1
|
Ginovyan M, Tadevosyan S, Shirvanyan A, Babayan A, Kusznierewicz B, Koss-Mikołajczyk I, Mróz M, Bartoszek A, Sahakyan N. The potential of blackcurrant, fig, and grape leaf extracts in the development of new preparations for overcoming antibiotic resistance and enhancing the efficacy of chemotherapeutic agents. BMC Complement Med Ther 2025; 25:148. [PMID: 40269785 DOI: 10.1186/s12906-025-04859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/14/2025] [Indexed: 04/25/2025] Open
Abstract
The presented study aimed to assess the efficacy of crude leaf hydroethanolic extracts from blackcurrant, fig, and grape leaves in reversing antibiotic resistance and enhancing chemotherapeutic efficacy. The viability tests were employed to assess the resistance-modifying properties of the extracts both in antibiotic-resistant bacterial cells and cancer cell-lines. To elucidate the potential mechanisms of the antibiotic modulatory activity of test extracts, the changes in H+-fluxes across the cell membrane and their impact on the H+-translocating F0F1-ATPase activity in antibiotic-resistant Escherichia coli explored. Qualitative metabolomic characterization of the extracts was performed using LC-Q-Orbitrap HRMS, and quantitative analysis was carried out with UHPLC-PDA. Experiments on doxorubicin-resistant and susceptible HT-29 cells revealed that all three extracts reversed antibiotic resistance in HT-29R cells, making them susceptible to doxorubicin in a dose-dependent manner. Notably, blackcurrant, and fig significantly reduced the minimum inhibitory concentrations of ampicillin and kanamycin against resistant E. coli strains. Our results indicated that all plant extracts enhanced H+-fluxes in the investigated bacterial strain and promoted ATPase activity, suggesting a potential role in altering bacterial membrane integrity. LC-Q-Orbitrap HRMS analysis identified more than 100 major peaks, with flavonoids and phenolics being the dominant constituents. The study underscores the potential of the selected plant extracts in developing of new agents to overcome antibiotic resistance and enhance the efficacy of chemotherapeutic agents. Importantly, although these plant leaves are often considered as bio-waste, they can be used as valuable sources of bioactive compounds. This underlines the importance of re-evaluating agricultural by-products for their potential in pharmacological applications, fostering a sustainable approach in drug development.
Collapse
Affiliation(s)
- Mikayel Ginovyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoogian St, Yerevan, 0025, Armenia
- Research Institute of Biology, Yerevan State University, 1 Alex Manoogian St, Yerevan, 0025, Armenia
| | - Silvard Tadevosyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoogian St, Yerevan, 0025, Armenia
| | - Anahit Shirvanyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoogian St, Yerevan, 0025, Armenia
- Research Institute of Biology, Yerevan State University, 1 Alex Manoogian St, Yerevan, 0025, Armenia
| | - Anush Babayan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoogian St, Yerevan, 0025, Armenia
| | - Barbara Kusznierewicz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, GdańSk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Izabela Koss-Mikołajczyk
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, GdańSk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Marika Mróz
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, GdańSk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, GdańSk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Naira Sahakyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoogian St, Yerevan, 0025, Armenia.
- Research Institute of Biology, Yerevan State University, 1 Alex Manoogian St, Yerevan, 0025, Armenia.
| |
Collapse
|
2
|
Choi Y, Jeong J, Han Y, Han M, Yu B, Han K. Exploring Competitive Relationship Between Haemophilus parainfluenzae and Mitis Streptococci via Co-Culture-Based Molecular Diagnosis and Metabolomic Assay. Microorganisms 2025; 13:279. [PMID: 40005646 PMCID: PMC11857835 DOI: 10.3390/microorganisms13020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/29/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Various bacterial strains with nitrate-reducing capacity (NRC), such as Haemophilus, Actinomyces, and Neisseria, are known to promote NH3 production, control pH in the oral cavity, and inhibit the growth of aciduric bacteria. However, experimental evidence on various estimated bacterial networks within the salivary microbiome is insufficient. This study aims to explore potential bacterial compositional competition observed within saliva samples from dental caries patients through a co-culture assay of mitis Streptococci, which is a primary colonizer in the salivary microbiome, and nitrate-reducing bacteria Haemophilus parainfluenzae. We investigated bacterial growth efficiency change by co-culture time using the qRT-PCR method. In addition, we applied LC/Q-TOF-based metabolites screening to confirm metabolic interactions between oral bacterial species and their association with dental caries from a metabolomics perspective. As a result, we first found that the nitrate reduction ability of H. parainfluenzae is maintained even in a co-culture environment with the mitis Streptococci group through a nitrate reduction test. However, nitrate reduction efficiency was hindered when compared with monoculture-based nitrate reduction test results. Next, we designed species-specific primers, and we confirmed by qRT-PCR that there is an obvious competitive relationship in growth efficiency between H. parainfluenzae and two mitis Streptococci (S. australis and S. sanguinis). Furthermore, although direct effects of nitrate reduction on competition have not been identified, we have potentially confirmed through LC/Q-TOF-based metabolite screening analysis that the interaction of various metabolic compounds synthesized from mitis Streptococci is driving inter-strain competition. In particular, we constructed a basic reference core-metabolites list to understand the metabolic network between each target bacterial species (H. parainfluenzae and mitis Streptococci) within the salivary microbiome, which still lacks accumulated research data. Ultimately, we suggest that our data have potential value to be referenced in further metagenomics and metabolomics-based studies related to oral health care.
Collapse
Affiliation(s)
- Yeseul Choi
- Department of Microbiology, College of Bio-Convergence, Dankook University, Cheonan 31116, Republic of Korea; (Y.C.); (Y.H.); (M.H.)
| | - Jinuk Jeong
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Center for Bio-Medical Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Youngjong Han
- Department of Microbiology, College of Bio-Convergence, Dankook University, Cheonan 31116, Republic of Korea; (Y.C.); (Y.H.); (M.H.)
| | - Miyang Han
- Department of Microbiology, College of Bio-Convergence, Dankook University, Cheonan 31116, Republic of Korea; (Y.C.); (Y.H.); (M.H.)
| | - Byungsun Yu
- Department of Biomedical Sciences, College of Bio-Convergence, Dankook University, Cheonan 31116, Republic of Korea;
| | - Kyudong Han
- Department of Microbiology, College of Bio-Convergence, Dankook University, Cheonan 31116, Republic of Korea; (Y.C.); (Y.H.); (M.H.)
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Center for Bio-Medical Core Facility, Dankook University, Cheonan 31116, Republic of Korea
- Department of Human Microbiome Research HuNbiome Co., Ltd., R&D Center, Seoul 08507, Republic of Korea
| |
Collapse
|
3
|
Ahmadi S, Sedaghat FR, Memar MY, Yekani M. Metabolomics in the Diagnosis of Bacterial Infections. Clin Chim Acta 2025; 565:120020. [PMID: 39489271 DOI: 10.1016/j.cca.2024.120020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
One of the essential factors in the appropriate treatment of infections is accurate and timely laboratory diagnosis. The correct diagnosis of infections plays a vital role in determining desirable therapy and controlling the spread of pathogens. Traditional methods of infection diagnosis are limited by several factors such as insufficient sensitivity and specificity, being time-consuming and laborious, having a low ability to distinguish infection from non-infectious inflammatory conditions and a low potential to predict treatment outcomes. Therefore, it is necessary to find innovative strategies for detecting specific biomarkers in order to diagnose infections. The rapid advancement of metabolomics makes it possible to determine the pattern of metabolite changes in the both of pathogen and the host during an infection. Metabolomics is a method used to assess the levels and type of metabolites in an organism. Metabolites are of low-molecular-weight compounds produced as a result of metabolic processes and pathways within cells. Metabolomics provides valuable data to detect accurate biomarkers of specific biochemical features directly related to certain phenotypes or conditions. This study aimed to review the applications and progress of metabolomics as a biomarker for the diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Rafie Sedaghat
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Jabłońska-Trypuć A, Pankiewicz W, Wołejko E, Sokołowska G, Estévez J, Sogorb MA, Wydro U. Human Skin Fibroblasts as an In Vitro Model Illustrating Changes in Collagen Levels and Skin Cell Migration Under the Influence of Selected Plant Hormones. Bioengineering (Basel) 2024; 11:1188. [PMID: 39768006 PMCID: PMC11726836 DOI: 10.3390/bioengineering11121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Human skin fibroblasts are an excellent in vitro model for tracking the processes occurring in human skin and studying the potential impact of various biologically active substances on these processes. Two plant hormones, which are included in the cytokinins group-kinetin (K) and N-6-benzyladenine (BA)-have a positive effect on human skin. Therefore, an attempt was made to examine the effect they have on key skin functions, cell proliferation, and migration, as well as collagen synthesis in them. The effect of phytohormones was studied at selected concentrations for kinetin-10 μM and 1 μM-and for N-6-benzyladenine-1 μM and 0.1 μM. A wound-healing assay was used in order to analyze cell migration and proliferation. The content of total protein and collagen in cells and culture medium was determined. The obtained results confirm that the studied compounds induce cell migration and proliferation, as well as collagen biosynthesis. The positive effect of kinetin and N-6-benzyladenine on fibroblast metabolism that we have demonstrated allows us to indicate them as compounds with potentially therapeutic properties. Therefore, we conclude that they should be subjected to further molecular and in vivo studies focusing on pathologies connected with skin diseases and aging.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (E.W.); (G.S.); (U.W.)
| | - Walentyn Pankiewicz
- Academy of Medical Sciences in Białystok, Krakowska Street 9, 15-875 Białystok, Poland;
| | - Elżbieta Wołejko
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (E.W.); (G.S.); (U.W.)
| | - Gabriela Sokołowska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (E.W.); (G.S.); (U.W.)
| | - Jorge Estévez
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (J.E.); (M.A.S.)
| | - Miguel A. Sogorb
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, 03202 Elche, Spain; (J.E.); (M.A.S.)
| | - Urszula Wydro
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (E.W.); (G.S.); (U.W.)
