1
|
Loving BA, Bruce KD. Lipid and Lipoprotein Metabolism in Microglia. Front Physiol 2020; 11:393. [PMID: 32411016 PMCID: PMC7198855 DOI: 10.3389/fphys.2020.00393] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Microglia, once viewed as static bystanders with limited homeostatic functions, are now considered key players in the development of neuroinflammatory and neurodegenerative diseases. Microglial activation is a salient feature of neuroinflammation involving a dynamic process that generates multitudinous microglial phenotypes that can respond to a variety of situational cues in the central nervous system. Recently, a flurry of single cell RNA-sequencing studies have defined microglial phenotypes in unprecedented detail, and have highlighted robust changes in the expression of genes involved in lipid and lipoprotein metabolism. Increased expression of genes such as Apolipoprotein E (ApoE), Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) and Lipoprotein Lipase (LPL) in microglia during development, damage, and disease, suggest that increased lipid metabolism is needed to fuel protective cellular functions such as phagocytosis. This review describes our current understanding of lipid and lipoprotein metabolism in microglia, and highlights microglial lipid metabolism as a modifiable target for the treatment of neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Bailey A. Loving
- School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
2
|
Schwenger KJP, Arendt BM, Smieja M, Ma DWL, Smaill F, Allard JP. Relationships between Atherosclerosis and Plasma Antioxidant Micronutrients or Red Blood Cell Polyunsaturated Fatty Acids in People Living with HIV. Nutrients 2019; 11:nu11061292. [PMID: 31181624 PMCID: PMC6628155 DOI: 10.3390/nu11061292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 11/24/2022] Open
Abstract
Background: People living with human immunodeficiency virus infection and acquired immune deficiency syndrome (HIV/AIDS) (PLWH) are at an increased risk of cardiovascular disease. Diet-related factors may contribute. The aim of this pilot study was to determine, in PLWH, the relationship between atherosclerosis assessed by carotid intima-media thickness (CIMT) and (A) plasma antioxidant micronutrients and oxidative stress or (B) red blood cell polyunsaturated fatty acids (RBC PUFA), particularly long chain omega-3 polyunsaturated fatty acids (n-3 PUFA). Methods: (A) In a cross-sectional study, subjects had CIMT evaluated by high resolution carotid artery ultrasound. Plasma was collected for vitamin C, measured by spectrophotometry; and alpha- and gamma-tocopherol, retinol, and malondialdehyde—a marker of oxidative stress—using high pressure liquid chromatography and fluorescence spectrophotometry. (B) In a prospective cohort study, other subjects had RBC PUFA measured at baseline, using gas chromatography, and CIMT assessed at baseline and repeated after 2 years. Clinical data was also collected. Results: (A) 91 PLWH participated. Only alpha- and gamma-tocopherol levels were positively correlated with CIMT. In a multivariate analysis, age and systolic blood pressure were significantly associated with CIMT with gamma-tocopherol near significance (p = 0.053). (B) 69 PLWH participated. At baseline, docosahexaenoic acid (n-3 PUFA) and the ratio of docosahexaenoic acid to arachidonic acid (n-6 PUFA) were significantly and negatively correlated with CIMT. However, a multivariate analysis failed to detect a significant relationship either at baseline or 2 years after. Conclusion: In addition to age and systolic blood pressure, atherosclerosis assessed by CIMT might be associated with higher serum gamma-tocopherol levels. There was a non-significant association between CIMT and RBC n-3 PUFA or the ratio of n-3 to n-6 PUFA.
Collapse
Affiliation(s)
- Katherine J P Schwenger
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada.
- Toronto General Hospital, University Health Network, Toronto, ON M5G 2N2, Canada.
| | - Bianca M Arendt
- Toronto General Hospital, University Health Network, Toronto, ON M5G 2N2, Canada.
| | - Marek Smieja
- Department of Clinical Epidemiology and Biostatistics, Health Research Methods, McMaster University, Hamilton, ON L8S 4L8, Canada.
- Department of Pathology and Molecular Medicine, McMaster University Faculty of Health Sciences, Hamilton, ON L8S 4L8, Canada.
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Fiona Smaill
- Department of Pathology and Molecular Medicine, McMaster University Faculty of Health Sciences, Hamilton, ON L8S 4L8, Canada.
| | - Johane P Allard
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada.
- Toronto General Hospital, University Health Network, Toronto, ON M5G 2N2, Canada.
| |
Collapse
|
3
|
Li J, Li K, Gao J, Guo X, Lu M, Li Z, Li D. Endogenously Synthesized n-3 Polyunsaturated Fatty Acids in Pregnant fat-1 Mice Decreases Mammary Cancer Risk of Female Offspring by Regulating Expression of Long Noncoding RNAs. Mol Nutr Food Res 2019; 63:e1801150. [PMID: 30569599 DOI: 10.1002/mnfr.201801150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/29/2018] [Indexed: 01/23/2023]
Abstract
SCOPE The present study investigates the precise mechanism by which maternal n-3 PUFAs decrease mammary cancer risk of offspring in terms of epigenetics. METHODS AND RESULTS Transgenic fat-1 and wild-type C57BL/6J littermates are fed an n-6 PUFAs diet during pregnancy. Wild-genotype offspring of fat-1 mothers (fat-1 group) are compared with wild-genotype offspring of C57BL/6J mothers (control group) in breast cancer risk. Fat-1 group shows a significantly lower tumor incidence and smaller tumor volume compared with control group. n-3 PUFAs in fat-1 mothers change the expression of long noncoding RNA (lncRNA, 53 upregulated and 45 downregulated) in mammary glands of offspring. The lncRNA changes are associated with the changes of mRNA in multiple oncogenic signaling pathways, especially NF-κB, Jak-STAT, and MAPK pathways. Expression of key protein in these pathways, namely p65, p60, STAT3, Jak1, and p38, are significantly inhibited in fat-1 group. In line with these results, reduced proliferation and increased apoptosis are also observed in mammary epithelial of fat-1 group than control group. CONCLUSION The anticancer effect of maternal n-3 PUFAs is related to the regulation of lncRNA expression, which can further regulate the susceptibility of offspring to breast cancer.
