1
|
Liang S, Qian Y, Liu Y, Wang Y, Su L, Yan S. Ligustrazine nanoparticles inhibits epithelial-mesenchymal transition and alleviates postoperative abdominal adhesion. Biochem Biophys Res Commun 2024; 739:150994. [PMID: 39547120 DOI: 10.1016/j.bbrc.2024.150994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Following abdominal surgery, the occurrence of postoperative abdominal adhesion (PAA) is highly prevalent and stands out as one of the most frequently encountered complications. The effect and molecular mechanisms of Ligustrazine nanoparticles (LN) underlying epithelial-mesenchymal transition (EMT) in PAA still remain elusive. Adhesions were induced in Male Sprague-Dawley rats by injuring the cecum (cecal abrasion model), followed by administration of LN and hyaluronate acid (HA). The mechanism was further verified by enzyme-linked immunosorbent assay, wound healing assay, si-RNA and Western blot. Animal experiments revealed that LN effectively ameliorated adhesions, notably decreased tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-8, and fibrosis, and reduced the expression of TGF-β1 and EMT related markers (Fibronectin and E-cadherin). Furthermore, in vitro experiments demonstrated that LN might inhibit the TGF-β1 FOXC2 pathway through suppressing the expression of Fibronectin, P120, and E-cadherin and ameliorating peritoneal adhesion. Collectively, our findings indicate that LN inhibits PAA formation by reducing inflammation, decreasing EMT and promoting peritoneal mesothelial cell repair. Therefore, LN might be considered a potential candidate for the treatment of PPA. However, further clinical studies are required to approve the effectiveness of LN.
Collapse
Affiliation(s)
- Shasha Liang
- Teaching and Research Office of Obstetrics and Gynecology, Medical College of Zhengzhou University of Industrial Technology, Xinzheng, 451100, Henan, China
| | - Yifei Qian
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ying Liu
- Department of Gynaecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Yahui Wang
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China
| | - Lianlin Su
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Shuai Yan
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
2
|
Chen H, Deng C, Meng Z, Zhu M, Yang R, Yuan J, Meng S. Combined Catalpol and Tetramethylpyrazine Promote Axonal Plasticity in Alzheimer's Disease by Inducing Astrocytes to Secrete Exosomes Carrying CDK5 mRNA and Regulating STAT3 Phosphorylation. Mol Neurobiol 2024; 61:10770-10791. [PMID: 38789892 DOI: 10.1007/s12035-024-04251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a common progressive degenerative disease of the central nervous system in aging populations. This study aimed to investigate the effects of combined catalpol and tetramethylpyrazine (CT) in promoting axonal plasticity in AD and the potential underlying mechanism. Astrocytes were treated with different concentrations of compatible CT. Exosomes were collected and subjected to sequencing analysis, which was followed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes. Amyloid precursor protein/presenilin 1 (APP/PS1) double-transfected male mice were used as the in vivo AD models. Astrocyte-derived exosomes that were transfected with cyclin-dependent kinase 5 (CDK5) or CT treatment were injected into the tail vein of mice. The levels of CDK5, synaptic plasticity marker protein neurofilament 200 (NF200), and growth-associated protein 43 (GAP-43) in the hippocampus of mice were compared in each group. Immunofluorescence staining was used to detect the localization of STAT3 and to visualize synaptic morphology via β-tubulin-III (TUBB3). Astrocyte-derived exosomes transfected with siCDK5 or treated with CT were co-cultured with HT-22 cells, which were untransfected or silenced for signal transducer and activator of transcription 3 (STAT3). Amyloid β-protein (Aβ)1-42 was induced in the in vitro AD models. The viability, apoptosis, and expression levels of NF200 and GAP-43 proteins in the hippocampal neurons of each group were compared. In total, 166 differentially expressed genes in CT-induced astrocyte-derived exosomes were included in the KEGG analysis, and they were found to be enriched in 12 pathways, mainly in axon guidance. CT treatment significantly increased the level of CDK5 mRNA in astrocyte-derived exosomes-these exosomes restored CDK5 mRNA and protein levels in the hippocampus of the in vivo AD model mice and the in vitro AD model; promoted p-STAT3 (Ser727), NF200 and GAP-43 proteins; and promoted the regeneration and extension of neuronal synapses. Silencing of CDK5 blocked both neuronal protection as well as induction of axonal plasticity in AD by CT-treated exosomes in vitro and in vivo. Moreover, silencing of STAT3 blocked both neuronal protection as well as induction of axonal plasticity in AD caused by CDK5 overexpression or CT-treated astrocyte-induced exosomes. CT promotes axonal plasticity in AD by inducing astrocytes to secrete exosomes carrying CDK5 mRNA and regulating STAT3 (Ser727) phosphorylation.
