1
|
Ishihara T, Tsugawa H, Iwanami S, Chang JC, Minoda A, Arita M. Transcriptomic and lipidomic analysis of aging-associated inflammatory signature in mouse liver. Inflamm Regen 2025; 45:13. [PMID: 40319315 PMCID: PMC12049063 DOI: 10.1186/s41232-025-00377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/20/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Aging-associated dysbiosis leads to chronic inflammation and the development of a range of aging-related diseases. The gut microbiota crosstalks with the host by providing lipid metabolites and modulating metabolic functions. However, the precise mechanism by which the gut microbiota regulates aging is unknown. The objective of this study was to examine the impact of the gut microbiota on the transcriptome and lipidome associated with aging in mouse liver. METHODS RNA-sequencing was conducted on the livers of young and aged male and female-specific pathogen-free (SPF) and germ-free (GF) mice to comprehensively analyze transcriptomic alterations with aging. We also reanalyzed our previously reported results on aging-associated changes in the hepatic lipidome to investigate the gut microbiota-dependent hepatic lipidome signatures associated with aging. RESULTS In contrast to the findings in male mice, the changes in hepatic transcriptome associated with aging were attenuated in female GF mice compared with those in SPF mice. In particular, the gene sets associated with inflammatory signatures (i.e., inflammation and tissue remodeling) were found to be suppressed in female GF mice. The ChIP-Atlas database predicted that transcription factors associated with sex differences may be involved in the gene signature of aged female GF mice. Significant differences in the lipid profile were observed between aged SPF and GF female mice, including in bile acids, sterol sulfates, lysophospholipids, oxidized triacylglycerols, vitamin D, and phytoceramides. Moreover, notable alterations were identified in the quality of phospholipids and sphingolipids. Integrated transcriptomic and lipidomic analysis identified candidate enzymes responsible for the change of lipid profiles in aged female mice. CONCLUSIONS The findings of this study offer new insights into the molecular mechanisms through which the gut microbiota regulates aging-related phenotypes such as inflammation in the liver, possibly through modulating lipid metabolism in a sex-dependent manner.
Collapse
Affiliation(s)
- Tomoaki Ishihara
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7, Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan.
| | - Hiroshi Tsugawa
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Seigo Iwanami
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Jen-Chien Chang
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Human Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
2
|
Lan X, Ma L, Ma J, Huang Z, Liu L, Li F, Wang M, Hu Y. Tas2r105 ameliorates gut inflammation, possibly through influencing the gut microbiota and metabolites. mSystems 2025; 10:e0155624. [PMID: 40079578 PMCID: PMC12013267 DOI: 10.1128/msystems.01556-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated gastrointestinal disorder that significantly impacts the life quality of people worldwide. Genetic factors play crucial roles in the development of IBD. Tas2rs, members of the G protein-coupled receptor (GPCR) superfamily, are known for their roles in bitter taste perception. However, Tas2rs have also been identified in the gut, where they help sense luminal contents and regulate gastrointestinal hormones. Periodontal Tas2r105 has been shown to modulate innate immunity by interacting with metabolites produced by oral bacteria. In this study, we observed increased Tas2r105 in the inflammatory colons induced by dextran sulfate sodium salt (DSS). We also noted that α-gustducin, the α-subunit of GPCRs, is present in the intestine, and that α-gustducin knockout mice exhibit aggravated colitis. Based on these findings, we hypothesize that Tas2r105 may play a role in immune regulation during IBD pathogenesis. To test this hypothesis, we used Tas2r105 knockout (KO) mice in a colitis model. Our results show that the KO mice had significantly shorter colon length, more severe colon inflammation, and greater destruction of the gut barrier compared with control mice. We also observed increased recruitment of macrophages to the lamina propria mucosa in the KO mice. Microbiological analysis revealed a significant increase in Proteobacteria and Bacteroidota, with a concomitant decrease in Firmicutes after Tas2r105 knockout. Metabolomic analysis showed a significant reduction in lysophosphatidylethanolamine (LPE) levels in the KO mice, which is known to have anti-inflammatory effects. Based on these findings, we speculate that Tas2r105 may help protect the intestine from inflammation by influencing the gut microbiota composition and LPE production.IMPORTANCEIncreased Tas2r105 was detected in the inflamed colon of mice outside the tongue. Tas2r105 deletion aggravated mice colon colitis. Tas2r105 might alleviate mice colitis by downregulating the Proteobacteria and the Bacteroidota abundance in the colon. Lysophosphatidylethanolamine (LPE) might be the key metabolite that mediated the intestinal protection of Tas2r105.
Collapse
Affiliation(s)
- Xiucai Lan
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liang Ma
- Department of Radiology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jiaming Ma
- Department of Health-Related Product Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhipeng Huang
- Departments of Gastroenterology, First Hospital of Quanzhou affiliated to Fujian Medical University, Quanzhou, China
| | - Lingling Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical Center, Shanghai, China
| | - Mingbang Wang
- Department of Neonatology, Affiliated Shenzhen Women and Children's Hospital (Longgang) of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong, China
- Department of Experiment & Research, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Yaomin Hu
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
3
|
Sivanandham S, Sivanandham R, Xu C, Symmonds J, Sette P, He T, Funderburg N, Abdel-Mohsen M, Landay A, Apetrei C, Pandrea I. Plasma lipidomic alterations during pathogenic SIV infection with and without antiretroviral therapy. Front Immunol 2025; 16:1475160. [PMID: 40129985 PMCID: PMC11931036 DOI: 10.3389/fimmu.2025.1475160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/05/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Lipid profiles change in human immunodeficiency virus (HIV) infection and correlate with inflammation. Lipidomic alterations are impacted by multiple non-HIV-related behavioral risk factors; thus, use of animal models in which these behavioral factors are controlled may inform on the specific lipid changes induced by simian immunodeficiency virus (SIV) infection and/or antiretroviral therapy (ART). Methods Using ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy, we assessed and compared (ANOVA) longitudinal lipid changes in naïve and ART-treated SIV-infected pigtailed macaques (PTMs). Key parameters of infection (IL-6, TNFa, D-dimer, CRP and CD4+ T cell counts) were correlated (Spearman) with lipid concentrations at critical time points of infection and treatment. Results Sphingomyelins (SM) and lactosylceramides (LCER) increased during acute infection, returning to baseline during chronic infection; Hexosylceramides (HCER) increased throughout infection, being normalized with prolonged ART; Phosphatidylinositols (PI) and lysophosphatidylcholines (LPC) decreased with SIV infection and did not return to normal with ART; Phosphatidylethanolamines (PE), lysophosphatidylethanolamines (LPE) and phosphatidylcholines (PC) were unchanged by SIV infection, yet significantly decreased throughout ART. Specific lipid species (SLS) were also substantially modified by SIV and/or ART in most lipid classes. In conclusion, using a metabolically controlled model, we identified specific lipidomics signatures of SIV infection and/or ART, some of which were similar to people living with HIV (PWH). Many SLS were identical to those involved in development of organ dysfunctions encountered in virally suppressed individuals. Lipid changes also correlated with markers of disease progression, inflammation and coagulation. Discussion Our data suggest that lipidomic profile alterations contribute to residual systemic inflammation and comorbidities seen in HIV/SIV infections and therefore may be used as biomarkers of SIV/HIV comorbidities. Further exploration into the benefits of interventions targeting dyslipidemia is needed for the prevention HIV-related comorbidities.
Collapse
Affiliation(s)
- Sindhuja Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ranjit Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Paola Sette
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tianyu He
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA, United States
| | - Alan Landay
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Inoue N, Gowda SGB, Gowda D, Sakurai T, Ikeda-Araki A, Bamai YA, Ketema RM, Kishi R, Chiba H, Hui SP. Determination of plasma lysophosphatidylethanolamines (lyso-PE) by LC-MS/MS revealed a possible relation between obesity and lyso-PE in Japanese preadolescent children: The Hokkaido study. Ann Clin Biochem 2025; 62:34-45. [PMID: 39167494 DOI: 10.1177/00045632241280352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
BACKGROUND Lysophosphatidylethanolamines (lyso-PEs) are the partial hydrolysis products of phosphatidylethanolamine. Although lyso-PEs are important biomarkers in various diseases, their determination is limited by the lack of simple and efficient quantification methods. This study aims to develop an improved quantitative method for the determination of lyso-PEs and its application to an epidemiological study. METHODS Single reaction monitoring channels by collision-induced dissociation for seven lyso-PEs were established using liquid chromatography-tandem mass spectrometry. Plasma lyso-PEs were extracted with a single-phase method using an isotopically labelled internal standard for quantification. The proposed method was adopted to define lyso-PEs in plasma samples of children aged 9-12 years living in Sapporo, Japan. RESULTS The limit of detection and limit of quantification for each lyso-PE ranged between 0.001-0.015 and 0.002-0.031 pmol/μL, respectively. Recoveries were found to be > 91% for all the species. The analysis results of children's plasma showed that the total lyso-PE concentrations in boys (n = 181) and girls (n = 161) were 11.53 and 11.00 pmol/μL (median), respectively. Participants were further classified by the percentage of overweight and subgrouped as underweight (n = 12), normal range (n = 292), or overweight (n = 38). Interestingly, the reduction of lyso-PE 16:0 and increased lyso-PE 22:6 were observed in overweight children compared with normal range (Fold change: 0.909 and 1.174, respectively). CONCLUSIONS This study successfully established a simple quantitative method to determine lyso-PE concentrations. Furthermore, our method revealed the possible relation between plasma lyso-PEs and overweight status.