| |
Collapse
|
5
|
Jin YW, Ma YR, Liu YT, Yang JR, Zhang MK, Ran FL, Chen Y, Wu XA. Identification of a substrate of the renal tubular transporters for detecting drug-induced early acute kidney injury. Toxicol Sci 2024; 201:190-205. [PMID: 39041788 DOI: 10.1093/toxsci/kfae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Early identification of drug-induced acute kidney injury (AKI) is essential to prevent renal damage. The renal tubules are typically the first to exhibit damage, frequently accompanied by changes in renal tubular transporters. With this in mind, we have identified an endogenous substrate of the renal tubular transporters that may serve as a biomarker for early detection of drug-induced AKI. Using gentamicin- and vancomycin-induced AKI models, we found that traumatic acid (TA), an end metabolite, was rapidly increased in both AKI models. TA, a highly albumin-bound compound (96% to 100%), could not be filtered by the glomerulus and was predominantly eliminated by renal tubules via the OAT1, OAT3, OATP4C1, and P-gp transporters. Importantly, there is a correlation between elevated serum TA levels and reduced OAT1 and OAT3 levels. A clinical study showed that serum TA levels rose before an increase in serum creatinine in 13 out of 20 AKI patients in an intensive care unit setting. In addition, there was a notable rise in TA levels in the serum of individuals suffering from nephrotic syndrome, chronic renal failure, and acute renal failure. These results indicate that the decrease in renal tubular transporter expression during drug-induced AKI leads to an increase in the serum TA level, and the change in TA may serve as a monitor for renal tubular injury. Acute kidney injury (AKI) has a high clinical incidence, and if patients do not receive timely treatment and intervention, it can lead to severe consequences. During AKI, tubular damage is often the primary issue. Endogenous biomarkers of tubular damage are critical for the early diagnosis and treatment of AKI. However, there is currently a lack of reliable endogenous biomarkers for diagnosing tubular damage in clinical practice. Tubular secretion is primarily mediated by renal tubular transporters (channels), which are also impaired during tubular damage. Therefore, we aim to identify endogenous biomarkers of tubular damage from the perspective of renal tubular transporters, providing support for the early detection and intervention of AKI. TA is a substrate of multiple channels, including OAT1, OAT3, OATP4C1, and P-gp, and is primarily secreted by the renal tubules. In the early stages of rat AKI induced by GEN and VCA, serum TA levels are significantly elevated, occurring earlier than the rise in serum creatinine (SCr). Thus, TA is expected to become a potential endogenous biomarker for the early diagnosis of tubular damage.
Collapse
Affiliation(s)
- Yong-Wen Jin
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yan-Rong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yu-Ting Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jin-Ru Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Ming-Kang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Feng-Lin Ran
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Xin-An Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Khanna RK, Catanese S, Mortemousque G, Dupuy C, Lefevre A, Emond P, Beltran S, Gissot V, Pisella PJ, Blasco H, Corcia P. Metabolomics of basal tears in amyotrophic lateral sclerosis: A cross-sectional study. Ocul Surf 2024; 34:363-369. [PMID: 39349171 DOI: 10.1016/j.jtos.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
PURPOSE Amyotrophic lateral sclerosis (ALS) clinical variability, along with the lack of conclusive diagnostic instruments, result in average diagnosis delays of 9 months. This study aimed to assess whether metabolomic profiling of basal tears in ALS patients could act as a biological marker for diagnosing ALS, predicting prognosis, and discriminating between endophenotypes. METHODS A single-center prospective case-control study was conducted in France from September 2021 to March 2023 including patients with ALS according to the revised EI Escorial criteria. Two microliters of basal tears were collected using microcapillary glass tubes and analyzed with ultra-high performance liquid chromatography coupled with mass spectrometry. Both univariate and multivariate analyses were performed. RESULTS Twenty-five patients with ALS and 30 controls were included. No significant differences in metabolite levels were found between ALS and control groups (p > 0.05). The basal tear metabolome significantly discriminated bulbar and spinal forms of ALS based on 6 metabolites, among which 5 were decreased (aniline, trigonelline, caffeine, theophylline and methyl beta-D-galactoside) in the bulbar form and 1 was decreased in the spinal form (dodecanedioic acid). CONCLUSION This study represents the first prospective analysis of basal tear metabolomics in individuals with ALS. Despite the inability to distinguish between ALS patients and controls based on metabolic signatures, these findings could contribute to understanding the phenotypic diversity of ALS. Notably, distinct metabolic profiles were identified that differentiate between the bulbar and spinal forms of the disease.
Collapse
Affiliation(s)
- Raoul K Khanna
- Department of Ophthalmology, Bretonneau University Hospital of Tours, France; Université de Tours, INSERM, Imaging Brain & Neuropsychiatry IBraiN U1253, 37032, Tours, France.
| | - Sophie Catanese
- Department of Ophthalmology, Bretonneau University Hospital of Tours, France; Université de Tours, INSERM, Imaging Brain & Neuropsychiatry IBraiN U1253, 37032, Tours, France
| | - Geoffroy Mortemousque
- Department of Ophthalmology, Bretonneau University Hospital of Tours, France; Université de Tours, INSERM, Imaging Brain & Neuropsychiatry IBraiN U1253, 37032, Tours, France
| | - Camille Dupuy
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry IBraiN U1253, 37032, Tours, France
| | - Antoine Lefevre
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry IBraiN U1253, 37032, Tours, France
| | - Patrick Emond
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry IBraiN U1253, 37032, Tours, France; CHRU Tours, Nuclear Medicine in Vitro Department, Tours, France
| | - Stéphane Beltran
- Amyotrophic Lateral Sclerosis Centre, Department of Neurology, Bretonneau University Hospital of Tours, France
| | | | - Pierre-Jean Pisella
- Department of Ophthalmology, Bretonneau University Hospital of Tours, France
| | - Hélène Blasco
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry IBraiN U1253, 37032, Tours, France; Biochemistry and Molecular Biology Department, Bretonneau University Hospital of Tours, France
| | - Philippe Corcia
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry IBraiN U1253, 37032, Tours, France; Amyotrophic Lateral Sclerosis Centre, Department of Neurology, Bretonneau University Hospital of Tours, France
| |
Collapse
|
7
|
Chen KD, Wang KL, Chen C, Zhu YJ, Tang WW, Wang YJ, Chen ZP, He LH, Chen YG, Zhang W. Hydrogen-rich water alleviates constipation by attenuating oxidative stress through the sirtuin1/nuclear factor-erythroid-2-related factor 2/heme oxygenase-1 signaling pathway. World J Gastroenterol 2024; 30:2709-2725. [PMID: 38855154 PMCID: PMC11154682 DOI: 10.3748/wjg.v30.i20.2709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/27/2024] Open
Abstract
BACKGROUND Constipation, a highly prevalent functional gastrointestinal disorder, induces a significant burden on the quality of patients' life and is associated with substantial healthcare expenditures. Therefore, identifying efficient therapeutic modalities for constipation is of paramount importance. Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms. Consequently, we postulate that hydrogen therapy, an emerging and promising intervention, can serve as a safe and efficacious treatment for constipation. AIM To determine whether hydrogen-rich water (HRW) alleviates constipation and its potential mechanism. METHODS Constipation models were established by orally loperamide to Sprague-Dawley rats. Rats freely consumed HRW, and were recorded their 24 h total stool weight, fecal water content, and charcoal propulsion rate. Fecal samples were subjected to 16S rDNA gene sequencing. Serum non-targeted metabolomic analysis, malondialdehyde, and superoxide dismutase levels were determined. Colonic tissues were stained with hematoxylin and eosin, Alcian blue-periodic acid-Schiff, reactive oxygen species (ROS) immunofluorescence, and immunohistochemistry for cell growth factor receptor kit (c-kit), PGP 9.5, sirtuin1 (SIRT1), nuclear factor-erythroid-2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1, Nrf2 and HO-1. A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor, EX527, into constipated rats. NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression. RESULTS HRW alleviated constipation symptoms by improving the total amount of stool over 24 h, fecal water content, charcoal propulsion rate, thickness of the intestinal mucus layer, c-kit expression, and the number of intestinal neurons. HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism. HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway. This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats. The serum metabolites, β-leucine (β-Leu) and traumatic acid, were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1. CONCLUSION HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway, modulating gut microbiota and serum metabolites. β-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress.
Collapse
Affiliation(s)
- Kai-Di Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Kui-Ling Wang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Chen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yi-Jia Zhu
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wen-Wen Tang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yu-Ji Wang
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Ze-Peng Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Lin-Hai He
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Jiangsu Collaborative Innovation Center of Chinese Medicine in Prevention and Treatment of Tumor, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wei Zhang
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
8
|
Noli C, Morelli G, della Valle MF, Schievano C. Effects of a Protocol Combining a Non-Irritating Shampoo and an Adelmidrol-Based Adsorbent Mousse on Seborrhoea and Other Signs and Symptoms Secondary to Canine Atopic Dermatitis: A Multicenter, Open-Label Uncontrolled Clinical Trial. Vet Sci 2024; 11:229. [PMID: 38921976 PMCID: PMC11209480 DOI: 10.3390/vetsci11060229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
The present study aimed at evaluating the effect of a gentle shampoo and a mousse containing Adelmidrol, tapioca starch and a non-prescription antimicrobial complex on seborrhoea and other clinical signs secondary to canine atopic dermatitis (cAD). Forty-six dogs with cAD-associated seborrhoea and/or pruritus > 4 cm on the pruritus visual analogue scale (P-VAS) and/or bacterial/Malassezia overgrowth were enrolled. The mousse was applied twice daily, and dogs were evaluated at days (D)0, 7, 14 and optionally 28, by means of a skin seborrheic index (SSI), P-VAS, cAD lesion index (CADLI), and a semiquantitative cytological score. The mean SSI value improved during the first two weeks (4.1 ± 0.37 to 1.9 ± 0.30; p < 0.0001). The mean P-VAS score (cm) decreased from 6.6 ± 0.19 at D0 to 3.8 ± 0.31 at D14 (p < 0.0001). The mean CADLI score dropped from 13.7 ± 1.24 to 8.5 ± 1.14 at D14 (p < 0.001). The cytological score for bacteria and Malassezia decreased from 3.2 ± 0.10 and 3.2 ± 0.11, respectively, to 1.2 ± 0.19 and 1.2 ± 0.24 (p < 0.0001). All the investigated signs further improved at D28. Altogether, these observations suggest that the tested protocol might be useful in managing cAD-associated signs.