Collapse
Affiliation(s)
- Jiaomei Li
- Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Kelei Li
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Jinlong Gao
- Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiaofei Guo
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Mengqing Lu
- Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zihao Li
- Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
4
|
Zhang S, Lu F, Liu Q, Liu Y, Guan X, Wei Y, Tan S, Shi D. Efficient generation of sFat-1 transgenic rabbits rich in n-3 polyunsaturated fatty acids by intracytoplasmic sperm injection. Reprod Fertil Dev 2017; 28:310-8. [PMID: 25027718 DOI: 10.1071/rd13413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 05/20/2014] [Indexed: 01/28/2023] Open
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFAs) have their first double bond at the third carbon from the methyl end of the fatty-acid chain and had been proven to be beneficial to human health. However, mammals cannot produce n-3 PUFAs by themselves because they lack the n-3 fatty-acid desaturase (Fat-1) gene. Thus, the possibility of producing sFat-1 transgenic rabbits was explored in this study. The transgenic cassette of pPGK1-sFat-1-CMV-EGFP was constructed and transgenic rabbit embryos were produced by intracytoplasmic sperm injection (ICSI). When 123 EGFP-positive embryos at the 2-8-cell stage were transplanted into the oviduct of four oestrous-synchronised recipients, two of them became pregnant and gave birth to seven pups. However, transfer of embryos into the uterus of oestrous-synchronised recipients and oviduct or uterus of oocyte donor rabbits did not result in pregnancy. The integration of the sFat-1 gene was confirmed in six of the seven live pups by PCR and Southern blot. The expression of the sFat-1 gene in the six transgenic pups was also detected by reverse transcription polymerase chain reaction (RT-PCR). Gas chromatography-mass spectrometry analysis revealed that transgenic rabbits exhibited an ~15-fold decrease in the ratio of n-6:n-3 PUFAs in muscle compared with wild-type rabbits and non-transgenic rabbits. These results demonstrate that sFat-1 transgenic rabbits can be produced by ICSI and display a low ratio of n-6:n-3 PUFAs.
Collapse
Affiliation(s)
- Shun Zhang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Yubing Liu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Xiaomei Guan
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Yingming Wei
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Shijian Tan
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
n-3 Polyunsaturated fatty acids inhibit Fc ε receptor I-mediated mast cell activation. J Nutr Biochem 2015; 26:1580-8. [DOI: 10.1016/j.jnutbio.2015.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/16/2015] [Accepted: 07/29/2015] [Indexed: 01/25/2023]
|
6
|
Arendt BM, Comelli EM, Ma DWL, Lou W, Teterina A, Kim T, Fung SK, Wong DKH, McGilvray I, Fischer SE, Allard JP. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology 2015; 61:1565-78. [PMID: 25581263 DOI: 10.1002/hep.27695] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 12/31/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED In nonalcoholic fatty liver disease, hepatic gene expression and fatty acid (FA) composition have been reported independently, but a comprehensive gene expression profiling in relation to FA composition is lacking. The aim was to assess this relationship. In a cross-sectional study, hepatic gene expression (Illumina Microarray) was first compared among 20 patients with simple steatosis (SS), 19 with nonalcoholic steatohepatitis (NASH), and 24 healthy controls. The FA composition in hepatic total lipids was compared between SS and NASH, and associations between gene expression and FAs were examined. Gene expression differed mainly between healthy controls and patients (SS and NASH), including genes related to unsaturated FA metabolism. Twenty-two genes were differentially expressed between NASH and SS; most of them correlated with disease severity and related more to cancer progression than to lipid metabolism. Biologically active long-chain polyunsaturated FAs (PUFAs; eicosapentaenoic acid + docosahexaenoic acid, arachidonic acid) in hepatic total lipids were lower in NASH than in SS. This may be related to overexpression of FADS1, FADS2, and PNPLA3. The degree and direction of correlations between PUFAs and gene expression were different among SS and NASH, which may suggest that low PUFA content in NASH modulates gene expression in a different way compared with SS or, alternatively, that gene expression influences PUFA content differently depending on disease severity (SS versus NASH). CONCLUSION Well-defined subjects with either healthy liver, SS, or NASH showed distinct hepatic gene expression profiles including genes involved in unsaturated FA metabolism. In patients with NASH, hepatic PUFAs were lower and associations with gene expression were different compared to SS.
