1
|
Zhang Y, Bagley J, Park HJ, Cao X, Maganto-Garcia E, Lichtman A, Beasley D, Galper JB. Toll-Like Receptor 2 Attenuates the Formation and Progression of Angiotensin II-Induced Abdominal Aortic Aneurysm in ApoE-/- Mice. J Vasc Res 2024; 61:304-317. [PMID: 39467520 DOI: 10.1159/000541651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
INTRODUCTION We demonstrated Toll-like receptor (TLR) 4 in the pathogenesis of angiotensin II (AngII)-mediated abdominal aortic aneurysm (AAA) formation. Here, we study TLR2 in the AAA formation. METHODS Male ApoE-/- and ApoE-/-TLR2-/- mice were treated with AngII. Mice were injected with the TLR2 agonist Pam3CSK4. The incidence and severity of AAA were determined. MCP-1, MCP-5, RANTES, CXCL10, CCR5, and CXCR3 were analyzed. M1 and M2 macrophages in the aorta were detected by flow cytometry. RESULTS These studies demonstrated an increase in AAA formation in TLR2-/- mice and a decrease by Pam3CSK4. Pam3CSK4 decreased the ratio of M1/M2 and the levels of RANTES, CXCL10, CCR5, and CXCR3. Furthermore, Pam3CSK4 treatment 1 week following AngII retarded the progression of AAA. CONCLUSION These data demonstrated a protective effect of TLR2 signaling on AAA in association with a decrease in the ratio of M1 to M2 macrophages and the expression of chemokines and their receptors. Furthermore, the treatment of Pam3CSK4 after AngII demonstrated a marked retardation of lesion progression. Given the fact that most AAA patients are detected late in the disease process, these findings suggest that TLR2 stimulation may play a therapeutic role in retarding disease progression.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Abdominal/genetics
- Toll-Like Receptor 2/metabolism
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/deficiency
- Angiotensin II
- Male
- Mice, Knockout, ApoE
- Macrophages/metabolism
- Macrophages/pathology
- Macrophages/drug effects
- Disease Models, Animal
- Disease Progression
- Lipopeptides/pharmacology
- Signal Transduction
- Mice, Inbred C57BL
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/drug effects
- Receptors, CXCR3/metabolism
- Receptors, CXCR3/genetics
- Receptors, CCR5/metabolism
- Receptors, CCR5/genetics
- Mice
- Time Factors
- Apolipoproteins E
Collapse
Affiliation(s)
- Yali Zhang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Jessamyn Bagley
- Department of Immunology, Tufts School of Medicine, Boston, Massachusetts, USA
| | - Ho-Jin Park
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Xuehong Cao
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Elena Maganto-Garcia
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Lichtman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Debbie Beasley
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Jonas B Galper
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
- Cardiovascular Division, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Chen Z, Chen T, Lin R, Zhang Y. Circulating inflammatory proteins and abdominal aortic aneurysm: A two-sample Mendelian randomization and colocalization analyses. Cytokine 2024; 182:156700. [PMID: 39033731 DOI: 10.1016/j.cyto.2024.156700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES Inflammatory proteins are implicated in the progression of abdominal aortic aneurysms (AAA); however, it remains debated whether they are causal or consequential. This study aimed to assess the influence of circulating inflammatory proteins on AAA via two-sample Mendelian randomization (MR) and colocalization analysis. METHODS Summary data on 91 circulating inflammatory protein levels were extracted from a comprehensive protein quantitative trait loci (pQTL) study involving 14,824 individuals. Genetic associations with AAA were derived from the FinnGen study (3,869 cases and 381,977 controls). MR analysis was conducted to assess the relationships between proteins and AAA risk. Colocalization analysis was employed to explore potential shared causal variants between identified proteins and AAA. RESULTS Using a two-sample bidirectional MR study, our findings suggested that genetically predicted elevated levels of TGFB1 (OR = 1.21, P = 0.003), SIRT2 (OR = 1.196, P = 0.031) and TNFSF14 (OR = 1.129, P = 0.034) were linked to an increased risk of AAA. Conversely, genetically predicted higher levels of CD40 (OR = 0.912, P = 0.049), IL2RB (OR = 0.839, P = 0.028) and KITLG (OR = 0.827, P = 0.008) were associated with a decreased risk of AAA. Colocalization analyses supported the association of TGFB1 and SIRT2 levels with AAA risk. CONCLUSIONS The proteome-wide MR and colocalization study identified TGFB1 and SIRT2 as being associated with the risk of AAA, warranting further investigation as potential therapeutic targets.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Vascular Surgery, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China
| | - Tingting Chen
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ruimin Lin
- Department of Vascular Surgery, Beijing Haidian Hospital, Beijing Haidian Section of Peking University Third Hospital, Beijing, China.
| | - Yue Zhang
- Department of Hematology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Jagos J, Schwarz D, Polzer S, Bursa J. Effect of aortic bifurcation geometry on pressure and peak wall stress in abdominal aorta: Fluid-structure interaction study. Med Eng Phys 2023; 118:104014. [PMID: 37536835 DOI: 10.1016/j.medengphy.2023.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/03/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Geometry of aorto-iliac bifurcation may affect pressure and wall stress in aorta and thus potentially serve as a predictor of abdominal aortic aneurysm (AAA), similarly to hypertension. METHODS Effect of aorto-iliac bifurcation geometry was investigated via parametric analysis based on two-way weakly coupled fluid-structure interaction simulations. The arterial wall was modelled as isotropic hyperelastic monolayer, and non-Newtonian behaviour was introduced for the fluid. Realistic boundary conditions of the pulsatile blood flow were used on the basis of experiments in literature and their time shift was tailored to the pulse wave velocity in the model to obtain physiological wave shapes. Eighteen idealized and one patient-specific geometries of human aortic tree with common iliac and renal arteries were considered with different angles between abdominal aorta (AA) and both iliac arteries and different area ratios (AR) of iliac and aortic luminal cross sections. RESULTS Peak wall stress (PWS) and systolic blood pressure (SBP) were insensitive to the aorto-iliac angles but sensitive to the AR: when AR decreased by 50%, the PWS and SBP increased by up to 18.4% and 18.8%, respectively. CONCLUSIONS Lower AR (as a result of the iliac stenosis or aging), rather than the aorto-iliac angles increases the BP in the AA and may be thus a risk factor for the AAA development.