Collapse
Affiliation(s)
- Chiara Noli
- Servizi Dermatologici Veterinari, Strada Bedale della Ressia 2, 12016 Peveragno, Italy
| | - Giada Morelli
- CeDIS (Science Information and Documentation Center), Innovet Italia Srl, Via Leonardo Da Vinci 3, 35030 Saccolongo, Italy
| | - Maria Federica della Valle
- CeDIS (Science Information and Documentation Center), Innovet Italia Srl, Via Leonardo Da Vinci 3, 35030 Saccolongo, Italy
| | - Carlo Schievano
- Innovative Statistical Research Srl, Prato della Valle 24, 35123 Padova, Italy
| | | |
Collapse
|
9
|
Krętowski R, Szynaka B, Jabłońska-Trypuć A, Kiełtyka-Dadasiewicz A, Cechowska-Pasko M. The Synergistic Effect of Reduced Graphene Oxide and Proteasome Inhibitor in the Induction of Apoptosis through Oxidative Stress in Breast Cancer Cell Lines. Int J Mol Sci 2024; 25:5436. [PMID: 38791473 PMCID: PMC11121306 DOI: 10.3390/ijms25105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Reduced graphene oxide (rGO) and a proteasome inhibitor (MG-132) are some of the most commonly used compounds in various biomedical applications. However, the mechanisms of rGO- and MG-132-induced cytotoxicity remain unclear. The aim of this study was to investigate the anticancer effect of rGO and MG-132 against ZR-75-1 and MDA-MB-231 breast cancer cell lines. The results demonstrated that rGO, MG-132 or a mix (rGO + MG-132) induced time- and dose-dependent cytotoxicity in ZR-75-1 and MDA-MB-231 cells. Apart from that, we found that treatment with rGO and MG-132 or the mix increased apoptosis, necrosis and induction of caspase-8 and caspase-9 activity in both breast cancer cell lines. Apoptosis and caspase activation were accompanied by changes in the ultrastructure of mitochondria in ZR-75-1 and MDA-MB-231 cells incubated with rGO. Additionally, in the analyzed cells, we observed the induction of oxidative stress, accompanied by increased apoptosis and cell necrosis. In conclusion, oxidative stress induces apoptosis in the tested cells. At the same time, both mitochondrial and receptor apoptosis pathways are activated. These studies provided new information on the molecular mechanisms of apoptosis in the ZR-75-1 and MDA-MB-231 breast cancer cell lines.
Collapse
Affiliation(s)
- Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland;
| | - Beata Szynaka
- Department of Histology and Embryology, Medical University of Białystok, Waszyngtona 13, 15-269 Białystok, Poland;
| | - Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland;
| | - Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodity, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Center, 20-819 Lublin, Poland
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222 Białystok, Poland;
| |
Collapse
|
10
|
Gao J, Zhang Z, Dong X, Zhao J, Peng Z, Zhang L, Xu Z, Xu L, Wang X, Guo X. Traumatic acid inhibits ACSL4 associated lipid accumulation in adipocytes to attenuate high-fat diet-induced obesity. FASEB J 2023; 37:e23278. [PMID: 37902573 DOI: 10.1096/fj.202301166r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023]
Abstract
Obesity is a major health concern that lacks effective intervention strategies. Traumatic acid (TA) is a potent wound-healing agent in plants, considered an antioxidant food ingredient. This study demonstrated that TA treatment significantly reduced lipid accumulation in human adipocytes and prevented high-fat diet induced obesity in zebrafish. Transcriptome sequencing revealed TA-activated fatty acid (FA) degradation and FA metabolism signaling pathways. Moreover, western blotting and quantitative polymerase chain reaction showed that TA inhibited the expression of long-chain acyl-CoA synthetase-4 (ACSL4). Overexpression of ACSL4 resulted in the reversal of TA beneficiary effects, indicating that the attenuated lipid accumulation of TA was regulated by ACSL4 expression. Limited proteolysis-mass spectrometry and microscale thermophoresis were then used to confirm hexokinase 2 (HK2) as a direct molecular target of TA. Thus, we demonstrated the molecular basis of TA in regulating lipid accumulation and gave the first evidence that TA may function through the HK2-ACSL4 axis.
Collapse
Affiliation(s)
- Jianfang Gao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Peng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqing Xu
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liling Xu
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xirong Guo
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Kahleova H, Holtz DN, Strom N, La Reau A, Kolipaka S, Schmidt N, Hata E, Znayenko-Miller T, Holubkov R, Barnard ND. A dietary intervention for postmenopausal hot flashes: A potential role of gut microbiome. An exploratory analysis. Complement Ther Med 2023; 79:103002. [PMID: 37949415 DOI: 10.1016/j.ctim.2023.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE This study examined the role of gut microbiome changes in mediating the effects of a dietary intervention on the frequency and severity of postmenopausal vasomotor symptoms METHODS: Postmenopausal women (n = 84) reporting ≥2 moderate-to-severe hot flashes daily were randomly assigned, in 2 successive cohorts, to an intervention including a low-fat, vegan diet and cooked soybeans (½ cup [86 g] daily) or to stay on their usual diet. Over a 12-week period, frequency and severity of hot flashes were recorded with a mobile application. In a subset of 11 women, gut microbiome was analyzed at baseline and after 12 weeks of the dietary intervention (low-fat vegan diet with soybeans), using deep shotgun metagenomic sequencing. Differences in the microbiome between baseline and 12 weeks were assessed by comparing alpha diversity with Wilcoxon signed rank tests, beta diversity with permanovaFL, and taxon abundance with Wilcoxon signed rank tests. Pearson correlations were used to assess the association between changes in hot flashes and gut bacteria. RESULTS In the subset for which microbiome testing was done, total hot flashes decreased by 95 % during the dietary intervention (p = 0.007); severe hot flashes disappeared (from 0.6 to 0.0/day; p = 0.06); and moderate-to-severe hot flashes decreased by 96 % (p = 0.01). Daytime and nighttime hot flashes were reduced by 96 % (p = 0.01) and 94 % (p = 0.004), respectively. Alpha and beta diversity did not significantly differ in the intervention group between baseline and 12 weeks. Two families (Enterobacteriaceae and Veillonellaceae), 5 genera (Erysipelatoclostridium, Fusicatenibacter, Holdemanella, Intestinimonas, and Porphyromonas), and 6 species (Clostridium asparagiforme, Clostridium innocuum, Bacteroides thetaiotaomicron, Fusicatenibacter saccharivorans, Intestinimonas butyriciproducens, Prevotella corporis, and Streptococcus sp.) were differentially abundant, but after correction for multiple comparisons, these differences were no longer significant. Changes in the relative abundance of Porphyromonas and Prevotella corporis were associated with the reduction in severe day hot flashes both unadjusted (r = 0.61; p = 0.047; and r = 0.69; p = 0.02), respectively), and after adjustment for changes in body mass index (r = 0.63; p = 0.049; and r = 0.73; p = 0.02), respectively). Changes in relative abundance of Clostridium asparagiforme were associated with the reduction in total severe hot flashes (r = 0.69; p = 0.019) and severe night hot flashes (r = 0.82; p = 0.002) and the latter association remained significant after adjustment for changes in body mass index (r = 0.75; p = 0.01). CONCLUSIONS This exploratory analysis revealed potential associations between changes in vasomotor symptoms in response to a diet change and changes in the gut microbiome. Larger randomized clinical trials are needed to investigate these findings.
Collapse
Affiliation(s)
- Hana Kahleova
- Physicians Committee for Responsible Medicine, Washington, DC, USA.
| | - Danielle N Holtz
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | | | | | - Sinjana Kolipaka
- Physicians Committee for Responsible Medicine, Washington, DC, USA; Florida Atlantic University, Charles E. Schmidt College of Medicine, FL, USA
| | - Natalie Schmidt
- Physicians Committee for Responsible Medicine, Washington, DC, USA; Florida Atlantic University, Charles E. Schmidt College of Medicine, FL, USA
| | - Ellen Hata
- Physicians Committee for Responsible Medicine, Washington, DC, USA; George Washington University, Milken Institute School of Public Health, DC, USA
| | | | | | - Neal D Barnard
- Physicians Committee for Responsible Medicine, Washington, DC, USA; Adjunct faculty, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| |
Collapse
|
12
|
Sowa I, Mołdoch J, Paduch R, Strzemski M, Szkutnik J, Tyszczuk-Rotko K, Dresler S, Szczepanek D, Wójciak M. Polyphenolic Composition of Carlina acaulis L. Extract and Cytotoxic Potential against Colorectal Adenocarcinoma and Cervical Cancer Cells. Molecules 2023; 28:6148. [PMID: 37630400 PMCID: PMC10458490 DOI: 10.3390/molecules28166148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Carlina acaulis is highly valued in the traditional medicine of many European countries for its diuretic, cholagogue, anthelmintic, laxative, and emetic properties. Moreover, practitioners of natural medicine indicate that it has anti-cancer potential. However, its phytochemistry is still little known. In the present study, the polyphenolic composition of the plant was investigated using ultra-high-performance liquid chromatography coupled with a high-resolution/quadrupole time-of-flight mass spectrometer (UHPLC-HR/QTOF/MS-PDA). The fractionation of the extract was carried out using liquid-liquid extraction and preparative chromatography techniques. Cytotoxicity was assessed based on neutral red and MTT assays. The obtained data showed that the species is rich in chlorogenic acids and C-glycosides of luteolin and apigenin. The total amount of chlorogenic acids was 12.6 mg/g. Among flavonoids, kaempferol dihexosidipentose and schaftoside were the most abundant, reaching approximately 3 mg/g, followed by isoorientin, vitexin-2-O-rhamnoside, and vicenin II, each with a content of approximately 2 mg/g. Furthermore, the cytotoxic potential of the plant against human colorectal adenocarcinoma (HT29) and human cervical cancer (HeLa) cells was investigated using the normal epithelial colon cell line (CCD 841CoTr) as a reference. It has been demonstrated that the ethyl acetate fraction was the most abundant in polyphenolic compounds and had the most promising anticancer activity. Further fractionation allowed for the obtaining of some subfractions that differed in phytochemical composition. The subfractions containing polyphenolic acids and flavonoids were characterized by low cytotoxicity against cancer and normal cell lines. Meanwhile, the subfraction with fatty acids was active and decreased the viability of HeLa and HT29 with minimal negative effects on CCD 841CoTr. The effect was probably linked to traumatic acid, which was present in the fraction at a concentration of 147 mg/g of dried weight. The research demonstrated the significant potential of C. acaulis as a plant with promising attributes, thus justifying further exploration of its biological activity.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.S.); (S.D.)
