1
|
Zhang J, Luo W, Cui Y, Sun B. B-cell epitope peptide immunotherapy alleviates chitin-binding protein-induced type 2 airway inflammation in a Blomia tropicalis-murine model. Respir Res 2025; 26:129. [PMID: 40205365 PMCID: PMC11983821 DOI: 10.1186/s12931-025-03207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Peptide immunotherapy (PIT) offers a safe and effective treatment with minimal side effects. This study aims to identify B-cell epitopes of a novel allergen from Blomia tropicalis (B. tropicalis), specifically the Chitin-binding domain type 2 (ChtBD2) protein, and evaluate the therapeutic effects of peptide treatment in a murine model. METHODS Using Alphafold2, the 3D structure of ChtBD2 was constructed. AI-based and traditional computational tools predicted the predominant B-cell epitopes. Twelve synthesized peptides were assessed for allergenicity and immunogenicity. A murine model of B. tropicalis-induced allergic airway inflammation mimicking human atopic asthma was developed and analyzed. RESULTS Predominant B-cell epitopes of ChtBD2 were identified as promising IgE-binding domains. Peptide 1 (PT1: 1-15) showed significant IgE-binding activity and the highest inhibition rate in competitive IgE-binding assays. PT1 upregulated IL-4, IL-13, and CD63 in B. tropicalis-sensitized patients' PBMCs and basophils, respectively. Notably, IT groups showed reduced lung cellular infiltration and type 2 cytokine expression in BALF. Specific IgE levels were reduced, with a decline in the IgG1/IgG2a ratio. CONCLUSIONS This study represents the first AI-facilitated development of a B-cell epitope-based ChtBD2 PIT, showing promise as an immunotherapy for B. tropicalis-allergic patients with reduced allergenicity and high immunogenicity in inducing IgG-blocking antibodies. CLINICAL TRIAL Not applicable.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
- Guangzhou Laboratory, Guangzhou, China
| | - Wenting Luo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
- Guangzhou Laboratory, Guangzhou, China
| | - YuBao Cui
- Clinical Research Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China.
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
- Guangzhou Laboratory, Guangzhou, China.
| |
Collapse
|
2
|
Berreiros-Hortala H, Vilchez-Pinto G, Diaz-Perales A, Garrido-Arandia M, Tome-Amat J. Virus-like Particles as Vaccines for Allergen-Specific Therapy: An Overview of Current Developments. Int J Mol Sci 2024; 25:7429. [PMID: 39000536 PMCID: PMC11242184 DOI: 10.3390/ijms25137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.
Collapse
Affiliation(s)
- Helena Berreiros-Hortala
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Gonzalo Vilchez-Pinto
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
3
|
Buzan MR, Grijincu M, Zbîrcea LE, Haidar L, Tamaș TP, Cotarcă MD, Tănasie G, Weber M, Babaev E, Stolz F, Valenta R, Păunescu V, Panaitescu C, Chen KW. Insect Cell-Expressed Major Ragweed Allergen Amb a 1.01 Exhibits Similar Allergenic Properties to Its Natural Counterpart from Common Ragweed Pollen. Int J Mol Sci 2024; 25:5175. [PMID: 38791214 PMCID: PMC11121294 DOI: 10.3390/ijms25105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Common ragweed pollen allergy has become a health burden worldwide. One of the major allergens in ragweed allergy is Amb a 1, which is responsible for over 90% of the IgE response in ragweed-allergic patients. The major allergen isoform Amb a 1.01 is the most allergenic isoform in ragweed pollen. So far, no recombinant Amb a 1.01 with similar allergenic properties to its natural counterpart (nAmb a 1.01) has been produced. Hence, this study aimed to produce a recombinant Amb a 1.01 with similar properties to the natural isoform for improved ragweed allergy management. Amb a 1.01 was expressed in insect cells using a codon-optimized DNA construct with a removable N-terminal His-Tag (rAmb a 1.01). The recombinant protein was purified by affinity chromatography and physicochemically characterized. The rAmb a 1.01 was compared to nAmb a 1.01 in terms of the IgE binding (enzyme-linked immunosorbent assay (ELISA), immunoblot) and allergenic activity (mediator release assay) in well-characterized ragweed-allergic patients. The rAmb a 1.01 exhibited similar IgE reactivity to nAmb a 1.01 in different IgE-binding assays (i.e., IgE immunoblot, ELISA, quantitative ImmunoCAP inhibition measurements). Furthermore, the rAmb a 1.01 showed comparable dose-dependent allergenic activity to nAmb a 1.01 regarding basophil activation. Overall, the results showed the successful expression of an rAmb a 1.01 with comparable characteristics to the corresponding natural isoform. Our findings provide the basis for an improvement in ragweed allergy research, diagnosis, and immunotherapy.
Collapse
Affiliation(s)
- Maria-Roxana Buzan
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Manuela Grijincu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Lauriana-Eunice Zbîrcea
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
| | - Tudor-Paul Tamaș
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
| | - Monica-Daniela Cotarcă
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
| | - Gabriela Tănasie
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Milena Weber
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Elijahu Babaev
- Vienna Competence Center, Biomay AG, 1090 Vienna, Austria
| | - Frank Stolz
- Vienna Competence Center, Biomay AG, 1090 Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
| | - Virgil Păunescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.-R.B.); (M.G.); (L.-E.Z.)
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| | - Kuan-Wei Chen
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, 300723 Timisoara, Romania;
| |
Collapse
|
4
|
Zhou Q, Liu S, Dai B, Chen L, Han L, Zhang Q, Shen W, Shan L. Safety of subcutaneous immunotherapy with Novo-Helisen-Depot in the children: a retrospective analysis from a single center in Northern China. Front Pediatr 2024; 12:1370224. [PMID: 38725990 PMCID: PMC11079119 DOI: 10.3389/fped.2024.1370224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/19/2024] [Indexed: 05/12/2024] Open
Abstract
Background Little is known about the safety of mite extract product Novo-Helisen Depot (NHD) as subcutaneous immunotherapy (SCIT) in the children with mite allergy especially immediate/late local reaction (LRs). Methods We conducted a retrospective study analyzing the adverse events of the children undergoing subcutaneous immunotherapy with NHD. Adverse events included local and systemic adverse reactions (SRs) at the very early and late stage. The correlation of the basic characteristics, laboratory analysis results, LRs and SRs were analyzed. Results Two hundred and eighty-seven patients received at least 15 months of subcutaneous immunotherapy with NHD were included in the analysis. Skin-prick testing (SPT) results of D. pteronyssinus was associated with an increased risk of immediate LRs in build-up phase (OR = 1.53, 95% CI: 1.02, 2.37) and delayed LRs in maintenance phase (OR = 1.58, 95% CI: 1.05, 2.46), while SPT results of D. farinae was associated with an increased risk of SRs (OR = 3.22, 95% CI: 1.17, 10.00) and severe SRs (OR = 7.68, 95% CI: 1.13, 109.50). Serum IgE level of D. pteronyssinus was associated with an increased risk of SRs (OR = 1.01, 95% CI: 1.00, 1.03). Patients with both asthma and allergic rhinitis was associated with an increased risk of SR, and severe SRs (P < 0.05). Conclusion NHD as SCIT is safe. The children with higher SPT level with D. farinae or D. pteronyssinus, higher serum IgE level of D. pteronyssinus, children with both asthma and allergic rhinitis, and the children with treatment interruption had higher risk of adverse events.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lishen Shan
- Department of Pediatric Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Protić-Rosić I, Lopandić Z, Popović D, Blagojević G, Gavrović-Jankulović M. rBet v 1a-BanLec wt induce upregulation of IL-10 and IFN-γ gene expression in Caco-2/THP-1 co-culture and secretion of IL-10 and IFN-γ/IL-4 levels in PBMCs of birch pollen allergic donors. Int Immunopharmacol 2024; 129:111607. [PMID: 38330798 DOI: 10.1016/j.intimp.2024.111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Novel allergen immunotherapy (AIT) approaches necessitate the use of more effective and safe therapeutics, which can be accomplished by employing novel adjuvants for improved innate immune cell activation, as well as hypoallergenic allergen forms. In this study, we investigate the immunomodulatory effects of a chimera rBet v 1a-BanLecwt (rBv1a-BLwt; Cwt) composed of the major birch pollen allergen Bet v 1a and banana lectin (BanLecwt; BLwt) and two novel chimeras, rBv1l-BLH84T (rBet v 1l-BanLecH84T; C1) and rBLH84T-Bv1l (rBanLecH84T-Bet v 1l; C2), both composed of BLH84T and hypoallergenic birch pollen allergen Bv1l in the co-culture model Caco-2/THP-1, and PBMCs from donors with birch pollen allergy. The chimeric molecules rBv1l-BLH84T (C1) and rBLH84T-Bv1l (C2) were created in silico and then produced in E. coli using recombinant DNA technology. Real-time PCR analysis of gene expression following compound treatment in the co-culture model revealed that all three chimeras have the potential to induce the anti-inflammatory cytokine IL-10 gene expression in Caco-2 cells and IFN-γ gene expression in THP-1 cells. Sandwich ELISA revealed that Cwt increased IL-10 secretion and IFN-/IL-4 levels in PBMCs from birch pollen allergic donors, whereas C1 and C2 were less effective. The findings suggest that Cwt should be analyzed further due to its potential benefit in AIT.