Collapse
Affiliation(s)
- Nao Inoue
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Atsuko Ikeda-Araki
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Wen Y, Li Y, Liu T, Huang L, Yao L, Deng D, Luo W, Cai W, Zhong S, Jin T, Yang X, Wang Q, Wang W, Xue J, Mukherjee R, Hong J, Phillips AR, Windsor JA, Sutton R, Li F, Sun X, Huang W, Xia Q. Chaiqin chengqi decoction treatment mitigates hypertriglyceridemia-associated acute pancreatitis by modulating liver-mediated glycerophospholipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155968. [PMID: 39217651 DOI: 10.1016/j.phymed.2024.155968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The incidence of hypertriglyceridemia-associated acute pancreatitis (HTG-AP) is increasing globally and more so in China. The characteristics of liver-mediated metabolites and related key enzymes are rarely reported in HTG-AP. Chaiqin chengqi decoction (CQCQD) has been shown to protect against AP including HTG-AP in both patients and rodent models, but the underlying mechanisms in HTG-AP remain unexplored. PURPOSE To assess the characteristics of liver-mediated metabolism and the therapeutic mechanisms of CQCQD in HTG-AP. METHODS Male human apolipoprotein C3 transgenic (hApoC3-Tg; leading to HTG) mice or wild-type littermates received 7 intraperitoneal injections of cerulein (100 μg/kg) to establish HTG-AP and CER-AP, respectively. In HTG-AP, some mice received CQCQD (5.5 g/kg) gavage at 1, 5 or 9 h after disease induction. AP severity and related liver injury were determined by serological and histological parameters; and underlying mechanisms were identified by lipidomics and molecular biology. Molecular docking was used to identify key interactions between CQCQD compounds and metabolic enzymes, and subsequently validated in vitro in hepatocytes. RESULTS HTG-AP was associated with increased disease severity indices including augmented liver injury compared to CER-AP. CQCQD treatment reduced severity and liver injury of HTG-AP. Glycerophospholipid (GPL) metabolism was the most disturbed pathway in HTG-AP in comparison to HTG alone. In HTG-AP, the mRNA level of GPL enzymes involved in phosphocholine (PC) and phosphatidylethanolamine (PE) synthesis (Pcyt1a, Pcyt2, Pemt, and Lpcat) were markedly upregulated in the liver. Of the GPL metabolites, lysophosphatidylethanolamine LPE(16:0) in serum of HTG-AP was significantly elevated and positively correlated with the pancreas histopathology score (r = 0.65). In vitro, supernatant from Pcyt2-overexpressing hepatocytes co-incubated with LPE(16:0) or phospholipase A2 (a PC- and PE-hydrolyzing enzyme) alone induced pancreatic acinar cell death. CQCQD treatment downregulated PCYT1a and PCYT2 enzyme levels in the liver. Hesperidin and narirutin were identified top two CQCQD compounds with highest affinity docking to PCYT1a and PCYT2. Both hesperidin and narirutin reduced the level of some GPL metabolites in hepatocytes. CONCLUSION Liver-mediated GPL metabolism is excessively activated in HTG-AP with serum LPE(16:0) level correlating with disease severity. CQCQD reduces HTG-AP severity partially via modulating key enzymes in GPL metabolism pathway.
Collapse
Affiliation(s)
- Yongjian Wen
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuying Li
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tingting Liu
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijia Huang
- West China Biobank, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linbo Yao
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Deng
- West China Biobank, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjuan Luo
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenhao Cai
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shaoqi Zhong
- West China Biobank, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Jin
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinmin Yang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiqi Wang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Wang
- Chinese Evidence-based Medicine Centre, and National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Xue
- Laboratory of Oncogenes and Related Genes, Stem Cell Research Centre, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpoo,l L69 3GE, UK
| | - Jiwon Hong
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Anthony R Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - John A Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Liverpool University Hospitals NHS Foundation Trust, Liverpoo,l L69 3GE, UK
| | - Fei Li
- Department of Pharmacy, Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Sun
- Chinese Evidence-based Medicine Centre, and National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Wei Huang
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China; West China Biobank, West China Hospital, Sichuan University, Chengdu, 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qing Xia
- West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Zhou Q, Chang C, Wang Y, Gai X, Chen Y, Gao X, Liang Y, Sun Y. Comparative analysis of lysophospholipid metabolism profiles and clinical characteristics in patients with high vs. low C-reactive protein levels in acute exacerbations of chronic obstructive pulmonary disease. Clin Chim Acta 2024; 561:119816. [PMID: 38885755 DOI: 10.1016/j.cca.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The precise role of lysophospholipids (LysoPLs) in the pathogenesis of acute exacerbations of Chronic Obstructive Pulmonary Disease (AECOPD) remains unclear. In this study, we sought to elucidate the differences in serum LysoPL metabolite profiles and their correlation with clinical features between patients with low versus high CRP levels. METHODS A total of 58 patients with AECOPD were enrolled in the study. Patients were classified into two groups: low CRP group (CRP < 20 mg/L, n = 34) and high CRP group (CRP ≥ 20 mg/L, n = 24). Clinical data were collected, and the LysoPL metabolite profiles were analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) and identified by matching with the LipidBlast library. RESULTS Nineteen differential LysoPLs were initially identified through Student's t-test (p < 0.05 and VIP > 1). Subsequently, four LysoPLs, LPC(16:0), LPE(18:2), LPC(22:0), and LPC(24:0), were identified by FDR adjustment (adjusted p < 0.05). These four lysoPLs had a significant negative correlation with CRP. Integrative analysis revealed that LPC (16:0) and LPC (22:0) correlated with less hypercapnic respiratory failure and ICU admission. CONCLUSION AECOPD patients with high CRP levels demonstrated a distinctive LysoPL metabolism profile, with LPC (16:0), LPE(18:2), LPC(22:0), and LPC(24:0) being the most significantly altered lipid molecules. These alterations were associated with poorer clinical outcomes.
Collapse
Affiliation(s)
- Qiqiang Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yating Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China.
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
Wang C, Lou C, Yang Z, Shi J, Niu N. Plasma metabolomic analysis reveals the metabolic characteristics and potential diagnostic biomarkers of spinal tuberculosis. Heliyon 2024; 10:e27940. [PMID: 38571585 PMCID: PMC10987919 DOI: 10.1016/j.heliyon.2024.e27940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 02/16/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Objectives This study aimed to conduct a non-targeted metabolomic analysis of plasma from patients with spinal tuberculosis (STB) to systematically elucidate the metabolomic alterations associated with STB, and explore potential diagnostic biomarkers for STB. Methods From January 2020 to January 2022, 30 patients with spinal tuberculosis (STBs) clinically diagnosed at the General Hospital of Ningxia Medical University and 30 age- and sex-matched healthy controls (HCs) were selected for this study. Using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) based metabolomics, we analyzed the metabolic profiles of 60 plasma samples. Statistical analyses, pathway enrichment, and receiver operating characteristic (ROC) analyses were performed to screen and evaluate potential diagnostic biomarkers. Results Metabolomic profiling revealed distinct alterations between the STBs and HCs cohorts. A total of 1635 differential metabolites were screened, functionally clustered, and annotated. The results showed that the differential metabolites were enriched in sphingolipid metabolism, tuberculosis, cutin, suberine and wax biosynthesis, beta-alanine metabolism, methane metabolism, and other pathways. Through the random forest algorithm, LysoPE (18:1(11Z)/0:0), 8-Demethyl-8-formylriboflavin 5'-phosphate, Glutaminyl-Gamma-glutamate, (2R)-O-Phospho-3-sulfolactate, and LysoPE (P-16:0/0:0) were determined to have high independent diagnostic value. Conclusions STBs exhibited significantly altered metabolite profiles compared with HCs. Here, we provide a global metabolomic profile and identify potential diagnostic biomarkers of STB. Five potential independent diagnostic biomarkers with high diagnostic value were screened. This study provides novel insights into the pathogenesis, diagnosis, and treatment strategies of STB.
Collapse
Affiliation(s)
- Chaoran Wang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Caili Lou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Zongqiang Yang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Jiandang Shi
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Ningkui Niu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
- Research Center for Prevention and Control of Bone and Joint Tuberculosis, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| |
Collapse
|
8
|
Wang W, Peng F, Ding C, Li T, Wang H. An Analysis of Targeted Serum Lipidomics in Patients with Pneumoconiosis - China, 2022. China CDC Wkly 2023; 5:849-855. [PMID: 37814648 PMCID: PMC10560374 DOI: 10.46234/ccdcw2023.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023] Open
Abstract
Introduction Pneumoconiosis emerges as the most critical and prevalent occupational disease in China at present, according to research. Studies indicate that pneumoconiosis may indeed impact the body's phospholipid metabolism. Methods In this study, serum samples were taken from 46 paired participants, which included patients with pneumoconiosis and dust-exposed workers. We employed ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology in targeted lipidomics to investigate serum target phospholipids. Initially, a pilot study was conducted with a selection of 24 pneumoconiosis patients and 24 dust-exposed workers, using both univariate and multivariate statistical analyses to preliminarily identify significant differences in phospholipids. Subsequent to this, the remaining subjects were engaged in a validation study, wherein receiver operating characteristic (ROC) analysis was performed to further substantiate the screening potency of potential lipid biomarkers for pneumoconiosis. Results The pilot study revealed significantly reduced serum levels of 16∶0 lysophosphatidylcholines (Lyso PC), 18∶0-18∶1 phosphatidylglycerol (PG), 18∶0-18∶1 phosphatidylethanolamine (PE), 18∶0 PE, and 18∶1 lysophosphatidylethanolamine(Lyso PE) in the case group in comparison to the control group. Additionally, 18∶0 PE, 18∶0-18∶1 PE, and 18∶1 Lyso PE emerged as significant phospholipids with superior diagnostic values [area under the curve (AUC)>0.7]. A diagnostic model was established, built on 16∶0 PC and 18∶0 PE (AUC>0.8). In the ROC analyses of validation studies, the 18∶0-18∶1 PE and this diagnostic model demonstrated excellent screening efficiency (AUC>0.7). Discussion A significant divergence in phospholipid metabolism has been observed between pneumoconiosis patients and dust-exposed workers. The 18∶0-18∶1 PE present in serum could potentially function as a lipid biomarker for pneumoconiosis. Additionally, diagnostic models were developed relying on 16∶0 PC and 18∶0 PE, proving to have superior screening efficiency.