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland;
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka Street, 20-033 Lublin, Poland;
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.S.); (S.D.)
| | - Jacek Szkutnik
- Independent Unit of Functional Masticatory Disorders, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland;
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.S.); (S.D.)
| | - Dariusz Szczepanek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.S.); (S.D.)
| |
Collapse
|
13
|
Wu ZZ, Gan ZW, Zhang YX, Chen SB, Gan CD, Yang K, Yang JY. Transcriptomic and metabolomic perspectives for the growth of alfalfa (Medicago sativa L.) seedlings with the effect of vanadium exposure. CHEMOSPHERE 2023:139222. [PMID: 37343642 DOI: 10.1016/j.chemosphere.2023.139222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Hitherto, the effect of vanadium on higher plant growth remains an open topic. Therefore, nontargeted metabolomic and RNA-Seq profiling were implemented to unravel the possible alteration in alfalfa seedlings subjected to 0.1 mg L-1 (B group) and 0.5 mg L-1 (C group) pentavalent vanadium [(V(V)] versus control (A group) in this study. Results revealed that vanadium exposure significantly altered some pivotal transcripts and metabolites. The number of differentially expressed genes (DEGs) markedly up- and down-regulated was 21 and 23 in B_vs_A, 27 and 33 in C_vs_A, and 24 and 43 in C_vs_B, respectively. The number for significantly up- and down-regulated differential metabolites was 17 and 15 in B_vs_A, 43 and 20 in C_vs_A, and 24 and 16 in C_vs_B, respectively. Metabolomics and transcriptomics co-analysis characterized three significantly enriched metabolic pathways in C_vs_A comparing group, viz., α-linolenic acid metabolism, flavonoid biosynthesis, and phenylpropanoid biosynthesis, from which some differentially expressed genes and differential metabolites participated. The metabolite of traumatic acid in α-linolenic acid metabolism and apigenin in flavonoid biosynthesis were markedly upregulated, while phenylalanine in phenylpropanoid biosynthesis was remarkably downregulated. The genes of allene oxide cyclase (AOC) and acetyl-CoA acyltransferase (fadA) in α-linolenic acid metabolism, and chalcone synthase (CHS), flavonoid 3'-monooxygenase (CYP75B1), and flavonol synthase (FLS) in flavonoid biosynthesis, and caffeoyl-CoA O-methyltransferase (CCoAOMT) in phenylpropanoid biosynthesis were significantly downregulated. While shikimate O-hydroxycinnamoyltransferase (HCT) in flavanoid and phenylpropanoid biosynthesis were conspicuously upregulated. Briefly, vanadium exposure induces a readjustment yielding in metabolite and the correlative synthetic precursors (transcripts/unigenes) in some branched metabolic pathways. This study provides a practical and in-depth perspective from transcriptomics and metabolomics in investigating the effects conferred by vanadium on plant growth and development.
Collapse
Affiliation(s)
- Zhen-Zhong Wu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China; College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhi-Wei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - You-Xian Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Si-Bei Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kai Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
14
|
Boonpisuttinant K, Srisuttee R, Yen Khong H, Chutoprapat R, Ruksiriwanich W, Udompong S, Chompoo W, Boonbai R, Rakkaew R, Sangsee J, Sriprasert K, Malilas W. In vitro anti-ageing activities of ethanolic extracts from Pink rambutan (Nephelium lappaceum Linn.) for skin applications. Saudi Pharm J 2023; 31:535-546. [PMID: 37063444 PMCID: PMC10102410 DOI: 10.1016/j.jsps.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
Skin ageing is characterized by features such as wrinkles, loss of elasticity, laxity, rough-textured appearance, melasma and freckles. Several researches have focused for preventing, and treating skin ageing by many natural ingredients. This study aimed to assess the anti-ageing activities for anti-skin ageing of the ethanolic extracts of Pink rambutan (PR) (Nephelium lappaceum Linn.) from leaves (L), branches (B), seeds (S), and peels from ripe (R) and young (Y) fruits. The extraction yields of all Pink Rambutan (PR) extracted by the Maceration (M) and the Soxhlet extraction (Sox) using 95% ethanol as a solvent, ranged from 10.62% to 30.63%. Flavonoids were found as the main phytochemicals in almost all the PR extracts. The PR-Y-M and PR-Y-Sox extracts gave the highest total phenolic contents by the Folin-Ciocalteu assay of 67.60 ± 4.38 mgGAE/g, and total flavonoid contents by the modified aluminum chloride colorimetric assay of 678.72 ± 23.59 mgQE/g, respectively. The PR-L-M extracts showed the highest three anti-oxidative activities; the free radical scavenging (SC50 of 0.320 ± 0.070 mg/mL), the lipid peroxidation inhibition (LC50 of 0.274 ± 0.029 mg/mL), and the metal chelation activity (MC50 of 0.203 ± 0.021 mg/mL). All the PR extracts at 0.01 and 0.1 mg/mL showed no cytotoxicity on B16F10 cells, and human skin fibroblasts, respectively. Likewise, the PR-R-Sox extract exhibited the highest anti-melanogenesis on B16F10 cells (52.7 ± 0.9%) and, the mushroom tyrosinase inhibition activity (IC50 of 0.04 ± 0.02 mg/mL), which was significantly comparable to kojic acid (p < 0.05). The PR-Y-Sox extract showed the collagen biosynthesis by the Sirius Red method, and the stimulation of anti-ageing genes (Sirt1 and Foxo1) on human skin fibroblasts by the RT-PCR method, which were similar to standards ʟ-ascorbic acid and resveratrol, respectively. This study suggests that the PR-R-Sox and PR-Y-Sox extracts can be further developed as natural anti-ageing agents for whitening and anti-wrinkle in the cosmetics, cosmeceutical, and pharmaceutical industries.
Collapse
Affiliation(s)
- Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Ratakorn Srisuttee
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Heng Yen Khong
- Faculty of Applied Sciences, Universiti Teknologi MARA, Sarawak Branch, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Sarinporn Udompong
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Wirinda Chompoo
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Rattiya Boonbai
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Rattikarl Rakkaew
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Jinapa Sangsee
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Ketsani Sriprasert
- Innovative Natural Products from Thai Wisdom Research Unit, Faculty of Integrative Medicine, Rajamangala University of Technology, Thanyaburi, Pathumthani 12130, Thailand
| | - Waraporn Malilas
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
- Corresponding author at: Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
15
|
The Effect of Silica Nanoparticles (SiNPs) on Cytotoxicity, Induction of Oxidative Stress and Apoptosis in Breast Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24032037. [PMID: 36768363 PMCID: PMC9916948 DOI: 10.3390/ijms24032037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Breast cancer is one of the most common cancers in women. Silica nanoparticles (SiNPs) belong to the group of often-used nanoparticles in biomedical applications. The mechanisms of the cytotoxicity, apoptosis, and oxidative stress induced by the 5-15 nm SiNPs still remain unclear. The aim of the study was to evaluate the anti-cancer effect and mechanism of action of SiNPs in breast cancer cell lines. The breast cancer MDA-MB-231 and ZR-75-1 cell lines were analyzed using MTT assay, flow cytometry, and spectrophotometric methods. In this paper, we presented findings about the cytotoxicity, apoptosis, and oxidative stress in both breast cancer cell lines. We indicated that 5-15 nm SiNPs induced dose-dependent cytotoxicity in MDA-MB-231 and ZR-75-1 cells. Moreover, we demonstrated that the process of apoptosis in the studied cell lines was associated with a decrease in the mitochondrial membrane potential (ΔΨm) and an increase in the activity of caspase-9 and caspase-3. Based on the obtained results, 5-15 nm SiNPs are able to induce the mitochondrial apoptosis pathway. Analyzed nanoparticles have also been found to cause an increase in selected oxidative stress parameters in both breast cancer cell lines. The presented study provides an explanation of the possible mechanisms of 5-15 nm SiNPs action in breast cancer cells.
Collapse
|
16
|
Combined Omics Analysis Further Unveils the Specific Role of Butyrate in Promoting Growth in Early-Weaning Animals. Int J Mol Sci 2023; 24:ijms24021787. [PMID: 36675302 PMCID: PMC9864007 DOI: 10.3390/ijms24021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Abnormal mutations in the microbial structure of early-weaning mammals are an important cause of enteritis. Based on the multiple known beneficial functions of butyrate, we hypothesized that butyrate would alleviate the imbalance of intestinal homeostasis induced by early weaning in animals. However, the mechanisms of action between butyrate and intestinal microbes are still poorly explored. In this study, we aimed to investigate whether butyrate exerts beneficial effects on the structure of the intestinal flora of weanling rabbits and their intestinal homeostasis, growth and development, and we attempted to elucidate the potential mechanisms of action through a combined omics analysis. We found that dietary butyrate upregulated the transcription of tight junction-related proteins in the epithelial barrier and improved the intestinal microbial structure by suppressing harmful bacteria and promoting beneficial ones. Intestinal and plasma metabolomes were also altered. The bile acid secretion, α-linolenic acid, apoptotic, and prostate cancer pathways responded to the positive dietary butyrate-induced metabolic changes in the weanling rabbits, resulting in the inhibition of inflammation, improved antioxidant capacity, increased rates of cell proliferation and survival, and decreased levels of apoptosis. Additionally, dietary butyrate suppressed the release of pro-inflammatory factors and enhanced positive appetite regulation, which increased the average daily gain of the rabbits. These results demonstrated that dietary butyrate can help maintain the integrity of the intestinal epithelial barrier, improve the structural composition of the intestinal microflora, enhance organismal metabolism, inhibit inflammation, reduce post-weaning anorexia, and promote growth and development in early-weaning rabbits. These positive effects of dietary butyrate were exerted via the modulation of the microbe-gut-brain axis.