Collapse
Affiliation(s)
| | - Zorana Lopandić
- Institute for Chemistry in Medicine, University of Belgrade, Faculty of Medicine, Belgrade, Serbia.
| | - Dragan Popović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia.
| | - Gordan Blagojević
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia.
| | | |
Collapse
|
6
|
Naveed M, Ali U, Aziz T, Naveed R, Mahmood S, Khan MM, Alharbi M, Albekairi TH, Alasmari AF. An Aedes-Anopheles Vaccine Candidate Supplemented with BCG Epitopes Against the Aedes and Anopheles Genera to Overcome Hypersensitivity to Mosquito Bites. Acta Parasitol 2024; 69:483-504. [PMID: 38194049 DOI: 10.1007/s11686-023-00771-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Skeeter syndrome is a severe local allergic response to mosquito bites that is accompanied by considerable inflammation and, in some cases, a systemic response like fever. People with the syndrome develop serious allergies, ranging from rashes to anaphylaxis or shock. The few available studies on mosquito venom immunotherapy have utilized whole-body preparations and small sample sizes. Still, owing to their little success, vaccination remains a promising alternative as well as a permanent solution for infections like Skeeter's. METHODS This study, therefore, illustrated the construction of an epitope-based vaccine candidate against Skeeter Syndrome using established immunoinformatic techniques. We selected three species of mosquitoes, Anopheles melas, Anopheles funestus, and Aedes aegypti, to derive salivary antigens usually found in mosquito bites. Our construct was also supplemented with bacterial epitopes known to elicit a strong TH1 response and suppress TH2 stimulation that is predicted to reduce hypersensitivity against the bites. RESULTS A quality factor of 98.9496, instability index of 38.55, aliphatic index of 79.42, solubility of 0.934747, and GRAVY score of -0.02 indicated the structural (tertiary and secondary) stability, thermostability, solubility, and hydrophilicity of the construct, respectively. The designed Aedes-Anopheles vaccine (AAV) candidate was predicted to be flexible and less prone to deformability with an eigenvalue of 1.5911e-9 and perfected the human immune response against Skeeter (hypersensitivity) and many mosquito-associated diseases as we noted the production of 30,000 Th1 cells per mm3 with little (insignificant production of Th2 cells. The designed vaccine also revealed stable interactions with the pattern recognition receptors of the host. The TLR2/vaccine complex interacted with a free energy of - 1069.2 kcal/mol with 26 interactions, whereas the NLRP3/vaccine complex interacted with a free energy of - 1081.2 kcal/mol with 16 molecular interactions. CONCLUSION Although being a pure in-silico study, the in-depth analysis performed herein speaks volumes of the potency of the designed vaccine candidate predicting that the proposition can withstand rigorous in-vitro and in-vivo clinical trials and may proceed to become the first preventative immunotherapy against mosquito bite allergy.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan.
| | - Urooj Ali
- Department of Biotechnology, Quaid-I-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Tariq Aziz
- Department of Agriculture, University of Ioannina Arta, 47100, Arta, Greece.
| | - Rida Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan
| | - Sarmad Mahmood
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Punjab, Pakistan
| | - Muhammad Mustajab Khan
- Department of Biotechnology, Quaid-I-Azam University Islamabad, Islamabad, 45320, Pakistan
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Min J, Keswani T, LaHood NA, Lytle IR, Marini-Rapoport O, Andrieux L, Sneed SL, Edwards LL, Petrovich RM, Perera L, Pomés A, Pedersen LC, Patil SU, Mueller GA. Design of an Ara h 2 hypoallergen from conformational epitopes. Clin Exp Allergy 2024; 54:46-55. [PMID: 38168500 PMCID: PMC10843581 DOI: 10.1111/cea.14433] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Adverse reactions are relatively common during peanut oral immunotherapy. To reduce the risk to the patient, some researchers have proposed modifying the allergen to reduce IgE reactivity, creating a putative hypoallergen. Analysis of recently cloned human IgG from patients treated with peanut immunotherapy suggested that there are three common conformational epitopes for the major peanut allergen Ara h 2. We sought to test if structural information on these epitopes could indicate mutagenesis targets for designing a hypoallergen and evaluated the reduction in IgE binding via immunochemistry and a mouse model of passive cutaneous anaphylaxis (PCA). METHODS X-ray crystallography characterized the conformational epitopes in detail, followed by mutational analysis of key residues to modify monoclonal antibody (mAb) and serum IgE binding, assessed by ELISA and biolayer interferometry. A designed Ara h 2 hypoallergen was tested for reduced vascularization in mouse PCA experiments using pooled peanut allergic patient serum. RESULTS A ternary crystal structure of Ara h 2 in complex with patient antibodies 13T1 and 13T5 was determined. Site-specific mutants were designed that reduced 13T1, 13T5, and 22S1 mAbs binding by orders of magnitude. By combining designed mutations from the three major conformational bins, a hexamutant (Ara h 2 E46R, E89R, E97R, E114R, Q146A, R147E) was created that reduced IgE binding in serum from allergic patients. Further, in the PCA model where mice were primed with peanut allergic patient serum, reactivity upon allergen challenge was significantly decreased using the hexamutant. CONCLUSION These studies demonstrate that prior knowledge of common conformational epitopes can be used to engineer reduced IgE reactivity, an important first step in hypoallergen design.
Collapse
Affiliation(s)
- Jungki Min
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| | - Tarun Keswani
- Center for Inflammatory and Immunology Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole A. LaHood
- Center for Inflammatory and Immunology Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Isabelle R. Lytle
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| | - Orlee Marini-Rapoport
- Center for Inflammatory and Immunology Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Léna Andrieux
- Center for Inflammatory and Immunology Diseases, Massachusetts General Hospital, Boston, MA, USA
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Lyon Cedex 07, France
| | - Sunny L. Sneed
- Center for Inflammatory and Immunology Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Lori L. Edwards
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| | - Robert M. Petrovich
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| | | | - Lars C. Pedersen
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| | - Sarita U. Patil
- Center for Inflammatory and Immunology Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey A. Mueller
- Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, NC, USA
| |
Collapse
|
8
|
Prickler L, Baranyi U, Mengrelis K, Weijler AM, Kainz V, Kratzer B, Steiner R, Mucha J, Rudoph E, Pilat N, Bohle B, Strobl H, Pickl WF, Valenta R, Linhart B, Wekerle T. Adoptive transfer of allergen-expressing B cells prevents IgE-mediated allergy. Front Immunol 2023; 14:1286638. [PMID: 38077381 PMCID: PMC10703460 DOI: 10.3389/fimmu.2023.1286638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Prophylactic strategies to prevent the development of allergies by establishing tolerance remain an unmet medical need. We previously reported that the transfer of autologous hematopoietic stem cells (HSC) expressing the major timothy grass pollen allergen, Phl p 5, on their cell surface induced allergen-specific tolerance in mice. In this study, we investigated the ability of allergen-expressing immune cells (dendritic cells, CD4+ T cells, CD8+ T cells, and CD19+ B cells) to induce allergen-specific tolerance in naive mice and identified CD19+ B cells as promising candidates for allergen-specific cell therapy. Methods For this purpose, CD19+ B cells were isolated from Phl p 5-transgenic BALB/c mice and transferred to naive BALB/c mice, pre-treated with a short course of rapamycin and an anti-CD40L antibody. Subsequently, the mice were subcutaneously sensitized three times at 4-week intervals to Phl p 5 and Bet v 1 as an unrelated control allergen. Allergen-expressing cells were followed in the blood to monitor molecular chimerism, and sera were analyzed for Phl p 5- and Bet v 1-specific IgE and IgG1 levels by RBL assay and ELISA, respectively. In vivo allergen-induced lung inflammation was measured by whole-body plethysmography, and mast cell degranulation was determined by skin testing. Results The transfer of purified Phl p 5-expressing CD19+ B cells to naive BALB/c mice induced B cell chimerism for up to three months and prevented the development of Phl p 5-specific IgE and IgG1 antibody responses for a follow-up period of 26 weeks. Since Bet v 1 but not Phl p 5-specific antibodies were detected, the induction of tolerance was specific for Phl p 5. Whole-body plethysmography revealed preserved lung function in CD19+ B cell-treated mice in contrast to sensitized mice, and there was no Phl p 5-induced mast cell degranulation in treated mice. Discussion Thus, we demonstrated that the transfer of Phl p 5-expressing CD19+ B cells induces allergen-specific tolerance in a mouse model of grass pollen allergy. This approach could be further translated into a prophylactic regimen for the prevention of IgE-mediated allergy in humans.
Collapse
Affiliation(s)
- Lisa Prickler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Ulrike Baranyi
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Konstantinos Mengrelis
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Verena Kainz
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Romy Steiner
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Jasmin Mucha
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Elisa Rudoph
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Winfried Franz Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Institute of Immunology Federal Medical-Biological Agency (FMBA) of Russia, National Research Center (NRC), Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Birgit Linhart
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Thomas Wekerle
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
De Carli M, Capezzali E, Tonon S, Frossi B. Mechanism and clinical evidence of immunotherapy in allergic rhinitis. FRONTIERS IN ALLERGY 2023; 4:1217388. [PMID: 37601646 PMCID: PMC10434251 DOI: 10.3389/falgy.2023.1217388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Allergic rhinitis is a common upper airway disease caused by hypersensitivity to various aeroallergens. It causes increased inflammation throughout the body and may be complicated by other otolaryngological pathologies such as chronic hyperplastic eosinophilic sinusitis, nasal polyposis, and serous otitis media. Allergic rhinitis is an IgE-mediated disease and immunotherapy can be a possible approach for patients to limit the use of antihistamines and corticosteroids. There is evidence that allergen immunotherapy can prevent the development of new sensitizations and reduce the risk of later development of asthma in patients with allergic rhinitis. However, some patients do not benefit from this approach and the efficacy of immunotherapy in reducing the severity and relapse of symptoms is still a matter of debate. This review highlights new aspects of allergic rhinitis with a particular focus on the impact of sexual dimorphism on the disease manifestation and efficacy to the allergen specific immunotherapy.
Collapse
Affiliation(s)
- Marco De Carli
- Second Unit of Internal Medicine, University Hospital of Udine, Udine, Italy
| | | | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Barbara Frossi
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
10
|
Izmailovich M, Semenova Y, Abdushukurova G, Mukhamejanova A, Dyussupova A, Faizova R, Gazaliyeva M, Akhvlediani L, Glushkova N, Kalmakhanov S, Bjørklund G. Molecular Aspects of Allergen-Specific Immunotherapy in Patients with Seasonal Allergic Rhinitis. Cells 2023; 12:383. [PMID: 36766723 PMCID: PMC9913438 DOI: 10.3390/cells12030383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
A systematic review and narrative synthesis of publications was undertaken to analyze the role of component-resolved diagnosis technology in identifying polysensitization for the provision of allergen-specific immunotherapy to patients with seasonal allergic rhinitis. A search of publications was carried out in electronic databases in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The search helped to identify 568 publications, 12 of which were included in this review. Overall, 3302 patients were enrolled. The major finding was that component-resolved diagnostics change the choice of relevant allergens for allergen-specific immunotherapy in at least 50% of cases. Sensitization to allergen components differs with age, type of disease, and overall disease duration. Patients who had both bronchial asthma and allergic rhinitis were sensitized to a larger number of allergens than patients who had bronchial asthma alone.