Collapse
Affiliation(s)
- Wenrong Wang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fangda Peng
- National Center for Occupational Safety and Health, Beijing, China
- National Key Laboratory for Engineering Control of Dust Hazard, Beijing, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, Beijing, China
- National Key Laboratory for Engineering Control of Dust Hazard, Beijing, China
| | - Tao Li
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huanqiang Wang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
9
|
Wang Y, Chang C, Tian S, Wang J, Gai X, Zhou Q, Chen Y, Gao X, Sun Y, Liang Y. Differences in the lipid metabolism profile and clinical characteristics between eosinophilic and non-eosinophilic acute exacerbation of chronic obstructive pulmonary disease. Front Mol Biosci 2023; 10:1204985. [PMID: 37503537 PMCID: PMC10369057 DOI: 10.3389/fmolb.2023.1204985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Objective: In this study, we aimed to investigate the differences in serum lipid metabolite profiles and their relationship with clinical characteristics between patients with eosinophilic and non-eosinophilic AECOPD. Methods: A total of 71 AECOPD patients were enrolled. Eosinophilic AECOPD was defined as blood EOS% ≥ 2% (n = 23), while non-eosinophilic AECOPD, as blood EOS< 2% (n = 48). Clinical data were collected, and serum lipid metabolism profiles were detected by liquid chromatography-mass spectrometry (LC-MS). The XCMS software package was used to pre-process the raw data, and then, lipid metabolite identification was achieved through a spectral match using LipidBlast library. Differences in lipid profiles and clinical features between eosinophilic and non-eosinophilic groups were analyzed by generalized linear regression. The least absolute shrinkage and selection operator (LASSO) was applied to screen the most characteristic lipid markers for the eosinophilic phenotype. Results: Eosinophilic AECOPD patients had less hypercapnic respiratory failures, less ICU admissions, a shorter length of stay in the hospital, and a lower fibrinogen level. In the lipid metabolism profiles, 32 significantly different lipid metabolites were screened through a t-test adjusted by using FDR (FDR-adjusted p < 0.05 and VIP> 1). Nine differential lipid metabolites were found to be associated with the three clinical features, namely, hypercapnia respiratory failure, ICU admission, and fibrinogen in further integration analysis. The species of triacylglycerol (TAG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and diacylglyceryl trimethylhomoserine (DGTS) were high in these eosinophilic AECOPD. The LASSO was applied, and three lipid metabolites were retained, namely, LPC (16:0), TAG (17:0/17:2/17:2), and LPC (20:2). The logistic regression model was fitted using these three markers, and the area under the ROC curve of the model was 0.834 (95% CI: 0.740-0.929). Conclusion: Patients with eosinophilic AECOPD had a unique lipid metabolism status. Species of TAGs and LPCs were significantly increased in this phenotype and were associated with better clinical outcomes.
Collapse
Affiliation(s)
- Yating Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Sifan Tian
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Juan Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Qiqiang Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| |
Collapse
|
10
|
Mohamad Ali D, Hogeveen K, Orhant RM, Le Gal de Kerangal T, Ergan F, Ulmann L, Pencreac'h G. Lysophosphatidylcholine-DHA Specifically Induces Cytotoxic Effects of the MDA-MB-231 Human Breast Cancer Cell Line In Vitro-Comparative Effects with Other Lipids Containing DHA. Nutrients 2023; 15:2137. [PMID: 37432249 DOI: 10.3390/nu15092137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 ω-3) is a dietary polyunsaturated fatty acid that has an important role in human health. Epidemiological studies linked a high intake of DHA to a reduced risk of certain cancers. Recently, attention focused on how the lipid carrier in which DHA is delivered, i.e., esterified on acylglycerols, phospholipids, or free, affects its biological effects. However, studies comparing the effects of these different forms for DHA supply to cancer cells in vitro are limited. In this study, the effect of free DHA and five lipids carrying one to three DHA chains (LPC-DHA, PC-DHA, MAG-DHA, DAG-DHA and TAG-DHA) on the viability of the MDA-MB-231 breast cancer cell line was compared. Our results revealed a strong structure-function relationship of DHA-carrying lipids on the viability of MDA-MB-231 cells. Glycerophosphocholine-based lipids are the most effective DHA carriers in reducing the viability of MDA-MB-231 cells, with LPC-DHA being more effective (IC50 = 23.7 µM) than PC-DHA (IC50 = 67 µM). The other tested lipids are less toxic (MAG-DHA, free DHA) or even not toxic (DAG-DHA, TAG-DHA) under our conditions. Investigating the mechanism of cell death induced by LPC-DHA revealed increased oxidative stress and membrane cell damage.
Collapse
Affiliation(s)
- Dalal Mohamad Ali
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
- Toulouse Biotechnology Institute, Equipe CIMEs, Université de Toulouse, CNRS, INRAE, INSA, F-31077 Toulouse, France
| | - Kevin Hogeveen
- Unité de Toxicologie des Contaminants, ANSES, F-35306 Fougères, France
| | - Rose-Marie Orhant
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Tiphaine Le Gal de Kerangal
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Françoise Ergan
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Gaëlle Pencreac'h
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
11
|
Huang M, Xu S, Zhou M, Luo J, Zha F, Shan L, Yang Q, Zhou B, Wang Y. Lysophosphatidylcholines and phosphatidylcholines as biomarkers for stroke recovery. Front Neurol 2022; 13:1047101. [PMID: 36588912 PMCID: PMC9797831 DOI: 10.3389/fneur.2022.1047101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/29/2022] [Indexed: 12/16/2022] Open
Abstract
Stroke is a serious global public health issue, associated with severe disability and high mortality rates. Its early detection is challenging, and no effective biomarkers are available. To obtain a better understanding of stroke prevention, management, and recovery, we conducted lipidomic analyses to characterize plasma metabolic features. Lipid species were measured using an untargeted lipidomic analysis with liquid chromatography-tandem mass spectrometry. Sixty participants were recruited in this cohort study, including 20 healthy individuals and 40 patients with stroke. To investigate the association between lipids related to long-term functional recovery in stroke patients. The primary independent variable was activities of daily living (ADL) dependency upon admission to the stroke unit and at the 3-month follow-up appointment. ADL dependency was assessed using the Barthel Index. Eleven significantly altered lipid species between the stroke and healthy groups were detected and displayed in a hierarchically clustered heatmap. Acyl carnitine, triacylglycerol, and ceramides were detected as potential lipid markers. Regarding the association between lipid profiles and functional status of patients with stroke the results indicated, lysophosphatidylcholines (LPC) and phosphatidylcholines were closely associated with stroke recovery. LPC may contribute positively role in patient's rehabilitation process via an anti-inflammatory mechanism. Appropriate management or intervention for lipid levels is expected to lead to better clinical outcomes.
Collapse
Affiliation(s)
- Meiling Huang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Shaohang Xu
- Deepxomics., Ltd., Shenzhen, Guangdong, China
| | - Mingchao Zhou
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Jiao Luo
- Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, Shenzhen, Guangdong, China
| | - Fubing Zha
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Linlin Shan
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Qingqing Yang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Baojin Zhou
- Deepxomics., Ltd., Shenzhen, Guangdong, China,Baojin Zhou
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China,*Correspondence: Yulong Wang
| |
Collapse
|
12
|
Li C, Xing X, Qi H, Liu Y, Jian F, Wang J. The arachidonic acid and its metabolism pathway play important roles for Apostichopus japonicus infected by Vibrio splendens. FISH & SHELLFISH IMMUNOLOGY 2022; 125:152-160. [PMID: 35561951 DOI: 10.1016/j.fsi.2022.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Improving the immune ability and guiding healthy culture for sea cucumber by purposefully screening the significant differential metabolites when Apostichopus japonicus (A. japonicus) is infected by pathogens is important. In this study, 35 types of significant differential metabolites appeared when A. japonicus were infected by Vibrio splendens (VSI group) compared with the control A. japonicus group (CK group) by using liquid chromatography-mass spectrometry (LC-MS/MS)-based untargeted metabolomics. Based on that finding, the 10 types of key metabolic pathways were analyzed by MetPA. The "arachidonic acid (ARA) metabolism" pathway, which was screened by three elevated biomarkers: ARA, prostaglandin F2α and 2-arachidonoyl glycerol, had an important impact on immune stress in A. japonicus. Due to the similar changes in several metabolites in its metabolic pathway, the ARA metabolic pathway was selected for further study. The activities of ACP, AKP and lysozyme, which are important innate immune-related enzymes, the survival rates of A. japonicus infected with V. splendidus and the relative content of ARA in the body wall detected by GC-MS were all upregulated significantly by exogenous daily 0.60% and 1.09% ARA consumption over a short period of approximately 7 days. These results demonstrated that ARA and its metabolic pathway indeed played important roles in the immunity of A. japonicus infected by the pathogen. The findings also provide novel insights for the effects of metabolites in A. japonicum healthy culture.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China.