Collapse
Affiliation(s)
- Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China
| | - Zeyu Meng
- Second Clinical Medicine College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Mengting Zhu
- Graduate School of Jiangxi, University of Traditional Chinese Medicine, Nanchang, China
| | - Ruoyu Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Yuan
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,Xuhui District, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
3
|
Dong L, Zhang H, Zhang G, Li F, Li M, Wang H, Ye X, Ren X, Zhang J, Peng C, Liu H, Wu L. Polystyrene Sulfonate Resin as an Ophthalmic Carrier for Enhanced Bioavailability of Ligustrazine Phosphate Controlled Release System. J Pharm Sci 2024; 113:2786-2794. [PMID: 38986870 DOI: 10.1016/j.xphs.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Topical ocular sustained-release drug delivery systems represent an effective strategy for the treatment of ocular diseases, for which a suitable carrier has yet to be sufficiently developed. Herein, an eye-compatible sodium polystyrene sulfonate resin (SPSR) was synthesized with a uniform particle size of about 3 μm. Ligustrazine phosphate (LP) was adsorbed to SPSR by cation exchange to form LP@SPSR. LP@SPSR suspension eye drops were further developed using the combination of Carbopol 934P and xanthan gum as suspending agents. The LP@SPSR suspension showed a sustained release in vitro, which was consistent with the observed porcine corneal penetration ex vivo. Pharmacokinetics in tear fluid of rabits indicated that LP@SPSR suspension led to prolonged ocular retention of LP and a 2-fold improved the area under the drug concentration-time curve (AUC0-t). Pharmacokinetics in the aqueous humor of rabbits showed 2.8-fold enhancement in the AUC0-t compared to LP solution. The LP@SPSR suspension exhibited no cytotoxicity to human corneal epithelial cells, nor irritation was observed in rabbit eyes. Thus, the LP@SPSR suspension has been validated as a safe and sustained release system leading to enhanced ophthalmic bioavailability for treating ocular diseases.
Collapse
Affiliation(s)
- Liyun Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Hui Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Guoqing Zhang
- Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Falan Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Mingwei Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Huihui Wang
- Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Xinyue Ye
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Xiaohong Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiwen Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China
| | - Can Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongfei Liu
- Jiangsu University, Zhenjiang 212000, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China; Jiangsu Yunshi Pharmaceutical Technology Co.Ltd., Nantong 226133, China.
| | - Li Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China.
| |
Collapse
|
4
|
Qi M, Su X, Li Z, Huang H, Wang J, Lin N, Kong X. Bibliometric analysis of research progress on tetramethylpyrazine and its effects on ischemia-reperfusion injury. Pharmacol Ther 2024; 259:108656. [PMID: 38735486 DOI: 10.1016/j.pharmthera.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
In recent decades, natural products have attracted worldwide attention and become one of the most important resources for pharmacological industries and medical sciences to identify novel drug candidates for disease treatment. Tetramethylpyrazine (TMP) is an alkaloid extracted from Ligusticum chuanxiong Hort., which has shown great therapeutic potential in cardiovascular and cerebrovascular diseases, liver and renal injury, as well as cancer. In this review, we analyzed 1270 papers published on the Web of Science Core Collection from 2002 to 2022 and found that TMP exerted significant protective effects on ischemia-reperfusion (I/R) injury that is the cause of pathological damages in a variety of conditions, such as ischemic stroke, myocardial infarction, acute kidney injury, and liver transplantation. TMP is limited in clinical applications to some extent due to its rapid metabolism, a short biological half-life and poor bioavailability. Obviously, the structural modification, administration methods and dosage forms of TMP need to be further investigated in order to improve its bioavailability. This review summarizes the clinical applications of TMP, elucidates its potential mechanisms in protecting I/R injury, provides strategies to improve bioavailability, which presents a comprehensive understanding of the important compound. Hopefully, the information and knowledge from this review can help researchers and physicians to better improve the applications of TMP in the clinic.