Collapse
Affiliation(s)
- Bianca M Arendt
- Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
The use of genetic engineering techniques to improve the lipid composition in meat, milk and fish products: a review. Animal 2014; 9:696-706. [PMID: 25500170 DOI: 10.1017/s1751731114003012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The health-promoting properties of dietary long-chain n-3 polyunsaturated fatty acids (n-3 LCPUFAs) for humans are well-known. Products of animal-origin enriched with n-3 LCPUFAs can be a good example of functional food, that is food that besides traditionally understood nutritional value may have a beneficial influence on the metabolism and health of consumers, thus reducing the risk of various lifestyle diseases such as atherosclerosis and coronary artery disease. The traditional method of enriching meat, milk or eggs with n-3 LCPUFA is the manipulation of the composition of animal diets. Huge progress in the development of genetic engineering techniques, for example transgenesis, has enabled the generation of many kinds of genetically modified animals. In recent years, one of the aims of animal transgenesis has been the modification of the lipid composition of meat and milk in order to improve the dietetic value of animal-origin products. This article reviews and discusses the data in the literature concerning studies where techniques of genetic engineering were used to create animal-origin products modified to contain health-promoting lipids. These studies are still at the laboratory stage, but their results have demonstrated that the transgenesis of pigs, cows, goats and fishes can be used in the future as efficient methods of production of healthy animal-origin food of high dietetic value. However, due to high costs and a low level of public acceptance, the introduction of this technology to commercial animal production and markets seems to be a distant prospect.
Collapse
|
8
|
n-3 polyunsaturated fatty acids and mechanisms to mitigate inflammatory paracrine signaling in obesity-associated breast cancer. Nutrients 2014; 6:4760-93. [PMID: 25360510 PMCID: PMC4245562 DOI: 10.3390/nu6114760] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Globally, the prevalence of obesity is increasing which subsequently increases the risk of the development of obesity-related chronic diseases. Low-grade chronic inflammation and dysregulated adipose tissue inflammatory mediator/adipokine secretion are well-established in obesity, and these factors increase the risk of developing inflammation-associated cancer. Breast cancer is of particular interest given that increased inflammation within the subcutaneous mammary adipose tissue depot can alter the local tissue inflammatory microenvironment such that it resembles that of obese visceral adipose tissue. Therefore, in obese women with breast cancer, increased inflammatory mediators both locally and systemically can perpetuate inflammation-associated pro-carcinogenic signaling pathways, thereby increasing disease severity. Herein, we discuss some of these inflammation-associated pro-carcinogenic mechanisms of the combined obese breast cancer phenotype and offer evidence that dietary long chain n-3 polyunsaturated fatty acids (PUFA) may have utility in mitigating the severity of obesity-associated inflammation and breast cancer.
Collapse
|
9
|
Park JM, Kwon SH, Han YM, Hahm KB, Kim EH. Omega-3 polyunsaturated Fatty acids as potential chemopreventive agent for gastrointestinal cancer. J Cancer Prev 2014; 18:201-8. [PMID: 25337547 PMCID: PMC4189468 DOI: 10.15430/jcp.2013.18.3.201] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/15/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentanoic acid (EPA) and docosahexanoic acid (DHA), has been acknowledged as essential very long-chain fatty acids contributing to either achieving optimal health or protection against diseases, and even longevity. Recent high impact studies dealing with EPA and DHA have sparked a renewed interest in using n-3 PUFAs for cancer prevention and cancer treatment, for which n-3 PUFAs may exert their anticancer actions by influencing multiple targets implicated in various stages of cancer development, including cell proliferation, cell survival, angiogenesis, inflammation, and metastasis against various cancers. However, gastrointestinal cancers develop implicated with the close connection between inflammation and cancer and n-3 PUFAs especially imposed excellent actions of antiinflammation and antioxidation as well as their restorative actions. In detail, these beneficial lipids can restore or modify inflammation-associated lipid distorsion and alteration of lipid rafts. Although the chemopreventive effect of n-3 PUFAs has been studied in various experimental models, our understanding regarding the underlying mechanisms of n-3 PUFAs against GI cancer is still limited. In this review article, we described the in-detailed perspective and underlying mechanism of n-3 PUFAs application for GI cancers and added in vivo efficacy of n-3 PUFAs with Fat-1 transgenic mice experience. We suggest that future work should consider the n-6/n-3 FA ratio, combination treatment of other nutritions and alteration of lipid rafts to be a key element in experimental design and analysis.
Collapse
Affiliation(s)
- Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul
| | - Sung-Hun Kwon
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul
| | - Young-Min Han
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul ; College of Pharmacy, CHA University, Pocheon
| | - Ki-Baik Hahm
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul ; Department of Gastroenterology, CHA Bundang Medical Center, Seongnam, Korea
| | - Eun-Hee Kim
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul ; College of Pharmacy, CHA University, Pocheon
| |
Collapse
|
10
|
Qin S, Wen J, Bai XC, Chen TY, Zheng RC, Zhou GB, Ma J, Feng JY, Zhong BL, Li YM. Endogenous n-3 polyunsaturated fatty acids protect against imiquimod-induced psoriasis-like inflammation via the IL-17/IL-23 axis. Mol Med Rep 2014; 9:2097-104. [PMID: 24718773 PMCID: PMC4055457 DOI: 10.3892/mmr.2014.2136] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/11/2014] [Indexed: 12/22/2022] Open
Abstract
The beneficial effects of n-3 polyunsaturated fatty acids (PUFAs) on psoriasis have been reported in rats, mice and humans, but the specific mechanisms involved have not been well defined. The present study utilized the fat-1 mouse, a transgenic model that can endogenously convert n-6 FAs into n-3 PUFAs, to directly determine if the outcomes of psoriasis were correlated with n-3 PUFAs. Wild-type (WT) and fat-1 mice, which were treated daily with imiquimod (IMQ) cream or control cream on the shaved right ear and dorsal skin, were fed the same diet. The severity of inflammation of the ear and dorsal skin was scored according to the clinical Psoriasis Area and Severity Index (PASI) and epidermal hyperplasia was measured by H&E staining. The expression of inflammatory factors in the epidermis was analyzed by immunohistochemical analysis. Flow cytometry and an enzyme-linked immunosorbent assay were used to measure the differences in the content of inflammatory factors in the blood serum and to determine which of CD4+ T cells were present in the spleen between IMQ-induced fat-1 mice and WT mice. Fat-1 IMQ-induced mice exhibited significantly lower levels of inflammatory cell-like T helper 17 cells (Th17 cells) and higher levels of regulatory T cells (Treg cells) in the spleen as compared with the WT IMQ-induced mice. n-3 fatty acids stimulated Th17 cells to produce lower levels of inflammatory factors, including interleukin (IL)-17, IL-22, IL-23 and stimulated Treg cells to produce higher anti-inflammatory factors, such as Foxp3. In conclusion, the present study provides further insight into the mechanisms involved in preventing inflammation in psoriasis-like mice by n-3 PUFAs using a fat-1 transgenic mouse model.
