1
|
Boccoli L, Drago E, Cafarelli A, Vannozzi L, Sciullo A, Iberite F, Kerdegari S, Fujie T, Gruppioni E, Canale C, Ricotti L. Micropatterned Styrene-Butadiene-Styrene Thin Films Doped with Barium Titanate Nanoparticles: Effects on Myoblast Differentiation. ACS Biomater Sci Eng 2025; 11:2910-2921. [PMID: 40309959 PMCID: PMC12076278 DOI: 10.1021/acsbiomaterials.4c02468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Biohybrid actuators exploit the contraction of biological components (muscle cells) to produce a force. In particular, bottom-up approaches use tissue engineering techniques, by coupling cells with a proper scaffold to obtain constructs undergoing contraction and guaranteeing actuation in biohybrid devices. However, the fabrication of actuators able to recapitulate the organization and maturity of native muscle is not trivial. In this field, quasi-two-dimensional (2D) substrates are raising interest due to their high surface/thickness ratio and the possibility of functionalizing their surface. In this work, we fabricated micropatterned thin films made of poly(styrene-butadiene-styrene) (SBS) doped with barium titanate nanoparticles (BTNPs) for fostering myogenic differentiation. We investigated material concentrations and fabrication process parameters to obtain thin microgrooved films with an average thickness below 1 μm, thus featured by a relatively low flexural rigidity and with an anisotropic topography to guide cell alignment and myotube formation. The embodiment of BTNPs did not significantly affect the film's mechanical properties. Interestingly, the presence of BTNPs enhanced the expression of myogenic differentiation markers (i.e., MYH1, MYH4, MYH8, and ACTA1). The results show the promising potential of SBS thin films doped with BTNPs, opening avenues in the fields of biohybrid actuation and skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Leonardo Boccoli
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
| | - Elena Drago
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
| | - Andrea Cafarelli
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
| | - Lorenzo Vannozzi
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
| | - Angelo Sciullo
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
| | - Federica Iberite
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
| | - Sajedeh Kerdegari
- Dipartimento
di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Toshinori Fujie
- School
of Life Science and Technology, Institute
of Science Tokyo, 226-8501 Yokohama, Japan
- Research
Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated Research (IIR), Institute of Science Tokyo, 226-8501 Yokohama, Japan
| | - Emanuele Gruppioni
- Centro Protesi
INAIL, Istituto Nazionale per l’Assicurazione contro gli Infortuni
sul Lavoro, 40054 Vigorso
di Budrio, 40054 Bologna, Italy
| | - Claudio Canale
- Dipartimento
di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Leonardo Ricotti
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, 56127 Pisa, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, 56127 Pisa, Italy
| |
Collapse
|
2
|
Fuentes S, Arancibia D, Rojas M, Carmona F, Ortega A, Valenzuela J, Hernández-Álvarez C, Martín IR. Simultaneous Second Harmonic Generation and Multiphoton Excited Photoluminescence in Samarium-Doped BaTiO 3 Nanoparticles Functionalized with Poly(ethylene glycol). ACS OMEGA 2024; 9:28061-28071. [PMID: 38973864 PMCID: PMC11223262 DOI: 10.1021/acsomega.4c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
In this work, samarium-doped BaTiO3 (BT:Sm) nanoparticles (NPs) were prepared and coated with poly(ethylene glycol) (PEG) to investigate their optical characteristics and compatibility with biological systems. The structure, particle morphology, optical properties, and biological compatibility of the NPs were assessed. The results demonstrated the formation of BT:Sm and [(BT:Sm)-PEG]. The relative intensities and positions of peaks in the X-ray diffraction (XRD) are consistent with an average crystallite size of ∼75 nm. The Raman spectra showed that Sm doping produced the typical tetragonal peaks at around 306 and 715 cm-1, and Fourier transform infrared (FTIR) spectroscopy showed that the PEGylation process was effective. Also, our investigation demonstrates the potential of these NPs as very temperature-sensitive nanosensors with a resolution exceeding 0.5 °C, which is achievable through optical excitation. We also analyze their emission properties. Finally, we present a study related with the mitochondrial activity of naked and PEG-coated NPs. The results indicate that neither naked nor PEG-coated NPs exhibit changes in mitochondrial metabolism, as indicated by quantitative cell viability and morphological visualization. The PEG-coated NPs prevented the formation of aggregates in cell culture compared to naked NPs, demonstrating the significance of PEG as a stabilizing agent.
Collapse
Affiliation(s)
- Sandra Fuentes
- Departamento
de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla, 1280 Antofagasta, Chile
- Center
for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago 9160000, Chile
| | - Duxan Arancibia
- Departamento
de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla, 1280 Antofagasta, Chile
| | - Marcelo Rojas
- Departamento
de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla, 1280 Antofagasta, Chile
| | - Francisca Carmona
- Departamento
de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla, 1280 Antofagasta, Chile
| | - Andrea Ortega
- Departamento
de Procesos Diagnósticos y Evaluación, Facultad de Ciencias
de la Salud, Universidad Católica
de Temuco, Temuco 4813302, La Araucanía, Chile
| | - Julio Valenzuela
- Departamento
de Minas y Metalurgia, Universidad Católica
del Norte, Antofagasta 1280, Chile
| | - Christian Hernández-Álvarez
- Departamento
de Física, MALTA-Consolider Team, IMN, Universidad de La Laguna, Apdo. Correos 456, E-38206 San Cristóbal de La Laguna, Santa
Cruz de Tenerife, Spain
| | - Inocencio R. Martín
- Departamento
de Física, MALTA-Consolider Team, IMN, Universidad de La Laguna, Apdo. Correos 456, E-38206 San Cristóbal de La Laguna, Santa
Cruz de Tenerife, Spain
| |
Collapse
|
3
|
SanaUllah I, Khan S, Ali D, Sajjad A, Shamaila S, Kanwal Z, Sabri AN, Atiq S, Naseem S, Riaz S. Investigation and optimization of In-Vitro behaviour of Perovskite barium titanate as a scaffold and protective coatings. J Mech Behav Biomed Mater 2024; 149:106215. [PMID: 37984284 DOI: 10.1016/j.jmbbm.2023.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
The piezoelectric effect is widely known to have a significant physiological function in bone development, remodeling, and fracture repair. As a well-known piezoelectric material, barium titanate is particularly appealing as a scaffold layer to improve bone tissue engineering applications. Currently, the chemical bath deposition method is used to prepare green synthesized barium titanate coatings to improve mechanical and biological characteristics. Molarity of the solutions, an essential parameter in chemical synthesis, is changed at room temperature (0.1-1.2 Molar) to prepare coatings. The XRD spectra for as deposited coatings indicate amorphous behavior, while polycrystalline nature of coatings is observed after annealing (300 °C). Coatings prepared with solutions of relatively low molarities, i.e. from 0.1 to 0.8 M, exhibit mixed tetragonal - cubic phases. However, the tetragonal phase of Perovskite barium titanate is observed using solution molarities of 1.0 M and 1.2 M. Relatively high value of transmission, i.e. ∼80%, is observed for the coatings prepared with high molarities. Band gap of annealed coatings varies between 3.47 and 3.70 eV. For 1.2 M sample, the maximum spontaneous polarization (Ps) is 0.327x10-3 (μC/cm2) and the residual polarization (Pr) is 0.072x10-3 (μC/cm2). For 1.2M solution, a high hardness value (1510 HV) is recorded, with a fracture toughness of 28.80 MPam-1/2. Low values of weight loss, after dipping the coatings in simulated body fluid, is observed. The antibacterial activity of BaTiO3 is tested against E. coli and Bacillus subtilis. Drug encapsulation capability is also tested for different time intervals. As a result, CBD-based coatings are a promising nominee for use as scaffold and protective coatings.
Collapse
Affiliation(s)
- Ifra SanaUllah
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| | - Sidra Khan
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amna Sajjad
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - S Shamaila
- Waterloo Institute for Nanotechnology, University of Waterloo, Ontario, Canada
| | - Zakia Kanwal
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Anjum N Sabri
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Shahid Atiq
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| | - Shahzad Naseem
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan
| | - Saira Riaz
- Centre of Excellence in Solid State Physics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
4
|
Rahman M, Mahady Dip T, Padhye R, Houshyar S. Review on electrically conductive smart nerve guide conduit for peripheral nerve regeneration. J Biomed Mater Res A 2023; 111:1916-1950. [PMID: 37555548 DOI: 10.1002/jbm.a.37595] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/29/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
At present, peripheral nerve injuries (PNIs) are one of the leading causes of substantial impairment around the globe. Complete recovery of nerve function after an injury is challenging. Currently, autologous nerve grafts are being used as a treatment; however, this has several downsides, for example, donor site morbidity, shortage of donor sites, loss of sensation, inflammation, and neuroma development. The most promising alternative is the development of a nerve guide conduit (NGC) to direct the restoration and renewal of neuronal axons from the proximal to the distal end to facilitate nerve regeneration and maximize sensory and functional recovery. Alternatively, the response of nerve cells to electrical stimulation (ES) has a substantial regenerative effect. The incorporation of electrically conductive biomaterials in the fabrication of smart NGCs facilitates the function of ES throughout the active proliferation state. This article overviews the potency of the various categories of electroactive smart biomaterials, including conductive and piezoelectric nanomaterials, piezoelectric polymers, and organic conductive polymers that researchers have employed latterly to fabricate smart NGCs and their potentiality in future clinical application. It also summarizes a comprehensive analysis of the recent research and advancements in the application of ES in the field of NGC.
Collapse
Affiliation(s)
- Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Sengupta D, Naskar S, Mandal D. Reactive oxygen species for therapeutic application: Role of piezoelectric materials. Phys Chem Chem Phys 2023; 25:25925-25941. [PMID: 37727027 DOI: 10.1039/d3cp01711g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
This perspective article emphasizes the significant role of reactive oxygen species (ROS) in in vivo remedial therapy of various diseases and complications, capitalizing on their potential reactivity. Among the various influencers, herein, piezoelectric materials driven ROS generation activity is primarily considered. Intrinsic non-centrosymmetry of piezoelectric materials makes them suitable for distinct dipole formation in the presence of external mechanical stimuli. Such characteristics prompt the positioning of opposite charged carriers to execute associated redox transformations that effectively participate to generate ROS in the aqueous media of the cell cytoplasm, organelles and nucleus. The immense reactivity of piezoelectric material driven ROS is fostered to terminate cellular toxicity or curtail tumor cell growth, due to their higher specificity. This perspective considers the conjugated performance of piezoelectric materials and ultrasound which can remotely generate electrical charges that promote ROS production for therapeutic application. In particular, a substantial synopsis is provided for the remedial activity of numerous piezocatalytic materials in tumor cell apoptosis, antibacterial treatment, dental care and neurological disorders. Subsequently, the report precisely demonstrates the methods involving various spectrophotometric approaches for the analysis of the ROS. Finally, the key challenges of piezoelectric material-based therapy are discussed and systematic future progress is outlined.