Collapse
Affiliation(s)
- Mingzhu Qi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuohang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Helan Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingbo Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
5
|
Wang YL, Zhang HX, Chen YQ, Yang LL, Li ZJ, Zhao M, Li WL, Bian YY, Zeng L. Research on Mechanisms of Chinese Medicines in Prevention and Treatment of Postoperative Adhesion. Chin J Integr Med 2023; 29:556-565. [PMID: 37052766 DOI: 10.1007/s11655-023-3735-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 04/14/2023]
Abstract
Postoperative adhesion (PA) is currently one of the most unpleasant complications following surgical procedures. Researchers have developed several new strategies to alleviate the formation of PA to a great extent, but so far, no single measure or treatment can meet the expectations and requirements of clinical patients needing complete PA prevention. Chinese medicine (CM) has been widely used for thousands of years based on its remarkable efficacy and indispensable advantages CM treatments are gradually being accepted by modern medicine. Therefore, this review summarizes the formating process of PA and the efficacy and action mechanism of CM treatments, including their pharmacological effects, therapeutic mechanisms and advantages in PA prevention. We aim to improve the understanding of clinicians and researchers on CM prevention in the development of PA and promote the in-depth development and industrialization process of related drugs.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hui-Xiang Zhang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan-Qi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Li Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zheng-Jun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Lin Li
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao-Yao Bian
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Second Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Zeng
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Center of Traditional Chinese Medicine External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Abdugheni R, Wang W, Wang Y, Du M, Liu F, Zhou N, Jiang C, Wang C, Wu L, Ma J, Liu C, Liu S. Metabolite profiling of human-originated Lachnospiraceae at the strain level. IMETA 2022; 1:e58. [PMID: 38867908 PMCID: PMC10989990 DOI: 10.1002/imt2.58] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
The human gastrointestinal (GI) tract harbors diverse microbes, and the family Lachnospiraceae is one of the most abundant and widely occurring bacterial groups in the human GI tract. Beneficial and adverse effects of the Lachnospiraceae on host health were reported, but the diversities at species/strain levels as well as their metabolites of Lachnospiraceae have been, so far, not well documented. In the present study, we report on the collection of 77 human-originated Lachnospiraceae species (please refer hLchsp, https://hgmb.nmdc.cn/subject/lachnospiraceae) and the in vitro metabolite profiles of 110 Lachnospiraceae strains (https://hgmb.nmdc.cn/subject/lachnospiraceae/metabolites). The Lachnospiraceae strains in hLchsp produced 242 metabolites of 17 categories. The larger categories were alcohols (89), ketones (35), pyrazines (29), short (C2-C5), and long (C > 5) chain acids (31), phenols (14), aldehydes (14), and other 30 compounds. Among them, 22 metabolites were aromatic compounds. The well-known beneficial gut microbial metabolite, butyric acid, was generally produced by many Lachnospiraceae strains, and Agathobacter rectalis strain Lach-101 and Coprococcus comes strain NSJ-173 were the top 2 butyric acid producers, as 331.5 and 310.9 mg/L of butyric acids were produced in vitro, respectively. Further analysis of the publicly available cohort-based volatile-metabolomic data sets of human feces revealed that over 30% of the prevailing volatile metabolites were covered by Lachnospiraceae metabolites identified in this study. This study provides Lachnospiraceae strain resources together with their metabolic profiles for future studies on host-microbe interactions and developments of novel probiotics or biotherapies.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Desert and Oasis EcologyXinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqiChina
| | - Wen‐Zhao Wang
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Yu‐Jing Wang
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Meng‐Xuan Du
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Feng‐Lan Liu
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- College of Life SciencesHebei UniversityBaodingChina
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Cheng‐Ying Jiang