Collapse
Affiliation(s)
- Si Qin
- Department of Dermatology, Southern Medical University Affiliated Guangdong Provincial No. 2 People's Hospital, Guangzhou, Guangdong, P.R. China
| | - Ju Wen
- Department of Dermatology, Southern Medical University Affiliated Guangdong Provincial No. 2 People's Hospital, Guangzhou, Guangdong, P.R. China
| | - Xiao-Chun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Tian-Yu Chen
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Rong-Chang Zheng
- Department of Dermatology, Southern Medical University Affiliated Guangdong Provincial No. 2 People's Hospital, Guangzhou, Guangdong, P.R. China
| | - Gui-Bin Zhou
- Department of Dermatology, Southern Medical University Affiliated Guangdong Provincial No. 2 People's Hospital, Guangzhou, Guangdong, P.R. China
| | - Jing Ma
- Department of Dermatology, Southern Medical University Affiliated Guangdong Provincial No. 2 People's Hospital, Guangzhou, Guangdong, P.R. China
| | - Jie-Ying Feng
- Department of Dermatology, Southern Medical University Affiliated Guangdong Provincial No. 2 People's Hospital, Guangzhou, Guangdong, P.R. China
| | - Bi-Ling Zhong
- Department of Pathology, Guangdong Provincial No. 2 People's Hospital, Guangzhou, Guangdong, P.R. China
| | - Yi-Ming Li
- Department of Pathology, Guangdong Provincial No. 2 People's Hospital, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
11
|
Anderson BM, MacLennan MB, Hillyer LM, Ma DWL. Lifelong exposure to n-3 PUFA affects pubertal mammary gland development. Appl Physiol Nutr Metab 2014; 39:699-706. [PMID: 24758708 DOI: 10.1139/apnm-2013-0365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is growing evidence that early developmental periods may importantly influence future breast cancer risk. Also, there is great interest in the role of dietary fat in breast cancer risk, but the role of dietary fat during pubertal mammary gland development remains poorly understood. This study investigated the effect of n-3 polyunsaturated fatty acids (PUFA) using complementary dietary and genetic approaches to examine the effect of lifelong exposure of n-3 PUFA or n-6 PUFA (control) on mammary gland development and fatty acid composition. n-3 PUFA from both diet and genetics were enriched in mammary glands as early as 3 weeks of age. Parameters related to mammary gland development, including number of terminal end buds (TEB), percent coverage of ductal tree, and infiltration of TEB, were influenced by n-3 PUFA at 3 and 4 weeks of age. Overall, findings suggest that n-3 PUFA incorporation into the mammary gland early in life plays a role in the morphological development of the mammary gland during puberty.
Collapse
Affiliation(s)
- Breanne M Anderson
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Animal Science/Nutrition Building, Rm 342, 491 Gordon Street, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
12
|
The desaturase OPIN17 from Phytophthora infestans converts arachidonic acid to eicosapentaenoic acid in CHO cells. Appl Biochem Biotechnol 2013; 171:975-88. [PMID: 23912207 DOI: 10.1007/s12010-013-0332-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
We demonstrate the ability to increase the amount of eicosapentaenoic acid (EPA, 20:5n-3) in mammalian cells using OPIN17 desaturase gene. This gene was codon optimized based on genomic sequence of Δ17 from Phytophthora infestans and introduced into Chinese hamster ovary cells using liposome-mediated transfection protocol. Reverse transcription polymerase chain reaction was utilized to evaluate co-expression of AcGFP1 and OPIN17. Our results indicate that the OPIN17 gene can be expressed in mammalian cells. Heterologous expression of this gene was evaluated by assessing the fatty acid content of OPIN17-transfected cells. A total cellular lipid analysis of transfected cells which were fed with arachidonic acid (AA, 20:4n-6) as a substrate resulted in an 86.5-246 % (p < 0.05) increase in the amount of EPA in transfected cells compared with that in control cells. The ratio of AA to EPA was reduced from approximately 4.07:1 in control cells to 2.2:1 in transfected cells (p < 0.05), which indicates an EPA percent conversion of 30.94 %. Our study demonstrates that the codon-optimized OPIN17 gene can be functionally expressed in mammalian cells, converting AA into EPA and elevating the level of ω-3 polyunsaturated fatty acids efficiently. These results provide an additional support for the use of this gene in generating transgenic livestock.