Collapse
Affiliation(s)
- Marina Izmailovich
- Department of Internal Diseases, Karaganda Medical University, Karaganda 100008, Kazakhstan
| | - Yuliya Semenova
- School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Gulzada Abdushukurova
- Department of Therapy, Faculty of Postgraduate Medical Education, Shymkent Medical Institute, Shymkent 160006, Kazakhstan
| | - Ainur Mukhamejanova
- Department of Family Medicine No 2, Astana Medical University, Nur-Sultan 010000, Kazakhstan
| | - Azhar Dyussupova
- Department of General Medical Practice of Semey City, Semey Medical University, Semey 071400, Kazakhstan
| | - Raida Faizova
- Department of General Medical Practice of Semey City, Semey Medical University, Semey 071400, Kazakhstan
| | - Meruert Gazaliyeva
- Vice-Rector for Clinical Work, Astana Medical University, Nur-Sultan 010000, Kazakhstan
| | - Leila Akhvlediani
- School of Medicine & Health Sciences, BAU International University Batumi, 6010 Batumi, Georgia
| | - Natalya Glushkova
- Department of Epidemiology, Biostatistics & Evidence Based Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Sundetgali Kalmakhanov
- Department Health Policy and Organization, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway
| |
Collapse
|
11
|
Adjuvant role of probiotics in allergen-specific immunotherapy. Clin Immunol 2022; 245:109164. [DOI: 10.1016/j.clim.2022.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
|
12
|
Mishra R, Sharma S, Arora N. TLR-5 ligand conjugated with Per a 10 and T cell peptides potentiates Treg/Th1 response through PI3K/mTOR axis. Int Immunopharmacol 2022; 113:109389. [DOI: 10.1016/j.intimp.2022.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
13
|
Atanasio A, Orengo JM, Sleeman MA, Stahl N. Biologics as novel therapeutics for the treatment of allergy: Challenges and opportunities. FRONTIERS IN ALLERGY 2022; 3:1019255. [DOI: 10.3389/falgy.2022.1019255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Over the last 4 decades there has been a significant global increase in the incidence and prevalence of IgE-mediated allergy. Although much progress has been made in the management of allergy via patient education, pharmacotherapy and immunomodulatory treatment regimens, significant unmet need remains. Advancements in our knowledge base surrounding the type 2 immune response, production of IgE and maintenance of immunological memory has led the field to explore targeted intervention of allergic pathways using monoclonal antibodies (mAbs). Intervention at various stages of the allergic cascade offers the opportunity to prevent initiation and/or maintenance of the type 2 immune response and effectively provide therapeutic benefit to patients. Furthermore, a better understanding of the protective mechanisms involved in allergen specific immunotherapy (AIT) has led us to appreciate the interplay of immunoglobulins in the allergic response, specifically the benefit in shifting the IgG:IgE ratio in favor of functionally relevant blocking IgG. Thus, treatments that lower IgE or boost IgG with the ability to outcompete IgE binding to allergen also present a favorable approach in the treatment of allergy. In this short review we discuss and highlight recent advances in the use of biologics to treat severe allergy, highlighting the key challenges but also the significant opportunities and advances to date.
Collapse
|
14
|
Molecular Allergen-Specific IgE Recognition Profiles and Cumulative Specific IgE Levels Associated with Phenotypes of Cat Allergy. Int J Mol Sci 2022; 23:ijms23136984. [PMID: 35805985 PMCID: PMC9266786 DOI: 10.3390/ijms23136984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
Cat allergy is a major trigger factor for respiratory reactions (asthma and rhinitis) in patients with immunoglobulin E (IgE) sensitization. In this study, we used a comprehensive panel of purified cat allergen molecules (rFel d 1, nFel d 2, rFel d 3, rFel d 4, rFel d 7, and rFel d 8) that were obtained by recombinant expression in Escherichia coli or by purification as natural proteins to study possible associations with different phenotypes of cat allergy (i.e., rhinitis, conjunctivitis, asthma, and dermatitis) by analyzing molecular IgE recognition profiles in a representative cohort of clinically well-characterized adult cat allergic subjects (n = 84). IgE levels specific to each of the allergen molecules and to natural cat allergen extract were quantified by ImmunoCAP measurements. Cumulative IgE levels specific to the cat allergen molecules correlated significantly with IgE levels specific to the cat allergen extract, indicating that the panel of allergen molecules resembled IgE epitopes of the natural allergen source. rFel d 1 represented the major cat allergen, which was recognized by 97.2% of cat allergic patients; however, rFel d 3, rFel d 4, and rFel d 7 each showed IgE reactivity in more than 50% of cat allergic patients, indicating the importance of additional allergens in cat allergy. Patients with cat-related skin symptoms showed a trend toward higher IgE levels and/or frequencies of sensitization to each of the tested allergen molecules compared with patients suffering only from rhinitis or asthma, while there were no such differences between patients with rhinitis and asthma. The IgE levels specific to allergen molecules, the IgE levels specific to cat allergen extract, and the IgE levels specific to rFel d 1 were significantly higher in patients with four different symptoms compared with patients with 1–2 symptoms. This difference was more pronounced for the sum of IgE levels specific to the allergen molecules and to cat extract than for IgE levels specific for rFel d 1 alone. Our study indicates that, in addition to rFel d 1, rFel d 3, rFel d 4, and rFel d 7 must be considered as important cat allergens. Furthermore, the cumulative sum of IgE levels specific to cat allergen molecules seems to be a biomarker for identifying patients with complex phenotypes of cat allergy. These findings are important for the diagnosis of IgE sensitization to cats and for the design of allergen-specific immunotherapies for the treatment and prevention of cat allergy.
Collapse
|
15
|
Sharma S, Nagar E, Arora N. Per a 5-derived T-cell peptides modulate NF-kB signalling to ameliorate allergic inflammation systemically in murine model of cockroach allergic hyper-reactivity. Clin Exp Immunol 2022; 208:292-300. [PMID: 35443057 PMCID: PMC9226147 DOI: 10.1093/cei/uxac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/23/2022] [Accepted: 04/18/2022] [Indexed: 11/14/2022] Open
Abstract
Peptide immunotherapy (PIT) represents a safe and efficacious therapeutic regimen with in-consequential side-effects. The present study aims to identify T-cell epitopes of Per a 5 allergen, a delta class GST from Periplaneta americana and investigate effect of peptide treatment in murine model of cockroach allergen-mediated hyper-reactivity. The epitopes (TC-P1, TC-P2, and TC-P3) were identified as promiscuous MHC-II binders by MHC-Pred, ProPred, and IEDB analysis tool. Murine model of cockroach allergic hyper-reactivity was generated in Balb/c mice. A marked reduction in cellular infiltration in lungs (3-fold compared with Non-IT) was observed in T3-IT group as evidenced by total leucocyte count in BALF and histology. Specific IgE levels were reduced 3-fold in T2-IT and T3-IT compared with Non-IT with increase in IgG2a levels. IL-4 and IL-13 were reduced upto 2.5-fold in treatment groups compared with Non-IT group. Splenocytes revealed significant increase in levels of CD4+FoxP3+ T cells in TC-P1 and TC-P2 mice demonstrating a systemic shift towards Tregs. Peptide treatment downregulated NF-kB signalling in lung and enhanced the levels of immune-regulatory molecules α1-antitrypsin and elafin. Our results indicate that TC-P1 and TC-P3 alter Th2 cytokine milieu and antibody isotype ratio to suppress allergic inflammation. PIT modulates local and systemic mechanisms to resolve inflammation and possess potential for treatment in cockroach allergy.
Collapse
Affiliation(s)
- Swati Sharma
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110007, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh. 201002, India
| | - Ekta Nagar
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110007, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, New Delhi 110007, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh. 201002, India
| |
Collapse
|
16
|
Effects of rAmb a 1-Loaded PLGA-PEG Nanoparticles in a Murine Model of Allergic Conjunctivitis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030598. [PMID: 35163859 PMCID: PMC8837990 DOI: 10.3390/molecules27030598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022]
Abstract
Ambrosia artemisiifolia (Amb a) contains many allergens. Allergic conjunctivitis caused by Ambrosia artemisiifolia and its related allergen-specific immunotherapy (AIT) are seldom studied at present. poly(DL-lactide-co-glycolide)-polyethylene glycol (PLGA-PEG) is a very good nano-carrier, which has been applied in the medical field. In this context, we studied the immunotherapy effect and potential mechanism of recombinant Amb a 1 (rAmb a 1)-loaded PLGA-PEG nanoparticles. A mouse allergic conjunctivitis model was established with Ambrosia artemisiifolia crude extract, and the nanoparticles were used for AIT through direct observation of conjunctival tissue, degranulation of mast cells in conjunctival tissue, serum-specific antibodies, cytokines and other assessment models. The treatment of nanoparticles enhanced the secretion of T-helper 1 (Th1) cytokine Interferon-gama (IFN-γ) and the production of immunoglobulin G (IgG)2a (IgG2a), inhibited the secretion of T-helper 2 (Th2) cytokine Interleukin (IL)-13 and IL-4 and the level of IgE. Especially, degranulation of mast cells and expression of mast cell protease-1 (MCP-1) in conjunctival tissue was reduced significantly. In this study, we proved that the nanoparticles prepared by rAmb a 1 and PLGA-PEG have an immunotherapy effect on allergic conjunctivitis in mice.
Collapse
|
17
|
Machado BAS, Hodel KVS, Fonseca LMDS, Mascarenhas LAB, Andrade LPCDS, Rocha VPC, Soares MBP, Berglund P, Duthie MS, Reed SG, Badaró R. The Importance of RNA-Based Vaccines in the Fight against COVID-19: An Overview. Vaccines (Basel) 2021; 9:1345. [PMID: 34835276 PMCID: PMC8623509 DOI: 10.3390/vaccines9111345] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
In recent years, vaccine development using ribonucleic acid (RNA) has become the most promising and studied approach to produce safe and effective new vaccines, not only for prophylaxis but also as a treatment. The use of messenger RNA (mRNA) as an immunogenic has several advantages to vaccine development compared to other platforms, such as lower coast, the absence of cell cultures, and the possibility to combine different targets. During the COVID-19 pandemic, the use of mRNA as a vaccine became more relevant; two out of the four most widely applied vaccines against COVID-19 in the world are based on this platform. However, even though it presents advantages for vaccine application, mRNA technology faces several pivotal challenges to improve mRNA stability, delivery, and the potential to generate the related protein needed to induce a humoral- and T-cell-mediated immune response. The application of mRNA to vaccine development emerged as a powerful tool to fight against cancer and non-infectious and infectious diseases, for example, and represents a relevant research field for future decades. Based on these advantages, this review emphasizes mRNA and self-amplifying RNA (saRNA) for vaccine development, mainly to fight against COVID-19, together with the challenges related to this approach.