| | - Xuan Xing
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Hongqing Qi
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Ying Liu
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Fanjie Jian
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| | - Jihui Wang
- Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning Province, PR China
| |
Collapse
|
13
|
Lin M, Guo S, Xie D, Li S, Hu H. Lipidomic profiling of wild cordyceps and its substituents by liquid chromatography-electrospray ionization-tandem mass spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Persistent elevation of lysophosphatidylcholine promotes radiation brain necrosis with microglial recruitment by P2RX4 activation. Sci Rep 2022; 12:8718. [PMID: 35610277 PMCID: PMC9130232 DOI: 10.1038/s41598-022-12293-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Brain radiation necrosis (RN) or neurocognitive disorder is a severe adverse effect that may occur after radiation therapy for malignant brain tumors or head and neck cancers. RN accompanies inflammation which causes edema or micro-bleeding, and no fundamental treatment has been developed. In inflammation, lysophospholipids (LPLs) are produced by phospholipase A2 and function as bioactive lipids involved in sterile inflammation in atherosclerosis or brain disorders. To elucidate its underlying mechanisms, we investigated the possible associations between lysophospholipids (LPLs) and RN development in terms of microglial activation with the purinergic receptor P2X purinoceptor 4 (P2RX4). We previously developed a mouse model of RN and in this study, measured phospholipids and LPLs in the brains of RN model by liquid chromatography tandem mass spectrometry (LC–MS/MS) analyses. We immune-stained microglia and the P2RX4 in the brains of RN model with time-course. We treated RN model mice with ivermectin, an allosteric modulator of P2RX4 and investigate the effect on microglial activation with P2RX4 and LPLs’ production, and resulting effects on overall survival and working memory. We revealed that LPLs (lysophosphatidylcholine (LPC), lysophosphatidyl acid, lysophosphatidylserine, lysophosphatidylethanolamine, lysophosphatidylinositol, and lysophosphatidylglycerol) remained at high levels during the progression of RN with microglial accumulation, though phospholipids elevations were limited. Both microglial accumulation and activation of the P2RX4 were attenuated by ivermectin. Moreover, the elevation of all LPLs except LPC was also attenuated by ivermectin. However, there was limited prolongation of survival time and improvement of working memory disorders. Our findings suggest that uncontrollable increased LPC, even with ivermectin treatment, promoted the development of RN and working memory disorders. Therefore, LPC suppression will be essential for controlling RN and neurocognitive disorder after radiation therapy.
Collapse
|
15
|
Emerging Role of Phospholipids and Lysophospholipids for Improving Brain Docosahexaenoic Acid as Potential Preventive and Therapeutic Strategies for Neurological Diseases. Int J Mol Sci 2022; 23:ijms23073969. [PMID: 35409331 PMCID: PMC9000073 DOI: 10.3390/ijms23073969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023] Open
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is an omega-3 polyunsaturated fatty acid (PUFA) essential for neural development, learning, and vision. Although DHA can be provided to humans through nutrition and synthesized in vivo from its precursor alpha-linolenic acid (ALA, 18:3n-3), deficiencies in cerebral DHA level were associated with neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. The aim of this review was to develop a complete understanding of previous and current approaches and suggest future approaches to target the brain with DHA in different lipids’ forms for potential prevention and treatment of neurodegenerative diseases. Since glycerophospholipids (GPs) play a crucial role in DHA transport to the brain, we explored their biosynthesis and remodeling pathways with a focus on cerebral PUFA remodeling. Following this, we discussed the brain content and biological properties of phospholipids (PLs) and Lyso-PLs with omega-3 PUFA focusing on DHA’s beneficial effects in healthy conditions and brain disorders. We emphasized the cerebral accretion of DHA when esterified at sn-2 position of PLs and Lyso-PLs. Finally, we highlighted the importance of DHA-rich Lyso-PLs’ development for pharmaceutical applications since most commercially available DHA formulations are in the form of PLs or triglycerides, which are not the preferred transporter of DHA to the brain.
Collapse
|
16
|
Zhang R, Sun X, Huang Z, Pan Y, Westbrook A, Li S, Bazzano L, Chen W, He J, Kelly T, Li C. Examination of serum metabolome altered by cigarette smoking identifies novel metabolites mediating smoking-BMI association. Obesity (Silver Spring) 2022; 30:943-952. [PMID: 35258150 PMCID: PMC8957487 DOI: 10.1002/oby.23386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/25/2021] [Accepted: 01/03/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The authors hypothesize that an untargeted metabolomics study will identify novel mechanisms underlying smoking-associated weight loss. METHODS This study performed cross-sectional analyses among 1,252 participants in the Bogalusa Heart Study and assessed 1,202 plasma metabolites for mediation effects on smoking-BMI associations. Significant metabolites were tested for associations with smoking genetic risk scores among a subset of participants (n = 654) with available genomic data, followed by direction dependence analysis to investigate causal relationships between the metabolites and smoking and BMI. All analyses controlled for age, sex, race, education, alcohol drinking, and physical activity. RESULTS Compared with never smokers, current and former smokers had a 3.31-kg/m2 and 1.77-kg/m2 lower BMI after adjusting for all covariables, respectively. A total of 22 xenobiotics and 94 endogenous metabolites were significantly associated with current smoking. Eight xenobiotics were also associated with former smoking. Forty metabolites mediated the smoking-BMI associations, and five showed causal relationships with both smoking and BMI. These metabolites, including 1-oleoyl-GPE (18:1), 1-linoleoyl-GPE (18:2), 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4), α-ketobutyrate, and 1-palmitoyl-GPE (16:0), mediated 26.0% of the association between current smoking and BMI. CONCLUSIONS This study cataloged plasma metabolites altered by cigarette smoking and identified five metabolites that partially mediated the association between current smoking and BMI.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Yang Pan
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Adrianna Westbrook
- Pediatric Biostatistics Core, Department of Pediatrics, Emory University
| | - Shengxu Li
- Children’s Minnesota Research Institute, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN, US
| | - Lydia Bazzano
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Tanika Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| | - Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, US
| |
Collapse
|
17
|
Montanhaur ADRS, Lima EDO, Delafiori J, Esteves CZ, Prado CCR, Allegretti SM, Ueta MT, Levy CE, Catharino RR. Metabolic alterations in Strongyloidiasis stool samples unveil potential biomarkers of infection. Acta Trop 2022; 227:106279. [PMID: 34968451 DOI: 10.1016/j.actatropica.2021.106279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/01/2022]
Abstract
Strongyloidiasis, a parasitosis caused by Strongyloides stercoralis in humans, is a very prevalent infection in tropical or subtropical areas. Gaps on public health strategies corroborates to the high global incidence of strongyloidiasis especially due to challenges involved on its diagnosis. Based on the lack of a gold-standard diagnostic tool, we aimed to present a metabolomic study for the assessment of stool metabolic alterations. Stool samples were collected from 25 patients segregated into positive for strongyloidiasis (n = 10) and negative control (n = 15) and prepared for direct injection high-resolution mass spectrometry analysis. Using metabolomics workflow, 18 metabolites were annotated increased or decreased in strongyloidiasis condition, from which a group of 5 biomarkers comprising caprylic acid, mannitol, glucose, lysophosphatidylinositol and hydroxy-dodecanoic acid demonstrated accuracy over 89% to be explored as potential markers. The observed metabolic alteration in stool samples indicates involvement of microbiota remodeling, parasite constitution, and host response during S. stercoralis infection.
Collapse
|
18
|
Purohit A, Alam MJ, Kandiyal B, Shalimar, Das B, Banerjee SK. Gut microbiome and non-alcoholic fatty liver disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:187-206. [DOI: 10.1016/bs.pmbts.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Łuczaj W, Jastrząb A, do Rosário Domingues M, Domingues P, Skrzydlewska E. Changes in Phospholipid/Ceramide Profiles and Eicosanoid Levels in the Plasma of Rats Irradiated with UV Rays and Treated Topically with Cannabidiol. Int J Mol Sci 2021; 22:8700. [PMID: 34445404 PMCID: PMC8395479 DOI: 10.3390/ijms22168700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic UV radiation causes oxidative stress and inflammation of skin and blood cells. Therefore, in this study, we assessed the effects of cannabidiol (CBD), a natural phytocannabinoid with antioxidant and anti-inflammatory properties, on the phospholipid (PL) and ceramide (CER) profiles in the plasma of nude rats irradiated with UVA/UVB and treated topically with CBD. The results obtained showed that UVA/UVB radiation increased the levels of phosphatidylcholines, lysophospholipids, and eicosanoids (PGE2, TxB2), while downregulation of sphingomyelins led to an increase in CER[NS] and CER[NDS]. Topical application of CBD to the skin of control rats significantly upregulated plasma ether-linked phosphatidylethanolamines (PEo) and ceramides. However, CBD administered to rats irradiated with UVA/UVB promoted further upregulation of CER and PEo and led to significant downregulation of lysophospholipids. This was accompanied by the anti-inflammatory effect of CBD, manifested by a reduction in the levels of proinflammatory PGE2 and TxB2 and a dramatic increase in the level of anti-inflammatory LPXA4. It can therefore be suggested that topical application of CBD to the skin of rats exposed to UVA/UVB radiation prevents changes in plasma phospholipid profile resulting in a reduction of inflammation by reducing the level of LPE and LPC species and increasing antioxidant capacity due to upregulation of PEo species.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland; (A.J.); (E.S.)
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland; (A.J.); (E.S.)
| | - Maria do Rosário Domingues
- Mass Spectrometry Center, LAQV, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.d.R.D.); (P.D.)