Collapse
Affiliation(s)
- Dipanjan Sengupta
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector81, Mohali 140306, India.
- Department of Chemistry, Faculty of Engineering, Teerthanker Mahaveer University, Moradabad 244001, India
| | - Sudip Naskar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector81, Mohali 140306, India.
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector81, Mohali 140306, India.
| |
Collapse
|
6
|
Ibrahim SW, Hamad TI, Haider J. Biological properties of polycaprolactone and barium titanate composite in biomedical applications. Sci Prog 2023; 106:368504231215942. [PMID: 38031343 PMCID: PMC10687994 DOI: 10.1177/00368504231215942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The ceramic-polymer composite materials are widely known for their exceptional mechanical and biological properties. Polycaprolactone (PCL) is a biodegradable polymer material extensively used in various biomedical applications. At the same time, barium titanate (BT), a ceramic material, exhibits piezoelectric properties similar to bone, which is essential for osseointegration. Furthermore, a composite material that combines the benefits of PCL and BT results in an innovative composite material with enhanced properties for biomedical applications. Thus, this review is organised into three sections. Firstly, it aims to provide an overview of the current research on evaluating biological properties, including antibacterial activity, cytotoxicity and osseointegration, of PCL polymeric matrices in its pure form and reinforced structures with ceramics, polymers and natural extracts. The second section investigates the biological properties of BT, both in its pure form and in combination with other supporting materials. Finally, the third section provides a summary of the biological properties of the PCLBT composite material. Furthermore, the existing challenges of PCL, BT and their composites, along with future research directions, have been presented. Therefore, this review will provide a state-of-the-art understanding of the biological properties of PCL and BT composites as potential futuristic materials in biomedical applications.
Collapse
Affiliation(s)
- Sabreen Waleed Ibrahim
- Prosthodontic Department, College of Dentistry, Al Mustansiriyah University, Baghdad, Iraq
| | - Thekra Ismael Hamad
- Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
7
|
Wang Y, Zang P, Yang D, Zhang R, Gai S, Yang P. The fundamentals and applications of piezoelectric materials for tumor therapy: recent advances and outlook. MATERIALS HORIZONS 2023; 10:1140-1184. [PMID: 36729448 DOI: 10.1039/d2mh01221a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Malignant tumors are one of the main diseases leading to death, and the vigorous development of nanotechnology has opened up new frontiers for antitumor therapy. Currently, researchers are focused on solving the biomedical challenges associated with traditional anti-tumor medical methods, promoting the research and development of nano-drug carriers and new nano-drugs, which brings great hope for improving the curative effect and reducing toxic and side effects. Among the new systems being investigated, piezoelectric nano biomaterials, including ferroelectrics, piezoelectric and pyroelectric materials, have recently received extensive attention for antitumor applications. By coupling force, light, magnetism or heat and electricity, polarized charges are generated in these materials microscopically, forming a piezo-potential and establishing a built-in electric field. Polarized charges can directly act on the materials in the tumor micro-environment and also assist in the separation of carriers and inhibit recombination based on piezoelectric theory and piezoelectric optoelectronic theory. Based on this, piezoelectric materials convert various forms of primary energy (such as light energy, mechanical energy, thermal energy and magnetic energy) from the surrounding environment into secondary energy (such as electrical energy and chemical energy). Herein, we review the basic theory and principles of piezoelectric materials, pyroelectric materials and ferroelectric materials as nanomedicine. Then, we summarize the types of piezoelectric materials reported to date and their wide applications in treatment, imaging, device construction and probe detection in various tumor treatment fields. Based on this, we discuss the relevant characteristics and post-processing strategies of nano piezoelectric biomaterials to obtain the maximum piezoelectric response. Finally, we present the key challenges and future prospects for the development of ferroelectric, piezoelectric and pyroelectric nanomaterial-based nanoagents for efficient energy harvesting and conversion for desirable therapeutic outcomes.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Rui Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
- Yantai Research Institute, Harbin Engineering University, Yantai 264000, P. R. China
| |
Collapse
|
8
|
Sood A, Desseigne M, Dev A, Maurizi L, Kumar A, Millot N, Han SS. A Comprehensive Review on Barium Titanate Nanoparticles as a Persuasive Piezoelectric Material for Biomedical Applications: Prospects and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206401. [PMID: 36585372 DOI: 10.1002/smll.202206401] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Stimulation of cells with electrical cues is an imperative approach to interact with biological systems and has been exploited in clinical practices over a wide range of pathological ailments. This bioelectric interface has been extensively explored with the help of piezoelectric materials, leading to remarkable advancement in the past two decades. Among other members of this fraternity, colloidal perovskite barium titanate (BaTiO3 ) has gained substantial interest due to its noteworthy properties which includes high dielectric constant and excellent ferroelectric properties along with acceptable biocompatibility. Significant progression is witnessed for BaTiO3 nanoparticles (BaTiO3 NPs) as potent candidates for biomedical applications and in wearable bioelectronics, making them a promising personal healthcare platform. The current review highlights the nanostructured piezoelectric bio interface of BaTiO3 NPs in applications comprising drug delivery, tissue engineering, bioimaging, bioelectronics, and wearable devices. Particular attention has been dedicated toward the fabrication routes of BaTiO3 NPs along with different approaches for its surface modifications. This review offers a comprehensive discussion on the utility of BaTiO3 NPs as active devices rather than passive structural unit behaving as carriers for biomolecules. The employment of BaTiO3 NPs presents new scenarios and opportunity in the vast field of nanomedicines for biomedical applications.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Margaux Desseigne
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Atul Dev
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 2921 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| |
Collapse
|
9
|
Structural characterization, stability, and cytocompatibility study of chitosan BaTiO 3@ZnO:Er heterostructures. Int J Biol Macromol 2023; 235:123796. [PMID: 36822293 DOI: 10.1016/j.ijbiomac.2023.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
New imaging agents are required in cancer diagnosis to enhance the diagnostic accuracy, classification, and therapeutic management of tumors. Nanomaterials have emerged as a promising alternative to developing new nanostructures with imaging applications. In this study, a heterostructure based on barium titanate (BT), zinc oxide (ZnO), and erbium (Er) was prepared and coated with Chitosan (CS) to investigate their stability and compatibility with biological systems. The structure, particle morphology, luminescence properties, stability, and cytotoxicity of different nanoparticles (NPs) were assessed. The results demonstrated the formation of a [BT@ZnO:Er]-CS heterostructure, which is consistent with the relative intensities and positions of peaks in the X-ray diffraction (XRD) with an average crystallite size of ~76 nm. The electrokinetic measurement results indicate that the coated NPs are the most stable and have an average size close to 200 nm when the pH is between 3 and 5. Finally, we presented a cytotoxicity study of naked and CS-coated NPs. The results indicate that naked NPs exhibit varying cellular toxicity, as indicated by decreased cell viability, morphological changes, and an increase in an apoptotic marker. The CS-coated NPs prevented the cytotoxic effect of the naked NPs, demonstrating the significance of CS as a stabilizing agent.
Collapse
|
10
|
Murugan C, Lee H, Park S. Tumor-targeted molybdenum disulfide@barium titanate core-shell nanomedicine for dual photothermal and chemotherapy of triple-negative breast cancer cells. J Mater Chem B 2023; 11:1044-1056. [PMID: 36606505 DOI: 10.1039/d2tb02382b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Combinational therapy can improve the effectiveness of cancer treatment by overcoming individual therapy shortcomings, leading to accelerated cancer cell apoptosis. Combinational cancer therapy is attained by a single nanosystem with multiple physicochemical properties providing an efficient synergistic therapy against cancer cells. Herein, we report a folate receptor-targeting dual-therapeutic (photothermal and chemotherapy) core-shell nanoparticle (CSNP) exhibiting a molybdenum disulfide core with a barium titanate shell (MoS2@BT) to improve therapeutic efficacy against triple-negative breast cancer (TNBC) MDA-MB-231 cells. A simple hydrothermal approach was used to achieve the MoS2@BT CSNPs, and their diameter was calculated to be approximately 180 ± 25 nm. In addition to improving the photothermal efficiency and stability of the MoS2@BT CSNPs, their surface was functionalized with polydopamine (PDA) and subsequently modified with folic acid (FA) to achieve enhanced tumour-targeting CSNPs, named MoS2@BT-PDA-FA (MBPF). Then, gemcitabine (Gem) was loaded into the MBPF, and its loading and releasing efficacy were calculated to be 17.5 wt% and 64.5 ± 3%, respectively. Moreover, the photothermal conversion efficiency (PCE) of MBPF was estimated to be 35.3%, and it also showed better biocompatibility, which was determined by an MTT assay. The MBPF significantly increased the ambient temperature to 56.3 °C and triggered Gem release inside the TNBC cells when exposed to a near-infrared (NIR) laser (808 nm, 1.5 W cm-2, 5 min). Notably, the MoS2@BT-based nanosystem was used as a photothermal agent and a therapeutic drug-loading container for combating TNBC cells. Benefiting from the combined therapy, MBPF reduced TNBC cell viability to 81.3% due to its efficient synergistic effects. Thus, the proposed tumour-targeting MoS2@BT CSNP exhibits high drug loading, better biocompatibility, and improved anticancer efficacy toward TNBC cells due to its dual therapeutic approach in a single system, which opens up a new approach for dual cancer therapy.