Collapse
Affiliation(s)
- Jiri Jagos
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic.
| | - David Schwarz
- Department of Applied Mechanics, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Stanislav Polzer
- Department of Applied Mechanics, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Jiri Bursa
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| |
Collapse
|
4
|
Guo X, Cai D, Dong K, Li C, Xu Z, Chen SY. DOCK2 Deficiency Attenuates Abdominal Aortic Aneurysm Formation-Brief Report. Arterioscler Thromb Vasc Biol 2023; 43:e210-e217. [PMID: 37021575 PMCID: PMC10212530 DOI: 10.1161/atvbaha.122.318400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a potentially lethal disease that lacks pharmacological treatment. Degradation of extracellular matrix proteins, especially elastin laminae, is the hallmark for AAA development. DOCK2 (dedicator of cytokinesis 2) has shown proinflammatory effects in several inflammatory diseases and acts as a novel mediator for vascular remodeling. However, the role of DOCK2 in AAA formation remains unknown. METHODS Ang II (angiotensin II) infusion of ApoE-/- (apolipoprotein E deficient) mouse and topical elastase-induced AAA combined with DOCK2-/- (DOCK2 knockout) mouse models were used to study DOCK2 function in AAA formation/dissection. The relevance of DOCK2 to human AAA was examined using human aneurysm specimens. Elastin fragmentation in AAA lesion was observed by elastin staining. Elastin-degrading enzyme MMP (matrix metalloproteinase) activity was measured by in situ zymography. RESULTS DOCK2 was robustly upregulated in AAA lesion of Ang II-infused ApoE-/- mice, elastase-treated mice, as well as human AAA lesions. DOCK2-/- significantly attenuated the Ang II-induced AAA formation/dissection or rupture in mice along with reduction of MCP-1 (monocyte chemoattractant protein-1) and MMP expression and activity. Accordingly, the elastin fragmentation observed in ApoE-/- mouse aorta infused with Ang II and elastase-treated aorta was significantly attenuated by DOCK2 deficiency. Moreover, DOCK2-/- decreased the prevalence and severity of aneurysm formation, as well as the elastin degradation observed in the topical elastase model. CONCLUSIONS Our results indicate that DOCK2 is a novel regulator for AAA formation. DOCK2 regulates AAA development by promoting MCP-1 and MMP2 expression to incite vascular inflammation and elastin degradation.
Collapse
Affiliation(s)
- Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Dunpeng Cai
- Department of Surgery, School of Medicine, The University of Missouri, Columbia, MO, USA
| | - Kun Dong
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Chenxiao Li
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Zaiyan Xu
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| | - Shi-You Chen
- Department of Surgery, School of Medicine, The University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology & Physiology, School of Medicine, The University of Missouri, Columbia, MO, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Peng C, Zou L, Hou K, Liu Y, Jiang X, Fu W, Yang Y, Bou-Said B, Wang S, Dong Z. Material parameter identification of the proximal and distal segments of the porcine thoracic aorta based on ECG-gated CT angiography. J Biomech 2022; 138:111106. [DOI: 10.1016/j.jbiomech.2022.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
|
7
|
Ren J, Wu J, Tang X, Chen S, Wang W, Lv Y, Wu L, Yang D, Zheng Y. Ageing- and AAA-associated differentially expressed proteins identified by proteomic analysis in mice. PeerJ 2022; 10:e13129. [PMID: 35637715 PMCID: PMC9147329 DOI: 10.7717/peerj.13129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a disease of high prevalence in old age, and its incidence gradually increases with increasing age. There were few studies about differences in the circulatory system in the incidence of AAA, mainly because younger patients with AAA are fewer and more comorbid nonatherosclerotic factors. Method We induced AAA in ApoE-/- male mice of different ages (10 or 24 weeks) and obtained plasma samples. After the top 14 most abundant proteins were detected, the plasma was analyzed by a proteomic study using the data-dependent acquisition (DDA) technique. The proteomic results were compared between different groups to identify age-related differentially expressed proteins (DEPs) in the circulation that contribute to AAA formation. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analyses were performed by R software. The top 10 proteins were determined with the MCC method of Cytoscape, and transcription factor (TF) prediction of the DEPs was performed with iRegulon (Cytoscape). Results The aortic diameter fold increase was higher in the aged group than in the youth group (p < 0.01). Overall, 92 DEPs related to age and involved in AAA formation were identified. GO analysis of the DEPs showed enrichment of the terms wounding healing, response to oxidative stress, regulation of body fluid levels, ribose phosphate metabolic process, and blood coagulation. The KEGG pathway analysis showed enrichment of the terms platelet activation, complement and coagulation cascades, glycolysis/gluconeogenesis, carbon metabolism, biosynthesis of amino acids, and ECM-receptor interaction. The top 10 proteins were Tpi1, Eno1, Prdx1, Ppia, Prdx6, Vwf, Prdx2, Fga, Fgg, and Fgb, and the predicted TFs of these proteins were Nfe2, Srf, Epas1, Tbp, and Hoxc8. Conclusion The identified proteins related to age and involved in AAA formation were associated with the response to oxidative stress, coagulation and platelet activation, and complement and inflammation pathways, and the TFs of these proteins might be potential targets for AAA treatments. Further experimental and biological studies are needed to elucidate the role of these age-associated and AAA-related proteins in the progression of AAA.