- CESAM, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, LAQV, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.d.R.D.); (P.D.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland; (A.J.); (E.S.)
| |
Collapse
|
20
|
Minamihata T, Takano K, Moriyama M, Nakamura Y. Lysophosphatidylinositol, an Endogenous Ligand for G Protein-Coupled Receptor 55, Has Anti-inflammatory Effects in Cultured Microglia. Inflammation 2021; 43:1971-1987. [PMID: 32519268 DOI: 10.1007/s10753-020-01271-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lysophosphatidylinositol (LysoPI), an endogenous ligand for G protein-coupled receptor (GPR) 55, has been known to show various functions in several tissues and cells; however, its roles in the central nervous system (CNS) are not well known. In particular, the detailed effects of LysoPI on microglial inflammatory responses remain unknown. Microglia is the immune cell that has important functions in maintaining immune homeostasis of the CNS. In this study, we explored the effects of LysoPI on inflammatory responses using the mouse microglial cell line BV-2, which was stimulated with lipopolysaccharide (LPS), and some results were confirmed also in rat primary microglia. LysoPI was found to reduce LPS-induced nitric oxide (NO) production and inducible NO synthase protein expression without affecting cell viability in BV-2 cells. LysoPI also suppressed intracellular generation of reactive oxygen species both in BV-2 cells and primary microglia and cytokine release in BV-2 cells. In addition, LysoPI treatment decreased phagocytic activity of LPS-stimulated BV-2 cells and primary microglia. The GPR55 antagonist CID16020046 completely inhibited LysoPI-induced downregulation of phagocytosis in BV-2 microglia, but did not affect the LysoPI-induced decrease in NO production. Our results suggest that LysoPI suppresses microglial phagocytosis via a GPR55-dependent pathway and NO production via a GPR55-independent pathway. LysoPI may contribute to neuroprotection in pathological conditions such as brain injury or neurodegenerative diseases, through its suppressive role in the microglial inflammatory response.
Collapse
Affiliation(s)
- Tomoki Minamihata
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Katsura Takano
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Mitsuaki Moriyama
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
21
|
Park SJ, Im DS. 2-Arachidonyl-lysophosphatidylethanolamine Induces Anti-Inflammatory Effects on Macrophages and in Carrageenan-Induced Paw Edema. Int J Mol Sci 2021; 22:ijms22094865. [PMID: 34064436 PMCID: PMC8125189 DOI: 10.3390/ijms22094865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
2-Arachidonyl-lysophosphatidylethanolamine, shortly 2-ARA-LPE, is a polyunsaturated lysophosphatidylethanolamine. 2-ARA-LPE has a very long chain arachidonic acid, formed by an ester bond at the sn-2 position. It has been reported that 2-ARA-LPE has anti-inflammatory effects in a zymosan-induced peritonitis model. However, it’s action mechanisms are poorly investigated. Recently, resolution of inflammation is considered to be an active process driven by M2 polarized macrophages. Therefore, we have investigated whether 2-ARA-LPE acts on macrophages for anti-inflammation, whether 2-ARA-LPE modulates macrophage phenotypes to reduce inflammation, and whether 2-ARA-LPE is anti-inflammatory in a carrageenan-induced paw edema model. In mouse peritoneal macrophages, 2-ARA-LPE was found to inhibit lipopolysaccharide (LPS)-induced M1 macrophage polarization, but not induce M2 polarization. 2-ARA-LPE inhibited the inductions of inducible nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages at the mRNA and protein levels. Furthermore, products of the two genes, nitric oxide and prostaglandin E2, were also inhibited by 2-ARA-LPE. However, 1-oleoyl-LPE did not show any activity on the macrophage polarization and inflammatory responses. The anti-inflammatory activity of 2-ARA-LPE was also verified in vivo in a carrageenan-induced paw edema model. 2-ARA-LPE inhibits LPS-induced M1 polarization, which contributes to anti-inflammation and suppresses the carrageenan-induced paw edema in vivo.
Collapse
Affiliation(s)
- Soo-Jin Park
- College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Dong-Soon Im
- College of Pharmacy, Pusan National University, Busan 46241, Korea;
- Laboratory of Pharmacology, College of Pharmacy, and Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: 82-2-961-9377
| |
Collapse
|
22
|
Christmann U, Hancock CL, Poole CM, Emery AL, Poovey JR, Hagg C, Mattson EA, Scarborough JJ, Christopher JS, Dixon AT, Craney DJ, Wood PL. Dynamics of DHA and EPA supplementation: incorporation into equine plasma, synovial fluid, and surfactant glycerophosphocholines. Metabolomics 2021; 17:41. [PMID: 33866431 DOI: 10.1007/s11306-021-01792-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/05/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Horses with asthma or osteoarthritis frequently receive ω-3 fatty acid supplements. Docosahexaenoic (DHA; 22:6) and eicosapentaenoic (EPA; 20:5) acids are essential ω-3 fatty acid precursors of anti-inflammatory mediators and components of structural glycerophospholipids (GPL) that act as reservoirs of these fatty acids. Analysis of the incorporation of dietary DHA + EPA into GPL pools in different body compartments has not been undertaken in horses. OBJECTIVES We undertook a detailed study of dietary supplementation with DHA + EPA in horses and monitored incorporation into DHA- and EPA-containing glycerophosphocholines (GPC) 38:5, 38:6, 40:5, and 40:6 in plasma, synovial fluid (SF), and surfactant. METHODS Horses (n = 20) were randomly assigned to the supplement or control group and evaluated on days 0, 30, 60, and 90. GPC in plasma, SF, and surfactant were measured by high-resolution mass spectrometry with less than 3 ppm mass error. Validation of DHA and EPA incorporation into these GPC was conducted utilizing MS2 of the [M + Cl]- adducts of GPC. RESULTS Dietary supplementation resulted in augmented levels of GPC 38:5, 38:6, 40:5, and 40:6 in all compartments. Maximum incorporation into GPCs was delayed until 60 days. Significant increases in the levels of GPC 38:5, 40:5, and 40:6, containing docosapentaenoic acid (DPA; 22:5), also was noted. CONCLUSIONS DHA and EPA supplementation results in augmented storage pools of ω-3 essential fatty acids in SF and surfactant GPC. This has the potential to improve the ability of anti-inflammatory mechanisms to resolve inflammatory pathways in these critical compartments involved in arthritis and asthma.
Collapse
Affiliation(s)
- Undine Christmann
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA.
| | - Courtney L Hancock
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Cathleen M Poole
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Audrey L Emery
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Jesse R Poovey
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Casey Hagg
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Eric A Mattson
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Jon J Scarborough
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Jordan S Christopher
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Alexander T Dixon
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Dustin J Craney
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| |
Collapse
|
23
|
Gai X, Guo C, Zhang L, Zhang L, Abulikemu M, Wang J, Zhou Q, Chen Y, Sun Y, Chang C. Serum Glycerophospholipid Profile in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Front Physiol 2021; 12:646010. [PMID: 33658945 PMCID: PMC7917046 DOI: 10.3389/fphys.2021.646010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Studies have shown that glycerophospholipids are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). This study adopted targeted metabolomic analysis to investigate the changes in serum glycerophospholipids in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) and their differential expression in patients with different inflammatory subtypes. Patients with AECOPD admitted between January 2015 and December 2017 were enrolled, and their clinical data were collected. The patients' gender, age, body mass index, and lung function were recorded. Routine blood and induced sputum tests were performed. Liquid chromatography-mass spectrometry was used to detect the serum glycerophospholipid metabolic profiles and to analyze the metabolic profile changes between the acute exacerbation and recovery stages as well as the differences between different inflammatory subtypes. A total of 58 patients were hospitalized for AECOPD, including 49 male patients with a mean age of 74.8 ± 10.0 years. In the metabolic profiles, the expression of lysophosphatidylcholine (LPC) 18:3, lysophosphatidylethanolamine (LPE) 16:1, and phosphatidylinositol (PI) 32:1 was significantly reduced in the acute exacerbation stage compared to the recovery stage (P < 0.05). The three glycerophospholipids were used to plot the receiver operating characteristic curves to predict the acute exacerbation/recovery stage, and the areas under the curves were all above 70%. There were no differential metabolites between the two groups of patients with blood eosinophil percentage (EOS%) ≥2% and <2% at exacerbation. The expression of LPC 18:3, LPE 16:1, and PI 32:1 was significantly reduced in the acute exacerbation stage compared to the recovery stage in the inflammatory subtype with blood EOS <2% (P < 0.05). Abnormalities in the metabolism of glycerophospholipids may be involved in the onset of AECOPD, especially in the non-eosinophilic subtype.
Collapse
Affiliation(s)
- Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chenglin Guo
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Linlin Zhang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Lijiao Zhang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Mairipaiti Abulikemu
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Juan Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Qingtao Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
24
|
Wood PL, Muir W, Christmann U, Gibbons P, Hancock CL, Poole CM, Emery AL, Poovey JR, Hagg C, Scarborough JH, Christopher JS, Dixon AT, Craney DJ. Lipidomics of the chicken egg yolk: high-resolution mass spectrometric characterization of nutritional lipid families. Poult Sci 2021; 100:887-899. [PMID: 33518142 PMCID: PMC7858096 DOI: 10.1016/j.psj.2020.11.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
While previous studies have characterized the fatty acids and global lipid families of the chicken egg yolk, there have been no publications characterizing the individual lipids in these lipid families. Such an in-depth characterization of egg yolk lipids is essential to define the potential benefits of egg yolk consumption for the supply of structural and anti-inflammatory lipids. Historically, the major focus has been on the cholesterol content of eggs and the potential negative health benefits of this lipid, while ignoring the essential roles of cholesterol in membranes and as a precursor to other essential sterols. A detailed analysis of egg yolk lipids, using high-resolution mass spectrometric analyses and tandem mass spectrometry to characterize the fatty acid substituents of complex structural lipids, was used to generate the first in-depth characterization of individual lipids within lipid families. Egg yolks were isolated from commercial eggs (Full Circle Market) and lipids extracted with methyl-t-butylether before analyses via high-resolution mass spectrometry. This analytical platform demonstrates that chicken egg yolks provide a rich nutritional source of complex structural lipids required for lipid homeostasis. These include dominant glycerophosphocholines (GPC) (34:2 and 36:2), plasmalogen GPC (34:1, 36:1), glycerophosphoethanolamines (GPE) 38:4 and 36:2), plasmalogen GPE (36:2 and 34:1), glycerophosphoserines (36:2 and 38:4), glycerophosphoinositols (38:4), glycerophosphoglycerols (36:2), N-acylphosphatidylethanolamines (NAPE) (56:6), plasmalogen NAPE (54:4 and 56:6), sphingomyelins (16:0), ceramides (22:0 and 24:0), cyclic phosphatidic acids (16:0 and 18:0), monoacylglycerols (18:1 and 18:2), diacylglycerols (36:3 and 36:2), and triacylglycerols (52:3). Our data indicate that the egg yolk is a rich source of structural and energy-rich lipids. In addition, the structural lipids possess ω-3 and ω-6 fatty acids that are essential precursors of endogenous anti-inflammatory lipid mediators. These data indicate that eggs are a valuable nutritional addition to the diets of individuals that do not have cholesterol issues.