Collapse
Affiliation(s)
- Chandran Murugan
- Department of Robotics and Mechatronics Engineering, Multiscale Biomedical Robotics Laboratory, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Hyoryong Lee
- Department of Robotics and Mechatronics Engineering, Multiscale Biomedical Robotics Laboratory, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Sukho Park
- Department of Robotics and Mechatronics Engineering, Multiscale Biomedical Robotics Laboratory, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
11
|
Han J, Zhang Y, Wang X, Zhang G, Yu Z, Wang C, Xu T, Zhou Z, Yang X, Jin X, Liu C, Zhou L, Wang Y, Tang B, Guo S, Jiang H, Yu L. Ultrasound-mediated piezoelectric nanoparticle modulation of intrinsic cardiac autonomic nervous system for rate control in atrial fibrillation. Biomater Sci 2023; 11:655-665. [PMID: 36511142 DOI: 10.1039/d2bm01733d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rate control is a cornerstone of atrial fibrillation treatment. Barium titanate nanoparticles (BTNPs) are piezoelectric nanomaterials that can generate local electromagnetic fields under ultrasound activation, stimulating nearby neuronal tissue. This study aimed to modulate the inferior right ganglionated plexus (IRGP) of the heart and reduce the ventricular rate during rapid atrial pacing (RAP)-induced atrial fibrillation using ultrasound-mediated BTNPs. Adult male beagles were randomly divided into a phosphate-buffered saline (PBS) group (n = 6) and a BTNP group (n = 6). PBS or nanoparticles were injected into the IRGP of both groups before RAP. The biological safety of the material was evaluated according to electrophysiology recordings, thermal effects and level of inflammation. Compared to the PBS group, the BaTiO3 piezoelectric nanoparticle group had reduced ventricular rates in the sinus rhythm and atrial fibrillation models after stimulating the IRGP by applying ultrasound. In addition, transient stimulation by BTNPs did not lead to sustained neuronal excitation in the IRGP. The activation of the BTNPs did not induce inflammation or thermal damage effects in the IRGP. Ultrasound-mediated BTNP neuromodulation can significantly reduce the ventricular rate by stimulating the IRGP. Thus, ultrasound-mediated BTNP neuromodulation is a potential therapy for atrial fibrillation rate control.
Collapse
Affiliation(s)
- Jiapeng Han
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Yuanzheng Zhang
- Hubei Yangtze Memory Laboratories, Wuhan 430205, PR China; Key Laboratory of Artificial Micro, and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China.
| | - Xiaofei Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Guocheng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Zhiyao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Changyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Tianyou Xu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Zhen Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Xiaomeng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Xiaoxing Jin
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Chenzhe Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Baopeng Tang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urmuqi, Xinjiang 830011, P.R. China.
| | - Shishang Guo
- Hubei Yangtze Memory Laboratories, Wuhan 430205, PR China; Key Laboratory of Artificial Micro, and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University; Hubei Key Laboratory of Autonomic Nervous System Modulation; Cardiac Autonomic Nervous System Research Center of Wuhan University; Taikang Center for Life and Medical Sciences, Wuhan University; Institute of Molecular Medicine, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| |
Collapse
|
12
|
Nedelcu L, Ferreira JMF, Popa AC, Amarande L, Nan B, Bălescu LM, Geambașu CD, Cioangher MC, Leonat L, Grigoroscuță M, Cristea D, Stroescu H, Ciocoiu RC, Stan GE. Multi-Parametric Exploration of a Selection of Piezoceramic Materials for Bone Graft Substitute Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:901. [PMID: 36769908 PMCID: PMC9917895 DOI: 10.3390/ma16030901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
This work was devoted to the first multi-parametric unitary comparative analysis of a selection of sintered piezoceramic materials synthesised by solid-state reactions, aiming to delineate the most promising biocompatible piezoelectric material, to be further implemented into macro-porous ceramic scaffolds fabricated by 3D printing technologies. The piezoceramics under scrutiny were: KNbO3, LiNbO3, LiTaO3, BaTiO3, Zr-doped BaTiO3, and the (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 solid solution (BCTZ). The XRD analysis revealed the high crystallinity of all sintered ceramics, while the best densification was achieved for the BaTiO3-based materials via conventional sintering. Conjunctively, BCTZ yielded the best combination of functional properties-piezoelectric response (in terms of longitudinal piezoelectric constant and planar electromechanical coupling factor) and mechanical and in vitro osteoblast cell compatibility. The selected piezoceramic was further used as a base material for the robocasting fabrication of 3D macro-porous scaffolds (porosity of ~50%), which yielded a promising compressive strength of ~20 MPa (higher than that of trabecular bone), excellent cell colonization capability, and noteworthy cytocompatibility in osteoblast cell cultures, analogous to the biological control. Thereby, good prospects for the possible development of a new generation of synthetic bone graft substitutes endowed with the piezoelectric effect as a stimulus for the enhancement of osteogenic capacity were settled.
Collapse
Affiliation(s)
- Liviu Nedelcu
- National Institute of Materials Physics, 077125 Magurele, Romania
| | - José M. F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Materials Institute, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Bo Nan
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Materials Institute, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | - Lucia Leonat
- National Institute of Materials Physics, 077125 Magurele, Romania
| | | | - Daniel Cristea
- Department of Materials Science, Faculty of Materials Science and Engineering, Transilvania University of Brasov, 500068 Brasov, Romania
| | - Hermine Stroescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest, Romania
| | - Robert Cătălin Ciocoiu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - George E. Stan
- National Institute of Materials Physics, 077125 Magurele, Romania
| |
Collapse
|
13
|
Improving the colloidal stability of PEGylated BaTiO3 nanoparticles with surfactants. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Synthesis, Characterization, and Application of BaTiO3 Nanoparticles for Anti-Cancer Activity. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractBarium titanate (BaTiO3) nanoparticles (BTNPs) have been considered as emerging materials in biomedical sector through last decades due to the excellent physicochemical properties such as dielectric and piezoelectric structures, biocompatibility, and nonlinear optical characteristics. In this study, BTNPs were synthesized via the co-precipitation method using barium carbonate and titanium dioxide by stirring for 5 h. Then, it was annealed at 850 °C for 5 h with five different concentrations: 0.2, 0.4, 0.6, 0.8, and 1 g/mL. The structural, morphological, and optical analyses were demonstrated by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), Raman, and UV–visible spectroscopy. The perovskite phase of BTNPs, an intense peak at 31.6°, was observed at the lowest concentration (0.2 g/mL), and the average crystalline size was 1.42 nm based on XRD pattern. The results have been justified by SEM and EDX. TGA demonstrated the adequate thermal stability of this material. EDX analysis confirmed the composition of Ti, Ba, and O elements. Raman peaks at 305 cm−1 and 517 cm−1 confirmed the formation of BaTiO3. UV–visible spectra presented that its’ absorbance edge shifted into visible range at 404 nm. Application of BTNPs on breast cancer cell line (MCF-7) presented significant dispersion effect at 0.2, 0.4 and 0.6 g/mL of BaTiO3. A strong toxicity rate of BaTiO3 has been observed against the MCF-7 cell line. Maximum % of cell viability loss, $$\cong$$
≅
57% was recorded at 200 µg/mL of BTNPs, and minimum % of cell viability loss was observed as 19% at 50 µg/mL of BTNPs. The results presented that a higher concentration of BTPNs dosage was more effective in inhibition of breast cancer cells. Therefore, BTNPs can be recommended as a promising nanomaterial for anti-cancer drug discovery.
Collapse
|
15
|
Paci C, Iberite F, Arrico L, Vannozzi L, Parlanti P, Gemmi M, Ricotti L. Piezoelectric nanocomposite bioink and ultrasound stimulation modulate early skeletal myogenesis. Biomater Sci 2022; 10:5265-5283. [PMID: 35913209 DOI: 10.1039/d1bm01853a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the significant progress in bioprinting for skeletal muscle tissue engineering, new stimuli-responsive bioinks to boost the myogenesis process are highly desirable. In this work, we developed a printable alginate/Pluronic-based bioink including piezoelectric barium titanate nanoparticles (nominal diameter: ∼60 nm) for the 3D bioprinting of muscle cell-laden hydrogels. The aim was to investigate the effects of the combination of piezoelectric nanoparticles with ultrasound stimulation on early myogenic differentiation of the printed structures. After the characterization of nanoparticles and bioinks, viability tests were carried out to investigate three nanoparticle concentrations (100, 250, and 500 μg mL-1) within the printed structures. An excellent cytocompatibility was confirmed for nanoparticle concentrations up to 250 μg mL-1. TEM imaging demonstrated the internalization of BTNPs in intracellular vesicles. The combination of piezoelectric nanoparticles and ultrasound stimulation upregulated the expression of MYOD1, MYOG, and MYH2 and enhanced cell aggregation, which is a crucial step for myoblast fusion, and the presence of MYOG in the nuclei. These results suggest that the direct piezoelectric effect induced by ultrasound on the internalized piezoelectric nanoparticles boosts myogenesis in its early phases.
Collapse
Affiliation(s)
- Claudia Paci
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Federica Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lorenzo Arrico
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Paola Parlanti
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Mauro Gemmi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
16
|
Tan M, Xu Y, Gao Z, Yuan T, Liu Q, Yang R, Zhang B, Peng L. Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108491. [PMID: 35008128 DOI: 10.1002/adma.202108491] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Indexed: 05/27/2023]
Abstract
The primary roles of precision medicine are to perform real-time examination, administer on-demand medication, and apply instruments continuously. However, most current therapeutic systems implement these processes separately, leading to treatment interruption and limited recovery in patients. Personalized healthcare and smart medical treatment have greatly promoted research on and development of biosensing and drug-delivery integrated systems, with intelligent wearable medical devices (IWMDs) as typical systems, which have received increasing attention because of their non-invasive and customizable nature. Here, the latest progress in research on IWMDs is reviewed, including their mechanisms of integrating biosensing and on-demand drug delivery. The current challenges and future development directions of IWMDs are also discussed.
Collapse
Affiliation(s)
- Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ziqi Gao
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tiejun Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qingjun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xian, 710126, P. R. China
| | - Bin Zhang
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China
| |
Collapse
|
17
|
Maji M, Kivale P, Ghosh M. A novel therapy to combat non-small cell lung carcinoma (A549) using platinum (IV) and barium titanate conjugate. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Neuron Compatibility and Antioxidant Activity of Barium Titanate and Lithium Niobate Nanoparticles. Int J Mol Sci 2022; 23:ijms23031761. [PMID: 35163681 PMCID: PMC8836423 DOI: 10.3390/ijms23031761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
The biocompatibility and the antioxidant activity of barium titanate (BaTiO3) and lithium niobate (LiNbO3) were investigated on a neuronal cell line, the PC12, to explore the possibility of using piezoelectric nanoparticles in the treatment of inner ear diseases, avoiding damage to neurons, the most delicate and sensitive human cells. The cytocompatibility of the compounds was verified by analysing cell viability, cell morphology, apoptotic markers, oxidative stress and neurite outgrowth. The results showed that BaTiO3 and LiNbO3 nanoparticles do not affect the viability, morphological features, cytochrome c distribution and production of reactive oxygen species (ROS) by PC12 cells, and stimulate neurite branching. These data suggest the biocompatibility of BaTiO3 and LiNbO3 nanoparticles, and that they could be suitable candidates to improve the efficiency of new implantable hearing devices without damaging the neuronal cells.