Collapse
Affiliation(s)
- Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Luís Alberto Brêda Mascarenhas
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Leone Peter Correia da Silva Andrade
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Vinícius Pinto Costa Rocha
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| | - Milena Botelho Pereira Soares
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Peter Berglund
- HDT Bio, 1616 Eastlake Ave E, Seattle, WA 98102, USA; (P.B.); (M.S.D.); (S.G.R.)
| | - Malcolm S. Duthie
- HDT Bio, 1616 Eastlake Ave E, Seattle, WA 98102, USA; (P.B.); (M.S.D.); (S.G.R.)
| | - Steven G. Reed
- HDT Bio, 1616 Eastlake Ave E, Seattle, WA 98102, USA; (P.B.); (M.S.D.); (S.G.R.)
| | - Roberto Badaró
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (L.M.d.S.F.); (L.A.B.M.); (L.P.C.d.S.A.); (V.P.C.R.); (M.B.P.S.); (R.B.)
| |
Collapse
|
18
|
Tontini C, Bulfone-Paus S. Novel Approaches in the Inhibition of IgE-Induced Mast Cell Reactivity in Food Allergy. Front Immunol 2021; 12:613461. [PMID: 34456900 PMCID: PMC8387944 DOI: 10.3389/fimmu.2021.613461] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
Allergy is an IgE-dependent type-I hypersensitivity reaction that can lead to life-threatening systemic symptoms such as anaphylaxis. In the pathogenesis of the allergic response, the common upstream event is the binding of allergens to specific IgE, inducing cross-linking of the high-affinity FcεRI on mast cells, triggering cellular degranulation and the release of histamine, proteases, lipids mediators, cytokines and chemokines with inflammatory activity. A number of novel therapeutic options to curb mast cell activation are in the pipeline for the treatment of severe allergies. In addition to anti-IgE therapy and allergen-specific immunotherapy, monoclonal antibodies targeted against several key Th2/alarmin cytokines (i.e. IL-4Rα, IL-33, TSLP), active modification of allergen-specific IgE (i.e. inhibitory compounds, monoclonal antibodies, de-sialylation), engagement of inhibitory receptors on mast cells and allergen-specific adjuvant vaccines, are new promising options to inhibit the uncontrolled release of mast cell mediators upon allergen exposure. In this review, we critically discuss the novel approaches targeting mast cells limiting allergic responses and the immunological mechanisms involved, with special interest on food allergy treatment.
Collapse
Affiliation(s)
- Chiara Tontini
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Silvia Bulfone-Paus
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
19
|
Curin M, Huang HJ, Garmatiuk T, Gutfreund S, Resch-Marat Y, Chen KW, Fauland K, Keller W, Zieglmayer P, Zieglmayer R, Lemell P, Horak F, Hemmer W, Focke-Tejkl M, Flicker S, Vrtala S, Valenta R. IgE Epitopes of the House Dust Mite Allergen Der p 7 Are Mainly Discontinuous and Conformational. Front Immunol 2021; 12:687294. [PMID: 34220841 PMCID: PMC8241568 DOI: 10.3389/fimmu.2021.687294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background Several studies indicate that Der p 7 is an important and clinically relevant allergen of Dermatophagoides pteronyssinus which should be included in vaccines for treatment of house dust mite (HDM) allergy. Aim of this study was to characterize the IgE epitopes of Der p 7. Methods Recombinant Der p 7 was expressed and purified, analyzed for fold by circular dichroism and tested for its allergenic activity by basophil activation. Seven overlapping, surface-exposed peptides (P1–P7) with a length of 27 to 37 amino acids, which spanned the Der p 7 sequence, were synthesized and tested for IgE reactivity and allergenic activity by basophil activation assay. Carrier-bound peptides were studied for their ability to induce allergen-specific IgG antibodies in rabbits. Peptide-specific antibodies were used to inhibit allergic patients` IgE binding to Der p 7 by ELISA for mapping of IgE epitopes. Results rDer p 7 showed high allergenic activity comparable with Der p 5, Der p 21, and Der p 23. None of the seven tested peptides showed any IgE reactivity or allergenic activity when tested with HDM- allergic patients indicating lack of sequential IgE epitopes on Der p 7. IgE inhibition experiments using anti-peptide specific IgGs and molecular modeling enabled us to identify discontinuous, conformational IgE epitopes of Der p 7. Conclusion and Clinical Relevance IgE epitopes of Der p 7 belong to the conformational and discontinuous type whereas sequential Der p 7 peptides lack IgE reactivity. It should thus be possible to construct hypoallergenic vaccines for Der p 7 based on carrier-bound allergen peptides.
Collapse
Affiliation(s)
- Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tetiana Garmatiuk
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sandra Gutfreund
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yvonne Resch-Marat
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Kuan-Wei Chen
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Kerstin Fauland
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Petra Zieglmayer
- Vienna Challenge Chamber, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria
| | | | | | | | | | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sabine Flicker
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner University of Health Sciences, Krems, Austria.,Department of Clinical Immunology and Allergy, Sechenov First State Medical University, Moscow, Russia.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| |
Collapse
|
20
|
Hofer F, Kamenik AS, Fernández-Quintero ML, Kraml J, Liedl KR. pH-Induced Local Unfolding of the Phl p 6 Pollen Allergen From cpH-MD. Front Mol Biosci 2021; 7:603644. [PMID: 33511157 PMCID: PMC7835895 DOI: 10.3389/fmolb.2020.603644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Susceptibility to endosomal degradation is a decisive contribution to a protein's immunogenicity. It is assumed that the processing kinetics of structured proteins are inherently linked to their probability of local unfolding. In this study, we quantify the impact of endosomal acidification on the conformational stability of the major timothy grass pollen allergen Phl p 6. We use state of the art sampling approaches in combination with constant pH MD techniques to profile pH-dependent local unfolding events in atomistic detail. Integrating our findings into the current view on type 1 allergic sensitization, we characterize local protein dynamics in the context of proteolytic degradation at neutral and acidic pH for the wild type protein and point mutants with varying proteolytic stability. We analyze extensive simulation data using Markov state models and retrieve highly reliable thermodynamic and kinetic information at varying pH levels. Thereby we capture the impact of endolysosomal acidification on the structure and dynamics of the Phl p 6 mutants. We find that upon protonation at lower pH values, the conformational flexibilities in key areas of the wild type protein, i.e., T-cell epitopes and early proteolytic cleavage sites, increase significantly. A decrease of the pH even leads to local unfolding in otherwise stable secondary structure elements, which is a prerequisite for proteolytic cleavage. This effect is even more pronounced in the destabilized mutant, while no unfolding was observed for the stabilized mutant. In summary, we report detailed structural models which rationalize the experimentally observed cleavage pattern during endosomal acidification.
Collapse
|
21
|
Dorofeeva Y, Shilovskiy I, Tulaeva I, Focke‐Tejkl M, Flicker S, Kudlay D, Khaitov M, Karsonova A, Riabova K, Karaulov A, Khanferyan R, Pickl WF, Wekerle T, Valenta R. Past, present, and future of allergen immunotherapy vaccines. Allergy 2021; 76:131-149. [PMID: 32249442 PMCID: PMC7818275 DOI: 10.1111/all.14300] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022]
Abstract
Allergen-specific immunotherapy (AIT) is an allergen-specific form of treatment for patients suffering from immunoglobulin E (IgE)-associated allergy; the most common and important immunologically mediated hypersensitivity disease. AIT is based on the administration of the disease-causing allergen with the goal to induce a protective immunity consisting of allergen-specific blocking IgG antibodies and alterations of the cellular immune response so that the patient can tolerate allergen contact. Major advantages of AIT over all other existing treatments for allergy are that AIT induces a long-lasting protection and prevents the progression of disease to severe manifestations. AIT is cost effective because it uses the patient´s own immune system for protection and potentially can be used as a preventive treatment. However, broad application of AIT is limited by mainly technical issues such as the quality of allergen preparations and the risk of inducing side effects which results in extremely cumbersome treatment schedules reducing patient´s compliance. In this article we review progress in AIT made from its beginning and provide an overview of the state of the art, the needs for further development, and possible technical solutions available through molecular allergology. Finally, we consider visions for AIT development towards prophylactic application.
Collapse
Affiliation(s)
- Yulia Dorofeeva
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Igor Shilovskiy
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Inna Tulaeva
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Margarete Focke‐Tejkl
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Sabine Flicker
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Dmitriy Kudlay
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Musa Khaitov
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Antonina Karsonova
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Ksenja Riabova
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Alexander Karaulov
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Roman Khanferyan
- Department of Immunology and AllergyRussian People’s Friendship UniversityMoscowRussian Federation
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Thomas Wekerle
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Rudolf Valenta
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| |
Collapse
|
22
|
Jeong KY, Park JW. Insect Allergens on the Dining Table. Curr Protein Pept Sci 2020; 21:159-169. [PMID: 31309888 DOI: 10.2174/1389203720666190715091951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
Edible insects are important sources of nutrition, particularly in Africa, Asia, and Latin America. Recently, edible insects have gained considerable interest as a possible solution to global exhaustion of the food supply with population growth. However, little attention has been given to the adverse reactions caused by insect consumption. Here, we provide an overview of the food allergens in edible insects and offer insights for further studies. Most of the edible insect allergens identified to date are highly cross-reactive invertebrate pan-allergens such as tropomyosin and arginine kinase. Allergic reactions to these allergens may be cross-reactions resulting from sensitization to shellfish and/or house dust mites. No unique insect allergen specifically eliciting a food allergy has been described. Many of the edible insect allergens described thus far have counterpart allergens in cockroaches, which are an important cause of respiratory allergies, but it is questionable whether inhalant allergens can cause food allergies. Greater effort is needed to characterize the allergens that are unique to edible insects so that safe edible insects can be developed. The changes in insect proteins upon food processing or cooking should also be examined to enhance our understanding of edible insect food allergies.
Collapse
Affiliation(s)
- Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University, College of Medicine, Seoul 03722, Korea
| | - Jung-Won Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University, College of Medicine, Seoul 03722, Korea
| |
Collapse
|
23
|
Sani MZ, Bargahi A, Momenzadeh N, Dehghani P, Moghadam MV, Maleki SJ, Nabipour I, Shirkani A, Akhtari J, Hesamizadeh K, Heidari S, Omrani F, Akbarzadeh S, Mohammadi M. Genetically engineered fusion of allergen and viral-like particle induces a more effective allergen-specific immune response than a combination of them. Appl Microbiol Biotechnol 2020; 105:77-91. [PMID: 33215260 DOI: 10.1007/s00253-020-11012-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Chimeric virus-like particles (VLPs) were developed as a candidate for allergen-specific immunotherapy. In this study, hepatitis B core antigen (HBcAg) that genetically fused to Chenopodium album polcalcin (Che a 3)-derived peptide was expressed in E. coli BL21, purified, and VLP formation was evaluated using native agarose gel electrophoresis (NAGE) and transmission electron microscopy (TEM). Chimeric HBc VLPs were characterized in terms of their reactivity to IgE, the induction of blocking IgG and allergen-specific IgE, basophil-activating capacity, and Th1-type immune responses. Results from IgE reactivity and basophil activation test showed that chimeric HBc VLPs lack IgE-binding capacity and basophil degranulation activity. Although chimeric HBc VLPs induced the highest level of efficient polcalcin-specific IgG antibody in comparison to those induced by recombinant Che a 3 (rChe a 3) mixed either with HBc VLPs or alum, they triggered the lowest level of polcalcin-specific IgE in mice following immunization. Furthermore, in comparison to the other antigens, chimeric HBc VLPs produced a polcalcin-specific Th1 cell response. Taken together, genetically fusion of allergen derivatives to HBc VLPs, in comparison to a mix of them, may be a more effective way to induce appropriate immune responses in allergen-specific immunotherapy. KEY POINTS: • The insertion of allergen-derived peptide into major insertion region (MIR) of hepatitis B virus core (HBc) antigen resulted in nanoparticles displaying allergen-derived peptide upon its expression in prokaryotic host. • The resultant VLPs (chimeric HBc VLPs) did not exhibit IgE reactivity with allergic patients' sera and were not able to degranulate basophils. • Chimeric HBc VLPs dramatically improved protective IgG antibody response compared with those induced by allergen mixed either with HBc VLPs or alum. • Chimeric HBc VLPs induced Th1 responses that were counterparts of Th2 responses (allergic). • Chimeric HBc VLPs increased IgG2a/ IgG1 ratio and the level of IFN-γ compared to those induced by allergen mixed with either HBc VLPs or alum. Graphical Abstract.