Collapse
|
17
|
Li Y, Wang C, Chen M. Metabolomics-based study of potential biomarkers of sepsis. Sci Rep 2023; 13:585. [PMID: 36631483 PMCID: PMC9834301 DOI: 10.1038/s41598-022-24878-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/22/2022] [Indexed: 01/13/2023] Open
Abstract
The purpose of our study was to explore potential characteristic biomarkers in patients with sepsis. Peripheral blood specimens from sepsis patients and normal human volunteers were processed by liquid chromatography-mass spectrometry-based analysis. Outlier data were excluded by principal component analysis and orthogonal partial least squares-discriminant analysis using the metabolomics R software package metaX and MetaboAnalyst 5.0 ( https://www.metaboanalyst.ca/home.xhtml ) online analysis software, and differential metabolite counts were identified by using volcano and heatmaps. The obtained differential metabolites were combined with KEGG (Kyoto Gene and Kyoto Encyclopedia) analysis to screen out potential core differential metabolites, and ROC curves were drawn to analyze the changes in serum metabolites in sepsis patients and to explore the potential value of the metabolites in the diagnosis of sepsis patients. By metabolomic analysis, nine differential metabolites were screened for their significance in guiding the diagnosis and differential diagnosis of sepsis namely: 3-phenyl lactic acid, N-phenylacetylglutamine, phenylethylamine, traumatin, xanthine, methyl jasmonate, indole, l-tryptophan and 1107116. In this study, nine metabolites were finally screened based on metabolomic analysis and used as potential characteristic biomarkers for the diagnosis of sepsis.
Collapse
Affiliation(s)
- Yang Li
- grid.488387.8Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Chenglin Wang
- grid.488387.8Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Muhu Chen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
18
|
Madkour M, Giddey AD, Soares NC, Semreen MH, Bustanji Y, Zeb F, Halwani R, Faris ME. Ramadan diurnal intermittent fasting is associated with significant plasma metabolomics changes in subjects with overweight and obesity: A prospective cohort study. Front Nutr 2023; 9:1008730. [PMID: 36698470 PMCID: PMC9868699 DOI: 10.3389/fnut.2022.1008730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction During the holy month of Ramadan, adult healthy Muslims are mandated to abstain from dawn to sunset, with free eating at night hours that may extend up to 12 h. The current work was designed to investigate the metabolomics changes incurred upon the observance of Ramadan diurnal intermittent fasting (RDIF). Methods Twenty-five metabolically healthy participants with overweight and obesity (7 females and 18 males, with a mean age of 39.48 ± 10.0 years) were recruited for the study and were followed before and at the end of RDIF month. Dietary, anthropometric, biochemical, and physical activity assessments were performed before and at the end of the fasting month. The metabolomic assay was performed using liquid chromatography-mass spectrometry for the two-time points. Results and discussion Metabolomics assay revealed a significant reduction in a few metabolites. The analysis revealed that 27 metabolites differed significantly (P < 0.05) between pre-and post-RDIF. Among the differentially abundant metabolites, 23 showed a decrease with fasting, these included several amino acids such as aspartame, tryptophan, phenylalanine, histidine, and other metabolites including valeric acid, and cortisol. On the other hand, only four metabolites showed increased levels after RDIF including traumatic acid, 2-pyrrolidinone, PC[18:1(9Z)/18:1(9Z)], and L-sorbose. The MetaboAnalyst® platform reported that the top enriched metabolic pathways included: (1) histidine metabolism; (2) folate biosynthesis (3) phenylalanine, tyrosine, and tryptophan biosynthesis; (4) aminoacyltRNA biosynthesis; (5) caffeine metabolism; (6) vitamin B6 metabolism; and several other pathways relating to lipid metabolisms such as arachidonic acid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism. In conclusion, RDIF entails significant changes in various metabolic pathways that reflect different dietary and lifestyle behaviors practiced during the fasting month.
Collapse
Affiliation(s)
- Mohamed Madkour
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Alexander D. Giddey
- Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates,Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates,Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates,Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates,School of Pharmacy, Department of Biopharmaceutics and Clinical Pharmacy, The University of Jordan, Amman, Jordan
| | - Falak Zeb
- Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - MoezAlIslam E. Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates,*Correspondence: MoezAlIslam E. Faris, ,
| |
Collapse
|
19
|
Jabłońska – Trypuć A, Wiater J. Protective effect of plant compounds in pesticides toxicity. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:1035-1045. [PMID: 36406617 PMCID: PMC9672277 DOI: 10.1007/s40201-022-00823-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION The relationship between pesticide exposure and the occurrence of many chronic diseases, including cancer, is confirmed by literature data. METHODS In this review, through the analysis of more than 70 papers, we explore an increase in oxidative stress level caused by exposure to environmental pollutants and the protective effects of plant-origin antioxidants. RESULTS AND DISCUSSION One of the molecular mechanisms, by which pesticides affect living organisms is the induction of oxidative stress. However, recently many plant-based dietary ingredients with antioxidant properties have been considered as a chemopreventive substances due to their ability to remove free radicals. Such a food component must meet several conditions: eliminate free radicals, be easily absorbed and function at an appropriate physiological level. Its main function is to maintain the redox balance and minimize the cellular damage caused by ROS. Therefore, it should be active in aqueous solutions and membrane domains. These properties are characteristic for phenolic compounds and selected plant hormones. Phenolic compounds have proven antioxidant properties, while increasing number of compounds from the group of plant hormones with a very diverse chemical structure turn out to act as antioxidants, being potential food ingredients that can eliminate negative effects of pesticides.
Collapse
Affiliation(s)
- Agata Jabłońska – Trypuć
- Faculty of Civil Engineering and Environmental Sciences, Division of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Białystok, Poland
| | - Józefa Wiater
- Faculty of Civil Engineering and Environmental Sciences, Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Białystok, Poland
| |
Collapse
|
20
|
Savchenko T, Degtyaryov E, Radzyukevich Y, Buryak V. Therapeutic Potential of Plant Oxylipins. Int J Mol Sci 2022; 23:14627. [PMID: 36498955 PMCID: PMC9741157 DOI: 10.3390/ijms232314627] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
For immobile plants, the main means of protection against adverse environmental factors is the biosynthesis of various secondary (specialized) metabolites. The extreme diversity and high biological activity of these metabolites determine the researchers' interest in plants as a source of therapeutic agents. Oxylipins, oxygenated derivatives of fatty acids, are particularly promising in this regard. Plant oxylipins, which are characterized by a diversity of chemical structures, can exert protective and therapeutic properties in animal cells. While the therapeutic potential of some classes of plant oxylipins, such as jasmonates and acetylenic oxylipins, has been analyzed thoroughly, other oxylipins are barely studied in this regard. Here, we present a comprehensive overview of the therapeutic potential of all major classes of plant oxylipins, including derivatives of acetylenic fatty acids, jasmonates, six- and nine-carbon aldehydes, oxy-, epoxy-, and hydroxy-derivatives of fatty acids, as well as spontaneously formed phytoprostanes and phytofurans. The presented analysis will provide an impetus for further research investigating the beneficial properties of these secondary metabolites and bringing them closer to practical applications.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Evgeny Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Puschchino State Institute of Natural Sciences, Prospect Nauki st., 3, 142290 Pushchino, Russia
| | - Yaroslav Radzyukevich
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vlada Buryak
- Faculty of Biotechnology, Moscow State University, Leninskie Gory 1, str. 51, 119991 Moscow, Russia
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
21
|
Pretorius CJ, Steenkamp PA, Tugizimana F, Piater LA, Dubery IA. Metabolomic Characterisation of Discriminatory Metabolites Involved in Halo Blight Disease in Oat Cultivars Caused by Pseudomonas syringae pv. coronafaciens. Metabolites 2022; 12:metabo12030248. [PMID: 35323691 PMCID: PMC8950619 DOI: 10.3390/metabo12030248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
The metabolome is the underlying biochemical layer of the phenotype and offers a functional readout of the cellular mechanisms involved in a biological system. Since metabolites are considered end-products of regulatory processes at a cellular level, their levels are considered the definitive response of the biological system to genetic or environmental variations. The metabolome thus serves as a metabolic fingerprint of the biochemical events that occur in a biological system under specific conditions. In this study, an untargeted metabolomics approach was applied to elucidate biochemical processes implicated in oat plant responses to Pseudomonas syringae pv. coronafaciens (Ps-c) infection, and to identify signatory markers related to defence responses and disease resistance against halo blight. Metabolic changes in two oat cultivars (“Dunnart” and “SWK001”) responding to Ps-c, were examined at the three-leaf growth stage and metabolome changes monitored over a four-day post-inoculation period. Hydromethanolic extracts were analysed using an ultra-high-performance liquid chromatography (UHPLC) system coupled to a high-definition mass spectrometer (MS) analytical platform. The acquired multi-dimensional data were processed using multivariate statistical analysis and chemometric modelling. The validated chemometric models indicated time- and cultivar-related metabolic changes, defining the host response to the bacterial inoculation. Further multivariate analyses of the data were performed to profile differential signatory markers, putatively associated with the type of launched defence response. These included amino acids, phenolics, phenolic amides, fatty acids, flavonoids, alkaloids, terpenoids, lipids, saponins and plant hormones. Based on the results, metabolic alterations involved in oat defence responses to Ps-c were elucidated and key signatory metabolic markers defining the defence metabolome were identified. The study thus contributes toward a more holistic understanding of the oat metabolism under biotic stress.
Collapse
|
22
|
Teobaldi I, Stoico V, Perrone F, Mantovani A, Piccagli P, Grandi F, Baldo B. Effect of a Topical Gel Based on Adelmidrol + Trans-Traumatic Acid in the Treatment of Diabetic Foot Ulcers: An Open-Label Study. J Am Podiatr Med Assoc 2022; 112:20-143. [PMID: 34709395 DOI: 10.7547/20-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Diabetic foot ulceration is a severe complication of diabetes characterized by chronic inflammation and impaired wound healing. This study aimed to evaluate the effect of a medical device gel based on adelmidrol + trans-traumatic acid in the healing process of diabetic foot ulcers. METHODS Thirty-seven diabetic patients with foot ulcers of mild/moderate grade were treated with the gel daily for 4 weeks on the affected area. The following parameters were evaluated at baseline and weekly: 1) wound area, measured by drawing a map of the ulcer and then calculated with photo editing software tools, and 2) clinical appearance of the ulcer, assessed by recording the presence/absence of dry/wet necrosis, infection, fibrin, neoepithelium, exudate, redness, and granulation tissue. RESULTS Topical treatment led to progressive healing of diabetic foot ulcers with a significant reduction of the wound area and an improvement in the clinical appearance of the ulcers. No treatment-related adverse events were observed. CONCLUSIONS The results of this open-label study show the potential benefits of adelmidrol + trans-traumatic acid topical administration to promote reepithelialization of diabetic foot ulcers. Further studies are needed to confirm the observed results.