Collapse
|
19
|
Turner BL, Senevirathne S, Kilgour K, McArt D, Biggs M, Menegatti S, Daniele MA. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications. Adv Healthc Mater 2021; 10:e2100986. [PMID: 34235886 DOI: 10.1002/adhm.202100986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Indexed: 12/14/2022]
Abstract
Ultrasound-powered implants (UPIs) represent cutting edge power sources for implantable medical devices (IMDs), as their powering strategy allows for extended functional lifetime, decreased size, increased implant depth, and improved biocompatibility. IMDs are limited by their reliance on batteries. While batteries proved a stable power supply, batteries feature relatively large sizes, limited life spans, and toxic material compositions. Accordingly, energy harvesting and wireless power transfer (WPT) strategies are attracting increasing attention by researchers as alternative reliable power sources. Piezoelectric energy scavenging has shown promise for low power applications. However, energy scavenging devices need be located near sources of movement, and the power stream may suffer from occasional interruptions. WPT overcomes such challenges by more stable, on-demand power to IMDs. Among the various forms of WPT, ultrasound powering offers distinct advantages such as low tissue-mediated attenuation, a higher approved safe dose (720 mW cm-2 ), and improved efficiency at smaller device sizes. This study presents and discusses the state-of-the-art in UPIs by reviewing piezoelectric materials and harvesting devices including lead-based inorganic, lead-free inorganic, and organic polymers. A comparative discussion is also presented of the functional material properties, architecture, and performance metrics, together with an overview of the applications where UPIs are being deployed.
Collapse
Affiliation(s)
- Brendan L. Turner
- Joint Department of Biomedical Engineering North Carolina State University and University of North Carolina Chapel Hill, 911 Oval Dr. Raleigh NC 27695 USA
| | - Seedevi Senevirathne
- The Patrick G Johnston Centre for Cancer Research Queen's University 97 Lisburn Rd Belfast BT9 7AE UK
| | - Katie Kilgour
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA
| | - Darragh McArt
- The Patrick G Johnston Centre for Cancer Research Queen's University 97 Lisburn Rd Belfast BT9 7AE UK
| | - Manus Biggs
- Centre for Research in Medical Devices National University of Ireland Newcastle Road Galway H91 W2TY Ireland
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering North Carolina State University and University of North Carolina Chapel Hill, 911 Oval Dr. Raleigh NC 27695 USA
- Department of Electrical and Computer Engineering North Carolina State University 890 Oval Dr. Raleigh NC 27695 USA
| |
Collapse
|
20
|
Yao X, Qian Y, Fan C. Electroactive nanomaterials in the peripheral nerve regeneration. J Mater Chem B 2021; 9:6958-6972. [PMID: 34195746 DOI: 10.1039/d1tb00686j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe peripheral nerve injuries are threatening the life quality of human beings. Current clinical treatments contain some limitations and therefore extensive research and efforts are geared towards tissue engineering approaches and development. The biophysical and biochemical characteristics of nanomaterials are highly focused on as critical elements in the design and fabrication of regenerative scaffolds. Recent studies indicate that the electrical properties and nanostructure of biomaterials can significantly affect the progress of nerve repair. More importantly, these studies also demonstrate the fact that electroactive nanomaterials have substantial implications for regulating the viability and fate of primary supporting cells in nerve regeneration. In this review, we summarize the current knowledge of electroconductive and piezoelectric nanomaterials. We exemplify typical cellular responses through cell-material interfaces, and the nanomaterial-induced microenvironment rebalance in terms of several key factors, immune responses, angiogenesis and oxidative stress. This work highlights the mechanism and application of electroactive nanomaterials to the development of regenerative scaffolds for peripheral nerve tissue engineering.
Collapse
Affiliation(s)
- Xiangyun Yao
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
21
|
Ahamed M, Akhtar MJ, Khan MM, Alhadlaq HA, Alshamsan A. Barium Titanate (BaTiO 3) Nanoparticles Exert Cytotoxicity through Oxidative Stress in Human Lung Carcinoma (A549) Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2309. [PMID: 33266501 PMCID: PMC7700150 DOI: 10.3390/nano10112309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Barium titanate (BaTiO3) nanoparticles (BT NPs) have shown exceptional characteristics such as high dielectric constant and suitable ferro-, piezo-, and pyro-electric properties. Thus, BT NPs have shown potential to be applied in various fields including electro-optical devices and biomedicine. However, very limited knowledge is available on the interaction of BT NPs with human cells. This work was planned to study the interaction of BT NPs with human lung carcinoma (A549) cells. Results showed that BT NPs decreased cell viability in a dose- and time-dependent manner. Depletion of mitochondrial membrane potential and induction of caspase-3 and -9 enzyme activity were also observed following BT NP exposure. BT NPs further induced oxidative stress indicated by induction of pro-oxidants (reactive oxygen species and hydrogen peroxide) and reduction of antioxidants (glutathione and several antioxidant enzymes). Moreover, BT NP-induced cytotoxicity and oxidative stress were effectively abrogated by N-acetyl-cysteine (an ROS scavenger), suggesting that BT NP-induced cytotoxicity was mediated through oxidative stress. Intriguingly, the underlying mechanism of cytotoxicity of BT NPs was similar to the mode of action of ZnO NPs. At the end, we found that BT NPs did not affect the non-cancerous human lung fibroblasts (IMR-90). Altogether, BT NPs selectively induced cytotoxicity in A549 cells via oxidative stress. This work warrants further research on selective cytotoxicity mechanisms of BT NPs in different types of cancer cells and their normal counterparts.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - M.A. Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
| | - Hisham A. Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia; (M.J.A.); (M.A.M.K.); (H.A.A.)
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
22
|
Huang RH, Sobol NB, Younes A, Mamun T, Lewis JS, Ulijn RV, O’Brien S. Comparison of Methods for Surface Modification of Barium Titanate Nanoparticles for Aqueous Dispersibility: Toward Biomedical Utilization of Perovskite Oxides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51135-51147. [PMID: 32988209 PMCID: PMC8335646 DOI: 10.1021/acsami.0c10063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Colloidal perovskite barium titanate (BaTiO3, or BT) nanoparticles (NPs), conventionally used for applications in electronics, can also be considered for their potential as biocompatible computed tomography (CT) contrast agents. NPs of BT produced by traditional solid-state methods tend to have broad size distributions and poor dispersibility in aqueous media. Furthermore, uncoated BT NPs can be cytotoxic because of leaching of the heavy metal ion, Ba2+. Here, we present and compare three approaches for surface modification of BT NPs (8 nm) synthesized by the gel collection method to improve their aqueous stability and dispersibility. The first approach produced citrate-capped BT NPs that exhibited extremely high aqueous dispersibility (up to 50 mg/mL) and a small hydrodynamic size (11 nm). Although the high dispersibility was found to be pH-dependent, such aqueous stability sufficiently enabled a feasibility analysis of BT NPs as CT contrast agents. The second approach, a core/shell design, aimed to encapsulate BT nanoaggregates with a silica layer using a modified Stöber method. A cluster of 7-20 NPs coated with a thick layer (20-100 nm) of SiO2 was routinely observed, producing larger NPs in the 100-200 nm range. A third approach was developed using a reverse-microemulsion method to encapsulate a single BT core within a thin (10 nm) silica layer, with an overall particle size of 29 nm. The -OH groups on the silica layer readily enabled surface PEGylation, allowing the NPs to remain highly stable in saline solutions. We report that the silica-coated BT NPs in both methods exhibited a low level of Ba2+ leaching (≤3% of total barium in NPs) in phosphate-buffered saline for 48 h compared to the unmodified BT NPs (14.4%).
Collapse
Affiliation(s)
- Richard H. Huang
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, NY 10031, USA
- Advanced Science Research Center at The Graduate Center of the City University of New York, 85 Saint Nicholas Terrace, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
| | - Nicholas B. Sobol
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ali Younes
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, USA
| | - Tanjeena Mamun
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology and Pharmacology, Weill Cornell Medical College, New York, NY, USA
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rein V. Ulijn
- Advanced Science Research Center at The Graduate Center of the City University of New York, 85 Saint Nicholas Terrace, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10065, USA
| | - Stephen O’Brien
- Department of Chemistry and Biochemistry, The City College of New York, 1024 Marshak, 160 Convent Avenue, NY 10031, USA
- Advanced Science Research Center at The Graduate Center of the City University of New York, 85 Saint Nicholas Terrace, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
| |
Collapse
|
23
|
Prokhorov E, Bárcenas GL, España Sánchez BL, Franco B, Padilla-Vaca F, Hernández Landaverde MA, Yáñez Limón JM, López RA. Chitosan-BaTiO 3 nanostructured piezopolymer for tissue engineering. Colloids Surf B Biointerfaces 2020; 196:111296. [PMID: 32771819 DOI: 10.1016/j.colsurfb.2020.111296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Herein we report the synthesis of a piezopolymer composed of chitosan (CS)/hydroxylated BaTiO3 (OH-BTO) nanoparticles with enhanced biocompatibility, non-toxicity, and piezoelectric behavior that can be advantageously used in biomedical applications. Our CS/OH-BTO nanocomposites exhibit piezoelectric coefficient (d33 = 11.29 pC/N) between those of dry skin (0.05-0.19 pC/N) and bone (4-11 pC/N), demonstrating biocompatibility in contact with human fibroblasts (HF) cells after 24 h. SEM, XRD, FTIR and Raman measurements were performed to assess the mechanism of interaction between CS matrix and OH-BTO NPs and their correlation with the biological responses. Cytotoxicity assays with HF cells reveal that hydroxylation of BTO NPs does not affect the cell viability of CS/OH-BTO films with NPs concentration from 1 to 30 wt.%. In contrast, non-hydroxylated BTO NPs showed significant cell damage, which could be traced to uncontrollable NPs agglomeration. This behavior suggests that CS/OH-BTO nanocomposites can act as active material that promotes cell growth and can be used for biomedical purposes.
Collapse
Affiliation(s)
- Evgen Prokhorov
- CINVESTAV del IPN Unidad Querétaro, Libramiento Norponiente No. 2000 Fracc, Real de Juriquilla, C.P. 76230, Querétaro, Mexico.
| | - Gabriel Luna Bárcenas
- CINVESTAV del IPN Unidad Querétaro, Libramiento Norponiente No. 2000 Fracc, Real de Juriquilla, C.P. 76230, Querétaro, Mexico.
| | - Beatriz Liliana España Sánchez
- CONACYT_Centro de Investigación y Desarrollo Tecnológico en Electroquímica CIDETEQ S.C., Parque Tecnológico Querétaro s/n, Sanfandila, Pedro Escobedo, C.P. 76703, Querétaro, Mexico.