Collapse
Affiliation(s)
- Paul L Wood
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA.
| | - William Muir
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Undine Christmann
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Philippa Gibbons
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Courtney L Hancock
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Cathleen M Poole
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Audrey L Emery
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Jesse R Poovey
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Casey Hagg
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Jon H Scarborough
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Jordon S Christopher
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Alexander T Dixon
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Dustin J Craney
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| |
Collapse
|
25
|
Pan M, Qin C, Han X. Lipid Metabolism and Lipidomics Applications in Cancer Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:1-24. [PMID: 33740240 PMCID: PMC8287890 DOI: 10.1007/978-981-33-6785-2_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Lipids are the critical components of cellular and plasma membrane, which constitute an impermeable barrier of cellular compartments, and play important roles on numerous cellular processes including cell growth, proliferation, differentiation, and signaling. Alterations in lipid metabolism have been implicated in the development and progression of cancers. However, unlike other biomolecules, the diversity in the structures and characteristics of lipid species results in the limited understanding of their metabolic alterations in cancers. Lipidomics is an emerging discipline that studies lipids in a large scale based on analytical chemistry principles and technological tools. Multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) uses direct infusion to avoid difficulties from alterations in concentration, chromatographic anomalies, and ion-pairing alterations to improve resolution and achieve rapid and accurate qualitative and quantitative analysis. In this chapter, lipids and lipid metabolism relevant to cancer research are introduced, followed by a brief description of MDMS-SL and other shotgun lipidomics techniques and some applications for cancer research.
Collapse
Affiliation(s)
- Meixia Pan
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA.
- Department of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
26
|
Alolga RN, Opoku-Damoah Y, Alagpulinsa DA, Huang FQ, Ma G, Chavez Leon MASC, Kudzai C, Yin X, Ding Y. Metabolomic and transcriptomic analyses of the anti-rheumatoid arthritis potential of xylopic acid in a bioinspired lipoprotein nanoformulation. Biomaterials 2020; 268:120482. [PMID: 33307367 DOI: 10.1016/j.biomaterials.2020.120482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/18/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Xylopic acid (XA), a diterpene kaurene and the major active ingredient of the African spice Xylopia aethiopica (Annonaceae), is reported to possess anti-inflammatory and analgesic properties. Here, we investigated the therapeutic potential of XA for rheumatoid arthritis (RA), a debilitating autoimmune inflammatory disease characterized by joint damage, in the complete Freund's adjuvant (CFA)-induced arthritis model in rats. We synthesized bioinspired reconstituted high-density lipoprotein (rHDL) nanoparticles loaded with purified XA crystals (rHDL/XA) that passively accumulate in inflamed joints of CFA-induced arthritic rats. Treatment with rHDL/XA minimized mononuclear cell infiltration of CFA-induced arthritic sites and ameliorated disease burden. Metabolomic and transcriptomic analyses revealed that the major molecular pathways perturbed following CFA-induced arthritis correlated with amino acid and lipid metabolism, which were restored to normal states by rHDL/XA treatment. This work demonstrates the anti-RA potential of XA in a nanoformulation and uncovers its underlying therapeutic mechanisms at the transcript and metabolite levels.
Collapse
Affiliation(s)
- Raphael N Alolga
- State Key Laboratory of Natural Medicines, Clinical Metabolomics Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Yaw Opoku-Damoah
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - David A Alagpulinsa
- Massachusetts General Hospital Vaccine & Immunotherapy Center, Harvard Medical School, Boston, MA, 02129, USA
| | - Feng-Qing Huang
- State Key Laboratory of Natural Medicines, Clinical Metabolomics Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Gaoxiang Ma
- State Key Laboratory of Natural Medicines, Clinical Metabolomics Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Maria A S C Chavez Leon
- State Key Laboratory of Natural Medicines, Clinical Metabolomics Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Chifodya Kudzai
- State Key Laboratory of Natural Medicines, Clinical Metabolomics Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, Clinical Metabolomics Center, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
27
|
Therapeutic Potential of Porcine Liver Decomposition Product: New Insights and Perspectives for Microglia-Mediated Neuroinflammation in Neurodegenerative Diseases. Biomedicines 2020; 8:biomedicines8110446. [PMID: 33105637 PMCID: PMC7690401 DOI: 10.3390/biomedicines8110446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that microglia-mediated inflammation contributes to the progression of neurodegenerative diseases; however, the precise mechanisms through which these cells contribute remain to be elucidated. Microglia, as the primary immune effector cells of the brain, play key roles in maintaining central nervous system (CNS) homeostasis. Microglia are located throughout the brain and spinal cord and may account for up to 15% of all cells in the brain. Activated microglia express pro-inflammatory cytokines that act on the surrounding brain and spinal cord. Microglia may also play a detrimental effect on nerve cells when they gain a chronic inflammatory function and promote neuropathologies. A key feature of microglia is its rapid morphological change upon activation, characterized by the retraction of numerous fine processes and the gradual acquisition of amoeba-like shapes. These morphological changes are also accompanied by the expression and secretion of inflammatory molecules, including cytokines, chemokines, and lipid mediators that promote systemic inflammation during neurodegeneration. This may be considered a protective response intended to limit further injury and initiate repair processes. We previously reported that porcine liver decomposition product (PLDP) induces a significant increase in the Hasegawa’s Dementia Scale-Revised (HDS-R) score and the Wechsler Memory Scale (WMS) in a randomized, double-blind, placebo-controlled study in healthy humans. In addition, the oral administration of porcine liver decomposition product enhanced visual memory and delayed recall in healthy adults. We believe that PLDP is a functional food that aids cognitive function. In this review, we provide a critical assessment of recent reports of lysophospholipids derived from PLDP, a rich source of phospholipids. We also highlight some recent findings regarding bidirectional interactions between lysophospholipids and microglia and age-related neurodegenerative diseases such as dementia and Alzheimer’s disease.
Collapse
|
28
|
Shao Y, Saredy J, Yang WY, Sun Y, Lu Y, Saaoud F, Drummer C, Johnson C, Xu K, Jiang X, Wang H, Yang X. Vascular Endothelial Cells and Innate Immunity. Arterioscler Thromb Vasc Biol 2020; 40:e138-e152. [PMID: 32459541 PMCID: PMC7263359 DOI: 10.1161/atvbaha.120.314330] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to the roles of endothelial cells (ECs) in physiological processes, ECs actively participate in both innate and adaptive immune responses. We previously reported that, in comparison to macrophages, a prototypic innate immune cell type, ECs have many innate immune functions that macrophages carry out, including cytokine secretion, phagocytic function, antigen presentation, pathogen-associated molecular patterns-, and danger-associated molecular patterns-sensing, proinflammatory, immune-enhancing, anti-inflammatory, immunosuppression, migration, heterogeneity, and plasticity. In this highlight, we introduce recent advances published in both ATVB and many other journals: (1) several significant characters classify ECs as novel immune cells not only in infections and allograft transplantation but also in metabolic diseases; (2) several new receptor systems including conditional danger-associated molecular pattern receptors, nonpattern receptors, and homeostasis associated molecular patterns receptors contribute to innate immune functions of ECs; (3) immunometabolism and innate immune memory determine the innate immune functions of ECs; (4) a great induction of the immune checkpoint receptors in ECs during inflammations suggests the immune tolerogenic functions of ECs; and (5) association of immune checkpoint inhibitors with cardiovascular adverse events and cardio-oncology indicates the potential contributions of ECs as innate immune cells.
Collapse
Affiliation(s)
- Ying Shao
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Jason Saredy
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - William Y. Yang
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Yu Sun
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Yifan Lu
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Fatma Saaoud
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Charles Drummer
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Candice Johnson
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Keman Xu
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Xiaohua Jiang
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Hong Wang
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| | - Xiaofeng Yang
- Centers of Inflammation, Translational & Clinical Lung Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
- Metabolic Disease Research, Cardiovascular Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140
| |
Collapse
|
29
|
Coras R, Murillo-Saich JD, Guma M. Circulating Pro- and Anti-Inflammatory Metabolites and Its Potential Role in Rheumatoid Arthritis Pathogenesis. Cells 2020; 9:E827. [PMID: 32235564 PMCID: PMC7226773 DOI: 10.3390/cells9040827] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects synovial joints, leading to inflammation, joint destruction, loss of function, and disability. Although recent pharmaceutical advances have improved the treatment of RA, patients often inquire about dietary interventions to improve RA symptoms, as they perceive pain and/or swelling after the consumption or avoidance of certain foods. There is evidence that some foods have pro- or anti-inflammatory effects mediated by diet-related metabolites. In addition, recent literature has shown a link between diet-related metabolites and microbiome changes, since the gut microbiome is involved in the metabolism of some dietary ingredients. But diet and the gut microbiome are not the only factors linked to circulating pro- and anti-inflammatory metabolites. Other factors including smoking, associated comorbidities, and therapeutic drugs might also modify the circulating metabolomic profile and play a role in RA pathogenesis. This article summarizes what is known about circulating pro- and anti-inflammatory metabolites in RA. It also emphasizes factors that might be involved in their circulating concentrations and diet-related metabolites with a beneficial effect in RA.
Collapse
Affiliation(s)
- Roxana Coras
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; (R.C.); (J.D.M.-S.)