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chang‐Yu Wang
- Colleg of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Linhuan Wu
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Juncai Ma
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Chang Liu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Shuang‐Jiang Liu
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| |
Collapse
|
7
|
Yang S, Wu S, Dai W, Pang L, Xie Y, Ren T, Zhang X, Bi S, Zheng Y, Wang J, Sun Y, Zheng Z, Kong J. Tetramethylpyrazine: A Review of Its Antitumor Potential and Mechanisms. Front Pharmacol 2021; 12:764331. [PMID: 34975475 PMCID: PMC8716857 DOI: 10.3389/fphar.2021.764331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer remains a major public health threat. The mitigation of the associated morbidity and mortality remains a major research focus. From a molecular biological perspective, cancer is defined as uncontrolled cell division and abnormal cell growth caused by various gene mutations. Therefore, there remains an urgent need to develop safe and effective antitumor drugs. The antitumor effect of plant extracts, which are characterized by relatively low toxicity and adverse effect, has attracted significant attention. For example, increasing attention has been paid to the antitumor effects of tetramethylpyrazine (TMP), the active component of the Chinese medicine Chuanqiong, which can affect tumor cell proliferation, apoptosis, invasion, metastasis, and angiogenesis, as well as reverse chemotherapeutic resistance in neoplasms, thereby triggering antitumor effects. Moreover, TMP can be used in combination with chemotherapeutic agents to enhance their effects and reduce the side effect associated with chemotherapy. Herein, we review the antitumor effects of TMP to provide a theoretical basis and foundation for the further exploration of its underlying antitumor mechanisms and promoting its clinical application.
Collapse
Affiliation(s)
- Shaojie Yang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuodong Wu
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, China
| | - Liwei Pang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yaofeng Xie
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tengqi Ren
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolin Zhang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyuan Bi
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Zheng
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingnan Wang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Sun
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuyuan Zheng
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Kong
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jing Kong,
| |
Collapse
|
8
|
Dat TTH, Oanh PTT, Cuong LCV, Anh LT, Minh LTH, Ha H, Lam LT, Cuong PV, Anh HLT. Pharmacological Properties, Volatile Organic Compounds, and Genome Sequences of Bacterial Endophytes from the Mangrove Plant Rhizophora apiculata Blume. Antibiotics (Basel) 2021; 10:antibiotics10121491. [PMID: 34943703 PMCID: PMC8698355 DOI: 10.3390/antibiotics10121491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Mangrove plant endophytic bacteria are prolific sources of bioactive secondary metabolites. In the present study, twenty-three endophytic bacteria were isolated from the fresh roots of the mangrove plant Rhizophora apiculata. The identification of isolates by 16S rRNA gene sequences revealed that the isolated endophytic bacteria belonged to nine genera, including Streptomyces, Bacillus, Pseudovibrio, Microbacterium, Brevibacterium, Microbulbifer, Micrococcus, Rossellomorea, and Paracoccus. The ethyl acetate extracts of the endophytic bacteria’s pharmacological properties were evaluated in vitro, including antimicrobial, antioxidant, α-amylase and α-glucosidase inhibitory, xanthine oxidase inhibitory, and cytotoxic activities. Gas chromatography–mass spectrometry (GC-MS) analyses of three high bioactive strains Bacillus sp. RAR_GA_16, Rossellomorea vietnamensis RAR_WA_32, and Bacillus sp. RAR_M1_44 identified major volatile organic compounds (VOCs) in their ethyl acetate extracts. Genome analyses identified biosynthesis gene clusters (BGCs) of secondary metabolites of the bacterial endophytes. The obtained results reveal that the endophytic bacteria from R. apiculata may be a potential source of pharmacological secondary metabolites, and further investigations of the high bioactive strains—such as fermentation and isolation of pure bioactive compounds, and heterologous expression of novel BGCs in appropriate expression hosts—may allow exploring and exploiting the promising bioactive compounds for future drug development.
