates these pathways through interactions in the plasma membrane, but the mechanism(s) remains unknown.
Collapse
Affiliation(s)
- Ignacio M Larrayoz
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Cell lines are used extensively in research and drug development as models of normal and cancer tissues. However, a substantial proportion of cell lines is mislabelled or replaced by cells derived from a different individual, tissue or species. The scientific community has failed to tackle this problem and consequently thousands of misleading and potentially erroneous papers have been published using cell lines that are incorrectly identified. Recent efforts to develop a standard for the authentication of human cell lines using short tandem repeat profiling is an important step to eradicate this problem.
Collapse
|
37
|
Durán WN, Breslin JW, Sánchez FA. The NO cascade, eNOS location, and microvascular permeability. Cardiovasc Res 2010; 87:254-61. [PMID: 20462865 DOI: 10.1093/cvr/cvq139] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The nitric oxide (NO) cascade and endothelial NO synthase (eNOS) are best known for their role in endothelium-mediated relaxation of vascular smooth muscle. Activation of eNOS by certain inflammatory stimuli and enhanced NO release have also been shown to promote increased microvascular permeability. However, it is not entirely clear why activation of eNOS by certain vasodilatory agents, like acetylcholine, does not affect microvascular permeability, whereas activation of eNOS by other inflammatory agents that increase permeability, like platelet-activating factor, does not cause vasodilation. In this review, we discuss the evidence demonstrating the role of eNOS in the elevation of microvascular permeability. We also examine the relative importance of eNOS phosphorylation and localization in its function to promote elevated microvascular permeability as well as emerging topics with regard to eNOS and microvascular permeability regulation.
Collapse
Affiliation(s)
- Walter N Durán
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07101-1709, USA.
| | | | | |
Collapse
|
38
|
Rojas A, Gonzalez I, Figueroa H. Calling attention to the use of false "endothelial" cell lines. Fertil Steril 2010; 93:e33-e34. [PMID: 20206926 DOI: 10.1016/j.fertnstert.2010.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 01/07/2010] [Indexed: 02/07/2023]
|
39
|
Reply of the Authors: Calling attention to the use of false “endothelial” cell lines. Fertil Steril 2010. [DOI: 10.1016/j.fertnstert.2010.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Dittmar KEJ, Simann M, Zghoul N, Schön O, Meyring W, Hannig H, Macke L, Dirks WG, Miller K, Garritsen HSP, Lindenmaier W. Quality of Cell Products: Authenticity, Identity, Genomic Stability and Status of Differentiation. ACTA ACUST UNITED AC 2010; 37:57-64. [PMID: 20737047 DOI: 10.1159/000284401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/28/2009] [Indexed: 11/19/2022]
Abstract
Cellular therapies that either use modifications of a patient's own cells or allogeneic cell lines are becoming in vogue. Besides the technical issues of optimal isolation, cultivation and modification, quality control of the generated cellular products are increasingly being considered to be more important. This is not only relevant for the cell's therapeutic application but also for cell science in general. Recent changes in editorial policies of respected journals, which now require proof of authenticity when cell lines are used, demonstrate that the subject of the present paper is not a virtual problem at all. In this article we provide 2 examples of contaminated cell lines followed by a review of the recent developments used to verify cell lines, stem cells and modifications of autologous cells. With relative simple techniques one can now prove the authenticity and the quality of the cellular material of interest and therefore improve the scientific basis for the development of cells for therapeutic applications. The future of advanced cellular therapies will require production and characterization of cells under GMP and GLP conditions, which include proof of identity, safety and functionality and absence of contamination.
Collapse
Affiliation(s)
- Kurt E J Dittmar
- Department of Molecular Biotechnology, Helmholtz Centre for Infection Research (HZI) Braunschweig, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Letter to the Editor. Menopause 2010. [DOI: 10.1097/gme.0b013e3181cec235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Zhang RY, Zhao KJ, Tang YQ, Li L. Effect of isoflavone extracts from glycine max on human endothelial cell damage and on nitric oxide production. Menopause 2010; 17:441; author reply 441-2. [PMID: 20125051 DOI: 10.1097/gme.0b013e3181cec09c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Piantino CB, Sousa-Canavez JM, Bellodi-Privato M, Srougi M, Camara-Lopes LH, Gattás GJF, Gonçalves FDT, Fridman C, Leite KRM. Establishment and characterization of androgen-independent human prostate cancer cell lines, PcBra1, PcBra2, and PcBra3. In Vitro Cell Dev Biol Anim 2009; 46:123-30. [PMID: 19997870 DOI: 10.1007/s11626-009-9249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 10/01/2009] [Indexed: 11/24/2022]
Abstract
One of the main obstacles for understanding biological events involved in cancer is the lack of experimental models for in vitro studies especially for prostate cancer (PC). There are a limited number of PC cell lines being the majority originated from metastatic tumors mostly acquired from American Tissue Cell Culture which demands importation an expensive and bureaucratic process. Also it is well known that there are ethnic differences between populations concerning the behavior of tumors and the research based on cell lines derived from Brazilians should be interesting. Our aim was to develop tumor cell lines from primary PC.