Collapse
|
13
|
Aghdassi E, Ma DWL, Morrison S, Hillyer LM, Clarke S, Gladman DD, Urowitz MB, Fortin PR. Alterations in circulating fatty acid composition in patients with systemic lupus erythematosus: a pilot study. JPEN J Parenter Enteral Nutr 2011; 35:198-208. [PMID: 21378249 DOI: 10.1177/0148607110386378] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Circulating fatty acids (FAs) may play a role in the disease pathogenesis of patients with systemic lupus erythematosus (SLE). OBJECTIVES To compare red blood cell (RBC) and plasma FA composition: (1) between female SLE patients and age-matched healthy female (HF) controls and in SLE with history of cardiovascular disease (CVD) and those with no history (SLE+CVD vs SLE-CVD); and (2) between SLE patients who were or were not receiving prednisone treatment at the time of blood sampling. METHODS This cross-sectional study consisted of 33 female patients with SLE (11 SLE+CVD, 22 SLE-CVD) and 20 HF controls. Demographics, CVD risk, medication profile, blood biochemistry, and FA composition of RBC and plasma total lipids were determined. RESULTS Waist circumference and body mass index were higher in SLE patients than in HF controls. These variables along with serum triglycerides, blood glucose, and systolic blood pressure were higher in SLE+CVD than SLE-CVD patients. RBC FA composition showed lower eicosapentaenoic acid (EPA, ω-3 active metabolite) and ω-3 index (EPA+ docosahexaenoic acid) in SLE patients compared with HF controls. The ratio of the RBC inflammatory metabolite, arachidonic acid, to the anti-inflammatory metabolite EPA was also significantly higher in SLE patients than in HF controls. No differences were seen in plasma FA between SLE and HF groups. However, SLE-CVD patients had a more favorable lipid profile than SLE+CVD patients. In SLE patients, the use of prednisone resulted in alteration of both RBC and plasma FA composition. CONCLUSION SLE patients, regardless of their history of CVD, have altered plasma and RBC FA composition favoring inflammation. The use of prednisone was associated with differences in FA profile.
Collapse
Affiliation(s)
- Elaheh Aghdassi
- Division of Health Care and Outcome Research, Toronto Western Research Institute, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sun H, Hu Y, Gu Z, Owens RT, Chen YQ, Edwards IJ. Omega-3 fatty acids induce apoptosis in human breast cancer cells and mouse mammary tissue through syndecan-1 inhibition of the MEK-Erk pathway. Carcinogenesis 2011; 32:1518-24. [PMID: 21771724 DOI: 10.1093/carcin/bgr132] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human epidemiological studies have shown that diets enriched in n-3 polyunsaturated fatty acids (n-3 PUFA) are associated with a lower incidence of cancers including breast cancer. Our previous studies showed that the n-3 PUFA, docosahexaenoic acid (DHA), upregulated syndecan-1 (SDC-1) expression to induce apoptosis in the human breast cancer cell line MCF-7. We now present evidence of a signaling pathway that is impacted by SDC-1 in these cells and in mouse mammary tissues to result in apoptosis. In MCF-7 cells and SK-BR-3 cells, DHA and a SDC-1 ectodomain impaired signaling of the p44/42 mitogen-activated protein kinase (MAPK) pathway by inhibiting the phosphorylation of MAPK/Erk (MEK)/extracellular signal-regulated kinase (Erk) and Bad to induce apoptosis. SDC-1 siRNA significantly enhanced phosphorylation of these signal molecules and blocked the inhibitory effects of DHA on their phosphorylation. SDC-1 siRNA diminished apoptosis of MCF-7 cells, an effect that was markedly blocked by MEK inhibitor, PD98059. In vivo studies used (i) Fat-1 mice, a genetic model able to convert n-6 to n-3 PUFA to result in higher SDC-1 levels in Fat-1 mammary tissue compared with that of wild-type (wt) mice. Phosphorylation of MEK, Erk and Bad was lower in the Fat-1 versus wt tissue and (ii) SDC-1(-/-) mice that demonstrated markedly higher levels of phosphorylated MEK, Erk and Bad in mammary gland tissue compared with those of SDC(+/+) mice. These data elucidate a pathway whereby SDC-1, upregulated by DHA, induces apoptosis in breast cancer cells through inhibition of MEK/Erk/Bad signaling.
Collapse
Affiliation(s)
- Haiguo Sun
- Department of Pathology, Wake ForestUniversity School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
15
|
Sun H, Hu Y, Gu Z, Wilson MD, Chen YQ, Rudel LL, Willingham MC, Edwards IJ. Endogenous synthesis of n-3 polyunsaturated fatty acids in Fat-1 mice is associated with increased mammary gland and liver syndecan-1. PLoS One 2011; 6:e20502. [PMID: 21655218 PMCID: PMC3105073 DOI: 10.1371/journal.pone.0020502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/02/2011] [Indexed: 01/12/2023] Open
Abstract
Long chain n-3 PUFA have been shown to have chemopreventive properties against breast cancer through various mechanisms. One pathway, studied in human breast cancer cell lines, involves upregulation of the proteoglycan, syndecan-1 (SDC-1) by n-3 PUFA-enriched LDL. Using Fat-1 mice that are able to convert n-6 to n-3 PUFA, we tested whether SDC-1 level in vivo is elevated in mammary glands due to endogenously synthesized rather than LDL-derived n-3 PUFA. Female Fat-1 and wild type (wt) mice were fed an n-6 PUFA- enriched diet for 7 weeks. Fatty acid analysis of plasma lipoproteins showed that total n-6 PUFA reflected dietary intake similarly in both genotypes (VLDL, 36.2±2.2 and 40.9±3.9; LDL, 49.0±3.3 and 48.1±2.0; HDL, 54.6±1.2 and 58.2±1.3, mean ± SEM percent of total fatty acids for Fat-1 and wt animals respectively). Lipoprotein percent n-3 PUFA was also similar between groups. However, phospholipids and triglycerides extracted from mammary and liver tissues demonstrated significantly higher n-3 PUFA and a corresponding decrease in the ratio n-6/n-3 PUFA in Fat-1 compared to wt mice. This was accompanied by higher SDC-1 in mammary glands and livers of Fat-1 mice, thus demonstrating that endogenously synthesized n-3 PUFA may upregulate SDC-1 in the presence of high dietary n-6 PUFA.