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| | - Jessica D. Murillo-Saich
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; (R.C.); (J.D.M.-S.)
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; (R.C.); (J.D.M.-S.)
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
30
|
Bottemanne P, Paquot A, Ameraoui H, Alhouayek M, Muccioli GG. The α/β–hydrolase domain 6 inhibitor WWL70 decreases endotoxin‐induced lung inflammation in mice, potential contribution of 2‐arachidonoylglycerol, and lysoglycerophospholipids. FASEB J 2019; 33:7635-7646. [DOI: 10.1096/fj.201802259r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pauline Bottemanne
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Hafsa Ameraoui
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| |
Collapse
|
31
|
Shao Y, Nanayakkara G, Cheng J, Cueto R, Yang WY, Park JY, Wang H, Yang X. Lysophospholipids and Their Receptors Serve as Conditional DAMPs and DAMP Receptors in Tissue Oxidative and Inflammatory Injury. Antioxid Redox Signal 2018; 28:973-986. [PMID: 28325059 PMCID: PMC5849278 DOI: 10.1089/ars.2017.7069] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: We proposed lysophospholipids (LPLs) and LPL-G-protein-coupled receptors (GPCRs) as conditional danger-associated molecular patterns (DAMPs) and conditional DAMP receptors as a paradigm shift to the widely accepted classical DAMP and DAMP receptor model. Recent Advances: The aberrant levels of LPLs and GPCRs activate pro-inflammatory signal transduction pathways, trigger innate immune response, and lead to tissue oxidative and inflammatory injury. Critical Issues: Classical DAMP model specifies only the endogenous metabolites that are released from damaged/dying cells as DAMPs, but fails to identify elevated endogenous metabolites secreted from viable/live cells during pathologies as DAMPs. The current classification of DAMPs also fails to clarify the following concerns: (i) Are molecules, which bind to pattern recognition receptors (PRRs), the only DAMPs contributing to inflammation and tissue injury? (ii) Are all DAMPs acting only via classical PRRs during cellular stress? To answer these questions, we reviewed the molecular characteristics and signaling mechanisms of LPLs, a group of endogenous metabolites and their specific receptors and analyzed the significant progress achieved in characterizing oxidative stress mechanisms of LPL mediated tissue injury. Future Directions: Further LPLs and LPL-GPCRs may serve as potential therapeutic targets for the treatment of pathologies induced by sterile inflammation. Antioxid. Redox Signal. 28, 973-986.
Collapse
Affiliation(s)
- Ying Shao
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Gayani Nanayakkara
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Jiali Cheng
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Joon-Young Park
- Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Clinical and Metabolic Characterization of Lean Caucasian Subjects With Non-alcoholic Fatty Liver. Am J Gastroenterol 2017; 112:102-110. [PMID: 27527746 DOI: 10.1038/ajg.2016.318] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is closely linked to obesity; however, 5-8% of lean subjects also have evidence of NAFLD. We aimed to investigate clinical, genetic, metabolic and lifestyle characteristics in lean Caucasian subjects with NAFLD. METHODS Data from 187 subjects allocated to one of the three groups according to body mass index (BMI) and hepatic steatosis on ultrasound were obtained: lean healthy (BMI≤25 kg/m2, no steatosis, N=71), lean NAFLD (BMI≤25 kg/m2, steatosis, N=55), obese NAFLD (BMI≥30 kg/m2, steatosis; N=61). All subjects received a detailed clinical and laboratory examination including oral glucose tolerance test. The serum metabolome was assessed using the Metabolomics AbsoluteIDQ p180 kit (BIOCRATES Life Sciences). Genotyping for single-nucleotide polymorphisms (SNPs) associated with NAFLD was performed. RESULTS Lean NAFLD subjects had fasting insulin concentrations similar to lean healthy subjects but had markedly impaired glucose tolerance. Lean NAFLD subjects had a higher rate of the mutant PNPLA3 CG/GG variant compared to lean controls (P=0.007). Serum adiponectin concentrations were decreased in both NAFLD groups compared to controls (P<0.001 for both groups) The metabolomics study revealed a potential role for various lysophosphatidylcholines (lyso-PC C18:0, lyso-PC C17:0) and phosphatidylcholines (PCaa C36:3; false discovery rate (FDR)-corrected P-value<0.001) as well as lysine, tyrosine, and valine (FDR<0.001). CONCLUSIONS Lean subjects with evidence of NAFLD have clinically relevant impaired glucose tolerance, low adiponectin concentrations and a distinct metabolite profile with an increased rate of PNPLA3 risk allele carriage.
Collapse
|
33
|
Lysophospholipid Receptors, as Novel Conditional Danger Receptors and Homeostatic Receptors Modulate Inflammation-Novel Paradigm and Therapeutic Potential. J Cardiovasc Transl Res 2016; 9:343-59. [PMID: 27230673 DOI: 10.1007/s12265-016-9700-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/29/2022]
Abstract
There are limitations in the current classification of danger-associated molecular patterns (DAMP) receptors. To overcome these limitations, we propose a new paradigm by using endogenous metabolites lysophospholipids (LPLs) as a prototype. By utilizing a data mining method we pioneered, we made the following findings: (1) endogenous metabolites such as LPLs at basal level have physiological functions; (2) under sterile inflammation, expression of some LPLs is elevated. These LPLs act as conditional DAMPs or anti-inflammatory homeostasis-associated molecular pattern molecules (HAMPs) for regulating the progression of inflammation or inhibition of inflammation, respectively; (3) receptors for conditional DAMPs and HAMPs are differentially expressed in human and mouse tissues; and (4) complex signaling mechanism exists between pro-inflammatory mediators and classical DAMPs that regulate the expression of conditional DAMPs and HAMPs. This novel insight will facilitate identification of novel conditional DAMPs and HAMPs, thus promote development of new therapeutic targets to treat inflammatory disorders.
Collapse
|
34
|
To KKW, Lee KC, Wong SSY, Sze KH, Ke YH, Lui YM, Tang BSF, Li IWS, Lau SKP, Hung IFN, Law CY, Lam CW, Yuen KY. Lipid metabolites as potential diagnostic and prognostic biomarkers for acute community acquired pneumonia. Diagn Microbiol Infect Dis 2016; 85:249-54. [PMID: 27105773 PMCID: PMC7173326 DOI: 10.1016/j.diagmicrobio.2016.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 02/03/2023]
Abstract
Early diagnosis of acute community-acquired pneumonia (CAP) is important in patient triage and treatment decisions. To identify biomarkers that distinguish patients with CAP from non-CAP controls, we conducted an untargeted global metabolome analysis for plasma samples from 142 patients with CAP (CAP cases) and 97 without CAP (non-CAP controls). Thirteen lipid metabolites could discriminate between CAP cases and non-CAP controls with area-under-the-receiver-operating-characteristic curve of >0.8 (P ≤ 10−9). The levels of glycosphingolipids, sphingomyelins, lysophosphatidylcholines and L-palmitoylcarnitine were higher, while the levels of lysophosphatidylethanolamines were lower in the CAP cases than those in non-CAP controls. All 13 metabolites could distinguish CAP cases from the non-infection, extrapulmonary infection and non-CAP respiratory tract infection subgroups. The levels of trihexosylceramide (d18:1/16:0) were higher, while the levels of lysophosphatidylethanolamines were lower, in the fatal than those of non-fatal CAP cases. Our findings suggest that lipid metabolites are potential diagnostic and prognostic biomarkers for CAP. Thirteen lipid metabolites could discriminate CAP cases from non-CAP controls. The levels of 2 lipid metabolites differ between fatal and non-fatal CAP cases. Lipid metabolites are potential diagnostic and prognostic biomarkers for CAP.
Collapse
Affiliation(s)
- Kelvin K W To
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China; Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Kim-Chung Lee
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Samson S Y Wong
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China; Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Kong-Hung Sze
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Yi-Hong Ke
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Yin-Ming Lui
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Bone S F Tang
- Department of Pathology, Hong Kong Sanatorium Hospital, Hong Kong SAR, China
| | - Iris W S Li
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Susanna K P Lau
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China; Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China
| | - Ivan F N Hung
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China; Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chun-Yiu Law
- Department of Pathology, The University of Hong Kong Hong Kong SAR, China
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong Hong Kong SAR, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China; Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR, China; Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR, China; Department of Microbiology, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
35
|
The resolution of inflammation: Principles and challenges. Semin Immunol 2015; 27:149-60. [PMID: 25911383 DOI: 10.1016/j.smim.2015.03.014] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
The concept that chemokines, cytokines and pro-inflammatory mediators act in a co-ordinated fashion to drive the initiation of the inflammatory reaction is well understood. The significance of such networks acting during the resolution of inflammation however is poorly appreciated. In recent years, specific pro-resolving mediators were discovered which activate resolution pathways to return tissues to homeostasis. These mediators are diverse in nature, and include specialized lipid mediators (lipoxins, resolvins, protectins and maresins) proteins (annexin A1, galectins) and peptides, gaseous mediators including hydrogen sulphide, a purine (adenosine), as well as neuromodulator release under the control of the vagus nerve. Functionally, they can act to limit further leukocyte recruitment, induce neutrophil apoptosis and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to the lymphatics and help initiate tissue repair mechanisms and healing. Within this review we highlight the essential cellular aspects required for successful tissue resolution, briefly discuss the pro-resolution mediators that drive these processes and consider potential challenges faced by researchers in the quest to discover how inflammation resolves and why chronic inflammation persists.