Collapse
Affiliation(s)
- Maryam Zamani Sani
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshar Bargahi
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Niloofar Momenzadeh
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran
| | - Parva Dehghani
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran
| | - Maryam Vakili Moghadam
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila June Maleki
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, New Orleans, LA, USA
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Javad Akhtari
- Toxoplasmosis Research Center, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Khashayar Hesamizadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sahel Heidari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Omrani
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran
| | - Samad Akbarzadeh
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Mohammadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran.
| |
Collapse
|
24
|
Flicker S, Zettl I, Tillib SV. Nanobodies-Useful Tools for Allergy Treatment? Front Immunol 2020; 11:576255. [PMID: 33117377 PMCID: PMC7561424 DOI: 10.3389/fimmu.2020.576255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
In the last decade single domain antibodies (nanobodies, VHH) qualified through their unique characteristics have emerged as accepted and even advantageous alternative to conventional antibodies and have shown great potential as diagnostic and therapeutic tools. Currently nanobodies find their main medical application area in the fields of oncology and neurodegenerative diseases. According to late-breaking information, nanobodies specific for coronavirus spikes have been generated these days to test their suitability as useful therapeutics for future outbreaks. Their superior properties such as chemical stability, high affinity to a broad spectrum of epitopes, low immunogenicity, ease of their generation, selection and production proved nanobodies also to be remarkable to investigate their efficacy for passive treatment of type I allergy, an exaggerated immune reaction to foreign antigens with increasing global prevalence.
Collapse
Affiliation(s)
- Sabine Flicker
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ines Zettl
- Division of Immunopathology, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sergei V. Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Clinical significance of dust mite allergens. Mol Biol Rep 2020; 47:6239-6246. [DOI: 10.1007/s11033-020-05613-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/20/2020] [Indexed: 12/22/2022]
|
26
|
Huang Y, Fan Y, Tian C, Zhang M, Yang S, Ji Y, Zhang Q. The efficacy and safety of acupoint application combined with western medicine for allergic rhinitis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21627. [PMID: 32769925 PMCID: PMC7593031 DOI: 10.1097/md.0000000000021627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Acupoint application combined with western medicine has been used for treating allergic rhinitis widely. However, the efficacy and safety of acupoint application combined with western medicine for allergic rhinitis are unclear. This study aims to evaluate the efficacy and safety of acupoint application combined with western medicine for allergic rhinitis. METHODS Randomized controlled trials of acupoint application combined with western medicine for allergic rhinitis will be searched in PubMed, EMbase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, WanFang, the Chongqing VIP Chinese Science and Technology Periodical Database, and China biomedical literature database from inception to July, 2020. And Baidu Scholar, Google Scholar, International Clinical Trials Registry Platform, and Chinese Clinical Trials Registry will be searched to obtain more relevant studies comprehensively. Two researchers will perform data extraction and risk of bias assessment independently. Statistical analysis will be conducted in RevMan 5.3. RESULTS This study will summarize the present evidence by exploring the efficacy and safety of acupoint application combined with western medicine for the treatment of allergic rhinitis. CONCLUSIONS The findings of the study will provide helpful evidence for the efficacy and safety of acupoint application combined with western medicine in the treatment of allergic rhinitis, facilitating clinical practice and further scientific studies. ETHICS AND DISSEMINATION The private information from individuals will not publish. This systematic review also will not involve endangering participant rights. Ethical approval is not required. The results may be published in a peer-reviewed journal or disseminated in relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/NSGJH.
Collapse
Affiliation(s)
- Yao Huang
- Hospital of Chengdu University of Traditional Chinese Medicine
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan province
| | - Yihua Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin
| | - Chunying Tian
- Tianjin University of Traditional Chinese Medicine, Tianjin
| | - Mengni Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan province
| | - Shasha Yang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou province
| | - Yue Ji
- Tianjin University of Traditional Chinese Medicine, Tianjin
| | - Qinxiu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Medical and Life Sciences/Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Lázaro-Gorines R, López-Rodríguez JC, Benedé S, González M, Mayorga C, Vogel L, Martínez-Del-Pozo Á, Lacadena J, Villalba M. Der p 1-based immunotoxin as potential tool for the treatment of dust mite respiratory allergy. Sci Rep 2020; 10:12255. [PMID: 32703972 PMCID: PMC7378242 DOI: 10.1038/s41598-020-69166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 11/25/2022] Open
Abstract
Immunotoxins appear as promising therapeutic molecules, alternative to allergen-specific-immunotherapy. In this work, we achieved the development of a protein chimera able to promote specific cell death on effector cells involved in the allergic reaction. Der p 1 allergen was chosen as cell-targeting domain and the powerful ribotoxin α-sarcin as the toxic moiety. The resultant construction, named proDerp1αS, was produced and purified from the yeast Pichia pastoris. Der p 1-protease activity and α-sarcin ribonucleolytic action were effectively conserved in proDerp1αS. Immunotoxin impact was assayed by using effector cells sensitized with house dust mite-allergic sera. Cell degranulation and death, triggered by proDerp1αS, was exclusively observed on Der p 1 sera sensitized-humRBL-2H3 cells, but not when treated with non-allergic sera. Most notably, equivalent IgE-binding and degranulation were observed with both proDerp1αS construct and native Der p 1 when using purified basophils from sensitized patients. However, proDerp1αS did not cause any cytotoxic effect on these cells, apparently due to its lack of internalization after their surface IgE-binding, showing the complex in vivo panorama governing allergic reactions. In conclusion, herein we present proDerp1αS as a proof of concept for a potential and alternative new designs of therapeutic tools for allergies. Development of new, and more specific, second-generation of immunotoxins following proDerp1αS, is further discussed.
Collapse
Affiliation(s)
- Rodrigo Lázaro-Gorines
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Juan Carlos López-Rodríguez
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Sara Benedé
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Miguel González
- Allergy Research Laboratory, IBIMA, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Research Laboratory, IBIMA, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain.,U.G.C. Allergy, IBIMA, Hospital Regional Universitario de Málaga, UMA, Málaga, Spain
| | - Lothar Vogel
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Álvaro Martínez-Del-Pozo
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain
| | - Javier Lacadena
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain.
| | - Mayte Villalba
- Biochemistry and Molecular Biology Department, Chemical Sciences Faculty, Complutense University of Madrid, Av. Complutense w/n, 28040, Madrid, Spain.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Aim of this review is the description of the medical conditions in which the support of molecular allergy diagnostics (MAD) has an impact on the clinical outcomes, such as laboratory diagnostics, prognosis, and therapy of allergic diseases. RECENT FINDINGS The review of the literature of the last 2 years generated a wide number of results on this topic. As expected, not all were obtained by the use of MAD, but, in general, a clear trend is evident. SUMMARY Within the large number of works available, laboratory allergy diagnostics seems to be the most frequently discussed topic, in particular considering the complexity of the biological environment where these assays are used. Some interesting news arrive from the prognostic potential of MAD, whereas for allergen immunotherapy, waiting for a well-conducted prospective randomized clinical study, data from retrospective studies still confirms the added values of MAD in the management of the allergic patients.
Collapse
|
29
|
Dona DW, Suphioglu C. Egg Allergy: Diagnosis and Immunotherapy. Int J Mol Sci 2020; 21:E5010. [PMID: 32708567 PMCID: PMC7404024 DOI: 10.3390/ijms21145010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Hypersensitivity or an allergy to chicken egg proteins is a predominant symptomatic condition affecting 1 in 20 children in Australia; however, an effective form of therapy has not yet been found. This occurs as the immune system of the allergic individual overreacts when in contact with egg allergens (egg proteins), triggering a complex immune response. The subsequent instantaneous inflammatory immune response is characterized by the excessive production of immunoglobulin E (IgE) antibody against the allergen, T-cell mediators and inflammation. Current allergen-specific approaches to egg allergy diagnosis and treatment lack consistency and therefore pose safety concerns among anaphylactic patients. Immunotherapy has thus far been found to be the most efficient way to treat and relieve symptoms, this includes oral immunotherapy (OIT) and sublingual immunotherapy (SLIT). A major limitation in immunotherapy, however, is the difficulty in preparing effective and safe extracts from natural allergen sources. Advances in molecular techniques allow for the production of safe and standardized recombinant and hypoallergenic egg variants by targeting the IgE-binding epitopes responsible for clinical allergic symptoms. Site-directed mutagenesis can be performed to create such safe hypoallergens for their potential use in future methods of immunotherapy, providing a feasible standardized therapeutic approach to target egg allergies safely.
Collapse
Affiliation(s)
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong 3216 VIC, Australia;
| |
Collapse
|
30
|
Tulaeva I, Kratzer B, Campana R, Curin M, van Hage M, Karsonova A, Riabova K, Karaulov A, Khaitov M, Pickl WF, Valenta R. Preventive Allergen-Specific Vaccination Against Allergy: Mission Possible? Front Immunol 2020; 11:1368. [PMID: 32733455 PMCID: PMC7358538 DOI: 10.3389/fimmu.2020.01368] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Vaccines for infectious diseases have improved the life of the human species in a tremendous manner. The principle of vaccination is to establish de novo adaptive immune response consisting of antibody and T cell responses against pathogens which should defend the vaccinated person against future challenge with the culprit pathogen. The situation is completely different for immunoglobulin E (IgE)-associated allergy, an immunologically-mediated hypersensitivity which is already characterized by increased IgE antibody levels and T cell responses against per se innocuous antigens (i.e., allergens). Thus, allergic patients suffer from a deviated hyper-immunity against allergens leading to inflammation upon allergen contact. Paradoxically, vaccination with allergens, termed allergen-specific immunotherapy (AIT), induces a counter immune response based on the production of high levels of allergen-specific IgG antibodies and alterations of the adaptive cellular response, which reduce allergen-induced symptoms of allergic inflammation. AIT was even shown to prevent the progression of mild to severe forms of allergy. Consequently, AIT can be considered as a form of therapeutic vaccination. In this article we describe a strategy and possible road map for the use of an AIT approach for prophylactic vaccination against allergy which is based on new molecular allergy vaccines. This road map includes the use of AIT for secondary preventive vaccination to stop the progression of clinically silent allergic sensitization toward symptomatic allergy and ultimately the prevention of allergic sensitization by maternal vaccination and/or early primary preventive vaccination of children. Prophylactic allergy vaccination with molecular allergy vaccines may allow halting the allergy epidemics affecting almost 30% of the population as it has been achieved for vaccination against infectious diseases.