Collapse
Affiliation(s)
- Ilaria Teobaldi
- *Division of Endocrinology, Diabetes, and Metabolism, Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Vincenzo Stoico
- *Division of Endocrinology, Diabetes, and Metabolism, Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Fabrizia Perrone
- *Division of Endocrinology, Diabetes, and Metabolism, Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Alessandro Mantovani
- *Division of Endocrinology, Diabetes, and Metabolism, Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Patrizia Piccagli
- *Division of Endocrinology, Diabetes, and Metabolism, Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Fiorenza Grandi
- *Division of Endocrinology, Diabetes, and Metabolism, Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Barbara Baldo
- *Division of Endocrinology, Diabetes, and Metabolism, Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| |
Collapse
|
23
|
Wang B, Li Z, Mao L, Zhao M, Yang B, Tao X, Li Y, Yin G. Hydrogen: A Novel Treatment Strategy in Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:126-136. [PMID: 35527991 PMCID: PMC9021642 DOI: 10.1159/000520981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Hydrogen is a chemical substance that has yet to be widely used in medicine. However, recent evidence indicates that hydrogen has multi-faceted pharmacological effects such as antioxidant, anti-inflammatory, and antiapoptotic properties. An increased number of studies are being conducted on the application of hydrogen in various diseases, especially those affecting the renal system. SUMMARY Hydrogen can be inhaled, as a gas or liquid, and can be administered orally, intravenously, or locally. Hydrogen can rapidly enter suborganelles such as mitochondria and nucleus by simple diffusion, producing reactive oxygen species (ROS) and triggering DNA damage. Hydrogen can selectively scavenge hydroxyl radical (•OH) and peroxynitrite (ONOO-), but not other reactive oxygen radicals with physiological functions, such as peroxyanion (O2-) and hydrogen peroxide (H2O2). Although the regulatory effect of hydrogen on the signal transduction pathway has been confirmed, the specific mechanism of its influence on signal molecules remains unknown. Although many studies have investigated the therapeutic and preventive effects of H2 in cellular and animal experiments, clinical trials are few and still far behind. As a result, more clinical trials are required to investigate the role of hydrogen in kidney disease, as well as the effect of its dose, timing, and form on the overall efficacy. Large-scale randomized controlled clinical trials will be required before hydrogen can be used to treat renal illnesses. KEY MESSAGES This article reviews the mechanisms of hydrogen in the treatment of renal disease and explores the possibilities of its use in clinical practice.
Collapse
Affiliation(s)
- Bo Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhuoshu Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Longfei Mao
- Bioinformatics Center, College of Biology, Hunan University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bingchang Yang
- Department of Critical Care Medicine, Central South University, Changsha, China
| | - Xiaowu Tao
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuxiang Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Vivek-Ananth RP, Sahoo AK, Srivastava A, Samal A. Virtual screening of phytochemicals from Indian medicinal plants against the endonuclease domain of SFTS virus L polymerase. RSC Adv 2022; 12:6234-6247. [PMID: 35424542 PMCID: PMC8982020 DOI: 10.1039/d1ra06702h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/16/2022] [Indexed: 12/25/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) causes a highly infectious disease with reported mortality in the range 2.8% to 47%. The replication and transcription of the SFTSV genome is performed by L polymerase, which has both an RNA dependent RNA polymerase domain and an N-terminal endonuclease (endoN) domain. Due to its crucial role in the cap-snatching mechanism required for initiation of viral RNA transcription, the endoN domain is an ideal antiviral drug target. In this virtual screening study for the identification of potential inhibitors of the endoN domain of SFTSV L polymerase, we have used molecular docking and molecular dynamics (MD) simulation to explore the natural product space of 14 011 phytochemicals from Indian medicinal plants. After generating a heterogeneous ensemble of endoN domain structures reflecting conformational diversity of the corresponding active site using MD simulations, ensemble docking of the phytochemicals was performed against the endoN domain structures. Apart from the ligand binding energy from docking, our virtual screening workflow imposes additional filters such as drug-likeness, non-covalent interactions with key active site residues, toxicity and chemical similarity with other hits, to identify top 5 potential phytochemical inhibitors of endoN domain of SFTSV L polymerase. Further, the stability of the protein–ligand docked complexes for the top 5 potential inhibitors was analyzed using MD simulations. The potential phytochemical inhibitors, predicted in this study using contemporary computational methods, are expected to serve as lead molecules in future experimental studies towards development of antiviral drugs against SFTSV. Virtual screening of a large phytochemical library from Indian medicinal plants to identify potential endonuclease inhibitors against emerging virus SFTSV.![]()
Collapse
Affiliation(s)
- R P Vivek-Ananth
- The Institute of Mathematical Sciences (IMSc) Chennai 600113 India .,Homi Bhabha National Institute (HBNI) Mumbai 400094 India
| | - Ajaya Kumar Sahoo
- The Institute of Mathematical Sciences (IMSc) Chennai 600113 India .,Homi Bhabha National Institute (HBNI) Mumbai 400094 India
| | - Ashutosh Srivastava
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar Gandhinagar 382355 India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc) Chennai 600113 India .,Homi Bhabha National Institute (HBNI) Mumbai 400094 India
| |
Collapse
|
25
|
The Preliminary Study on the Proapoptotic Effect of Reduced Graphene Oxide in Breast Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms222212593. [PMID: 34830472 PMCID: PMC8620501 DOI: 10.3390/ijms222212593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023] Open
Abstract
Breast cancer is the most common cancer diagnosed in women, however traditional therapies have several side effects. This has led to an urgent need to explore novel drug approaches to treatment strategies such as graphene-based nanomaterials such as reduced graphene oxide (rGO). It was noticed as a potential drug due to its target selectivity, easy functionalisation, chemisensitisation, and high drug-loading capacity. rGO is widely used in many fields, including biological and biomedical, due to its unique physicochemical properties. However, the possible mechanisms of rGO toxicity remain unclear. In this paper, we present findings on the cytotoxic and antiproliferative effects of rGO and its ability to induce oxidative stress and apoptosis of breast cancer cell lines. We indicate that rGO induced time- and dose-dependent cytotoxicity in MDA-MB-231 and ZR-75-1 cell lines, but not in T-47D, MCF-7, Hs 578T cell lines. In rGO-treated MDA-MB-231 and ZR-75-1 cell lines, we noticed increased induction of apoptosis and necrosis. In addition, rGO has been found to cause oxidative stress, reduce proliferation, and induce structural changes in breast cancer cells. Taken together, these studies provide new insight into the mechanism of oxidative stress and apoptosis in breast cancer cells.
Collapse
|
26
|
Onyibe PN, Edo GI, Nwosu LC, Ozgor E. Effects of vernonia amygdalina fractionate on glutathione reductase and glutathione-S-transferase on alloxan induced diabetes wistar rat. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Sadgrove NJ, Oblong JE, Simmonds MSJ. Inspired by vitamin A for anti‐ageing: Searching for plant‐derived functional retinoid analogues. SKIN HEALTH AND DISEASE 2021; 1:e36. [PMID: 35663133 PMCID: PMC9060083 DOI: 10.1002/ski2.36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/21/2021] [Accepted: 04/02/2021] [Indexed: 11/11/2022]
Affiliation(s)
- N. J. Sadgrove
- Jodrell Science Laboratory Royal Botanic Gardens, Kew Richmond UK
| | - J. E. Oblong
- Mason Business Center The Procter & Gamble Company Mason Ohio USA
| | | |
Collapse
|
28
|
Kerboua M, Ahmed MA, Samba N, Aitfella-Lahlou R, Silva L, Boyero JF, Raposo C, Lopez Rodilla JM. Phytochemical Investigation of New Algerian Lichen Species: Physcia Mediterranea Nimis. Molecules 2021; 26:1121. [PMID: 33672591 PMCID: PMC7924039 DOI: 10.3390/molecules26041121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
The present study provides new data concerning the chemical characterisation of Physcia mediterranea Nimis, a rare Mediterranean species belonging to the family Physciaceae. The phytochemical screening was carried out using GC-MS, HPLC-ESI-MS-MS, and NMR techniques. Hot extraction of n-hexane was carried out, followed by separation of the part insoluble in methanol: wax (WA-hex), from the part soluble in methanol (ME-hex). GC-MS analysis of the ME-hex part revealed the presence of methylbenzoic acids such as sparassol and atraric acid and a diterpene with a kaurene skeleton which has never been detected before in lichen species. Out of all the compounds identified by HPLC-ESI-MS-MS, sixteen compounds are common between WA-hex and ME-hex. Most are aliphatic fatty acids, phenolic compounds and depsides. The wax part is characterised by the presence of atranorin, a depside of high biological value. Proton 1H and carbon 13C NMR have confirmed its identification. Atranol, chloroatranol (depsides compound), Ffukinanolide (sesquiterpene lactones), leprolomin (diphenyl ether), muronic acid (triterpenes), and ursolic acid (triterpenes) have also been identified in ME-hex. The results suggested that Physcia mediterranea Nimis is a valuable source of bioactive compounds that could be useful for several applications as functional foods, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Marwa Kerboua
- Laboratory of Vegetal Biology and Environment, Biology Department, Badji Mokhtar University, Annaba 23000, Algeria; (M.K.); (M.A.A.)
| | - Monia Ali Ahmed
- Laboratory of Vegetal Biology and Environment, Biology Department, Badji Mokhtar University, Annaba 23000, Algeria; (M.K.); (M.A.A.)
| | - Nsevolo Samba
- Chemistry Department, University of Beira Interior, 6201-001 Covilha, Portugal; (N.S.); (R.A.-L.); (L.S.)
- Department of Clinical Analysis and Public Health, University Kimpa Vita, Uige 77, Angola
| | - Radhia Aitfella-Lahlou
- Chemistry Department, University of Beira Interior, 6201-001 Covilha, Portugal; (N.S.); (R.A.-L.); (L.S.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
- Laboratory of Valorisation and Conservation of Biological Resources, Biology Department, Faculty of Sciences, University M’Hamed Bougara, Boumerdes 35000, Algeria
| | - Lucia Silva
- Chemistry Department, University of Beira Interior, 6201-001 Covilha, Portugal; (N.S.); (R.A.-L.); (L.S.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| | - Juan F. Boyero
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Chromatographic and mass analysis service (NUCLEUS), University of Salamanca, 37008 Salamanca, Spain; (J.F.B.); (C.R.)
| | - Cesar Raposo
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Chromatographic and mass analysis service (NUCLEUS), University of Salamanca, 37008 Salamanca, Spain; (J.F.B.); (C.R.)
| | - Jesus Miguel Lopez Rodilla
- Chemistry Department, University of Beira Interior, 6201-001 Covilha, Portugal; (N.S.); (R.A.-L.); (L.S.)