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas. Universidad de Guanajuato. Noria Alta s/n Guanajuato, C.P. 36050, Guanajuato, Mexico.
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas. Universidad de Guanajuato. Noria Alta s/n Guanajuato, C.P. 36050, Guanajuato, Mexico.
| | | | - José Martín Yáñez Limón
- CINVESTAV del IPN Unidad Querétaro, Libramiento Norponiente No. 2000 Fracc, Real de Juriquilla, C.P. 76230, Querétaro, Mexico.
| | - René Antaño López
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica CIDETEQ S.C., Parque Tecnológico Querétaro s/n, Sanfandila, Pedro Escobedo C.P. 76703, Querétaro Mexico.
| |
Collapse
|
24
|
Luciana Aurora Soares do Amaral D, de Souza Salomão Zanette R, Torres de Souza G, Augusto da Silva S, Adriano Kopke de Aguiar J, Fortes Marcomini R, Márcio Resende do Carmo A, Valentim Nogueira B, José da Silva Barros R, de Sá Silva F, de Oliveira Santos M, Munk M, de Mello Brandão H, Magno da Costa Maranduba C. Induction of osteogenic differentiation by demineralized and decellularized bovine extracellular matrix derived hydrogels associated with barium titanate. Biologicals 2020; 66:9-16. [PMID: 32561214 DOI: 10.1016/j.biologicals.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Bone tissue-derive biomaterials have become of great interest to treat diseases of the skeletal system. Biological scaffolds of demineralized and decellularized extracellular matrices (ECM) have been developed and one of these options are ECM hydrogels derived from bovine bone. Nanomaterials may be able to regulate stem cell differentiation due to their unique physical-chemical properties. The present work aimed to evaluate the osteoinductive effects of ECM hydrogels associated with barium titanate nanoparticles (BTNP) on dental pulp cells derived from exfoliated teeth. The addition of BTNP in the ECM derived hydrogel did not affect cell proliferation and the formation of bone nodules. Furthermore, it increased the expression of bone alkaline phosphatase. The results demonstrated that the nanobiocomposites were able to promote the osteogenic differentiation, even in the absence of chemical inducing factors for osteogenic differentiation. In conclusion, bovine bone ECM hydrogel combined with BTNP presented and increased expression of markers of osteogenic differentiation in the absence of chemical inducing factors.
Collapse
Affiliation(s)
- Danielle Luciana Aurora Soares do Amaral
- Laboratório de Genética Humana e Terapia Celular, Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - Rafaella de Souza Salomão Zanette
- Laboratório de Genética Humana e Terapia Celular, Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - Gustavo Torres de Souza
- Laboratório de Genética Humana e Terapia Celular, Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - Silvioney Augusto da Silva
- Laboratório de Genética Humana e Terapia Celular, Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - Jair Adriano Kopke de Aguiar
- Laboratório de Análise de Glicoconjugados, Departmento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - Raphael Fortes Marcomini
- Departamento Engenharia de Produção e Mecânica, Faculdade de Engenharia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - Antônio Márcio Resende do Carmo
- Departmento de Endodontologia, Faculdade de Odontologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36.036-900, Brazil
| | - Breno Valentim Nogueira
- Laboratório de Ultraestrutura Celular Carlos Alberto Redins (LUCCAR)/Núcleo de Bioengenharia Tecidual, Departamento de Morfologia/Centro de Ciências da Saúde, Universidade Federal do Espírito Santo (UFES), Vitória, ES, 29.043-900, Brazil
| | - Rodolpho José da Silva Barros
- Laboratório de Ultraestrutura Celular Carlos Alberto Redins (LUCCAR)/Núcleo de Bioengenharia Tecidual, Departamento de Morfologia/Centro de Ciências da Saúde, Universidade Federal do Espírito Santo (UFES), Vitória, ES, 29.043-900, Brazil
| | - Fernando de Sá Silva
- Departamento de Ciências Básicas da Vida, Universidade Federal de Juiz de Fora - Departamento de Ciências Básicas da Vida, Campus Governador Valadares, Governador Valadares, MG, 35.010-180, Brazil.
| | - Marcelo de Oliveira Santos
- Laboratório de Genética Humana e Terapia Celular, Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - Michele Munk
- Laboratório de Genética Humana e Terapia Celular, Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil
| | - Humberto de Mello Brandão
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Gado de Leite, Pesquisador/Nanotecnologia, Juiz de Fora, 36.038-330, Brazil
| | - Carlos Magno da Costa Maranduba
- Laboratório de Genética Humana e Terapia Celular, Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, 36.036-900, Brazil.
| |
Collapse
|
25
|
Jordan T, O'Brien MA, Spatarelu CP, Luke GP. Antibody-Conjugated Barium Titanate Nanoparticles for Cell-Specific Targeting. ACS APPLIED NANO MATERIALS 2020; 3:2636-2646. [PMID: 35873656 PMCID: PMC9307239 DOI: 10.1021/acsanm.0c00019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Barium titanate nanoparticles (BTNPs) are gaining popularity in biomedical research because of their piezoelectricity, nonlinear optical properties, and high biocompatibility. However, the potential of BTNPs is limited by the ability to create stable nanoparticle dispersions in water and physiological media. In this work, we report a method of surface modification of BTNPs based on surface hydroxylation followed by covalent attachment of hydrophilic poly(ethylene glycol) (PEG) polymers. This polymer coating allows for additional modifications such as fluorescent labeling, surface charge tuning, or directional conjugation of IgG antibodies. We demonstrate the conjugation of anti-EGFR antibodies to the BTNP surface and show efficient molecular targeting of the nanoparticles to A431 cells. Overall, the reported modifications aim to expand the BTNP applications in molecular imaging, cancer therapy, or noninvasive neurostimulation.
Collapse
Affiliation(s)
- Tomas Jordan
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Mikaela A O'Brien
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | | | - Geoffrey P Luke
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States; Translational Engineering in Cancer Research Program, Norris Cotton Cancer Center, Lebanon, New Hampshire 03766, United States
| |
Collapse
|
26
|
Yoon YN, Lee DS, Park HJ, Kim JS. Barium Titanate Nanoparticles Sensitise Treatment-Resistant Breast Cancer Cells to the Antitumor Action of Tumour-Treating Fields. Sci Rep 2020; 10:2560. [PMID: 32054945 PMCID: PMC7018996 DOI: 10.1038/s41598-020-59445-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/27/2020] [Indexed: 11/17/2022] Open
Abstract
Although tumour-treating fields (TTFields) is a promising physical treatment modality based on disruption of dipole alignments and generation of dielectrophoretic forces during cytokinesis, not much is known about TTFields-responsive sensitisers. Here, we report a novel TTFields-responsive sensitiser, barium titanate nanoparticles (BTNPs), which exhibit cytocompatibility, with non-cytotoxic effects on breast cancer cells. BTNPs are characterised by high dielectric constant values and ferroelectric properties. Notably, we found that BTNPs sensitised TTFields-resistant breast cancer cells in response to TTFields. In addition, BTNPs accumulated in the cytoplasm of cancer cells in response to TTFields. Further, we showed that TTFields combined with BTNPs exhibited antitumor activity by modulating several cancer-related pathways in general, and the cell cycle-related apoptosis pathway in particular. Therefore, our data suggest that BTNPs increase the antitumor action of TTFields by an electric field-responsive cytosolic accumulation, establishing BTNP as a TTFields-responsive sensitiser.
Collapse
Affiliation(s)
- Yi Na Yoon
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea.,Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34113, South Korea
| | - Dae-Sik Lee
- Electronics and Telecommunications Research Institute, Daejeon, 34129, South Korea
| | - Hyung Ju Park
- Electronics and Telecommunications Research Institute, Daejeon, 34129, South Korea.
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, South Korea. .,Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
27
|
Cafarelli A, Losi P, Salgarella AR, Barsotti MC, Di Cioccio IB, Foffa I, Vannozzi L, Pingue P, Soldani G, Ricotti L. Small-caliber vascular grafts based on a piezoelectric nanocomposite elastomer: Mechanical properties and biocompatibility. J Mech Behav Biomed Mater 2019; 97:138-148. [DOI: 10.1016/j.jmbbm.2019.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 11/30/2022]
|
28
|
Tandon B, Magaz A, Balint R, Blaker JJ, Cartmell SH. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv Drug Deliv Rev 2018; 129:148-168. [PMID: 29262296 DOI: 10.1016/j.addr.2017.12.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 12/16/2017] [Indexed: 01/09/2023]
Abstract
Electrical stimulation for delivery of biochemical agents such as genes, proteins and RNA molecules amongst others, holds great potential for controlled therapeutic delivery and in promoting tissue regeneration. Electroactive biomaterials have the capability of delivering these agents in a localized, controlled, responsive and efficient manner. These systems have also been combined for the delivery of both physical and biochemical cues and can be programmed to achieve enhanced effects on healing by establishing control over the microenvironment. This review focuses on current state-of-the-art research in electroactive-based materials towards the delivery of drugs and other therapeutic signalling agents for wound care treatment. Future directions and current challenges for developing effective electroactive approach based therapies for wound care are discussed.
Collapse
|
29
|
Marino A, Genchi GG, Sinibaldi E, Ciofani G. Piezoelectric Effects of Materials on Bio-Interfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17663-17680. [PMID: 28485910 DOI: 10.1021/acsami.7b04323] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrical stimulation of cells and tissues is an important approach of interaction with living matter, which has been traditionally exploited in the clinical practice for a wide range of pathological conditions, in particular, related to excitable tissues. Standard methods of stimulation are, however, often invasive, being based on electrodes and wires used to carry current to the intended site. The possibility to achieve an indirect electrical stimulation, by means of piezoelectric materials, is therefore of outstanding interest for all the biomedical research, and it emerged in the latest decade as a most promising tool in many bioapplications. In this paper, we summarize the most recent achievements obtained by our group and by others in the exploitation of piezoelectric nanoparticles and nanocomposites for cell stimulation, describing the important implications that these studies present in nanomedicine and tissue engineering. A particular attention will be also dedicated to the physical modeling, which can be extremely useful in the description of the complex mechanisms involved in the mechanical/electrical transduction, yet also to gain new insights at the base of the observed phenomena.