Collapse
Affiliation(s)
- Inna Tulaeva
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bernhard Kratzer
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Antonina Karsonova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ksenja Riabova
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | - Winfried F Pickl
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, Moscow, Russia.,NRC Institute of Immunology FMBA of Russia, Moscow, Russia.,Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW More than 30 years ago, the first molecular structures of allergens were elucidated and defined recombinant allergens became available. We review the state of the art regarding molecular AIT with the goal to understand why progress in this field has been slow, although there is huge potential for treatment and allergen-specific prevention. RECENT FINDINGS On the basis of allergen structures, several AIT strategies have been developed and were advanced into clinical evaluation. In clinical AIT trials, promising results were obtained with recombinant and synthetic allergen derivatives inducing allergen-specific IgG antibodies, which interfered with allergen recognition by IgE whereas clinical efficacy could not yet be demonstrated for approaches targeting only allergen-specific T-cell responses. Available data suggest that molecular AIT strategies have many advantages over allergen extract-based AIT. SUMMARY Clinical studies indicate that recombinant allergen-based AIT vaccines, which are superior to existing allergen extract-based AIT can be developed for respiratory, food and venom allergy. Allergen-specific preventive strategies based on recombinant allergen-based vaccine approaches and induction of T-cell tolerance are on the horizon and hold promise that allergy can be prevented. However, progress is limited by lack of resources needed for clinical studies, which are necessary for the development of these innovative strategies.
Collapse
|
32
|
Lam H, Tergaonkar V, Ahn K. Mechanisms of allergen-specific immunotherapy for allergic rhinitis and food allergies. Biosci Rep 2020; 40:BSR20200256. [PMID: 32186703 PMCID: PMC7109000 DOI: 10.1042/bsr20200256] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is currently the only potential treatment for allergies including allergic rhinitis (AR) and food allergies (FA) that can modify the underlying course of the diseases. Although AIT has been performed for over a century, the precise and detailed mechanism for AIT is still unclear. Previous clinical trials have reported that successful AIT induces the reinstatement of tolerance against the specific allergen. In this review, we aim to provide an updated summary of the knowledge on the underlying mechanisms of IgE-mediated AR and FA as well as the immunological changes observed after AIT and discuss on how better understanding of these can lead to possible identification of biomarkers and novel strategies for AIT.
Collapse
Affiliation(s)
- Hiu Yan Lam
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117596, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117596, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117596, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
33
|
|
34
|
Kamenik AS, Hofer F, Handle PH, Liedl KR. Dynamics Rationalize Proteolytic Susceptibility of the Major Birch Pollen Allergen Bet v 1. Front Mol Biosci 2020; 7:18. [PMID: 32154264 PMCID: PMC7045072 DOI: 10.3389/fmolb.2020.00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
Proteolytic susceptibility during endolysosomal degradation is decisive for allergic sensitization. In the major birch pollen allergen Bet v 1 most protease cleavage sites are located within its secondary structure elements, which are inherently inaccessible to proteases. The allergen thus must unfold locally, exposing the cleavage sites to become susceptible to proteolysis. Hence, allergen cleavage rates are presumed to be linked to their fold stability, i.e., unfolding probability. Yet, these locally unfolded structures have neither been captured in experiment nor simulation due to limitations in resolution and sampling time, respectively. Here, we perform classic and enhanced molecular dynamics (MD) simulations to quantify fold dynamics on extended timescales of Bet v 1a and two variants with higher and lower cleavage rates. Already at the nanosecond-timescale we observe a significantly higher flexibility for the destabilized variant compared to Bet v 1a and the proteolytically stabilized mutant. Estimating the thermodynamics and kinetics of local unfolding around an initial cleavage site, we find that the Bet v 1 variant with the highest cleavage rate also shows the highest probability for local unfolding. For the stabilized mutant on the other hand we only find minimal unfolding probability. These results strengthen the link between the conformational dynamics of allergen proteins and their stability during endolysosomal degradation. The presented approach further allows atomistic insights in the conformational ensemble of allergen proteins and provides probability estimates below experimental detection limits.
Collapse
Affiliation(s)
| | | | | | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
35
|
Rauber MM, Möbs C, Campana R, Henning R, Schulze‐Dasbeck M, Greene B, Focke‐Tejkl M, Weber M, Valenta R, Pfützner W. Allergen immunotherapy with the hypoallergenic B-cell epitope-based vaccine BM32 modifies IL-10- and IL-5-secreting T cells. Allergy 2020; 75:450-453. [PMID: 31330050 DOI: 10.1111/all.13996] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michèle Myriam Rauber
- Clinical & Experimental Allergology, Department of Dermatology and Allergology Philipps‐Universität Marburg Marburg Germany
- Experimental Dermatology and Allergy Research Justus‐Liebig‐University Giessen Giessen Germany
| | - Christian Möbs
- Clinical & Experimental Allergology, Department of Dermatology and Allergology Philipps‐Universität Marburg Marburg Germany
| | - Raffaela Campana
- Department of Pathophysiology and Allergy Research Medical University Vienna Vienna Austria
| | | | - Manuel Schulze‐Dasbeck
- Clinical & Experimental Allergology, Department of Dermatology and Allergology Philipps‐Universität Marburg Marburg Germany
| | - Brandon Greene
- Institute of Medical Biometry and Epidemiology Philipps‐Universität Marburg Marburg Germany
| | - Margarete Focke‐Tejkl
- Department of Pathophysiology and Allergy Research Medical University Vienna Vienna Austria
| | - Milena Weber
- Department of Pathophysiology and Allergy Research Medical University Vienna Vienna Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research Medical University Vienna Vienna Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy Sechenov First Moscow State Medical University Moscow Russia
| | - Wolfgang Pfützner
- Clinical & Experimental Allergology, Department of Dermatology and Allergology Philipps‐Universität Marburg Marburg Germany
| |
Collapse
|
36
|
Shou Y, Hu L, Zhang C, Xu S, Jin Q, Huang L, Li B, Yuan L, Xu S, Zhang K, Jiang H, Zhang B. Efficacy of acupuncture at three nasal acupoints plus acupoint application for perennial allergic rhinitis: A multicenter, randomized controlled trial protocol. Trials 2020; 21:110. [PMID: 31992367 PMCID: PMC6986062 DOI: 10.1186/s13063-019-4039-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Many studies have shown the potential therapeutic effect of acupuncture on allergic rhinitis. Most of these studies were limited by low-quality evidence. Preliminary experiments showed that the use of acupuncture at three nasal acupoints plus acupoint application (AAP) achieves a more persistent effect in the treatment of perennial allergic rhinitis than acupuncture alone. In this study, a multicenter, single-blind, randomized controlled trial will be performed, in which acupuncture at nonmeridian acupoints and sham AAP will be used as the control group to evaluate the effect of AAP through long-term observation. METHODS The trial is designed on the basis of the Consolidated Standards of Reporting Trials 2010 guidelines and Standards for Reporting Interventions in Controlled Trials of Acupuncture. A total of 120 participants with perennial allergic rhinitis will be randomly assigned to a treatment or control group. A specially appointed investigator will be in charge of randomization. The participants in the treatment group will be treated with acupuncture at EX-HN3, LI20, and EX-HN8 thrice per week for a total of 12 sessions. In addition, they will undergo AAP at DU14, BL13, EX-BI, and RN22. The participants in the control group will be treated with sham AAP. The primary outcome will be the change in the Total Nasal Symptom Score from baseline to the completion of 4-week treatment. Secondary outcomes include changes in visual analog scale and total non-nasal symptom scores from baseline to the second and fourth weeks of treatment, as well as 1, 3, and 6 months after the completion of treatment. Peripheral blood IL-4, IL-5, IL-6, IL-8, and IL-10 levels will be measured, and any side effects related to treatment will be observed and recorded. DISCUSSION It is expected that this randomized clinical trial will provide evidence to determine the effects of AAP compared with acupuncture at nonmeridian acupoints and sham AAP, particularly the long-term effect. These findings will help improve the clinical application of this technique. TRIAL REGISTRATION Acupuncture-Moxibustion Clinical Trial Registry AMCTR-ICR-18000179. Registered on 12 April 2018.
Collapse
Affiliation(s)
- Yin Shou
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Acumox and Tuina Research Section, College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Hu
- Acumox and Tuina Research Section, College of Acumox and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cuihong Zhang
- Shanghai Research Institute of Acupuncture and Meridians, Shanghai, China
| | - Shifen Xu
- Acupuncture Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of TCM, Shanghai, China
| | - Qi Jin
- Acupuncture Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of TCM, Shanghai, China
| | - Li Huang
- Acupuncture Department, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of TCM, Shanghai, China
| | - Bingrong Li
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Long Yuan
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Siwei Xu
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiru Jiang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Huang H, Curin M, Banerjee S, Chen K, Garmatiuk T, Resch‐Marat Y, Carvalho‐Queiroz C, Blatt K, Gafvelin G, Grönlund H, Valent P, Campana R, Focke‐Tejkl M, Valenta R, Vrtala S. A hypoallergenic peptide mix containing T cell epitopes of the clinically relevant house dust mite allergens. Allergy 2019; 74:2461-2478. [PMID: 31228873 PMCID: PMC7078969 DOI: 10.1111/all.13956] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022]
Abstract
Background In the house dust mite (HDM) Dermatophagoides pteronyssinus, Der p 1, 2, 5, 7, 21, and 23 have been identified as the most important allergens. The aim of this study was to define hypoallergenic peptides derived from the sequences of the six allergens and to use the peptides and the complete allergens to study antibody, T cell, and cytokine responses in sensitized and nonsensitized subjects. Methods IgE reactivity of HDM‐allergic and non‐HDM‐sensitized individuals to 15 HDM allergens was established using ImmunoCAP ISAC technology. Thirty‐three peptides covering the sequences of the six HDM allergens were synthesized. Allergens and peptides were tested for IgE and IgG reactivity by ELISA and ImmunoCAP, respectively. Allergenic activity was determined by basophil activation. CD4+ T cell and cytokine responses were determined in PBMC cultures by CFSE dilution and Luminex technology, respectively. Results House dust mite allergics showed IgE reactivity only to complete allergens, whereas 31 of the 33 peptides lacked relevant IgE reactivity and allergenic activity. IgG antibodies of HDM‐allergic and nonsensitized subjects were directed against peptide epitopes and higher allergen‐specific IgG levels were found in HDM allergics. PBMC from HDM‐allergics produced higher levels of IL‐5 whereas non‐HDM‐sensitized individuals mounted higher levels of IFN‐gamma, IL‐17, pro‐inflammatory cytokines, and IL‐10. Conclusion IgG antibodies in HDM‐allergic patients recognize peptide epitopes which are different from the epitopes recognized by IgE. This may explain why naturally occurring allergen‐specific IgG antibodies do not protect against IgE‐mediated allergic inflammation. A mix of hypoallergenic peptides containing T cell epitopes of the most important HDM allergens was identified.