- Fiber Materials and Environmental Technologies (FibEnTech), University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
29
|
Phenolic content, chemical composition and anti-/pro-oxidant activity of Gold Milenium and Papierowka apple peel extracts. Sci Rep 2020; 10:14951. [PMID: 32917912 PMCID: PMC7486935 DOI: 10.1038/s41598-020-71351-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/11/2020] [Indexed: 01/15/2023] Open
Abstract
In this study the peels of ecologically grown apple (Malus domestica) cultivars: Gold Milenium (a new scab‐resistant variety) and Papierowka (Papirovka; an old, sensitive to apple scab variety) were examined for their composition (phenolic compounds, triterpenoids, simple organic acids, macro-, microelements, reducing sugars, l-ascorbic acid), pro- and antioxidant properties as well as their application in reduction of the oxidative stress in cultured human skin fibroblast. The higher content of phenolic compounds correlated with the greater pro- and antioxidant activity of the peels of Papierowka compared to Gold Milenium in DPPH·, ABTS+, FRAP and CUPRAC assays as well as an ability to inhibition of lipid peroxidation. The quantity of the compounds strongly depended on the type of extraction. The extract of Papierowka peels possessed much higher amount of phenolic compounds compared to Gold Milenium (Papierowka: 3.68 ± 0.20 mg/g peel ultrasound assisted extraction (u.a.e); 2.02 ± 0.13 mg/g peel conventional extraction (c.e.); Gold Milenium: 1.46 ± 0.19 mg/g peel u.a.e; 1.15 ± 0.04 mg/g peel c.e. according the HPLC measurement). The pro-oxidant activity of the extract from Papierowka peels can be correlated with the content of phenolic compounds and metal ions as well. The apple peel extract is promising agent reducing the oxidative stress in skin fibroblast.
Collapse
|
30
|
Jabłońska-Trypuć A, Krętowski R, Świderski G, Cechowska-Pasko M, Lewandowski W. Cichoric acid attenuates the toxicity of mesotrione. Effect on in vitro skin cell model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 77:103375. [PMID: 32279013 DOI: 10.1016/j.etap.2020.103375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
There is an important need to increase knowledge regarding the interactions between environmental contaminants and other compounds. Pesticides are an important group of food contaminants. By contrast, cichoric acid (CA) belongs to the category of desirable food ingredients with antioxidant and cytotoxic effects. The aim of the presented study was to test if CA may constitute a food ingredient, which eliminate stimulatory effect of pesticides on skin cancer cells and toxic effect of herbicides on fibroblasts. Therefore, we conducted cytotoxicity studies of environmentally relevant pesticide concentrations and the mixture of both compounds in melanoma and fibroblasts cells. We studied if CA combined with mesotrione change the oxidative stress parameters and apoptotic activity in treated cells. Obtained results indicate that CA exhibits cytotoxic activity against mesotrione-induced skin cancer development by influencing oxidative stress parameters and apoptosis. On the other hand CA inhibits prooxidative and proapoptotic activity of mesotrione in fibroblasts. Presented methods and obtained results could be a useful tool in the analysis of environmental contaminants toxicity and possible preventive activity of antioxidative plant- origin compounds.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, Białystok, 15-351, Poland.
| | - Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Białystok, 15-222, Poland.
| | - Grzegorz Świderski
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, Białystok, 15-351, Poland.
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Białystok, 15-222, Poland.
| | - Włodzimierz Lewandowski
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, Białystok, 15-351, Poland.
| |
Collapse
|
31
|
Possible Protective Effects of TA on the Cancerous Effect of Mesotrione. Nutrients 2020; 12:nu12051343. [PMID: 32397133 PMCID: PMC7285202 DOI: 10.3390/nu12051343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 01/10/2023] Open
Abstract
The interaction of different food ingredients is now a very important and often emerging topic of research. Pesticides and their breakdown products, which may be carcinogenic, are one of the frequently occurring food contaminants. Compounds like traumatic acid (TA), which originates from plants, are beneficial, antioxidant, and anticancer food ingredients. Previously obtained results from our research group indicated antioxidative in normal human fibroblasts and prooxidative in cancer cells activity of TA. Since the literature data show an undoubted connection between the presence of pesticides in food and the increased incidence of different types of cancers, we attempted to clarify whether TA can abolish the effect of mesotrione stimulating the growth of cancer cells. In order to study the influence of mesotrione on breast cancer cells, we decided to carry out cytotoxicity studies of environmentally significant herbicide concentrations. We also analyzed the cytotoxicity of TA and mixtures of these two compounds. After selecting the most effective concentrations of both components tested, we conducted analyses of oxidative stress parameters and apoptosis in ZR-75-1 cells. The obtained results allow us to conclude that traumatic acid by stimulating oxidative stress and apoptosis contributes to inhibiting the growth and development of cells of the ZR-75-1 line strengthened by mesotrione. This may mean that TA is a compound with pro-oxidative and proapoptotic effects in cancer cells whose development and proliferation are stimulated by the presence of mesotrione. The presented results may be helpful in answering the question of whether herbicides and their residues in edibles may constitute potential threat for people diagnosed with cancer and whether compounds with proven pro-oxidative effects on cancer cells can have potential cytoprotective functions.
Collapse
|
32
|
Wang J, Dai D, Zhang HJ, Wu SG, Han YM, Wu YY, Qi GH. Organic Acids Modulate Systemic Metabolic Perturbation Caused by Salmonella Pullorum Challenge in Early-Stage Broilers. Front Physiol 2019; 10:1418. [PMID: 31803069 PMCID: PMC6873883 DOI: 10.3389/fphys.2019.01418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023] Open
Abstract
The objectives of this study were to determine the protective effects of organic acids (OA) in broilers exposed to Salmonella Pullorum challenge at early stage and to explore the potential benefits of OA by metabolomics analysis. The treatment groups included non-challenged, S. Pullorum-challenged, challenged group supplemented with virginiamycin, challenged group supplemented with OA in drinking water, challenged group supplemented with OA in feed, and challenged group supplemented with OA in combination in drinking water and feed. Results showed that early Salmonella challenge induced an acute systemic infection of broilers in the starter phase, followed by the grower phase without triggering clinical signs. OA supplementation promoted growth during the grower phase, and while OA in water contributed more, the positive effects of OA in combination were comparable to those of virginiamycin supplementation in challenged birds. Furthermore, OA could modulate the systemic metabolic perturbation caused by challenge as it alleviated stress responses mediated by steroid hormone, potentially attenuated antioxidant or immune defense, and modified intestinal microbiota metabolism. These results show a metabolic mechanism that may partly explain the potential benefits of OA in Salmonella challenged birds, and may contribute to the use of OA to control or reduce S. Pullorum infection in farm animals.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Dai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | - Guang-Hai Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Jabłońska-Trypuć A, Wydro U, Serra-Majem L, Wołejko E, Butarewicz A. The Analysis of Bifenox and Dichlobenil Toxicity in Selected Microorganisms and Human Cancer Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214137. [PMID: 31717849 PMCID: PMC6862445 DOI: 10.3390/ijerph16214137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Bifenox and Dichlobenil belong to the commonly used in Poland in agriculture group of herbicides and their residues are often detected in the environment. They are poorly known regarding their possible carcinogenic and antibacterial effect at the cellular level. Therefore, we decided to study their activity in bacterial strains Aliivibrio fisheri, E. coli, P. aeruginosa, and C. albicans (yeast) and human cancer ZR-75-1 cells. Compounds under study exhibit stimulatory effect on analyzed bacterial strains. The study performed on mammalian cells better reflects the influence of environmental pollutants on human organism, therefore we evaluated the effect of herbicides on ZR-75-1 cells. Cells viability, apoptosis and selected oxidative stress parameters in ZR-75-1 cells were investigated. Both analyzed substances exhibit stimulatory effects on analyzed parameters, however they do not stimulate apoptosis which correlate positively with the induction of oxidative stress. Bifenox and Dichlobenil enhance oxidative stress parameters by the generation of high levels of ROS, which can lead to their adaptation and resistance to the standard treatment regimen.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Engineering, Bialystok University of Technology, 15-351 Białystok, Poland; (U.W.); (E.W.); (A.B.)
- Correspondence:
| | - Urszula Wydro
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Engineering, Bialystok University of Technology, 15-351 Białystok, Poland; (U.W.); (E.W.); (A.B.)
| | - Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - Elżbieta Wołejko
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Engineering, Bialystok University of Technology, 15-351 Białystok, Poland; (U.W.); (E.W.); (A.B.)
| | - Andrzej Butarewicz
- Division of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Engineering, Bialystok University of Technology, 15-351 Białystok, Poland; (U.W.); (E.W.); (A.B.)
| |
Collapse
|
34
|
Jabłońska-Trypuć A, Krętowski R, Wołejko E, Wydro U, Butarewicz A. Traumatic acid toxicity mechanisms in human breast cancer MCF-7 cells. Regul Toxicol Pharmacol 2019; 106:137-146. [DOI: 10.1016/j.yrtph.2019.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023]
|
35
|
Toxicological Effects of Traumatic Acid and Selected Herbicides on Human Breast Cancer Cells: In Vitro Cytotoxicity Assessment of Analyzed Compounds. Molecules 2019; 24:molecules24091710. [PMID: 31052542 PMCID: PMC6539929 DOI: 10.3390/molecules24091710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023] Open
Abstract
The main consequence of herbicides use is the presence of their residues in food of plant origin. A growing body of evidence indicates that herbicides cause detrimental effects upon human health while demonstrating a direct link of pesticides exposure with the occurrence of human chronic diseases, including cancer. There is a pressing need to develop our knowledge regarding interactions of food contaminants and food components both in vitro and in vivo. Pesticides are highly undesirable food contaminants, and traumatic acid (TA) is a very beneficial food ingredient, therefore we decided to study if TA may act as a compound that delays the stimulatory effect of pesticides on breast cancer cells. To analyze the potential effects that selected herbicides (MCPA, mesotrione, bifenox and dichlobenil) may have upon cancerous cells, we conducted studies of the cytotoxicity of physiological concentrations of four pesticides and the mix of TA with tested herbicides in three different breast cancer cell lines (MCF-7, ZR-75-1 and MDA-MB-231) and one normal healthy breast cell line MCF-12A. Based on the obtained results we conclude that TA in a concentration-dependent manner might influence selected effects of the studied herbicides for particular cancer cells lines.