Collapse
Affiliation(s)
- Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City 49117, Vietnam; (P.T.T.O.); (L.C.V.C.); (L.T.A.)
- Correspondence: (T.T.H.D.); (P.V.C.); (H.L.T.A.); Tel.: +84-949-492-778 (T.T.H.D.); +84-913-219-187 (P.V.C.); +84-948-151-838 (H.L.T.A.)
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City 49117, Vietnam; (P.T.T.O.); (L.C.V.C.); (L.T.A.)
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City 49117, Vietnam; (P.T.T.O.); (L.C.V.C.); (L.T.A.)
| | - Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City 49117, Vietnam; (P.T.T.O.); (L.C.V.C.); (L.T.A.)
| | - Le Thi Hong Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam;
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam; (H.H.); (L.T.L.)
| | - Le Tung Lam
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam; (H.H.); (L.T.L.)
| | - Pham Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City 49117, Vietnam; (P.T.T.O.); (L.C.V.C.); (L.T.A.)
- Correspondence: (T.T.H.D.); (P.V.C.); (H.L.T.A.); Tel.: +84-949-492-778 (T.T.H.D.); +84-913-219-187 (P.V.C.); +84-948-151-838 (H.L.T.A.)
| | - Hoang Le Tuan Anh
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
- Correspondence: (T.T.H.D.); (P.V.C.); (H.L.T.A.); Tel.: +84-949-492-778 (T.T.H.D.); +84-913-219-187 (P.V.C.); +84-948-151-838 (H.L.T.A.)
| |
Collapse
|
9
|
Zhang H, Huang Z, Guo M, Meng L, Piao M, Zhang M, Yu H. Effect of combination therapy with neural stem cell transplantation and teramethylpyrazine in rats following acute spinal cord injury. Neuroreport 2021; 32:1311-1319. [PMID: 34554935 DOI: 10.1097/wnr.0000000000001725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study was to explore the effects of teramethylpyrazine (TMP) administered in conjunction with neural stem cell transplantation on motor function, pathological lesions and the Janus kinase (JAK)2/signal transducer and activator of transcription 3 signal transduction pathway in rats following acute spinal cord injury (SCI). METHODS Female Sprague-Dawley rats were randomly divided into sham, model, neural stem cells (NSCs) and NSCs+TMP groups. Motor function was evaluated using the Basso, Beattie, Bresnahan scale. Spinal cord neuropathies and neuron apoptosis were observed by HE and TUNEL staining. The brain-derived neurotrophic factor (BDNF), Nogo-A, JAK2 and p-JAK2 protein levels were measured by western blot analysis. RESULTS NSCs+TMP significantly improved rat motor function, attenuated impaired spinal cords, and decreased cellular apoptosis, compared with NSCs therapy alone (P < 0.05). In addition, expression of BDNF protein was significantly higher in NSCs+TMP rats compared with other groups regardless of time postinjury (P < 0.05). The highest expression levels of Nogo-A protein were observed in the model group. The expression of p-JAK2 in the NSCs+TMP group was relatively lower than the model and NSCs groups (P < 0.05). CONCLUSIONS In rats with SCI, NSCs+TMP effectively improved motor function and offered spinal cord protection by increasing BDNF and decreasing Nogo-A levels, as well as inhibiting the JAK2/STAT3 signal transduction pathway, suggesting that TMP could be a useful agent in NSCs transplantation in the treatment of SCI.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| | - Zijun Huang
- The Second Clinical College of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Mingming Guo
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| | - Lingzhi Meng
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| | - Meihui Piao
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| | - Meng Zhang
- The Second Clinical College of Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang
| |
Collapse
|
10
|