Collapse
|
36
|
Telenga ED, Hoffmann RF, Ruben t'Kindt, Hoonhorst SJM, Willemse BWM, van Oosterhout AJM, Heijink IH, van den Berge M, Jorge L, Sandra P, Postma DS, Sandra K, ten Hacken NHT. Untargeted lipidomic analysis in chronic obstructive pulmonary disease. Uncovering sphingolipids. Am J Respir Crit Care Med 2014; 190:155-64. [PMID: 24871890 DOI: 10.1164/rccm.201312-2210oc] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Cigarette smoke is the major risk factor in the development of chronic obstructive pulmonary disease (COPD). Lipidomics is a novel and emerging research field that may provide new insights in the origins of chronic inflammatory diseases, such as COPD. OBJECTIVES To investigate whether expression of the sputum lipidome is affected by COPD or cigarette smoking. METHODS Lipid expression was investigated with liquid chromatography and high-resolution quadrupole time-of-flight mass spectrometry in induced sputum comparing smokers with and without COPD, and never-smokers. Changes in lipid expression after 2-month smoking cessation were investigated in smokers with and without COPD. MEASUREMENTS AND MAIN RESULTS More than 1,500 lipid compounds were identified in sputum. The class of sphingolipids was significantly higher expressed in smokers with COPD than in smokers without COPD. At single compound level, 168 sphingolipids, 36 phosphatidylethanolamine lipids, and 5 tobacco-related compounds were significantly higher expressed in smokers with COPD compared with smokers without COPD. The 13 lipids with a high fold change between smokers with and without COPD showed high correlations with lower lung function and inflammation in sputum. Twenty (glyco)sphingolipids and six tobacco-related compounds were higher expressed in smokers without COPD compared with never-smokers. Two-month smoking cessation reduced expression of 26 sphingolipids in smokers with and without COPD. CONCLUSIONS Expression of lipids from the sphingolipid pathway is higher in smokers with COPD compared with smokers without COPD. Considering their potential biologic properties, they may play a role in the pathogenesis of COPD.
Collapse
|
37
|
Dudzik D, Zorawski M, Skotnicki M, Zarzycki W, Kozlowska G, Bibik-Malinowska K, Vallejo M, García A, Barbas C, Ramos MP. Metabolic fingerprint of Gestational Diabetes Mellitus. J Proteomics 2014; 103:57-71. [PMID: 24698665 DOI: 10.1016/j.jprot.2014.03.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/28/2014] [Accepted: 03/22/2014] [Indexed: 12/15/2022]
Abstract
UNLABELLED Gestational Diabetes (GDM) is causing severe short- and long-term complications for mother, fetus or neonate. As yet, the metabolic alterations that are specific for the development of GDM have not been fully determined, which also precludes the early diagnosis and prognosis of this pathology. In this pilot study, we determine the metabolic fingerprint, using a multiplatform LC-QTOF/MS, GC-Q/MS and CE-TOF/MS system, of plasma and urine samples of 20 women with GDM and 20 with normal glucose tolerance in the second trimester of pregnancy. Plasma fingerprints allowed for the discrimination of GDM pregnant women from controls. In particular, lysoglycerophospholipids showed a close association with the glycemic state of the women. In addition, we identified some metabolites with a strong discriminative power, such as LPE(20:1), (20:2), (22:4); LPC(18:2), (20:4), (20:5); LPI(18:2), (20:4); LPS(20:0) and LPA(18:2), as well as taurine-bile acids and long-chain polyunsaturated fatty acid derivatives. Finally, we provide evidence for the implication of these compounds in metabolic routes, indicative of low-grade inflammation and altered redox-balance, that may be related with the specific pathophysiological context of the genesis of GDM. This highlights their potential use as prognostic markers for the identification of women at risk to develop severe glucose intolerance during pregnancy. BIOLOGICAL SIGNIFICANCE Gestational Diabetes Mellitus (GDM) is increasing worldwide and, although diabetes usually remits after pregnancy, women with GDM have a high risk of developing postpartum type 2-diabetes, particularly when accompanied by obesity. Therefore, understanding the pathophysiology of GDM, as well as the identification of potentially modifiable risk factors and early diagnostic markers for GDM are relevant issues. In the present study, we devised a multiplatform metabolic fingerprinting approach to obtain a comprehensive picture of the early metabolic alternations that occur in GDM, and may reflect on the specific pathophysiological context of the disease. Future studies at later stages of gestation will allow us to validate the discriminant power of the identified metabolites.
Collapse
Affiliation(s)
- Danuta Dudzik
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain; Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Zorawski
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Skotnicki
- Clinical Department of Perinatology, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Wieslaw Zarzycki
- Clinical Department of Endocrinology, Diabetology and Internal Diseases, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Gabryela Kozlowska
- Clinical Department of Endocrinology, Diabetology and Internal Diseases, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Bibik-Malinowska
- Clinical Department of Perinatology, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - María Vallejo
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Antonia García
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Coral Barbas
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - M Pilar Ramos
- Biochemistry and Molecular Biology, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain.
| |
Collapse
|
38
|
Nguyen MD, Nguyen DH, Yoo JM, Myung PK, Kim MR, Sok DE. Effect of endocannabinoids on soybean lipoxygenase-1 activity. Bioorg Chem 2013; 49:24-32. [PMID: 23856367 DOI: 10.1016/j.bioorg.2013.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/17/2013] [Accepted: 06/03/2013] [Indexed: 11/25/2022]
Abstract
Endocannabinoids appear to be involved in a variety of physiological processes. Lipoxygenase activity has been known to be affected by unsaturated fatty acids or phenolic compounds. In this study, we examined whether endocannabinoids containing both N-acyl group and phenolic group can affect the activity of soybean lipoxygenase (LOX)-1, similar to mammalian 15-lipoxygenase in physicochemical properties. First, N-arachidonoyl dopamine and N-oleoyl dopamine were found to inhibit soybean LOX-1-catalyzed oxygenation of linoleic acid in a non-competitive manner with a Ki value of 3.7 μM and 6.2 μM, respectively. Meanwhile, other endocannabinoids failed to show a remarkable inhibition of soybean LOX-1. Separately, N-arachidonoyl dopamine and N-arachidonoyl serotonin were observed to inactivate soybean LOX-1 with Kin value of 27 μM and 24 μM, respectively, and k3 value of 0.12 min(-1) and 0.35 min(-1), respectively. Furthermore, such an inactivation was enhanced by ascorbic acid, but suppressed by 13(S)-hydroperoxy-9,11-octadecadienoic acid. Taken together, it is proposed that endocannabinoids containing polyunsaturated acyl moiety and phenolic group may be efficient for the inhibition as well as inactivation of 15-lipoxygenase.
Collapse
Affiliation(s)
- Minh Duc Nguyen
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Park SJ, Lee KP, Kang S, Chung HY, Bae YS, Okajima F, Im DS. Lysophosphatidylethanolamine utilizes LPA(1) and CD97 in MDA-MB-231 breast cancer cells. Cell Signal 2013; 25:2147-54. [PMID: 23838008 DOI: 10.1016/j.cellsig.2013.07.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022]
Abstract
Lysophosphatidylethanolamine (LPE) is a lyso-type metabolite of phosphatidylethanolamine (a plasma membrane component), and its intracellular Ca(2+) ([Ca(2+)]i) increasing actions may be mediated through G-protein-coupled receptor (GPCR). However, GPCRs for lysophosphatidic acid (LPA), a structurally similar representative lipid mediator, have not been implicated in LPE-mediated activities in SK-OV3 or OVCAR-3 ovarian cancer cells or in receptor over-expression systems. In the present study, LPE-induced [Ca(2+)]i increase was observed in MDA-MB-231 cells but not in other breast cancer cell lines. In addition, LPE- and LPA-induced responses showed homologous and heterologous desensitization. Furthermore, VPC32183 and Ki16425 (antagonists of LPA1 and LPA3) inhibited LPE-induced [Ca(2+)]i increases, and knockdown of LPA1 by transfection with LPA1 siRNA completely inhibited LPE-induced [Ca(2+)]i increases. Furthermore, the involvement of CD97 (an adhesion GPCR) in the action of LPA1 in MDA-MB-231 cells was demonstrated by siRNA transfection. Pertussis toxin (a specific inhibitor of Gi/o proteins), edelfosine (an inhibitor of phospholipase C), or 2-APB (an inhibitor of IP3 receptor) completely inhibited LPE-induced [Ca(2+)]i increases, whereas HA130, an inhibitor of autotaxin/lysophospholipase D, did not. Therefore, LPE is supposed to act on LPA1-CD97/Gi/o proteins/phospholipase C/IP3/Ca(2+) rise in MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Grzelczyk A, Gendaszewska-Darmach E. Novel bioactive glycerol-based lysophospholipids: new data -- new insight into their function. Biochimie 2012; 95:667-79. [PMID: 23089136 DOI: 10.1016/j.biochi.2012.10.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 10/11/2012] [Indexed: 11/28/2022]
Abstract
Based on the results of research conducted over last two decades, lysophospholipids (LPLs) were observed to be not only structural components of cellular membranes but also biologically active molecules influencing a broad variety of processes such as carcinogenesis, neurogenesis, immunity, vascular development or regulation of metabolic diseases. With a growing interest in the involvement of extracellular lysophospholipids in both normal physiology and pathology, it has become evident that those small molecules may have therapeutic potential. While lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been studied in detail, other LPLs such as lysophosphatidylglycerol (LPG), lysophosphatidylserine (LPS), lysophosphatidylinositol (LPI), lysophosphatidylethanolamine (LPE) or even lysophosphatidylcholine (LPC) have not been elucidated to such a high degree. Although information concerning the latter LPLs is sparse as compared to LPA and S1P, within the last couple of years much progress has been made. Recently published data suggest that these compounds may regulate fundamental cellular activities by modulating multiple molecular targets, e.g. by binding to specific receptors and/or altering the structure and fluidity of lipid rafts. Therefore, the present review is devoted to novel bioactive glycerol-based lysophospholipids and recent findings concerning their functions and possible signaling pathways regulating physiological and pathological processes.
Collapse
Affiliation(s)
- Anna Grzelczyk
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | | |
Collapse
|