Collapse
Affiliation(s)
- Huey‐Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Srinita Banerjee
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Kuan‐Wei Chen
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Tetiana Garmatiuk
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Yvonne Resch‐Marat
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Claudia Carvalho‐Queiroz
- Department of Clinical Neuroscience, Therapeutic Immune Design Unit Karolinska Institutet Stockholm Sweden
| | - Katharina Blatt
- Division of Hematology&Hemostaseology, Department of Internal Medicine I Medical University of Vienna Vienna Austria
| | - Guro Gafvelin
- Department of Clinical Neuroscience, Therapeutic Immune Design Unit Karolinska Institutet Stockholm Sweden
| | - Hans Grönlund
- Department of Clinical Neuroscience, Therapeutic Immune Design Unit Karolinska Institutet Stockholm Sweden
| | - Peter Valent
- Division of Hematology&Hemostaseology, Department of Internal Medicine I Medical University of Vienna Vienna Austria
| | - Raffaela Campana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Margarete Focke‐Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- NRC Institute of Immunology FMBA of Russia Moscow Russia
- Department of Clinical Immunology and Allergy, Laboratory for Immunopathology Sechenov First Moscow State Medical University Moscow Russia
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
38
|
Two years of treatment with the recombinant grass pollen allergy vaccine BM32 induces a continuously increasing allergen-specific IgG 4 response. EBioMedicine 2019; 50:421-432. [PMID: 31786130 PMCID: PMC6921329 DOI: 10.1016/j.ebiom.2019.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 02/04/2023] Open
Abstract
Background BM32, a grass pollen allergy vaccine containing four recombinant fusion proteins consisting of hepatitis B-derived PreS and hypoallergenic peptides from the major timothy grass pollen allergens adsorbed on aluminium hydroxide has been shown to be safe and to improve clinical symptoms of grass pollen allergy upon allergen-specific immunotherapy (AIT). We have investigated the immune responses in patients from a two years double-blind, placebo-controlled AIT field trial with BM32. Methods Blood samples from patients treated with BM32 (n = 27) or placebo (Aluminium hydroxide) (n = 13) were obtained to study the effects of vaccination and natural allergen exposure on allergen-specific antibody, T cell and cytokine responses. Allergen-specific IgE, IgG, IgG1 and IgG4 levels were determined by ImmunoCAP and ELISA, respectively. Allergen-specific lymphocyte proliferation by 3H thymidine incorporation and multiple cytokine responses with a human 17-plex cytokine assay were studied in cultured peripheral blood mononuclear cells (PBMCs). Findings Two years AIT comprising two courses of 3 pre-seasonal injections of BM32 and a single booster after the first pollen season induced a continuously increasing (year 2 > year 1) allergen-specific IgG4 response without boosting allergen-specific IgE responses. Specific IgG4 responses were accompanied by low stimulation of allergen-specific PBMC responses. Increases of allergen-specific pro-inflammatory cytokine responses were absent. The rise of allergen-specific IgE induced by seasonal grass pollen exposure was partially blunted in BM32-treated patients. Interpretation AIT with BM32 is characterised by the induction of a non-inflammatory, continuously increasing allergen-specific IgG4 response (year 2 > year1) which may explain that clinical efficacy was higher in year 2 than in year 1. The good safety profile of BM32 may be explained by lack of IgE reactivity and low stimulation of allergen-specific T cell and cytokine responses. Fundings Grants F4605, F4613 and DK 1248-B13 of the Austrian Science Fund (FWF).
Collapse
|
39
|
Allergen-specific IgE levels and the ability of IgE-allergen complexes to cross-link determine the extent of CD23-mediated T-cell activation. J Allergy Clin Immunol 2019; 145:958-967.e5. [PMID: 31775017 PMCID: PMC7104374 DOI: 10.1016/j.jaci.2019.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/15/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Background CD23 mediates IgE-facilitated allergen presentation and subsequent allergen-specific T-cell activation in allergic patients. Objective We sought to investigate key factors regulating IgE-facilitated allergen presentation through CD23 and subsequent T-cell activation. Methods To study T-cell activation by free allergens and different types of IgE–Bet v 1 complexes, we used a molecular model based on monoclonal human Bet v 1–specific IgE, monomeric and oligomeric Bet v 1 allergen, an MHC-matched CD23-expressing B-cell line, and a T-cell line expressing a human Bet v 1–specific T-cell receptor. The ability to cross-link Fcε receptors of complexes consisting of either IgE and monomeric Bet v 1 or IgE and oligomeric Bet v 1 was studied in human FcεRI-expressing basophils. T-cell proliferation by monomeric or oligomeric Bet v 1, which cross-links Fcε receptors to a different extent, was studied in allergic patients’ PBMCs with and without CD23-expressing B cells. Results In our model non–cross-linking IgE–Bet v 1 monomer complexes, as well as cross-linking IgE–Bet v 1 oligomer complexes, induced T-cell activation, which was dependent on the concentration of specific IgE. However, T-cell activation by cross-linking IgE–Bet v 1 oligomer complexes was approximately 125-fold more efficient. Relevant T-cell proliferation occurred in allergic patients’ PBMCs only in the presence of B cells, and its magnitude depended on the ability of IgE–Bet v 1 complexes to cross-link CD23. Conclusion The extent of CD23-mediated T-cell activation depends on the concentration of allergen-specific IgE and the cross-linking ability of IgE-allergen complexes.
Collapse
|
40
|
Dorofeeva Y, Colombo P, Blanca M, Mari A, Khanferyan R, Valenta R, Focke-Tejkl M. Expression and characterization of recombinant Par j 1 and Par j 2 resembling the allergenic epitopes of Parietaria judaica pollen. Sci Rep 2019; 9:15043. [PMID: 31636285 PMCID: PMC6803649 DOI: 10.1038/s41598-019-50854-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/18/2019] [Indexed: 11/10/2022] Open
Abstract
The weed wall pellitory, Parietaria judaica, is one the most important pollen allergen sources in the Mediterranean area causing severe symptoms of hay fever and asthma in allergic patients. We report the expression of the major Parietaria allergens, Par j 1 and Par j 2 which belong to the family of lipid transfer proteins, in insect cells. According to circular dichroism analysis and gel filtration, the purified allergens represented folded and monomeric proteins. Insect cell-expressed, folded Par j 2 exhibited higher IgE binding capacity and more than 100-fold higher allergenic activity than unfolded Escherichia coli-expressed Par j 2 as demonstrated by IgE ELISA and basophil activation testing. IgE ELISA inhibition assays showed that Par j 1 and Par j 2, contain genuine and cross-reactive IgE epitopes. IgG antibodies induced by immunization with Par j 2 inhibited binding of allergic patients IgE to Par j 1 only partially. IgE inhibition experiments demonstrated that insect cell-expressed Par j 1 and Par j 2 together resembled the majority of allergenic epitopes of the Parietaria allergome and therefore both should be used for molecular diagnosis and the design of vaccines for allergen-specific immunotherapy of Parietaria allergy.
Collapse
Affiliation(s)
- Yulia Dorofeeva
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Paolo Colombo
- Istituto di Biomedicina ed Immunologia Molecolare "Alberto Monroy" del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | | | - Adriano Mari
- Associated Centers for Molecular Allergology, Rome, Italy
| | - Roman Khanferyan
- Russian People's Friendship University, Moscow, Russian Federation
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,The Institute of Immunology, Moscow, Russian Federation.,Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Margarete Focke-Tejkl
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
41
|
Linhart B, Freidl R, Elisyutina O, Khaitov M, Karaulov A, Valenta R. Molecular Approaches for Diagnosis, Therapy and Prevention of Cow´s Milk Allergy. Nutrients 2019; 11:E1492. [PMID: 31261965 PMCID: PMC6683018 DOI: 10.3390/nu11071492] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cow´s milk is one of the most important and basic nutrients introduced early in life in our diet but can induce IgE-associated allergy. IgE-associated allergy to cow´s milk can cause severe allergic manifestations in the gut, skin and even in the respiratory tract and may lead to life-threatening anaphylactic shock due to the stability of certain cow´s milk allergens. Here, we provide an overview about the allergen molecules in cow´s milk and the advantages of the molecular diagnosis of IgE sensitization to cow´s milk by serology. In addition, we review current strategies for prevention and treatment of cow´s milk allergy and discuss how they could be improved in the future by innovative molecular approaches that are based on defined recombinant allergens, recombinant hypoallergenic allergen derivatives and synthetic peptides.
Collapse
Affiliation(s)
- Birgit Linhart
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Raphaela Freidl
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Olga Elisyutina
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
| | - Alexander Karaulov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, 115478, Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
42
|
Adjuvant Allergen Fusion Proteins as Novel Tools for the Treatment of Type I Allergies. Arch Immunol Ther Exp (Warsz) 2019; 67:273-293. [DOI: 10.1007/s00005-019-00551-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
|
43
|
Mannering SI, Di Carluccio AR, Elso CM. Neoepitopes: a new take on beta cell autoimmunity in type 1 diabetes. Diabetologia 2019; 62:351-356. [PMID: 30402774 DOI: 10.1007/s00125-018-4760-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 01/13/2023]
Abstract
Type 1 diabetes is an autoimmune disease caused by T cell-mediated destruction of pancreatic insulin-producing beta cells. The epitopes recognised by pathogenic T cells in human type 1 diabetes are poorly defined; however, a growing body of evidence suggests that T cell responses against neoepitopes contribute to beta cell destruction in type 1 diabetes. Neoepitopes are formed when self-proteins undergo post-translational modification to create a new epitope that is recognised by T- or B cells. Here we review the role of human T cell responses against neoepitopes in the immune pathogenesis of type 1 diabetes. Specifically, we review the different approaches to identifying neoepitopes relevant to human type 1 diabetes and outline several advances in this field that have occurred over the past few years. We also discuss the application of neoepitopes to the development of antigen-specific therapies for type 1 diabetes and the unresolved challenges that need to be overcome before the full repertoire of neoepitopes recognised by pathogenic human T cells in type 1 diabetes can be determined. This information may then be used to develop antigen-specific therapies for type 1 diabetes and assays to monitor changes in pathogenic, beta cell-specific T cell responses.
Collapse
Affiliation(s)
- Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia.