Collapse
Affiliation(s)
- Jinrui Ren
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China,State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siliang Chen
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Wei Wang
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Yanze Lv
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Lianglin Wu
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China,State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
A hypothesis-driven study to comprehensively investigate the association between genetic polymorphisms in EPHX2 gene and cardiovascular diseases: Findings from the UK Biobank. Gene X 2022; 822:146340. [PMID: 35183688 DOI: 10.1016/j.gene.2022.146340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Epoxyeicosatrienoic acids (EETs) are protective factors against cardiovascular diseases (CVDs) because of their vasodilatory, cholesterol-lowering, and anti-inflammatory effects. Soluble epoxide hydrolase (sEH), encoded by the EPHX2 gene, degrades EETs into less biologically active metabolites. EPHX2 is highly polymorphic, and genetic polymorphisms in EPHX2 have been linked to various types of CVDs, such as coronary heart disease, essential hypertension, and atrial fibrillation recurrence. METHODS Based on a priori hypothesis that EPHX2 genetic polymorphisms play an important role in the pathogenesis of CVDs, we comprehensively investigated the associations between 210 genetic polymorphisms in the EPHX2 gene and an array of 118 diseases in the circulatory system using a large sample from the UK Biobank (N = 307,516). The diseases in electronic health records were mapped to the phecode system, which was more representative of independent phenotypes. Survival analyses were employed to examine the effects of EPHX2 variants on CVD incidence, and a phenome-wide association study was conducted to study the impact of EPHX2 polymorphisms on 62 traits, including blood pressure, blood lipid levels, and inflammatory indicators. RESULTS A novel association between the intronic variant rs116932590 and the phenotype "aneurysm and dissection of heart" was identified. In addition, the rs149467044 and rs200286838 variants showed nominal evidence of association with arterial aneurysm and cerebrovascular disease, respectively. Furthermore, the variant rs751141, which was linked with a lower hydrolase activity of sEH, was significantly associated with metabolic traits, including blood levels of triglycerides, creatinine, and urate. CONCLUSIONS Multiple novel associations observed in the present study highlight the important role of EPHX2 genetic variation in the pathogenesis of CVDs.
Collapse
|
9
|
Metschl S, Bruder L, Paloschi V, Jakob K, Reutersberg B, Reeps C, Maegdefessel L, Gee M, Eckstein HH, Pelisek J. Changes in endocan and dermatan sulfate are associated with biomechanical properties of abdominal aortic wall during aneurysm expansion and rupture. Thromb Haemost 2022; 122:1513-1523. [PMID: 35170008 DOI: 10.1055/a-1772-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS The study aimed to assess the potential of proteoglycans (PG) and collagens as serological biomarkers in the abdominal aortic aneurysm (AAA). Furthermore, we investigated the underlying mechano-biological interactions and signaling pathways. METHODS Tissue and serum samples from patients with ruptured AAA (rAAA, n=29), elective AAA (eAAA, n=78), and healthy individuals (n=8) were evaluated by histology, immunohistochemistry and Enzyme-linked Immunosorbent Assay (ELISA), mechanical properties were assessed by tensile tests. Regulatory pathways were determined by membrane-based sandwich immunoassay. RESULTS In AAA samples, collagen type I and III (Col1, Col3), chondroitin sulfate (CS), and dermatan sulfate (DS) were significantly increased compared to controls (3.0-, 3.2-, 1.3-, and 53-fold; p<0.01). Col1 and endocan were also elevated in the serum of AAA patients (3.6- and 6.0-fold; p<0.01), while DS was significantly decreased (2.5-fold; p<0.01). Histological scoring showed increased total PGs and focal accumulation in rAAA compared to eAAA. Tissue β-stiffness was higher in rAAA compared to eAAA (2.0-fold, p=0.02). Serum Col1 correlated with maximum tensile force and failure tension (r=0.448 and 0.333; p<0.01 and =0.02), tissue endocan correlated with α-stiffness (r=0.340; p<0.01). Signaling pathways in AAA were associated with ECM synthesis and VSMC proliferation. In particular, Src family kinases, PDGF- and EGF-related proteins seem to be involved. CONCLUSIONS Our findings reveal a structural association between collagen and PGs and their response to changes in mechanical loads in AAA. Particularly Col1 and endocan reflect the mechano-biological conditions of the aortic wall also in the patient's serum and might serve for AAA risk stratification.
Collapse
Affiliation(s)
- Susanne Metschl
- Vascular and Endovascular Surgery, Technical University of Munich School of Medicine, Munchen, Germany
| | - Lukas Bruder
- Mechanics & High Performance Computing Group, Technical University of Munich, Munchen, Germany
| | - Valentina Paloschi
- Vascular and Endovascular surgery, Klinikum rechts der Isar der Technischen Universitat Munchen, Munchen, Germany
| | - Katharina Jakob
- Vascular and Endovascular Surgery, Technical University of Munich School of Medicine, Munchen, Germany
| | | | - Christian Reeps
- Visceral, Thoracic, and Vascular Surgery, Medizinische Fakultät an der TU-Dresden, Dresden, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitat Munchen, Munchen, Germany
| | - Michael Gee
- Mechanics & High Performance Computing Group, Technical University of Munich, Munchen, Germany
| | - Hans-Henning Eckstein
- Vascular and Endovascular Surgery, Technical University of Munich School of Medicine, Munchen, Germany
| | - Jaroslav Pelisek
- Experimental Vascular Surgery, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Bell M, Gandhi R, Shawer H, Tsoumpas C, Bailey MA. Imaging Biological Pathways in Abdominal Aortic Aneurysms Using Positron Emission Tomography. Arterioscler Thromb Vasc Biol 2021; 41:1596-1606. [PMID: 33761759 DOI: 10.1161/atvbaha.120.315812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael Bell
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Richa Gandhi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Heba Shawer
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Charalampos Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Marc A Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| |