Collapse
Affiliation(s)
| | | | | | - Gianni Ciofani
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino , Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
30
|
Feng S, Zhang H, Yan T, Huang D, Zhi C, Nakanishi H, Gao XD. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs. Int J Nanomedicine 2016; 11:4573-4582. [PMID: 27695318 PMCID: PMC5028104 DOI: 10.2147/ijn.s110689] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN) has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS) with receptor-mediated targeting. Folic acid (FA) was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 μg/mL. Then, doxorubicin hydrochloride (DOX), a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy.
Collapse
Affiliation(s)
- Shini Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Huijie Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Ting Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Dandi Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Chunyi Zhi
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
31
|
Serra-Gómez R, Dreiss CA, González-Benito J, González-Gaitano G. Structure and Rheology of Poloxamine T1107 and Its Nanocomposite Hydrogels with Cyclodextrin-Modified Barium Titanate Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6398-6408. [PMID: 27245639 DOI: 10.1021/acs.langmuir.6b01544] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the preparation of a nanocomposite hydrogel based on a poloxamine gel matrix (Tetronic T1107) and cyclodextrin (CD)-modified barium titanate (BT) nanoparticles. The micellization and sol-gel behavior of pH-responsive block copolymer T1107 were fully characterized by small-angle neutron scattering (SANS), dynamic light scattering (DLS), and Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy as a function of concentration, pH and temperature. SANS results reveal that spherical micelles in the low concentration regime present a dehydrated core and highly hydrated shell, with a small aggregation number and size, highly dependent on the degree of protonation of the central amine spacer. At high concentration, T1107 undergoes a sol-gel transition, which is inhibited at acidic pH. Nanocomposites were prepared by incorporating CD-modified BT of two different sizes (50 and 200 nm) in concentrated polymer solutions. Rheological measurements show a broadening of the gel region, as well as an improvement of the mechanical properties, as assessed by the shear elastic modulus, G' (up to 200% increase). Initial cytocompatibility studies of the nanocomposites show that the materials are nontoxic with viabilities over 70% for NIH3T3 fibroblast cell lines. Overall, the combination of Tetronics and modified BaTiO3 provides easily customizable systems with promising applications as soft piezoelectric materials.
Collapse
Affiliation(s)
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London , Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Javier González-Benito
- Department of Materials Science and Engineering, IQMAAB, Universidad Carlos III de Madrid , 28911 Leganés, Spain
| | | |
Collapse
|
32
|
Genchi GG, Marino A, Rocca A, Mattoli V, Ciofani G. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine. NANOTECHNOLOGY 2016; 27:232001. [PMID: 27145888 DOI: 10.1088/0957-4484/27/23/232001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these 'smart' nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.
Collapse
Affiliation(s)
- Giada Graziana Genchi
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | | | | | | | | |
Collapse
|
33
|
Nagajyothi PC, Pandurangan M, Sreekanth TVM, Shim J. In vitro anticancer potential of BaCO3 nanoparticles synthesized via green route. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 156:29-34. [PMID: 26803273 DOI: 10.1016/j.jphotobiol.2016.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Green synthesis of nanoparticles is a growing research area because of their potential applications in nanomedicine. Barium carbonate nanoparticles (BaCO3 NPs) were synthesized using an aqueous extract of Mangifera indica seed as a reducing agent. These particles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission electron microscopy (TEM), selected area electron diffraction (SAED), Energy-dispersive-X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) analysis. HR-TEM images are confirmed that green synthesized BaCO3 NPs have spherical, triangular and uneven shapes. EDX analysis confirmed the presence of Ba, C and O. The peaks at 2θ of 19.45, 23.90, 24.29, 27.72, 33.71, 34.08, 34.60, 41.98, 42.95, 44.18, 44.85, and 46.78 corresponding to (110), (111), (021), (002), (200), (112), (130), (221), (041), (202), (132) and (113) showed that BaCO3 NPs average size was ~18.3 nm. SAED pattern confirmed that BaCO3 NPs are crystalline nature. BaCO3 NPs significantly inhibited cervical carcinoma cells, as evidenced by cytotoxicity assay. Immunofluorescence and fluorescence assays showed that BaCO3 NPs increased the expression and activity of caspase-3, an autocatalytic enzyme that promotes apoptosis. According to the results, green synthesis route has great potential for easy, rapid, inexpensive, eco-friendly and efficient development of novel multifunctional nanoparticles for the treatment of cancer.
Collapse
Affiliation(s)
- P C Nagajyothi
- School of Mechanical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeongsan-si, Gyeongsangbuk-do 712-749, Republic of Korea
| | | | - T V M Sreekanth
- School of Chemical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeongsan-si, Gyeongsangbuk-do 712-749, Republic of Korea.
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeongsan-si, Gyeongsangbuk-do 712-749, Republic of Korea.
| |
Collapse
|
34
|
Wang S, Zhao X, Qian J, He S. Polyelectrolyte coated BaTiO3 nanoparticles for second harmonic generation imaging-guided photodynamic therapy with improved stability and enhanced cellular uptake. RSC Adv 2016. [DOI: 10.1039/c6ra05289d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A novel BaTiO3 nanoparticle-based platform for second harmonic generation imaging-guided photodynamic therapy.
Collapse
Affiliation(s)
- Shaowei Wang
- State Key Laboratory of Modern Optical Instrumentations
- Centre for Optical and Electromagnetic Research
- Zhejiang University
- Hangzhou
- China
| | - Xinyuan Zhao
- Bioelectromagnetics Laboratory
- School of Medicine
- Zhejiang University
- Hangzhou
- China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations
- Centre for Optical and Electromagnetic Research
- Zhejiang University
- Hangzhou
- China
| | - Sailing He
- State Key Laboratory of Modern Optical Instrumentations
- Centre for Optical and Electromagnetic Research
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
35
|
Vannozzi L, Ricotti L, Filippeschi C, Sartini S, Coviello V, Piazza V, Pingue P, La Motta C, Dario P, Menciassi A. Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug. Int J Nanomedicine 2015; 11:69-91. [PMID: 26730191 PMCID: PMC4694686 DOI: 10.2147/ijn.s92031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
This work aims to demonstrate the possibility to fabricate ultra-thin polymeric films loaded with an anti-restenotic drug and capable of tunable drug release kinetics for the local treatment of restenosis. Vascular nanopatches are composed of a poly(lactic acid) supporting membrane (thickness: ~250 nm) on which 20 polyelectrolyte bilayers (overall thickness: ~70 nm) are alternatively deposited. The anti-restenotic drug is embedded in the middle of the polyelectrolyte structure, and released by diffusion mechanisms. Nanofilm fabrication procedure and detailed morphological characterization are reported here. Barium titanate nanoparticles (showing piezoelectric properties) are included in the polymeric support and their role is investigated in terms of influence on nanofilm morphology, drug release kinetics, and cell response. Results show an efficient drug release from the polyelectrolyte structure in phosphate-buffered saline, and a clear antiproliferative effect on human smooth muscle cells, which are responsible for restenosis. In addition, preliminary evidences of ultrasound-mediated modulation of drug release kinetics are reported, thus evaluating the influence of barium titanate nanoparticles on the release mechanism. Such data were integrated with quantitative piezoelectric and thermal measurements. These results open new avenues for a fine control of local therapies based on smart responsive materials.
Collapse
Affiliation(s)
- Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Carlo Filippeschi
- Center for MicroBioRobotics at SSSA, Istituto Italiano di Tecnologia, Pontedera, Italy
| | | | - Vito Coviello
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Piazza
- Center for Nanotechnology Innovation at NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | | | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| |
Collapse
|
36
|
Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today 2015; 20:1143-51. [DOI: 10.1016/j.drudis.2015.05.009] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/05/2015] [Accepted: 05/15/2015] [Indexed: 01/22/2023]
|
37
|
Marino A, Arai S, Hou Y, Sinibaldi E, Pellegrino M, Chang YT, Mazzolai B, Mattoli V, Suzuki M, Ciofani G. Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation. ACS NANO 2015; 9:7678-89. [PMID: 26168074 PMCID: PMC9003232 DOI: 10.1021/acsnano.5b03162] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Tetragonal barium titanate nanoparticles (BTNPs) have been exploited as nanotransducers owing to their piezoelectric properties, in order to provide indirect electrical stimulation to SH-SY5Y neuron-like cells. Following application of ultrasounds to cells treated with BTNPs, fluorescence imaging of ion dynamics revealed that the synergic stimulation is able to elicit a significant cellular response in terms of calcium and sodium fluxes; moreover, tests with appropriate blockers demonstrated that voltage-gated membrane channels are activated. The hypothesis of piezoelectric stimulation of neuron-like cells was supported by lack of cellular response in the presence of cubic nonpiezoelectric BTNPs, and further corroborated by a simple electroelastic model of a BTNP subjected to ultrasounds, according to which the generated voltage is compatible with the values required for the activation of voltage-sensitive channels.