Du HY, Wang R, Li JL, Luo H, Xie XY, Yan R, Jian YL, Cai JY. Ligustrazine induces viability, suppresses apoptosis and autophagy of retinal ganglion cells with ischemia/reperfusion injury through the PI3K/Akt/mTOR signaling pathway. Bioengineered 2021; 12:507-515. [PMID: 33522374 PMCID: PMC8806313 DOI: 10.1080/21655979.2021.1880060] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ligustrazine, an alkaloid monomer extracted from Chuanxiong Rhizoma, has the function of protecting nerve cells. However, the effect and mechanism of ligustrazine on retinal ischemia/reperfusion (I/R) injury still need to be clarified. In our study, retinal ganglion cells (RGC-5) were used to establish a retinal I/R injury model by anaerobic cultivation. Cell viability, autophagy, and apoptosis were evaluated by cell counting kit 8 assay, transmission electron microscopy, and TUNEL staining after treatment with ligustrazine, PI3K inhibitor Ly294002, and/or mTOR inhibitor rapamycin, respectively. Besides, the levels of PI3K/Akt/mTOR pathway and autophagy-related proteins were determined by western blot. Moreover, one-way ANOVA was adopted for inter-group comparisons of measurement data. Our results demonstrated that low-concentration ligustrazine significantly enhanced cell viability and suppressed cell autophagy and apoptosis of RGC-5 cells after I/R injury, suggesting the protective effect of low-concentration ligustrazine on retinal I/R injury. Moreover, the alleviating effect of ligustrazine on RGC-5 with retinal I/R injury was mechanistically associated with the activation of the PI3K/Akt/mTOR pathway. In conclusion, low-concentration ligustrazine has a significant protective effect on RGC-5 cells with retinal I/R injury by activating the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Hong-Yan Du
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Rong Wang
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Jian-Liang Li
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Huang Luo
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Xiao-Yan Xie
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Ran Yan
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Yue-Ling Jian
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| | - Jin-Ying Cai
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University , Guangzhou, China
| |
Collapse
|
11
|
Lin Y, Wan Y, Du X, Li J, Wei J, Li T, Li C, Liu Z, Zhou M, Zhong Z. TAT-modified serum albumin nanoparticles for sustained-release of tetramethylpyrazine and improved targeting to spinal cord injury. J Nanobiotechnology 2021; 19:28. [PMID: 33478501 PMCID: PMC7819157 DOI: 10.1186/s12951-020-00766-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Spinal Cord injury (SCI) is a kind of severe traumatic disease. The inflammatory response is a significant feature after SCI. Tetramethylpyrazine (TMP), a perennial herb of umbelliferae, is an alkaloid extracted from ligustici. TMP can inhibit the production of nitric oxide and reduce the inflammatory response in peripheral tissues. It can be seen that the therapeutic effect of TMP on SCI is worthy of affirmation. TMP has defects such as short half-life and poor water-solubility. In addition, the commonly used dosage forms of TMP include tablets, dropping pills, injections, etc., and its tissue and organ targeting is still a difficult problem to solve. To improve the solubility and targeting of TMP, here, we developed a nanotechnology-based drug delivery system, TMP-loaded nanoparticles modified with HIV trans-activator of transcription (TAT-TMP-NPs). RESULTS The nanoparticles prepared in this study has integrated structure. The hemolysis rate of each group is less than 5%, indicating that the target drug delivery system has good safety. The results of in vivo pharmacokinetic studies show that TAT-TMP-NPs improves the bioavailability of TMP. The quantitative results of drug distribution in vivo show that TAT-TMP-NPs is more distributed in spinal cord tissue and had higher tissue targeting ability compared with other treatment groups. CONCLUSIONS The target drug delivery system can overcome the defect of low solubility of TMP, achieve the targeting ability, and show the further clinical application prospect.