Collapse
|
11
|
Newton ER, Akerman AW, Strassle PD, Kibbe MR. Association of Fluoroquinolone Use With Short-term Risk of Development of Aortic Aneurysm. JAMA Surg 2021; 156:264-272. [PMID: 33404647 DOI: 10.1001/jamasurg.2020.6165] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Although fluoroquinolones are commonly prescribed antibiotics in the US, recent international studies have shown an increased risk of aortic aneurysm and dissection after fluoroquinolone use, leading to US Food and Drug Administration warnings limiting use for high-risk patients. It is unclear whether these data are true for the US population and who is truly high risk. Objective To assess aortic aneurysm and dissection risks in a heterogeneous US population after fluoroquinolone use. Design, Setting, and Participants Prescription fills for fluoroquinolones or a comparator antibiotic from 2005 to 2017 among commercially insured individuals aged 18 to 64 years were identified in this retrospective analysis of MarketScan health insurance claims. This cohort study included 27 827 254 US adults (47 596 545 antibiotic episodes), aged 18 to 64 years, with no known previous aortic aneurysm or dissection, no recent antibiotic exposure, and no recent hospitalization. Exposures Outpatient fill of an oral fluoroquinolone or comparator antibiotic (amoxicillin-clavulanate, azithromycin, cephalexin, clindamycin, and sulfamethoxazole-trimethoprim). Main Outcomes and Measures The 90-day incidence of aortic aneurysm and dissection. Inverse probability of treatment weighting in Cox regression was used to estimate the association between fluoroquinolone fill and 90-day aneurysm incidence. Interaction terms were used to assess the association of known risk factors (ie, sex, age, and comorbidities) with aneurysm after fluoroquinolone use. Data analysis was performed March 2019 to May 2020. Results Of 47 596 545 prescription fills, 9 053 961 (19%) were fluoroquinolones and 38 542 584 (81%) were comparator antibiotics. The median (interquartile range) age of adults with fluoroquinolone fills was 47 (36-57) years vs 43 (31-54) years with comparator antibiotic fills. Women comprised 61.3% of fluoroquinolone fills and 59.5% of comparator antibiotic fills. Before weighting, the 90-day incidence of newly diagnosed aneurysm was 7.5 cases per 10 000 fills (6752 of 9 053 961) after fluoroquinolones compared with 4.6 cases per 10 000 fills (17 627 of 38 542 584) after comparator antibiotics. After weighting for demographic characteristics and comorbidities, fluoroquinolone fills were associated with increased incidence of aneurysm formation (hazard ratio [HR], 1.20; 95% CI, 1.17-1.24). More specifically, compared with comparator antibiotics, fluoroquinolone fills were associated with increased 90-day incidence of abdominal aortic aneurysm (HR, 1.31; 95% CI, 1.25-1.37), iliac artery aneurysm (HR, 1.60; 95% CI, 1.33-1.91), and other abdominal aneurysm (HR, 1.58; 95% CI, 1.39-1.79), and adults were more likely to undergo aneurysm repair (HR, 1.88; 95% CI, 1.44-2.46). When stratified by age, all adults 35 years or older appeared at increased risk (18-34 years: HR, 0.99 [95% CI, 0.83-1.18]; 35-49 years: HR, 1.18 [95% CI, 1.09-1.28]; 50-64 years: HR, 1.24 [95% CI, 1.19-1.28]; P = .04). Conclusions and Relevance This study found that fluoroquinolones were associated with increased incidence of aortic aneurysm formation in US adults. This association was consistent across adults aged 35 years or older, sex, and comorbidities, suggesting fluoroquinolone use should be pursued with caution in all adults, not just in high-risk individuals.
Collapse
Affiliation(s)
- Emily R Newton
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill
| | - Adam W Akerman
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill
| | - Paula D Strassle
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill.,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill.,Editor, JAMA Surgery
| |
Collapse
|
12
|
He J, Li N, Fan Y, Zhao X, Liu C, Hu X. Metformin Inhibits Abdominal Aortic Aneurysm Formation through the Activation of the AMPK/mTOR Signaling Pathway. J Vasc Res 2021; 58:148-158. [PMID: 33601368 DOI: 10.1159/000513465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Epidemiological evidence suggests that the antidiabetic drug metformin (MET) can also inhibit abdominal aortic aneurysm (AAA) formation. However, the underlying protective mechanism remains unknown. It has been reported that phosphorylated AMP-activated protein kinase (AMPK) levels are significantly lower in AAA tissues than control aortic tissues. AMPK activation can inhibit the downstream signaling molecule called mechanistic target of rapamycin (mTOR), which has also been reported be upregulated in thoracic aneurysms. Thus, blocking mTOR signaling could attenuate AAA progression. MET is a known agonist of AMPK. Therefore, in this study, we investigated if MET could inhibit formation of AAA by activating the AMPK/mTOR signaling pathway. MATERIALS AND METHODS The AAA animal model was induced by intraluminal porcine pancreatic elastase (PPE) perfusion in male Sprague Dawley rats. The rats were treated with MET or compound C (C.C), which is an AMPK inhibitor. AAA formation was monitored by serial ultrasound. Aortas were collected 4 weeks after surgery and subjected to immunohistochemistry, Western blot, and transmission electron microscopy analyses. RESULTS MET treatment dramatically inhibited the formation of AAA 4 weeks after PPE perfusion. MET reduced the aortic diameter, downregulated both macrophage infiltration and matrix metalloproteinase expression, decreased neovascularization, and preserved the contractile phenotype of the aortic vascular smooth muscle cells. Furthermore, we detected an increase in autophagy after MET treatment. All of these effects were reversed by the AMPK inhibitor C.C. CONCLUSION This study demonstrated that MET activates AMPK and suppresses AAA formation. Our study provides a novel mechanism for MET and suggests that MET could be potentially used as a therapeutic candidate for preventing AAA.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/ultrastructure
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Dilatation, Pathologic
- Disease Models, Animal
- Enzyme Activation
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Metformin/pharmacology
- Neovascularization, Pathologic
- Pancreatic Elastase
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