Collapse
Affiliation(s)
- Haiguo Sun
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yunping Hu
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Zhennan Gu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Martha D. Wilson
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Yong Q. Chen
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Lawrence L. Rudel
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Mark C. Willingham
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Iris J. Edwards
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail: E-mail:
| |
Collapse
|
16
|
Rahman M, Halade GV, Bhattacharya A, Fernandes G. The fat-1 transgene in mice increases antioxidant potential, reduces pro-inflammatory cytokine levels, and enhances PPAR-gamma and SIRT-1 expression on a calorie restricted diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:307-16. [PMID: 20716918 PMCID: PMC2835919 DOI: 10.4161/oxim.2.5.9579] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Both n-3 fatty acids (FA) and calorie-restriction (CR) are known to exert anti-inflammatory and anti-oxidative effects in animals and humans. In this study, we investigated the synergistic anti-inflammatory and anti-oxidative capacity of n-3 FA and CR using Fat-1 transgenic mice (Fat-1) that are capable of converting n-6 FA to n-3 FA endogenously. Wild type (WT) and Fat-1 mice were maintained on ad libitum (AL) or CR (40% less than AL) AIN-93 diet supplemented with 10% corn oil (rich in n-6 FA) for 5 months. Significantly lower levels of n-6/n-3 FA ratio were observed in serum, muscle and liver of Fat-1 mice fed AL or CR as compared to that of WT mice fed AL or CR. Muscle catalase (CAT), super oxide dismutase (SOD), glutathione peroxidase (GPX) activities, and liver CAT and SOD activities were found higher in Fat-1 mice as compared to that of WT mice. These activities were more pronounced in Fat-1/CR group as compared to other groups. Serum pro-inflammatory markers, such as tumor necrosis factor (TNF)α, interleukin (IL)-1β and IL-6 were found lower in Fat-1 mice, as compared to that of WT mice. This anti-inflammatory effect was also more pronounced in Fat-1/CR group as compared to that of other groups. Furthermore, significantly higher levels of peroxisome proliferator-activated receptor (PPA R)gamma and life prolonging gene, sirtuin (SIRT)-1 expression were found in liver of Fat-1/CR mice, as compared to that of WT/CR mice. These data suggest that n-3 FA along with moderate CR may prolong lifespan by attenuating inflammation and oxidative stress.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
| | | | | | | |
Collapse
|
17
|
Rahman MM, Bhattacharya A, Banu J, Kang JX, Fernandes G. Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis. J Cell Mol Med 2010. [PMID: 20141608 DOI: 10.1111/j.1582-4934.2008.00649.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Beneficial effects of n-3 fatty acids (FA) on bone mineral density (BMD) have been reported in mice, rats and human beings, but the precise mechanisms involved have not been described. This study used the Fat-1 mouse, a transgenic model that synthesizes n-3 FA from n-6 FA to directly determine if outcome of bone health were correlated with n-3 FA. Ovariectomized (Ovx) and sham operated wild-type (WT) and Fat-1 mice were fed an AIN-93M diet containing 10% corn oil for 24 weeks. BMD was analysed by dual energy x-ray absorptiometry. Fat-1 Ovx mice exhibited significantly lower level of osteotropic factors like receptor activator of NF-kappaB ligand and tartrate-resistant acid phosphatase (TRAP)5b in serum and higher BMD in distal femoral metaphysis, proximal tibial metaphysis, femoral diaphysis and lumbar vertebra as compared to WT Ovx mice. LPS-stimulated bone marrow (BM) cells from Fat-1 Ovx mice produced significantly lower level of pro-inflammatory cytokines like tumour necrosis factor-alpha, interleukin (IL)-1-beta, IL-6 and higher level of anti-inflammatory cytokines like IL-10, IFN-gamma and higher level of nitric oxide as compared to BM cells from WT Ovx mice. LPS-stimulated COX-II activity as well as NF-kappaB activation in BM cells from Fat-1 Ovx mice was significantly less as compared to BM cells from WT Ovx mice. Furthermore, Fat-1 BM cells generated significantly less number of TRAP osteoclast-like cells as compared to WT BM cells. In conclusion, we offer further insight into the mechanisms involved in preventing the BMD loss in Ovx mice by n-3 FA using a Fat-1 transgenic mouse model.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, San Antonio, TX -78229-3900, USA
| | | | | | | | | |
Collapse
|
18
|
Boudrault C, Bazinet RP, Kang JX, Ma DW. Cyclooxygenase-2 and n-6 PUFA are lower and DHA is higher in the cortex of fat-1 mice. Neurochem Int 2010; 56:585-9. [DOI: 10.1016/j.neuint.2009.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/12/2009] [Accepted: 12/29/2009] [Indexed: 10/20/2022]
|
19
|
Huot PS, Sarkar B, Ma DW. Conjugated linoleic acid alters caveolae phospholipid fatty acid composition and decreases caveolin-1 expression in MCF-7 breast cancer cells. Nutr Res 2010; 30:179-85. [DOI: 10.1016/j.nutres.2010.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 12/30/2022]
|
20
|
Chen Y, Zhang M, Gou K. SDD17 desaturase can convert arachidonic acid to eicosapentaenoic acid in mammalian cells. Biochem Biophys Res Commun 2010; 394:158-62. [PMID: 20188069 DOI: 10.1016/j.bbrc.2010.02.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 02/22/2010] [Indexed: 11/30/2022]
Abstract
The possibility of elevating the omega-3 fatty acid contents in mammalian cells using the sdd17 gene from Saprolegnia diclina was investigated in the current study. The nucleotide sequence of the sdd17 gene was optimized and the pSDD17-IRES-GFP plasmid was introduced into murine 3T3 fibroblast cells by electroporation, following which its heterologous expression was evaluated by fatty acid analysis. Evaluation of GFP co-expression and RT-PCR analysis indicated that sdd17 could be expressed at very high levels in mammalian cells. Total cellular lipid analysis of transformed cells fed with arachidonic acid (20:4 n-6) as a substrate showed that the sdd17 expression resulted in an 82-155% (p<0.05) increase in eicosapentaenoic acid (20:5 n-3) compared with the control. This expression also reduced the arachidonic acid/(eicosapentaenoic+docosapentaenoic+docosahexaenoic acid) ratio from approximately 4:1 in control cells to 1.5:1 in sdd17-transformed cells (p<0.05). This study demonstrated that the foreign sdd17 gene from EPA-rich fungus was expressed at a high efficiency and caused the omega-3 fatty acid contents in mammalian cells to be elevated. It also provided a basis for potential applications of this gene in animal transgenesis.