Collapse
Affiliation(s)
- Camila B Piantino
- Laboratory of Medical Investigation, Urology Department-LIM55, Medical School, São Paulo University, Av. Dr. Arnaldo 455, Room 2145, 01246-903, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Establishment and characterization of human bladder cancer cell lines BexBra1, BexBra2, and BexBra4. In Vitro Cell Dev Biol Anim 2009; 46:131-9. [PMID: 19915932 DOI: 10.1007/s11626-009-9252-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/06/2009] [Indexed: 01/13/2023]
Abstract
Bladder cancer (BC) is the fourth most common cancer in the USA. In Brazil, BC represents 3% of the total existing carcinomas in the population and represents the second highest incidence among urological tumors. The majority of bladder cancer cell lines available were derived from Caucasians and established in the seventies or eighties. Thus, neoplasia development in these cells likely occurred in environment conditions vastly different than today. In the present study, we report the establishment and characterization of three Brazilian bladder cancer cell lines (BexBra1, BexBra2, and BexBra4). These cell lines may be helpful for dissecting the genetic and epigenetic aspects that trigger the progression of BC. Moreover, the development of a Brazilian representative of the disease will allow us to investigate the potential inter-racial differences of malignancy-associated phenotypes in bladder cancer.
Collapse
|
45
|
Genetic profiling reveals cross-contamination and misidentification of 6 adenoid cystic carcinoma cell lines: ACC2, ACC3, ACCM, ACCNS, ACCS and CAC2. PLoS One 2009; 4:e6040. [PMID: 19557180 PMCID: PMC2698276 DOI: 10.1371/journal.pone.0006040] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 06/05/2009] [Indexed: 11/19/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is the second most common malignant neoplasm of the salivary glands. Most patients survive more than 5 years after surgery and postoperative radiation therapy. The 10 year survival rate, however, drops to 40%, due to locoregional recurrences and distant metastases. Improving long-term survival in ACC requires the development of more effective systemic therapies based on a better understanding of the biologic behavior of ACC. Much preclinical research in this field involves the use of cultured cells and, to date, several ACC cell lines have been established. Authentication of these cell lines, however, has not been reported. We performed DNA fingerprint analysis on six ACC cell lines using short tandem repeat (STR) examinations and found that all six cell lines had been contaminated with other cells. ACC2, ACC3, and ACCM were determined to be cervical cancer cells (HeLa cells), whereas the ACCS cell line was composed of T24 urinary bladder cancer cells. ACCNS and CAC2 cells were contaminated with cells derived from non-human mammalian species: the cells labeled ACCNS were mouse cells and the CAC2 cells were rat cells. These observations suggest that future studies using ACC cell lines should include cell line authentication to avoid the use of contaminated or non-human cells.
Collapse
|
46
|
Zhang W, Liu JN, Tan XY. Vaccination with xenogeneic tumor endothelial proteins isolated in situ inhibits tumor angiogenesis and spontaneous metastasis. Int J Cancer 2009; 125:124-32. [PMID: 19350628 DOI: 10.1002/ijc.24362] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Angiogenesis is critical for tumor growth and metastasis. Tumor tissues induce the expression of angiogenesis-associated proteins on endothelial surface that can be targeted for tumor immunotherapy. In our study, the rat tumor endothelial proteins (EP) were isolated in situ via biotinylation of tumor vascular endothelial luminal surface followed by streptavidin affinity chromatography. The isolated tumor EP contained numerous up-regulated angiogenesis-associated endothelial proteins. The administration of these tumor EP as a vaccine to mice reduced the microvessel density in subcutaneous primary LLC tumors, delayed spontaneous LLC tumor metastasis and prolonged post-surgery life span. T lymphocytes from tumor EP-vaccinated mice lysed human umbilical vascular endothelial cells, but not tumor cells in vitro, in a dose-dependent manner. Furthermore, adoptive transfer of antitumor EP antibodies in vivo targeted to tumor endothelium and inhibited spontaneous LLC tumor metastasis. This study provides a successful preclinical exploration of the active immunotherapy for tumor by targeting tumor angiogenesis.