- Vascular Remodeling/drug effects
- Rats
Collapse
Affiliation(s)
- Jiaan He
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Nan Li
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yichuan Fan
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xingzhi Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Chengwei Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xinhua Hu
- Department of Vascular Surgery, The First Affiliated Hospital, China Medical University, Shenyang, China,
| |
Collapse
|
13
|
Brangsch J, Reimann C, Kaufmann JO, Adams LC, Onthank D, Thöne-Reineke C, Robinson S, Wilke M, Weller M, Buchholz R, Karst U, Botnar R, Hamm B, Makowski MR. Molecular MR-Imaging for Noninvasive Quantification of the Anti-Inflammatory Effect of Targeting Interleukin-1β in a Mouse Model of Aortic Aneurysm. Mol Imaging 2020; 19:1536012120961875. [PMID: 33216687 PMCID: PMC7682246 DOI: 10.1177/1536012120961875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Molecular-MRI is a promising imaging modality for the assessment of abdominal aortic aneurysms (AAAs). Interleukin-1β (IL-1β) represents a new therapeutic tool for AAA-treatment, since pro-inflammatory cytokines are key-mediators of inflammation. This study investigates the potential of molecular-MRI to evaluate therapeutic effects of an anti-IL-1β-therapy on AAA-formation in a mouse-model. Methods: Osmotic-minipumps were implanted in apolipoprotein-deficient-mice (N = 27). One group (Ang-II+01BSUR group, n = 9) was infused with angiotensin-II (Ang-II) for 4 weeks and received an anti-murine IL-1β-antibody (01BSUR) 3 times. One group (Ang-II-group, n = 9) was infused with Ang-II for 4 weeks but received no treatment. Control-group (n = 9) was infused with saline and received no treatment. MR-imaging was performed using an elastin-specific gadolinium-based-probe (0.2 mmol/kg). Results: Mice of the Ang-II+01BSUR-group showed a lower aortic-diameter compared to mice of the Ang-II-group and control mice (p < 0.05). Using the elastin-specific-probe, a significant decrease in elastin-destruction was observed in mice of the Ang-II+01BSUR-group. In vivo MR-measurements correlated well with histopathology (y = 0.34x-13.81, R2 = 0.84, p < 0.05), ICP-MS (y = 0.02x+2.39; R2 = 0.81, p < 0.05) and LA-ICP-MS. Immunofluorescence and western-blotting confirmed a reduced IL-1β-expression. Conclusions: Molecular-MRI enables the early visualization and quantification of the anti-inflammatory-effects of an IL-1β-inhibitor in a mouse-model of AAAs. Responders and non-responders could be identified early after the initiation of the therapy using molecular-MRI.
Collapse
Affiliation(s)
- Julia Brangsch
- Department of Radiology, 14903Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Carolin Reimann
- Department of Radiology, 14903Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Jan Ole Kaufmann
- Department of Radiology, 14903Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lisa Christine Adams
- Department of Radiology, 14903Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - David Onthank
- 128865Lantheus Medical Imaging, North Billerica, MA, USA
| | - Christa Thöne-Reineke
- Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Simon Robinson
- 128865Lantheus Medical Imaging, North Billerica, MA, USA
| | - Marco Wilke
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Michael Weller
- Division 1.5 Protein Analysis, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, 9185Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, 9185Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Rene Botnar
- School of Biomedical Engineering and Imaging Sciences, 4616King's College London, St Thomas' Hospital, London, United Kingdom.,Wellcome Trust/EPSRC Centre for Medical Engineering, 4616King's College London, United Kingdom.,BHF Centre of Excellence, 4616King's College London, Denmark Hill Campus, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernd Hamm
- Department of Radiology, 14903Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Marcus Richard Makowski
- Department of Radiology, 14903Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,School of Biomedical Engineering and Imaging Sciences, 4616King's College London, St Thomas' Hospital, London, United Kingdom.,BHF Centre of Excellence, 4616King's College London, Denmark Hill Campus, London, United Kingdom.,Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
14
|
Mangarova DB, Brangsch J, Mohtashamdolatshahi A, Kosch O, Paysen H, Wiekhorst F, Klopfleisch R, Buchholz R, Karst U, Taupitz M, Schnorr J, Hamm B, Makowski MR. Ex vivo magnetic particle imaging of vascular inflammation in abdominal aortic aneurysm in a murine model. Sci Rep 2020; 10:12410. [PMID: 32709967 PMCID: PMC7381631 DOI: 10.1038/s41598-020-69299-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 01/06/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are currently one of the leading causes of death in developed countries. Inflammation is crucial in the disease progression, having a substantial impact on various determinants in AAAs development. Magnetic particle imaging (MPI) is an innovative imaging modality, enabling the highly sensitive detection of magnetic nanoparticles (MNPs), suitable as surrogate marker for molecular targeting of vascular inflammation. For this study, Apolipoprotein E-deficient-mice underwent surgical implantation of osmotic minipumps with constant Angiotensin II infusion. After 3 and 4 weeks respectively, in-vivo-magnetic resonance imaging (MRI), ex-vivo-MPI and ex-vivo-magnetic particle spectroscopy (MPS) were performed. The results were validated by histological analysis, immunohistology and laser ablation-inductively coupled plasma-mass spectrometry. MR-angiography enabled the visualization of aneurysmal development and dilatation in the experimental group. A close correlation (R = 0.87) with histological area assessment was measured. Ex-vivo-MPS revealed abundant iron deposits in AAA samples and ex-vivo histopathology measurements were in good agreement (R = 0.76). Ex-vivo-MPI and MPS results correlated greatly (R = 0.99). CD68-immunohistology stain and Perls’-Prussian-Blue-stain confirmed the colocalization of macrophages and MNPs. This study demonstrates the feasibility of ex-vivo-MPI for detecting inflammation in AAA. The quantitative ability for mapping MNPs establishes MPI as a promising tool for monitoring inflammatory progression in AAA in an experimental setting.