Collapse
Affiliation(s)
- Yonggang Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | | | | |
Collapse
|
21
|
Rahman MM, Bhattacharya A, Banu J, Kang JX, Fernandes G. Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis. J Cell Mol Med 2009; 13:1833-44. [PMID: 20141608 PMCID: PMC2855756 DOI: 10.1111/j.1582-4934.2009.00649.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 11/07/2008] [Indexed: 12/26/2022] Open
Abstract
Beneficial effects of n-3 fatty acids (FA) on bone mineral density (BMD) have been reported in mice, rats and human beings, but the precise mechanisms involved have not been described. This study used the Fat-1 mouse, a transgenic model that synthesizes n-3 FA from n-6 FA to directly determine if outcome of bone health were correlated with n-3 FA. Ovariectomized (Ovx) and sham operated wild-type (WT) and Fat-1 mice were fed an AIN-93M diet containing 10% corn oil for 24 weeks. BMD was analysed by dual energy x-ray absorptiometry. Fat-1 Ovx mice exhibited significantly lower level of osteotropic factors like receptor activator of NF-kappaB ligand and tartrate-resistant acid phosphatase (TRAP)5b in serum and higher BMD in distal femoral metaphysis, proximal tibial metaphysis, femoral diaphysis and lumbar vertebra as compared to WT Ovx mice. LPS-stimulated bone marrow (BM) cells from Fat-1 Ovx mice produced significantly lower level of pro-inflammatory cytokines like tumour necrosis factor-alpha, interleukin (IL)-1-beta, IL-6 and higher level of anti-inflammatory cytokines like IL-10, IFN-gamma and higher level of nitric oxide as compared to BM cells from WT Ovx mice. LPS-stimulated COX-II activity as well as NF-kappaB activation in BM cells from Fat-1 Ovx mice was significantly less as compared to BM cells from WT Ovx mice. Furthermore, Fat-1 BM cells generated significantly less number of TRAP osteoclast-like cells as compared to WT BM cells. In conclusion, we offer further insight into the mechanisms involved in preventing the BMD loss in Ovx mice by n-3 FA using a Fat-1 transgenic mouse model.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Texas Health Science Center at San Antonio, San Antonio, TX -78229-3900, USA
| | | | | | | | | |
Collapse
|
22
|
Arendt BM, Mohammed SS, Aghdassi E, Prayitno NR, Ma DWL, Nguyen A, Guindi M, Sherman M, Heathcote EJ, Allard JP. Hepatic fatty acid composition differs between chronic hepatitis C patients with and without steatosis. J Nutr 2009; 139:691-5. [PMID: 19211827 DOI: 10.3945/jn.108.101782] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatic fatty acid (FA) composition may influence steatosis development in patients with chronic hepatitis C (CHC). In a cross-sectional study, we compared the hepatic FA profile in hepatitis C patients with (n = 9) and without (n = 33) steatosis (> or =5% of hepatocytes involved). FA composition of hepatic and RBC total lipids was measured by gas chromatography. Lipid peroxidation and antioxidants in liver and plasma, blood biochemistry, and nutritional status were also assessed. Patients with steatosis had more fibrosis, higher necroinflammatory activity of their hepatitis C infection, were more often infected with genotype 3, and had lower serum cholesterol. Monounsaturated FA in the liver were higher and trans FA were lower in patients with steatosis. Lower stearic acid and higher oleic acid in hepatic total lipids suggested higher Delta9-desaturase activity. alpha-Linolenic acid in the liver was higher and the ratios of long-chain PUFA:essential FA precursors were lower for (n-3) and (n-6) PUFA. Plasma vitamin C was lower in steatosis, but RBC FA composition and other parameters did not differ. We conclude that hepatic FA composition is altered in patients with hepatitis C and steatosis, probably due to modulation of enzymatic elongation and desaturation. Oxidative stress or nutritional status does not seem to play a predominant role for development of steatosis in CHC.