Collapse
|
36
|
Lu H, Ding J, Liu W, Peng Z, Chen W, Sun X, Guo Z. UPLC/MS-Based Metabolomics Investigation of the Protective Effect of Hydrogen Gas Inhalation on Mice with Calcium Oxalate-Induced Renal Injury. Biol Pharm Bull 2019; 41:1652-1658. [PMID: 30381664 DOI: 10.1248/bpb.b18-00307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrogen has a significant protective effect on calcium oxalate-induced renal injury, but its effect on metabolic profiles is unknown. This study showed the effects of hydrogen on serum and urine metabolites in a renal injury model. Ultra-HPLC quadrupole time-of-flight-MS-based metabolomics was used to characterise metabolic variations. Twenty-five serum metabolites and 14 urine metabolites showed differences in the the nitrogen and oxygen inhalation (NO), nitrogen and oxygen inhalation combined with calcium oxalate induction (CaOx), and hydrogen inhalation combined with calcium oxalate induction (HO+CaOx) groups. Nineteen serum metabolites and 7 urine metabolites showed significant restoration to normal levels after hydrogen gas (H2) treatment. These metabolites are primarily related to amino acid metabolism, fatty acid metabolism, and phospholipid metabolism. This study showed that a comprehensive metabolomics approach is an effective strategy to elucidate the mechanisms underlying the effects of hydrogen treatment on calcium oxalate-induced renal injury.
Collapse
Affiliation(s)
- Hongtao Lu
- Department of Nephrology, Changhai Hospital, Naval Medical University.,Department of Naval Aeromedicine, Naval Medical University
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, Naval Medical University
| | - Wenrui Liu
- Department of Nephrology, Changhai Hospital, Naval Medical University
| | - Zhongjiang Peng
- Department of Nephrology, Changhai Hospital, Naval Medical University
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Naval Medical University
| | - Xuejun Sun
- Department of Naval Aeromedicine, Naval Medical University
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Naval Medical University
| |
Collapse
|
37
|
Pan L, Meng C, Wang J, Ma X, Fan X, Yang Z, Zhou M, Zhang X. Integrated omics data of two annual ryegrass (Lolium multiflorum L.) genotypes reveals core metabolic processes under drought stress. BMC PLANT BIOLOGY 2018; 18:26. [PMID: 29378511 PMCID: PMC5789592 DOI: 10.1186/s12870-018-1239-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Annual ryegrass (Lolium multiflorum L.) is a commercially important, widely distributed forage crop that is used in the production of hay and silage worldwide. Drought has been a severe environmental constraint in its production. Nevertheless, only a handful of studies have examined the impact of short-term drought stress on annual ryegrass. The aim of this study was to explore how stress-induced core metabolic processes enhance drought tolerance, or adaptation to drought, in annual ryegrass. RESULTS We profiled the transcriptomes, proteomes, and metabolomes of two annual ryegrass genotypes: the drought-resistant genotype "Abundant 10" and drought-susceptible genotype "Adrenalin 11." We identified differentially expressed metabolites and their corresponding proteins and transcripts that are involved in 23 core metabolic processes, in response to short-term drought stress. Protein-gene-metabolite correlation networks were built to reveal the relationships between the expression of transcripts, proteins, and metabolites in drought-resistant annual ryegrass. Furthermore, integrated metabolic pathways were used to observe changes in enzymes corresponding with levels of amino acids, lipids, carbohydrate conjugates, nucleosides, alkaloids and their derivatives, and pyridines and their derivatives. The resulting omics data underscored the significance of 23 core metabolic processes on the enhancement of drought tolerance or adaptation to drought in annual ryegrass. CONCLUSIONS The regulatory networks were inferred using MCoA and correlation analysis to reveal the relationships among the expression of transcripts, proteins, and metabolites that highlight the corresponding elements of these core metabolic pathways. Our results provide valuable insight into the molecular mechanisms of drought resistance, and represent a promising strategy toward the improvement of drought tolerance in annual ryegrass.
Collapse
Affiliation(s)
- Ling Pan
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chen Meng
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, USA
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaomei Fan
- Vazyme Biotech Co., Ltd, Nanjing State Economy & Technology Development Zone, Red Maple Technology Industrial Park, Nanjing, China
| | - Zhongfu Yang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
38
|
Possible Mechanisms of the Prevention of Doxorubicin Toxicity by Cichoric Acid-Antioxidant Nutrient. Nutrients 2018; 10:nu10010044. [PMID: 29303987 PMCID: PMC5793272 DOI: 10.3390/nu10010044] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
Skin is the largest organ in the human body, and which protects organism against unfavorable external factors e.g., chemicals, environment pollutants, allergens, microorganisms, and it plays a crucial role in maintaining general homeostasis. It is also an important target of oxidative stress due to the activity of oxygen reactive species (ROS), which are constantly generated in the fibroblasts in response to exogenous or endogenous prooxidant agents. An example of such compound with proved prooxidant activity is Doxorubicin (DOX), which is an effective anticancer agent belongs in anthracycline antibiotic group. Increasingly frequent implementation of various strategies to reduce undesirable DOX side effects was observed. Very promising results come from the combination of DOX with dietary antioxidants from the polyphenol group of compounds, such as cichoric acid (CA) in order to lower oxidative stress level. The aim of this work was to evaluate the influence of CA combined with DOX on the oxidative stress parameters in fibroblasts, which constitute the main cells in human skin. We also wanted to examine anti-apoptotic activity of CA in fibroblasts treated with selected concentrations of DOX. Results obtained from the combination of DOX with CA revealed that CA exhibits cytoprotective activity against DOX-induced damage by lowering oxidative stress level and by inhibiting apoptosis. The present finding may indicate that CA may serve as antioxidative and anti-apoptotic agent, active against DOX-induced damage.
Collapse
|
39
|
Zhou CX, Cong W, Chen XQ, He SY, Elsheikha HM, Zhu XQ. Serum Metabolic Profiling of Oocyst-Induced Toxoplasma gondii Acute and Chronic Infections in Mice Using Mass-Spectrometry. Front Microbiol 2018; 8:2612. [PMID: 29354104 PMCID: PMC5761440 DOI: 10.3389/fmicb.2017.02612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite causing severe diseases in immunocompromised individuals and congenitally infected neonates, such as encephalitis and chorioretinitis. This study aimed to determine whether serum metabolic profiling can (i) identify metabolites associated with oocyst-induced T. gondii infection and (ii) detect systemic metabolic differences between T. gondii-infected mice and controls. We performed the first global metabolomics analysis of mice serum challenged with 100 sporulated T. gondii Pru oocysts (Genotype II). Sera from acutely infected mice (11 days post-infection, dpi), chronically infected mice (33 dpi) and control mice were collected and analyzed using LC-MS/MS platform. Following False Discovery Rate filtering, we identified 3871 and 2825 ions in ESI+ or ESI- mode, respectively. Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) identified metabolomic profiles that clearly differentiated T. gondii-infected and -uninfected serum samples. Acute infection significantly influenced the serum metabolome. Our results identified common and uniquely perturbed metabolites and pathways. Acutely infected mice showed perturbations in metabolites associated with glycerophospholipid metabolism, biosynthesis of amino acid, and tyrosine metabolism. These findings demonstrated that acute T. gondii infection induces a global perturbation of mice serum metabolome, providing new insights into the mechanisms underlying systemic metabolic changes during early stage of T. gondii infection.
Collapse
Affiliation(s)
- Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Wei Cong
- Department of Prevention and Treatment of Animal Diseases, College of Marine Science, Shandong University (Weihai), Weihai, China
| | - Xiao-Qing Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Microbiology and Immunology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shen-Yi He
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
40
|
Perng W, Hector EC, Song PX, Rojo MMT, Raskind S, Kachman M, Cantoral A, Burant CF, Peterson KE. Metabolomic Determinants of Metabolic Risk in Mexican Adolescents. Obesity (Silver Spring) 2017; 25:1594-1602. [PMID: 28758362 PMCID: PMC5573626 DOI: 10.1002/oby.21926] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/10/2017] [Accepted: 06/12/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The goal of this study was to identify metabolites associated with metabolic risk, separately by sex, in Mexican adolescents. METHODS Untargeted metabolomic profiling was carried out on fasting serum of 238 youth aged 8 to 14 years, and metabolites associated with a metabolic syndrome risk z-score (MetRisk z-score) were identified separately for boys and girls, using the simulation and extrapolation algorithm. Associations of each metabolite with MetRisk z-score were examined using linear regression models that accounted for maternal education, child's age, and pubertal status. RESULTS Of the 938 features identified in metabolomics analysis, 7 named compounds (of 27 identified metabolites) were associated with MetRisk z-score in girls, and 3 named compounds (of 14 identified) were associated with MetRisk z-score in boys. In girls, diacylglycerol (DG) 16:0/16:0, 1,3-dielaidin, myo-inositol, and urate corresponded with higher MetRisk z-score, whereas N-acetylglycine, thymine, and dodecenedioic acid were associated with lower MetRisk z-score. For example, each z-score increment in DG 16:0/16:0 corresponded with 0.60 (95% CI: 0.47-0.74) units higher MetRisk z-score. In boys, positive associations of DG 16:0/16:0, tyrosine, and 5'-methylthioadenosine with MetRisk z-score were found. CONCLUSIONS Metabolites on lipid, amino acid, and carbohydrate metabolism pathways are associated with metabolic risk in girls. Compounds on lipid and DNA pathways correspond with metabolic risk in boys.
Collapse
Affiliation(s)
- Wei Perng
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Emily C. Hector
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Peter X.K. Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Martha Maria Tellez Rojo
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Sasha Raskind
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maureen Kachman
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alejandra Cantoral
- Center for Research on Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, México
| | - Charles F. Burant
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Karen E. Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|