Collapse
Affiliation(s)
- Attilio Marino
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- The Biorobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- Address correspondence to , ,
| | - Satoshi Arai
- WASEDA Bioscience Research Institute in Singapore (WABIOS), Biopolis Way 11, #05-02 Helios, 138667 Singapore
| | - Yanyan Hou
- WASEDA Bioscience Research Institute in Singapore (WABIOS), Biopolis Way 11, #05-02 Helios, 138667 Singapore
| | - Edoardo Sinibaldi
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Mario Pellegrino
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - Young-Tae Chang
- Department of Chemistry, National University of Singapore, MedChem Program of Life Sciences Institute, National University of Singapore, 3 Science Drive 3, 117543 Singapore
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Biopolis, 138667 Singapore
| | - Barbara Mazzolai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Virgilio Mattoli
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Madoka Suzuki
- WASEDA Bioscience Research Institute in Singapore (WABIOS), Biopolis Way 11, #05-02 Helios, 138667 Singapore
- Organization for University Research Initiatives, Waseda University, #304, Block 120-4, 513 Waseda-Tsurumaki-Cho, Shinjuku-Ku, 162-0041 Tokyo, Japan
- Address correspondence to , ,
| | - Gianni Ciofani
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- Address correspondence to , ,
| |
Collapse
|
38
|
Liu S, Huang L, Li W, Liu X, Jing S, Li J, O'Brien S. Green and scalable production of colloidal perovskite nanocrystals and transparent sols by a controlled self-collection process. NANOSCALE 2015; 7:11766-76. [PMID: 26104322 DOI: 10.1039/c5nr02351c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Colloidal perovskite oxide nanocrystals have attracted a great deal of interest owing to the ability to tune physical properties by virtue of the nanoscale, and generate thin film structures under mild chemical conditions, relying on self-assembly or heterogeneous mixing. This is particularly true for ferroelectric/dielectric perovskite oxide materials, for which device applications cover piezoelectrics, MEMs, memory, gate dielectrics and energy storage. The synthesis of complex oxide nanocrystals, however, continues to present issues pertaining to quality, yield, % crystallinity, purity and may also suffer from tedious separation and purification processes, which are disadvantageous to scaling production. We report a simple, green and scalable "self-collection" growth method that produces uniform and aggregate-free colloidal perovskite oxide nanocrystals including BaTiO3 (BT), Ba(x)Sr(1-x)TiO3 (BST) and quaternary oxide BaSrTiHfO3 (BSTH) in high crystallinity and high purity. The synthesis approach is solution processed, based on the sol-gel transformation of metal alkoxides in alcohol solvents with controlled or stoichiometric amounts of water and in the stark absence of surfactants and stabilizers, providing pure colloidal nanocrystals in a remarkably low temperature range (15 °C-55 °C). Under a static condition, the nanoscale hydrolysis of the metal alkoxides accomplishes a complete transformation to fully crystallized single domain perovskite nanocrystals with a passivated surface layer of hydroxyl/alkyl groups, such that the as-synthesized nanocrystals can exist in the form of super-stable and transparent sol, or self-accumulate to form a highly crystalline solid gel monolith of nearly 100% yield for easy separation/purification. The process produces high purity ligand-free nanocrystals excellent dispersibility in polar solvents, with no impurity remaining in the mother solution other than trace alcohol byproducts (such as isopropanol). The afforded stable and transparent suspension/solution can be treated as inks, suitable for printing or spin/spray coating, demonstrating great capabilities of this process for fabrication of high performance dielectric thin films. The simple "self-collection" strategy can be described as green and scalable due to the simplified procedure from synthesis to separation/purification, minimum waste generation, and near room temperature crystallization of nanocrystal products with tunable sizes in extremely high yield and high purity.
Collapse
Affiliation(s)
- Shuangyi Liu
- The CUNY Energy Institute, City University of New York, Steinman Hall, 160 Convent Avenue and The City College of New York, New York, NY 10031, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Polonini HC, Brandão HM, Raposo NRB, Brandão MAF, Mouton L, Couté A, Yéprémian C, Sivry Y, Brayner R. Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:938-948. [PMID: 25763523 DOI: 10.1007/s10646-015-1436-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Studies have been demonstrating that smaller particles can lead to unexpected and diverse ecotoxicological effects when compared to those caused by the bulk material. In this study, the chemical composition, size and shape, state of dispersion, and surface's charge, area and physicochemistry of micro (BT MP) and nano barium titanate (BT NP) were determined. Green algae Chlorella vulgaris grown in Bold's Basal (BB) medium or Seine River water (SRW) was used as biological indicator to assess their aquatic toxicology. Responses such as growth inhibition, cell viability, superoxide dismutase (SOD) activity, adenosine-5-triphosphate (ATP) content and photosynthetic activity were evaluated. Tetragonal BT (~170 nm, 3.24 m(2) g(-1) surface area) and cubic BT (~60 nm, 16.60 m(2) g(-1)) particles were negative, poorly dispersed, and readily aggregated. BT has a statistically significant effect on C. vulgaris growth since the lower concentration tested (1 ppm), what seems to be mediated by induced oxidative stress caused by the particles (increased SOD activity and decreased photosynthetic efficiency and intracellular ATP content). The toxic effects were more pronounced when the algae was grown in SRW. Size does not seem to be an issue influencing the toxicity in BT particles toxicity since micro- and nano-particles produced significant effects on algae growth.
Collapse
Affiliation(s)
- Hudson C Polonini
- Núcleo de Pesquisa e Inovação em Ciências da Saúde (NUPICS), Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rocca A, Marino A, Rocca V, Moscato S, de Vito G, Piazza V, Mazzolai B, Mattoli V, Ngo-Anh TJ, Ciofani G. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. Int J Nanomedicine 2015; 10:433-45. [PMID: 25609955 PMCID: PMC4294648 DOI: 10.2147/ijn.s76329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Enhancement of the osteogenic potential of mesenchymal stem cells (MSCs) is highly desirable in the field of bone regeneration. This paper proposes a new approach for the improvement of osteogenesis combining hypergravity with osteoinductive nanoparticles (NPs). Materials and methods In this study, we aimed to investigate the combined effects of hypergravity and barium titanate NPs (BTNPs) on the osteogenic differentiation of rat MSCs, and the hypergravity effects on NP internalization. To obtain the hypergravity condition, we used a large-diameter centrifuge in the presence of a BTNP-doped culture medium. We analyzed cell morphology and NP internalization with immunofluorescent staining and coherent anti-Stokes Raman scattering, respectively. Moreover, cell differentiation was evaluated both at the gene level with quantitative real-time reverse-transcription polymerase chain reaction and at the protein level with Western blotting. Results Following a 20 g treatment, we found alterations in cytoskeleton conformation, cellular shape and morphology, as well as a significant increment of expression of osteoblastic markers both at the gene and protein levels, jointly pointing to a substantial increment of NP uptake. Taken together, our findings suggest a synergistic effect of hypergravity and BTNPs in the enhancement of the osteogenic differentiation of MSCs. Conclusion The obtained results could become useful in the design of new approaches in bone-tissue engineering, as well as for in vitro drug-delivery strategies where an increment of nanocarrier internalization could result in a higher drug uptake by cell and/or tissue constructs.
Collapse
Affiliation(s)
- Antonella Rocca
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy ; Scuola Superiore Sant'Anna, The BioRobotics Institute, Pontedera, Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy ; Scuola Superiore Sant'Anna, The BioRobotics Institute, Pontedera, Italy
| | - Veronica Rocca
- Università di Pisa, Dipartimento di Ingegneria dell'Informazione, Pisa, Italy, Noordwijk, the Netherlands
| | - Stefania Moscato
- Università di Pisa, Dipartimento di Medicina Clinica e Sperimentale, Pisa, Italy
| | - Giuseppe de Vito
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy ; Scuola Normale Superiore, NEST, Pisa, Italy
| | - Vincenzo Piazza
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy
| | - Barbara Mazzolai
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy
| | - Thu Jennifer Ngo-Anh
- Directorate of Human Spaceflight and Operations, European Space Agency, Noordwijk, the Netherlands
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @ SSSA, Pontedera, Italy
| |
Collapse
|
41
|
Akbaba GB, Turkez H, Sönmez E, Tatar A, Yilmaz M. Genotoxicity in primary human peripheral lymphocytes after exposure to lithium titanate nanoparticles in vitro. Toxicol Ind Health 2014; 32:1423-1429. [DOI: 10.1177/0748233714562624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lithium titanate (Li2TiO3) nanoparticles (LTT NPs; <100 nm) are widely used in battery technology, porcelain enamels, and ceramic insulating bodies. With the increased applications of LTT NPs, the concerns about their potential human toxicity effects and their environmental impact were also increased. However, toxicity data for LTT NPs relating to human health are very limited. Therefore, the purpose of this study was to evaluate whether LTT NPs are able to induce genetic damage in human peripheral lymphocytes in vitro when taking into consideration that DNA damage plays an important role in carcinogenesis. With this aim, the chromosome aberrations (CA), sister chromatid exchanges (SCE), and micronucleus (MN) assays were used as genotoxicity end points. Human peripheral lymphocytes obtained from five healthy male volunteers were exposed to LTT NPs at final dispersed concentrations ranging from 0 to 1000 μg/mL for 72 h at 37°C. The obtained results indicated that LTT NPs compound did not induce DNA damage in human peripheral lymphocytes as depicted by CA/cell, SCE/cell, and MN/1000 cell values in all concentrations tested. In summary, our results revealed that exposure to LTT NPs is not capable of inducing DNA lesions in human peripheral lymphocytes for the first time.
Collapse
Affiliation(s)
- Giray B Akbaba
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Erdal Sönmez
- Advanced Materials Research Laboratory, Department of Nanoscience & Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Mehmet Yilmaz
- Department of Physics, K. K. Education Faculty, Atatürk University, Erzurum, Turkey
| |
Collapse
|
42
|
Giannini M, Giannaccini M, Sibillano T, Giannini C, Liu D, Wang Z, Baù A, Dente L, Cuschieri A, Raffa V. Sheets of vertically aligned BaTiO3 nanotubes reduce cell proliferation but not viability of NIH-3T3 cells. PLoS One 2014; 9:e115183. [PMID: 25506693 PMCID: PMC4266647 DOI: 10.1371/journal.pone.0115183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/19/2014] [Indexed: 11/18/2022] Open
Abstract
All biomaterials initiate a tissue response when implanted in living tissues. Ultimately this reaction causes fibrous encapsulation and hence isolation of the material, leading to failure of the intended therapeutic effect of the implant. There has been extensive bioengineering research aimed at overcoming or delaying the onset of encapsulation. Nanotechnology has the potential to address this problem by virtue of the ability of some nanomaterials to modulate interactions with cells, thereby inducing specific biological responses to implanted foreign materials. To this effect in the present study, we have characterised the growth of fibroblasts on nano-structured sheets constituted by BaTiO3, a material extensively used in biomedical applications. We found that sheets of vertically aligned BaTiO3 nanotubes inhibit cell cycle progression - without impairing cell viability - of NIH-3T3 fibroblast cells. We postulate that the 3D organization of the material surface acts by increasing the availability of adhesion sites, promoting cell attachment and inhibition of cell proliferation. This finding could be of relevance for biomedical applications designed to prevent or minimize fibrous encasement by uncontrolled proliferation of fibroblastic cells with loss of material-tissue interface underpinning long-term function of implants.