Collapse
Affiliation(s)
- Bianca M Arendt
- University Health Network, Department of Medicine, Toronto, M5G 2C4 Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
‘Designer oils’ low in n-6:n-3 fatty acid ratio beneficially modifies cardiovascular risks in mice. Eur J Nutr 2009; 48:307-14. [DOI: 10.1007/s00394-009-0015-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 03/11/2009] [Indexed: 12/11/2022]
|
24
|
Kim W, Fan YY, Barhoumi R, Smith R, McMurray DN, Chapkin RS. n-3 polyunsaturated fatty acids suppress the localization and activation of signaling proteins at the immunological synapse in murine CD4+ T cells by affecting lipid raft formation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6236-43. [PMID: 18941214 PMCID: PMC2597670 DOI: 10.4049/jimmunol.181.9.6236] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular properties of immunosuppressive n-3 polyunsaturated fatty acids (PUFA) have not been fully elucidated. Using CD4(+) T cells from wild-type control and fat-1 transgenic mice (enriched in n-3 PUFA), we show that membrane raft accumulation assessed by Laurdan (6-dodecanoyl-2-dimethyl aminonaphthalene) labeling was enhanced in fat-1 cells following immunological synapse (IS) formation by CD3-specific Ab expressing hybridoma cells. However, the localization of protein kinase Ctheta, phospholipase Cgamma-1, and F-actin into the IS was suppressed. In addition, both the phosphorylation status of phospholipase Cgamma-1 at the IS and cell proliferation as assessed by CFSE labeling and [(3)H]thymidine incorporation were suppressed in fat-1 cells. These data imply that lipid rafts may be targets for the development of dietary agents for the treatment of autoimmune and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Wooki Kim
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
|
27
|
Allard JP, Aghdassi E, Mohammed S, Raman M, Avand G, Arendt BM, Jalali P, Kandasamy T, Prayitno N, Sherman M, Guindi M, Ma DWL, Heathcote JE. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): a cross-sectional study. J Hepatol 2008; 48:300-7. [PMID: 18086506 DOI: 10.1016/j.jhep.2007.09.009] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/27/2007] [Accepted: 09/10/2007] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS Low hepatic n-6 and n-3 polyunsaturated fatty acid (PUFA) may contribute to steatosis and steatohepatitis and can be affected by diet and oxidative stress. METHODS Seventy-three patients referred for elevated liver enzymes and suspected NAFLD were assessed. Nutritional assessment, hepatic FA composition and oxidative stress were compared between these groups: simple steatosis (SS, n=18), steatohepatitis (NASH, n=38) and minimal findings on liver biopsy (MF, n=17). RESULTS Patients with NASH had higher: BMI, central obesity, body fat, insulin resistance, dyslipidemia and lower physical activity compared to the other groups. They also had relatively lower hepatic n-3 and n-6 PUFA, a decrease in the ratio of metabolites to essential FA precursors for both n-6 and n-3 FA (eicosapentaenoic+docosahexaenoic/linolenic and arachidonic/linoleic acid ratios) and higher liver lipid peroxides with lower antioxidant power, when compared to MF. Overall, there was no significant difference between SS and NASH in FA composition. Self-reported dietary intake and red blood cell FA composition were similar among the three groups. CONCLUSIONS NASH patients have more metabolic abnormalities. This is associated with higher oxidative stress and lower n-3 and n-6 PUFA in the liver in the absence of any differences in dietary FA composition.
Collapse
Affiliation(s)
- Johane P Allard
- The University of Toronto and The University Health Network, The Toronto General Hospital, 200 Elizabeth Street, 9N-973, Toronto, Ont., Canada M5G-2C4.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Taha AY, Huot PSP, Reza-López S, Prayitno NR, Kang JX, Burnham WM, Ma DWL. Seizure resistance in fat-1 transgenic mice endogenously synthesizing high levels of omega-3 polyunsaturated fatty acids. J Neurochem 2007; 105:380-8. [PMID: 18036191 DOI: 10.1111/j.1471-4159.2007.05144.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-3 polyunsaturated fatty acids (PUFA), derived from marine oils, have been shown to protect against various neurological diseases. However, very little is known about their potential anticonvulsant properties. The objective of the present study was to determine whether enrichment of brain lipids with n-3 PUFA inhibits seizures induced by pentylenetetrazol. We demonstrate that increased brain levels of n-3 PUFA in transgenic fat-1 male mice, which are capable of de novo synthesis of n-3 PUFA from n-6 PUFA, increases latency to seizure onset by 45%, relative to wildtype controls (p = 0.08). Compared with wildtype littermates, transgenic fat-1 mice have significantly (p < 0.05) higher levels of docosahexaenoic acid and total n-3 PUFA in brain total lipid extracts and phospholipids. Levels of brain docosahexaenoic acid were positively correlated to seizure latency (p < 0.05). These findings demonstrate that n-3 PUFA have anticonvulsant properties and suggest the possibility of a novel, non-drug dietary approach for the treatment of epilepsy.
Collapse
Affiliation(s)
- Ameer Y Taha
- Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
An appropriate animal model that can eliminate confounding factors of diet would be very helpful for evaluation of the health effects of nutrients such as n-3 fatty acids. We recently generated a fat-1 transgenic mouse expressing the Caenorhabditis elegans fat-1 gene encoding an n-3 fatty acid desaturase that converts n-6 to n-3 fatty acids (which is absent in mammals). The fat-1 transgenic mice are capable of producing n-3 fatty acids from the n-6 type, leading to abundant n-3 fatty acids with reduced levels of n-6 fatty acids in their organs and tissues, without the need of a dietary n-3 supply. Feeding an identical diet (high in n-6) to the transgenic and wild-type littermates can produce different fatty acid profiles in these animals. Thus, this model allows well-controlled studies to be performed, without the interference of the potential confounding factors of diet. The transgenic mice are now being used widely and are emerging as a new tool for studying the benefits of n-3 fatty acids and the molecular mechanisms of their action.
Collapse
Affiliation(s)
- Jing X Kang
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|