Collapse
Affiliation(s)
- Dilyana B Mangarova
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany. .,Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, Building 12, 14163, Berlin, Germany.
| | - Julia Brangsch
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, Building 21, 14163, Berlin, Germany
| | - Azadeh Mohtashamdolatshahi
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Olaf Kosch
- Department 8.2-Biosignals, Physikalisch-Technische Bundesanstalt Berlin, Abbestrasse 2-12, 10587, Berlin, Germany
| | - Hendrik Paysen
- Department 8.2-Biosignals, Physikalisch-Technische Bundesanstalt Berlin, Abbestrasse 2-12, 10587, Berlin, Germany
| | - Frank Wiekhorst
- Department 8.2-Biosignals, Physikalisch-Technische Bundesanstalt Berlin, Abbestrasse 2-12, 10587, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, Building 12, 14163, Berlin, Germany
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 30, 48149, Münster, Germany
| | - Matthias Taupitz
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus R Makowski
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Department of Diagnostic and Interventional Radiology, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
15
|
Jones B, Tonniges JR, Debski A, Albert B, Yeung DA, Gadde N, Mahajan A, Sharma N, Calomeni EP, Go MR, Hans CP, Agarwal G. Collagen fibril abnormalities in human and mice abdominal aortic aneurysm. Acta Biomater 2020; 110:129-140. [PMID: 32339711 DOI: 10.1016/j.actbio.2020.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022]
Abstract
Vascular diseases like abdominal aortic aneurysms (AAA) are characterized by a drastic remodeling of the vessel wall, accompanied with changes in the elastin and collagen content. At the macromolecular level, the elastin fibers in AAA have been reported to undergo significant structural alterations. While the undulations (waviness) of the collagen fibers is also reduced in AAA, very little is understood about changes in the collagen fibril at the sub-fiber level in AAA as well as in other vascular pathologies. In this study we investigated structural changes in collagen fibrils in human AAA tissue extracted at the time of vascular surgery and in aorta extracted from angiotensin II (AngII) infused ApoE-/- mouse model of AAA. Collagen fibril structure was examined using transmission electron microscopy and atomic force microscopy. Images were analyzed to ascertain length and depth of D-periodicity, fibril diameter and fibril curvature. Abnormal collagen fibrils with compromised D-periodic banding were observed in the excised human tissue and in remodeled regions of AAA in AngII infused mice. These abnormal fibrils were characterized by statistically significant reduction in depths of D-periods and an increased curvature of collagen fibrils. These features were more pronounced in human AAA as compared to murine samples. Thoracic aorta from Ang II-infused mice, abdominal aorta from saline-infused mice, and abdominal aorta from non-AAA human controls did not contain abnormal collagen fibrils. The structural alterations in abnormal collagen fibrils appear similar to those reported for collagen fibrils subjected to mechanical overload or chronic inflammation in other tissues. Detection of abnormal collagen could be utilized to better understand the functional properties of the underlying extracellular matrix in vascular as well as other pathologies. STATEMENT OF SIGNIFICANCE: Several vascular diseases including abdominal aortic aneurysm (AAA) are characterized by extensive remodeling in the vessel wall. Although structural alterations in elastin fibers are well characterized in vascular diseases, very little is known about the collagen fibril structure in these diseases. We report here a comprehensive ultrastructural evaluation of the collagen fibrils in AAA, using high-resolution microscopy techniques like transmission electron microscopy (TEM) and atomic force microscopy (AFM). We elucidate how abnormal collagen fibrils with compromised D-periodicity and increased fibril curvature are present in the vascular tissue in both clinical AAA as well as in murine models. We discuss how these abnormal collagen fibrils are likely a consequence of mechanical overload accompanying AAA and could impact the functional properties of the underlying tissue.
Collapse
Affiliation(s)
- Blain Jones
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jeffrey R Tonniges
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Anna Debski
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Benjamin Albert
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - David A Yeung
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Nikhit Gadde
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Advitiya Mahajan
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA; Department of Cardiovascular Medicine, Dalton Cardiovascular Research Center, and Medical Pharmacology and Physiology Columbia, University of Missouri, USA
| | - Neekun Sharma
- Department of Cardiovascular Medicine, Dalton Cardiovascular Research Center, and Medical Pharmacology and Physiology Columbia, University of Missouri, USA
| | - Edward P Calomeni
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael R Go
- Division of Vascular Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Chetan P Hans
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA; Department of Cardiovascular Medicine, Dalton Cardiovascular Research Center, and Medical Pharmacology and Physiology Columbia, University of Missouri, USA.