Collapse
Affiliation(s)
- Wang Zhang
- Institute of Molecular Medicine and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | | | | |
Collapse
|
47
|
Shan Y, Yu L, Li Y, Pan Y, Zhang Q, Wang F, Chen J, Zhu X. Nudel and FAK as antagonizing strength modulators of nascent adhesions through paxillin. PLoS Biol 2009; 7:e1000116. [PMID: 19492042 PMCID: PMC2684528 DOI: 10.1371/journal.pbio.1000116] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 04/15/2009] [Indexed: 01/09/2023] Open
Abstract
Adhesion and detachment are coordinated critical steps during cell migration. Conceptually, efficient migration requires both effective stabilization of membrane protrusions at the leading edge via nascent adhesions and their successful persistence during retraction of the trailing side via disruption of focal adhesions. As nascent adhesions are much smaller in size than focal adhesions, they are expected to exhibit a stronger adhesivity in order to achieve the coordination between cell front and back. Here, we show that Nudel knockdown by interference RNA (RNAi) resulted in cell edge shrinkage due to poor adhesions of membrane protrusions. Nudel bound to paxillin, a scaffold protein of focal contacts, and colocalized with it in areas of active membrane protrusions, presumably at nascent adhesions. The Nudel-paxillin interaction was disrupted by focal adhesion kinase (FAK) in a paxillin-binding-dependent manner. Forced localization of Nudel in all focal contacts by fusing it to paxillin markedly strengthened their adhesivity, whereas overexpression of structurally activated FAK or any paxillin-binding FAK mutant lacking the N-terminal autoinhibitory domain caused cell edge shrinkage. These results suggest a novel mechanism for selective reinforcement of nascent adhesions via interplays of Nudel and FAK with paxillin to facilitate cell migration.
Collapse
Affiliation(s)
- Yongli Shan
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lihou Yu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Youdong Pan
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiangge Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fubin Wang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Chen
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueliang Zhu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
48
|
Rojas A, Gonzalez I, Figueroa H. Stopping the use of false "endothelial" cell lines. Int Immunopharmacol 2009; 9:258. [PMID: 19015046 DOI: 10.1016/j.intimp.2008.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/15/2008] [Indexed: 02/07/2023]
|
49
|
Sarntivijai S, Ade AS, Athey BD, States DJ. A bioinformatics analysis of the cell line nomenclature. ACTA ACUST UNITED AC 2008; 24:2760-6. [PMID: 18849319 DOI: 10.1093/bioinformatics/btn502] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Cell lines are used extensively in biomedical research, but the nomenclature describing cell lines has not been standardized. The problems are both linguistic and experimental. Many ambiguous cell line names appear in the published literature. Users of the same cell line may refer to it in different ways, and cell lines may mutate or become contaminated without the knowledge of the user. As a first step towards rationalizing this nomenclature, we created a cell line knowledgebase (CLKB) with a well-structured collection of names and descriptive data for cell lines cultured in vitro. The objectives of this work are: (i) to assist users in extracting useful information from biomedical text and (ii) to highlight the importance of standardizing cell line names in biomedical research. This CLKB contains a broad collection of cell line names compiled from ATCC, Hyper CLDB and MeSH. In addition to names, the knowledgebase specifies relationships between cell lines. We analyze the use of cell line names in biomedical text. Issues include ambiguous names, polymorphisms in the use of names and the fact that some cell line names are also common English words. Linguistic patterns associated with the occurrence of cell line names are analyzed. Applying these patterns to find additional cell line names in the literature identifies only a small number of additional names. Annotation of microarray gene expression studies is used as a test case. The CLKB facilitates data exploration and comparison of different cell lines in support of clinical and experimental research. AVAILABILITY The web ontology file for this cell line collection can be downloaded at http://www.stateslab.org/data/celllineOntology/cellline.zip.
Collapse
Affiliation(s)
- Sirarat Sarntivijai
- National Center for Integrative Biomedical Informatics and the Center for Computational Medicine and Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
50
|
Folberg R, Kadkol SS, Frenkel S, Valyi-Nagy K, Jager MJ, Pe'er J, Maniotis AJ. Authenticating cell lines in ophthalmic research laboratories. Invest Ophthalmol Vis Sci 2008; 49:4697-701. [PMID: 18689700 DOI: 10.1167/iovs.08-2324] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Robert Folberg
- Oakland University William Beaumont School of Medicine, Rochester, Michigan 48309-4401, USA.
| | | | | | | | | | | | | |
Collapse
|