Collapse
Affiliation(s)
- Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yujie Wan
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xingjie Du
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Wei
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ting Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhongbing Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
12
|
2,3,5,6-Tetramethylpyrazine protects retinal photoreceptors against endoplasmic reticulum stress by modulating ATF4-mediated inhibition of PRP aggregation. J Mol Med (Berl) 2021; 99:383-402. [PMID: 33409554 DOI: 10.1007/s00109-020-02017-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023]
Abstract
Endoplasmic reticulum (ER) stress is a common threat to photoreceptors during the pathogenesis of chronic retinopathies and often results in irreversible visual impairment. 2,3,5,6-Tetramethylpyrazine (TMP), which possesses many beneficial pharmacological activities, is a potential drug that could be used to protect photoreceptors. In the present study, we found that the cellular growth rate of 661 W cells cultured under low glucose conditions was lower than that of control cells, while the G2/M phase of the cell cycle was longer. We further found that the mitochondrial membrane potential (ΔΨm) was lower and that ER stress factor expression was increased in 661 W cells cultured under low glucose conditions. TMP reversed these trends. Visual function and cell counts in the outer nuclear layer (ONL) were low and the TUNEL-positive rate in the ONL was high in a C3H mouse model of spontaneous retinal degeneration. Similarly, visual function was decreased, and the TUNEL-positive rate in the ONL was increased in fasted C57/BL6j mice compared with control mice. On the other hand, ER stress factor expression was found to be increased in the retinas of both mouse models, as shown by reverse transcription real-time PCR (RT-qPCR) and western blotting. TMP reversed the physiological and molecular biological variations observed in both mouse models, and ATF4 expression was enhanced again. Further investigation by using western blotting illustrated that the proportion of insoluble prion protein (PRP) versus soluble PRP was reduced both in vitro and in vivo. Taken together, these results suggest that TMP increased the functions of photoreceptors by alleviating ER stress in vitro and in vivo, and the intrinsic mechanism was the ATF4-mediated inhibition of PRP aggregation. TMP may potentially be used clinically as a therapeutic agent to attenuate the functional loss of photoreceptors during the pathogenesis of chronic retinopathies. KEY MESSAGES: • Already known: TMP is a beneficial drug mainly used in clinic to enhance organ functions, and the intrinsic mechanism is still worthy of exploring. • New in the study: We discovered that TMP ameliorated retinal photoreceptors function via ER stress alleviation, which was promoted by ATF4-mediated inhibition of PRP aggregation. • Application prospect: In prospective clinical practices, TMP may potentially be used in the clinic as a therapeutic agent to attenuate the photoreceptors functional reduction in chronic retinopathies.
Collapse
|
13
|
Ma L, Yang C, Zheng J, Chen Y, Xiao Y, Huang K. Non-polyphenolic natural inhibitors of amyloid aggregation. Eur J Med Chem 2020; 192:112197. [PMID: 32172082 DOI: 10.1016/j.ejmech.2020.112197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Protein misfolding diseases (PMDs) are chronic and progressive, with no effective therapy so far. Aggregation and misfolding of amyloidogenic proteins are closely associated with the onset and progression of PMDs, such as amyloid-β (Aβ) in Alzheimer's disease, α-Synuclein (α-Syn) in Parkinson's disease and human islet amyloid polypeptide (hIAPP) in type 2 diabetes. Inhibiting toxic aggregation of amyloidogenic proteins is regarded as a promising therapeutic approach in PMDs. The past decade has witnessed the rapid progresses of this field, dozens of inhibitors have been screened and verified in vitro and in vivo, demonstrating inhibitory effects against the aggregation and misfolding of amyloidogenic proteins, together with beneficial effects. Natural products are major sources of small molecule amyloid inhibitors, a number of natural derived compounds have been identified with great bioactivities and translational prospects. Here, we review the non-polyphenolic natural inhibitors that potentially applicable for PMDs treatment, along with their working mechanisms. Future directions are proposed for the development and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yushuo Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430035, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
14
|
Satish Kumar K, Velayutham R, Roy KK. A systematic computational analysis of human matrix metalloproteinase 13 (MMP-13) crystal structures and structure-based identification of prospective drug candidates as MMP-13 inhibitors repurposable for osteoarthritis. J Biomol Struct Dyn 2019; 38:3074-3086. [PMID: 31378153 DOI: 10.1080/07391102.2019.1651221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ravichandiran Velayutham
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Kuldeep K. Roy
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| |
Collapse
|