Collapse
Affiliation(s)
- Marianna Giannini
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
- * E-mail:
| | | | - Teresa Sibillano
- Institute of Crystallography, National Research Council, (IC-CNR), Bari, Italy
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, (IC-CNR), Bari, Italy
| | - Dun Liu
- Institute for Medical Science and Technology, University of Dundee, Dundee, United Kingdom
| | - Zhigang Wang
- Institute for Medical Science and Technology, University of Dundee, Dundee, United Kingdom
| | - Andrea Baù
- Department of Biology, Università di Pisa, Pisa, Italy
| | - Luciana Dente
- Department of Biology, Università di Pisa, Pisa, Italy
| | - Alfred Cuschieri
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
- Institute for Medical Science and Technology, University of Dundee, Dundee, United Kingdom
| | - Vittoria Raffa
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
- Institute for Medical Science and Technology, University of Dundee, Dundee, United Kingdom
- Department of Biology, Università di Pisa, Pisa, Italy
| |
Collapse
|
43
|
Polonini HC, Brandão HM, Raposo NRB, Mouton L, Yéprémian C, Couté A, Brayner R. Ecotoxicological studies of micro- and nanosized barium titanate on aquatic photosynthetic microorganisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:58-70. [PMID: 24862688 DOI: 10.1016/j.aquatox.2014.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/28/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
The interaction between live organisms and micro- or nanosized materials has become a current focus in toxicology. As nanosized barium titanate has gained momentum lately in the medical field, the aims of the present work are: (i) to assess BT toxicity and its mechanisms on the aquatic environment, using two photosynthetic organisms (Anabaena flos-aquae, a colonial cyanobacteria, and Euglena gracilis, a flagellated euglenoid); (ii) to study and correlate the physicochemical properties of BT with its toxic profile; (iii) to compare the BT behavior (and Ba(2+) released ions) and the toxic profile in synthetic (Bold's Basal, BB, or Mineral Medium, MM) and natural culture media (Seine River Water, SRW); and (iv) to address whether size (micro, BT MP, or nano, BT NP) is an issue in BT particles toxicity. Responses such as growth inhibition, cell viability, superoxide dismutase (SOD) activity, adenosine-5-triphosphate (ATP) content and photosynthetic efficiency were evaluated. The main conclusions are: (i) BT have statistically significant toxic effects on E. gracilis growth and viability even in small concentrations (1μgmL(-1)), for both media and since the first 24 h; on the contrary of on A. flos-aquae, to whom the effects were noticeable only for the higher concentrations (after 96 h: ≥75 μg mL(-1) for BT NP and =100 μg mL(-1) for BT MP, in BB; and ≥75 μg mL(-1) for both materials in SRW), in spite of the viability being affected in all concentrations; (ii) the BT behaviors in synthetic and natural culture media were slightly different, being the toxic effects more pronounced when grown in SRW - in this case, a worse physiological state of the organisms in SRW can occur and account for the lower resistance, probably linked to a paucity of nutrients or even a synergistic effect with a contaminant from the river; and (iii) the effects seem to be mediated by induced stress without a direct contact in A. flos-aquae and by direct endocytosis in E. gracilis, but in both organisms the contact with both BT MP and BT NP increased SOD activity and decreased photosynthetic efficiency and intracellular ATP content; and (iv) size does not seem to be an issue in BT particles toxicity since micro- and nano-particles produced significant toxic for the model-organisms.
Collapse
Affiliation(s)
- Hudson C Polonini
- Universidade Federal de Juiz de Fora, Núcleo de Pesquisa e Inovação em Ciências da Saúde (NUPICS), Rua José Lourenço Kelmer, s/n, 36036-900 Juiz de Fora, Brazil.
| | - Humberto M Brandão
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa Gado de Leite), 36038-330 Juiz de Fora, Brazil
| | - Nádia R B Raposo
- Universidade Federal de Juiz de Fora, Núcleo de Pesquisa e Inovação em Ciências da Saúde (NUPICS), Rua José Lourenço Kelmer, s/n, 36036-900 Juiz de Fora, Brazil
| | - Ludovic Mouton
- Université Paris Diderot, Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, CNRS, 15 rue Jean de Baïf, F-75205 Paris Cedex 13, France
| | - Claude Yéprémian
- Muséum National d'Histoire Naturelle, Département RDDM, USM 505, 57 rue Cuvier, F-75005 Paris, France
| | - Alain Couté
- Muséum National d'Histoire Naturelle, Département RDDM, USM 505, 57 rue Cuvier, F-75005 Paris, France
| | - Roberta Brayner
- Université Paris Diderot, Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, CNRS, 15 rue Jean de Baïf, F-75205 Paris Cedex 13, France.
| |
Collapse
|
44
|
Turkez H, Sönmez E, Di Stefano A, Mokhtar YI. Health risk assessments of lithium titanate nanoparticles in rat liver cell model for its safe applications in nanopharmacology and nanomedicine. Cytotechnology 2014; 68:291-302. [PMID: 25149287 DOI: 10.1007/s10616-014-9780-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/10/2014] [Indexed: 11/28/2022] Open
Abstract
Due to their high chemical stability, lithium titanate (Li2TiO3) nanoparticles (LTT NPs) now are projected to be transferred into different nanotechnology areas like nano pharmacology and nano medicine. With the increased applications of LTT NPs for numerous purposes, the concerns about their potential human toxicity effects and their environmental impact are also increased. However, toxicity data for LTT NPs related to human health are very limited. Therefore we aimed to investigate toxicity potentials of various concentrations (0-1,000 ppm) of LTT NPs (<100 nm) in cultured primary rat hepatocytes. Cell viability was detected by [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT) assay and lactate dehydrogenase (LDH) release, while total antioxidant capacity (TAC) and total oxidative stress (TOS) levels were determined to evaluate the oxidative injury. DNA damage was analyzed by scoring liver micronuclei rates and by determining 8-oxo-2-deoxyguanosine (8-OH-dG) levels. The results of MTT and LDH assays showed that higher concentrations of dispersed LTT NPs (500 and 1,000 ppm) decreased cell viability. Also, LTT NPs increased TOS (300, 500 and 1,000 ppm) levels and decreased TAC (300, 500 and 1,000 ppm) levels in cultured hepatocytes. The results of genotoxicity tests revealed that LTT NPs did not cause significant increases of micronucleated hepatocytes and 8-OH-dG as compared to control culture. In conclusion, the obtained results showed for the first time that LTT NPs had dose dependent effects on oxidative damage and cytotoxicity but not genotoxicity in cultured primary rat hepatocytes for the first time.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Erdal Sönmez
- Department of Physics, K. K. Education Faculty, Atatürk University, 25240, Erzurum, Turkey
| | - Antonio Di Stefano
- Dipartimento di Farmacia, Università "G. D'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy
| | - Yousef I Mokhtar
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| |
Collapse
|
45
|
Kailasa SK, Wu HF. Surface modified BaTiO3 nanoparticles as the matrix for phospholipids and as extracting probes for LLME of hydrophobic proteins in Escherichia coli by MALDI–MS. Talanta 2013; 114:283-90. [DOI: 10.1016/j.talanta.2013.05.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/07/2013] [Accepted: 05/11/2013] [Indexed: 11/29/2022]
|
46
|
Coating barium titanate nanoparticles with polyethylenimine improves cellular uptake and allows for coupled imaging and gene delivery. Colloids Surf B Biointerfaces 2013; 112:108-12. [PMID: 23973999 DOI: 10.1016/j.colsurfb.2013.07.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 11/21/2022]
Abstract
Barium titanate nanoparticles (BT NP) belong to a class of second harmonic generating (SHG) nanoprobes that have recently demonstrated promise in biological imaging. Unfortunately, BT NPs display low cellular uptake efficiencies, which may be a problem if cellular internalization is desired or required for a particular application. To overcome this issue, while concomitantly developing a particle platform that can also deliver nucleic acids into cells, we coated the BT NPs with the cationic polymer polyethylenimine (PEI)-one of the most effective nonviral gene delivery agents. Coating of BT with PEI yielded complexes with positive zeta potentials and resulted in an 8-fold increase in cellular uptake of the BT NPs. Importantly, we were able to achieve high levels of gene delivery with the BT-PEI/DNA complexes, supporting further efforts to generate BT platforms for coupled imaging and gene therapy.
Collapse
|
47
|
Kim E, Steinbrück A, Buscaglia MT, Buscaglia V, Pertsch T, Grange R. Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter. ACS NANO 2013; 7:5343-9. [PMID: 23691915 DOI: 10.1021/nn401198g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We investigate the second-harmonic generation (SHG) signal from single BaTiO3 nanoparticles of diameters varying from 70 nm down to 22 nm with a far-field optical microscope coupled to an infrared femtosecond laser. An atomic force microscope is first used to localize the individual particles and to accurately determine their sizes. Power and polarization-dependent measurements on the individual nanoparticles reveal a diameter range between 30 and 20 nm, where deviations from bulk nonlinear optical properties occur. For 22 nm diameter particles, the tetragonal crystal structure is not applicable anymore and competing effects due to the surface to volume ratio or crystallographic modifications are taking place. The demonstration of SHG from such small nanoparticles opens up the possibilities of using them as bright coherent biomarkers. Moreover, our work shows that measuring the SHG of individual nanoparticles reveals critical material properties, opening up new possibilities to investigate ferroelectricity at the nanoscale.
Collapse
Affiliation(s)
- Eugene Kim
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Zheng XT, He HL, Li CM. Multifunctional graphene quantum dots-conjugated titanate nanoflowers for fluorescence-trackable targeted drug delivery. RSC Adv 2013. [DOI: 10.1039/c3ra44125c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
49
|
FarrokhTakin E, Ciofani G, Gemmi M, Piazza V, Mazzolai B, Mattoli V. Synthesis and characterization of new barium titanate core–gold shell nanoparticles. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Ciofani G, Ricotti L, Canale C, D'Alessandro D, Berrettini S, Mazzolai B, Mattoli V. Effects of barium titanate nanoparticles on proliferation and differentiation of rat mesenchymal stem cells. Colloids Surf B Biointerfaces 2012; 102:312-20. [PMID: 23006571 DOI: 10.1016/j.colsurfb.2012.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/29/2012] [Accepted: 08/02/2012] [Indexed: 01/09/2023]
Abstract
Nanomaterials hold great promise in the manipulation and treatments of mesenchymal stem cells, since they allow the modulation of their properties and differentiation. However, systematic studies have to be carried out in order to assess their potential toxicological effects. The present study reports on biocompatibility evaluation of glycol-chitosan coated barium titanate nanoparticles (BTNPs) on rat mesenchymal stem cells (MSCs). BTNPs are a class of ceramic systems which possess interesting features for biological applications thanks to their peculiar dielectric and piezoelectric properties. Viability was evaluated up to 5 days of incubation (concentrations in the range 0-100 μg/ml) both quantitatively and qualitatively with specific assays. Interactions cells/nanoparticles were further investigated with analysis of the cytoskeleton conformation, with SEM and TEM imaging, and with AFM analysis. Finally, differentiation in adipocytes and osteocytes was achieved in the presence of high doses of BTNPs, thus highlighting the safety of these nanostructures towards mesenchymal stem cells.
Collapse
Affiliation(s)
- Gianni Ciofani
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics @SSSA, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy.
| | | | | | | | | | | | | |
Collapse
|