- Department of Medicine, University of Melbourne, Fitzroy, Melbourne, VIC, Australia.
| | - Anthony R Di Carluccio
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Colleen M Elso
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, University of Melbourne, Fitzroy, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Tabesh S, Fanuel S, Fazlollahi MR, Yekaninejad MS, Kardar GA, Razavi SA. Design and evaluation of a hypoallergenic peptide-based vaccine for Salsola kali allergy. Int Immunopharmacol 2019; 66:62-68. [PMID: 30445308 DOI: 10.1016/j.intimp.2018.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The Salsola kali (S. kali) pollen is one of the most important causes of allergic rhinitis in the deserts and semi-desert areas. Immunotherapy with allergen extracts remains the only available treatment addressing the underlying mechanism of allergy. However, given the low efficacy of this method, it is necessary to find more effective and alternative therapeutic interventions using molecular biology and bioinformatics tools. In this study, a hypoallergenic vaccine was designed on the basis of B-cell epitope approach for S. kali immunotherapy. METHODS Using the Immune Epitope Database (IEDB), a 35-mer peptide was selected and chemically conjugated to a keyhole limpet hemocyanin (KLH) molecule. Specific IgG and IgE from immunized BALB/c mice sera against the vaccine (Sal k 1-KLH), S. kali extract and the recombinant protein, rSal k 1, were measured using ELISA. Also, inhibition of IgE by mouse IgG was evaluated using an inhibitory ELISA. Finally, the IgE reactivity and T-cell reactivity of the designed vaccine were evaluated by dot blot assay and MTT assay. RESULTS Vaccination with the vaccine produced high levels of protective IgG in mice, which inhibited the binding of patients IgE to recombinant proteins. The result showed that the designed vaccine, unlike the recombinant protein and extract, did not induce T-cell lymphocytes response and also exhibited decreased IgE reactivity. CONCLUSION The designed vaccine can be considered as a promising candidate for therapeutic allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Saeideh Tabesh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Iran; Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Iran
| | - Songwe Fanuel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Department of Applied Biosciences and Biotechnology, Faculty of Science and Technology, Midlands State University (MSU), Zimbabwe
| | | | - Mir Saeed Yekaninejad
- Department of epidemiology and biostatics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Kardar
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran
| | - Seyed Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
45
|
Popescu FD, Vieru M. Precision medicine allergy immunoassay methods for assessing immunoglobulin E sensitization to aeroallergen molecules. World J Methodol 2018; 8:17-36. [PMID: 30519536 PMCID: PMC6275558 DOI: 10.5662/wjm.v8.i3.17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/17/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Molecular-based allergy diagnosis for the in vitro assessment of a patient immunoglobulin E (IgE) sensitization profile at the molecular level uses allergen molecules (also referred to as allergen components), which may be well-defined, highly purified, natural allergen components or recombinant allergens. Modern immunoassay methods used for the detection of specific IgE against aeroallergen components are either singleplex (such as the fluorescence enzyme immunoassay with capsulated cellulose polymer solid-phase coupled allergens, the enzyme-enhanced chemiluminescence immunoassay and the reversed enzyme allergosorbent test, with liquid-phase allergens), multiparameter (such as the line blot immunoassay for defined partial allergen diagnostics with allergen components coating membrane strips) or multiplex (such as the microarray-based immunoassay on immuno solid-phase allergen chip, and the two new multiplex nanotechnology-based immunoassays: the patient-friendly allergen nano-bead array, and the macroarray nanotechnology-based immunoassay used as a molecular allergy explorer). The precision medicine diagnostic work-up may be organized as an integrated “U-shape” approach, with a “top-down” approach (from symptoms to molecules) and a “bottom-up” approach (from molecules to clinical implications), as needed in selected patients. The comprehensive and accurate IgE sensitization molecular profiling, with identification of the relevant allergens, is indicated within the framework of a detailed patient’s clinical history to distinguish genuine IgE sensitization from sensitization due to cross-reactivity (especially in polysensitized patients), to assess unclear symptoms and unsatisfactory response to treatment, to reveal unexpected sensitizations, and to improve assessment of severity and risk aspects in some patients. Practical approaches, such as anamnesis molecular thinking, laboratory molecular thinking and postmolecular anamnesis, are sometimes applied. The component-resolved diagnosis of the specific IgE repertoire has a key impact on optimal decisions making for prophylactic and specific immunotherapeutic strategies tailored for the individual patient.
Collapse
Affiliation(s)
- Florin-Dan Popescu
- Department of Allergology, “Carol Davila” University of Medicine and Pharmacy, Bucharest 022441, Romania
- Department of Allergology and Clinical Immunology, “Nicolae Malaxa” Clinical Hospital, Bucharest 022441, Romania
| | - Mariana Vieru
- Department of Allergology, “Carol Davila” University of Medicine and Pharmacy, Bucharest 022441, Romania
- Department of Allergology and Clinical Immunology, “Nicolae Malaxa” Clinical Hospital, Bucharest 022441, Romania
| |
Collapse
|
46
|
Anzaghe M, Schülke S, Scheurer S. Virus-Like Particles as Carrier Systems to Enhance Immunomodulation in Allergen Immunotherapy. Curr Allergy Asthma Rep 2018; 18:71. [PMID: 30362017 DOI: 10.1007/s11882-018-0827-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Utilization of virus-like particles (VLPs) is considered to improve allergen-specific immunotherapy (AIT). AIT aims at the efficient uptake of the target allergen by antigen-presenting cells (APCs) subsequently inducing adaptive allergen-specific immune responses to induce tolerance. The purpose of this review is to describe the immune-modulating properties of VLPs per se and to summarize the application of VLPs as antigen carriers, preferably for Th2 cytokines or allergens, with and without simultaneous administration of adjuvants in order to modulate allergic immune responses. RECENT FINDINGS Currently, a broad variety of approaches considering the origin of the VLPs, the choice of the adjuvant and antigen, and the coupling of the antigen are under preclinical investigation. The data provide evidence that VLPs used as carrier for antigens/allergens strongly increase antigen immunogenicity, and might be suitable to prevent allergies. However, systematic studies in mice showing the immunological mechanism and data from clinical studies are scarce.
Collapse
Affiliation(s)
- Martina Anzaghe
- Product Testing of Immunological Biomedicines, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Schülke
- Section Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str. 51-59, D-63225, Langen, Germany
| | - Stephan Scheurer
- Section Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich Str. 51-59, D-63225, Langen, Germany.
| |
Collapse
|
47
|
Valenta R, Karaulov A, Niederberger V, Zhernov Y, Elisyutina O, Campana R, Focke-Tejkl M, Curin M, Namazova-Baranova L, Wang JY, Pawankar R, Khaitov M. Allergen Extracts for In Vivo Diagnosis and Treatment of Allergy: Is There a Future? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1845-1855.e2. [PMID: 30297269 PMCID: PMC6390933 DOI: 10.1016/j.jaip.2018.08.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
Today, in vivo allergy diagnosis and allergen-specific immunotherapy (AIT) are still based on allergen extracts obtained from natural allergen sources. Several studies analyzing the composition of natural allergen extracts have shown severe problems regarding their quality such as the presence of undefined nonallergenic materials, contaminants as well as high variabilities regarding contents and biological activity of individual allergens. Despite the increasing availability of sophisticated analytical technologies, these problems cannot be overcome because they are inherent to allergen sources and methods of extract production. For in vitro allergy diagnosis problems related to natural allergen extracts have been largely overcome by the implementation of recombinant allergen molecules that are defined regarding purity and biological activity. However, no such advances have been made for allergen preparations to be used in vivo for diagnosis and therapy. No clinical studies have been performed for allergen extracts available for in vivo allergy diagnosis that document safety, sensitivity, and specificity of the products. Only for very few therapeutic allergen extracts state-of-the-art clinical studies have been performed that provide evidence for safety and efficacy. In this article, we discuss problems related to the inconsistent quality of products based on natural allergen extracts and share our observations that most of the products available for in vivo diagnosis and AIT do not meet the international standards for medicinal products. We argue that a replacement of natural allergen extracts by defined recombinantly produced allergen molecules and/or mixtures thereof may be the only way to guarantee the supply of clinicians with state-of-the-art medicinal products for in vivo diagnosis and treatment of allergic patients in the future.
Collapse
Affiliation(s)
- Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia; Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Alexander Karaulov
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Verena Niederberger
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Yury Zhernov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| | | | - Raffaela Campana
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Margarete Focke-Tejkl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Leyla Namazova-Baranova
- Department of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Jiu-Yao Wang
- Center for Allergy and Immunology Research (ACIR), College of Medicine, National Cheng Kung University (Hospital), Tainan, Taiwan
| | - Ruby Pawankar
- Division of Allergy, Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
| |
Collapse
|
48
|
Susibalan BD, Abdullah B, Mat Lazim N, Abdul Kadir A. Efficacy of snakehead fish (Channa striatus) in subjects with allergic rhinitis: a randomized controlled trial. ORIENTAL PHARMACY AND EXPERIMENTAL MEDICINE 2018; 18:209-215. [DOI: 10.1007/s13596-018-0327-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/12/2018] [Indexed: 10/16/2023]
|
49
|
Chen KW, Marusciac L, Tamas PT, Valenta R, Panaitescu C. Ragweed Pollen Allergy: Burden, Characteristics, and Management of an Imported Allergen Source in Europe. Int Arch Allergy Immunol 2018; 176:163-180. [PMID: 29788026 DOI: 10.1159/000487997] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/22/2018] [Indexed: 12/30/2022] Open
Abstract
Ambrosia artemisiifolia, also known as common or short ragweed, is an invasive annual flowering herbaceous plant that has its origin in North America. Nowadays, ragweed can be found in many areas worldwide. Ragweed pollen is known for its high potential to cause type I allergic reactions in late summer and autumn and represents a major health problem in America and several countries in Europe. Climate change and urbanization, as well as long distance transport capacity, enhance the spread of ragweed pollen. Therefore ragweed is becoming domestic in non-invaded areas which in turn will increase the sensitization rate. So far 11 ragweed allergens have been described and, according to IgE reactivity, Amb a 1 and Amb a 11 seem to be major allergens. Sensitization rates of the other allergens vary between 10 and 50%. Most of the allergens have already been recombinantly produced, but most of them have not been characterized regarding their allergenic activity, therefore no conclusion on the clinical relevance of all the allergens can be made, which is important and necessary for an accurate diagnosis. Pharmacotherapy is the most common treatment for ragweed pollen allergy but fails to impact on the course of allergy. Allergen-specific immunotherapy (AIT) is the only causative and disease-modifying treatment of allergy with long-lasting effects, but currently it is based on the administration of ragweed pollen extract or Amb a 1 only. In order to improve ragweed pollen AIT, new strategies are required with higher efficacy and safety.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, Timisoara, Romania.,Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Laura Marusciac
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, Timisoara, Romania.,Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Paul Tudor Tamas
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, Timisoara, Romania.,Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Carmen Panaitescu
- OncoGen Center, Pius Brinzeu County Clinical Emergency Hospital, Timisoara, Romania.,Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|