| | - Gunjan Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA; Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
16
|
Ma H, Wang YL, Hei NH, Li JL, Cao XR, Dong B, Yan WJ. AVE0991, a nonpeptide angiotensin-(1-7) mimic, inhibits angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E knockout mice. J Mol Med (Berl) 2020; 98:541-551. [PMID: 32060588 DOI: 10.1007/s00109-020-01880-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
AVE0991, a nonpeptide angiotensin-(1-7) mimic, has similar protective effects for cardiovascular system to Ang-(1-7). In this article, we aimed to explore the effects of AVE0991 and Ang-(1-7) on abdominal aortic aneurysm (AAA) induced by Ang II in apolipoprotein E knockout mice. The mice AAA model was established by Ang II infusion, and then mice received different treatment with saline, Ang II (1.44 mg/kg/day), different dose AVE0991 (0.58 or 1.16 μmol/kg/day), or Ang-(1-7) (400 ng/kg/min). The incidence of AAA was 76%, 48%, 28%, and 24% in the vehicle, the low-dose AVE0991, high-dose AVE0991, and the Ang-(1-7) group, respectively. In comparison with control group, AVE0991 and Ang-(1-7) treatment significantly increased smooth muscle cells and decreased macrophage accumulation, the expression levels of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor α (TNF-α), and the expression and activity of metalloproteinases 2 and 9 in mice AAA model or in human smooth muscle cells (hVSMCs). The therapeutic effects may be contributed to reduction of oxidative stress and downregulation of P38 and ERK1/2 signal pathways via Mas receptor activation, whereas the positive impacts were reversed by co-administration with the Mas antagonist A779 (400 ng/kg/min) and AVE0991 in Ang II-infused mice or in hVSMCs. Therefore, AVE0991 and Ang-(1-7) might be novel and promising interventions in the prevention and treatment of AAA. KEY MESSAGES: • AVE0991 dose-dependently inhibited Ang II-induced AAA formation in Apoe-/- mice. • Ang-(1-7) played the same protective role as high-dose AVE0991. • Inhibition of Mas receptor with A779 could reverse the protective effect of AVE0991. • The therapeutic effects may be contributed to reduction of oxidative stress and downregulation of P38 and ERK1/2 signal pathways via Mas receptor activation.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yu-Lin Wang
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Nai-Hao Hei
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jun-Long Li
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xin-Ran Cao
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Bo Dong
- Department of Pediatrics and Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Wen-Jiang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
17
|
Brangsch J, Reimann C, Kaufmann JO, Adams LC, Onthank DC, Thöne-Reineke C, Robinson SP, Buchholz R, Karst U, Botnar RM, Hamm B, Makowski MR. Concurrent Molecular Magnetic Resonance Imaging of Inflammatory Activity and Extracellular Matrix Degradation for the Prediction of Aneurysm Rupture. Circ Cardiovasc Imaging 2020; 12:e008707. [PMID: 30871334 DOI: 10.1161/circimaging.118.008707] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Molecular magnetic resonance imaging is a promising modality for the characterization of abdominal aortic aneurysms (AAAs). The combination of different molecular imaging biomarkers may improve the assessment of the risk of rupture. This study investigates the feasibility of imaging inflammatory activity and extracellular matrix degradation by concurrent dual-probe molecular magnetic resonance imaging in an AAA mouse model. METHODS Osmotic minipumps with a continuous infusion of Ang II (angiotensin II; 1000 ng/[kg·min]) to induce AAAs were implanted in apolipoprotein-deficient mice (N=58). Animals were assigned to 2 groups. In group 1 (longitudinal group, n=13), imaging was performed once after 1 week with a clinical dose of a macrophage-specific iron oxide-based probe (ferumoxytol, 4 mgFe/kg, surrogate marker for inflammatory activity) and an elastin-specific gadolinium-based probe (0.2 mmol/kg, surrogate marker for extracellular matrix degradation). Animals were then monitored with death as end point. In group 2 (week-by-week-group), imaging with both probes was performed after 1, 2, 3, and 4 weeks (n=9 per group). Both probes were evaluated in 1 magnetic resonance session. RESULTS The combined assessment of inflammatory activity and extracellular matrix degradation was the strongest predictor of AAA rupture (sensitivity 100%; specificity 89%; area under the curve, 0.99). Information from each single probe alone resulted in lower predictive accuracy. In vivo measurements for the elastin- and iron oxide-probe were in good agreement with ex vivo histopathology (Prussian blue-stain: R2=0.96, P<0.001; Elastica van Giesson stain: R2=0.79, P<0.001). Contrast-to-noise ratio measurements for the iron oxide and elastin-probe were in good agreement with inductively coupled mass spectroscopy ( R2=0.88, R2=0.75, P<0.001) and laser ablation coupled to inductively coupled plasma-mass spectrometry. CONCLUSIONS This study demonstrates the potential of the concurrent assessment of inflammatory activity and extracellular matrix degradation by dual-probe molecular magnetic resonance imaging in an AAA mouse model. Based on the combined information from both molecular probes, the rupture of AAAs could reliably be predicted.
Collapse
Affiliation(s)
- Julia Brangsch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (J.B., C.R., J.O.K., L.C.A., B.H., M.R.M.).,Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Germany (J.B., C.R., C.T.-R.)
| | - Carolin Reimann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (J.B., C.R., J.O.K., L.C.A., B.H., M.R.M.).,Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Germany (J.B., C.R., C.T.-R.)
| | - Jan O Kaufmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (J.B., C.R., J.O.K., L.C.A., B.H., M.R.M.).,Federal Institute for Materials Research and Testing (BAM), Division 1.5 Protein Analysis, Berlin, Germany (J.O.K.).,Department of Chemistry, Humboldt-Universität zu Berlin, Germany (J.O.K.)
| | - Lisa C Adams
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (J.B., C.R., J.O.K., L.C.A., B.H., M.R.M.)
| | - David C Onthank
- Lantheus Medical Imaging, North Billerica, MA (D.C.O., S.P.R.)
| | - Christa Thöne-Reineke
- Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Germany (J.B., C.R., C.T.-R.)
| | | | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Germany (R.B., U.K.)
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Germany (R.B., U.K.)
| | - Rene M Botnar
- School of Biomedical Engineering and Imaging Sciences (R.M.B., M.R.M.), King's College London, United Kingdom.,BHF Centre of Excellence (R.M.B., M.R.M.), King's College London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago (R.M.B.)
| | - Bernd Hamm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (J.B., C.R., J.O.K., L.C.A., B.H., M.R.M.)
| | - Marcus R Makowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (J.B., C.R., J.O.K., L.C.A., B.H., M.R.M.).,School of Biomedical Engineering and Imaging Sciences (R.M.B., M.R.M.), King's College London, United Kingdom.,BHF Centre of Excellence (R.M.B., M.R.M.), King's College London, United Kingdom
| |
Collapse
|
18
|
Miner GH, Taubenfeld E, Tadros RO, Han DK, Marin ML. Decreased Abdominal Aortic Aneurysm Size Following EVAR in Patients With CT Evidence of Subclinical Thoracic Aortic Dissection. Ann Vasc Surg 2019; 66:95-103. [PMID: 31706995 DOI: 10.1016/j.avsg.2019.10.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/23/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Aneurysm sac regression following endovascular repair (EVAR) of an abdominal aortic aneurysm (AAA) is an established indicator of surgical success. However, even with a completely excluded aneurysm, the degree of aortic sac regression may vary. This study evaluates the relationship between aneurysm sac regression after EVAR and the presence of morphological features in the thoracic aorta that can be associated with a subclinical aortic dissection, termed dissection morphology in this study. METHODS Patients who underwent EVAR to repair an infrarenal aortic aneurysm at Mount Sinai Hospital between 1996 and 2017 with a postoperative CT scan and a 3-year follow-up scan available for analysis were included in the study. Patients with a type I or type III endoleak were not included. The thoracic aorta was evaluated for dissection morphology on CT scan, which included the presence of aortic dissection, penetrating aortic ulcers, and intramural hematomas. AAA sac regression after EVAR was compared between patients with dissection morphology (n = 157) and patients without those characteristics (n = 141). An independent investigator performed the CT analysis and was blinded to the degree of sac regression. RESULTS Demographics and comorbid clinical conditions were compared between patients with and without dissection morphology. There were no significant differences in age, gender, smoking habits, or cardiovascular conditions. The median AAA diameter after EVAR, over the course of the study, in patients with dissection morphology decreased by 11.30 mm (-17.20, -3.60) compared to a median change of 0.30 mm (-8.60, 8.60) in patients without dissection morphology features (p < 0.001). Patients with dissection morphology also had fewer type II endoleaks in postoperative follow-up scans (22.9% vs. 53.9%, p < 0.001). Additionally, patients with dissection morphology had longer EVAR operative times (192.00 min [167.25, 230.00] vs.174.00 min [150.00, 215.00], p = 0.004). AAA-related mortality after 3 years was not significantly different between the 2 groups (p = 1.0). CONCLUSIONS The presence of imaging features consistent with dissection morphology in the thoracic aorta correlated with greater AAA sac regression and fewer type II endoleaks after EVAR. Assessing these imaging features in patients undergoing EVAR may be useful in understanding aneurysm behavior in terms of aneurysm growth, risk of rupture, and outcomes following endovascular surgery. Identifying differential rates of aneurysm sac regression may have implications regarding the role of subclinical dissections in the etiology of AAA development.
Collapse
Affiliation(s)
- Grace H Miner
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Ella Taubenfeld
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rami O Tadros
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel K Han
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Michael L Marin
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
19
|
Automatic Segmentation, Detection, and Diagnosis of Abdominal Aortic Aneurysm (AAA) Using Convolutional Neural Networks and Hough Circles Algorithm. Cardiovasc Eng Technol 2019; 10:490-499. [PMID: 31218516 DOI: 10.1007/s13239-019-00421-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/08/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE An abdominal aortic aneurysm (AAA) is known as a cardiovascular disease involving localized deformation (swelling or enlargement) of aorta occurring between the renal and iliac arteries. AAA would jeopardize patients' lives due to its rupturing risk, so prompt recognition and diagnosis of this disorder is vital. Although computed tomography angiography (CTA) is the preferred imaging modality used by radiologist for diagnosing AAA, computed tomography (CT) images can be used too. In the recent decade, there has been several methods suggested by experts in order to find a precise automated way to diagnose AAA without human intervention base on CT and CTA images. Despite great approaches in some methods, most of them need human intervention and they are not fully automated. Also, the error rate needs to decrease in other methods. Therefore, finding a novel fully automated with lower error rate algorithm using CTA and CT images for Abdominal region segmentation, AAA detection, and disease severity classification is the main goal of this paper. METHODS The proposed method in this article will be performed in three steps: (1) designing a classifier based on Convolutional Neural Network (CNN) for classifying different parts of abdominal into four different classes such as: abdominal inside region, aorta, body border, and bone. (2) After correct aorta detection, defining its edge and measuring its diameter with the use of Hough Circle Algorithm (which is an algorithm for finding an arbitrary shape in images and measuring its diameter in pixel) is the second step. (3) Ultimately, the detected aorta, depending on its diameter, will be categorized in one of these groups: (a) there is no risk of AAA, (b) there is a medium risk of AAA, and (c) there is a high risk of AAA. RESULTS The designed CNN classifier classifies different parts of abdominal into four different classes such as: abdominal inside region, aorta, body border, and bone with the accuracy, precision, and sensitivity of 97.93, 97.94, and 97.93% respectively. The accuracy of the proposed classifier for aorta region detection is 98.62% and Hough Circles algorithm can classify 120 aorta patches according to their diameter with accuracy of 98.33%. CONCLUSIONS As a whole, a classifier using Convolutional Neural Network is designed and applied in order to detect AAA region among other abdominal regions. Then Hough Circles algorithm is applied to aorta patches for finding aorta border and measuring its diameter. Ultimately, the detected aortas will be categorized according to their diameters. All steps meet the expected results.
Collapse
|
20
|
Zhan Z, Du H, Luo XL, Liu RS, Huang L, Cao CS. Caffeic Acid Phenethyl Ester Inhibits the Progression of Elastase Induced Aortic Aneurysm in Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.385.393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Abstract
Abdominal aortic aneurysm (AAA) is a local dilatation of the abdominal aortic vessel wall and is among the most challenging cardiovascular diseases as without urgent surgical intervention, ruptured AAA has a mortality rate of >80%. Most patients present acutely after aneurysm rupture or dissection from a previously asymptomatic condition and are managed by either surgery or endovascular repair. Patients usually are old and have other concurrent diseases and conditions, such as diabetes mellitus, obesity, and hypercholesterolemia making surgical intervention more difficult. Collectively, these issues have driven the search for alternative methods of diagnosing, monitoring, and treating AAA using therapeutics and less invasive approaches. Noncoding RNAs-short noncoding RNAs (microRNAs) and long-noncoding RNAs-are emerging as new fundamental regulators of gene expression. Researchers and clinicians are aiming at targeting these microRNAs and long noncoding RNAs and exploit their potential as clinical biomarkers and new therapeutic targets for AAAs. While the role of miRNAs in AAA is established, studies on long-noncoding RNAs are only beginning to emerge, suggesting their important yet unexplored role in vascular physiology and disease. Here, we review the role of noncoding RNAs and their target genes focusing on their role in AAA. We also discuss the animal models used for mechanistic understanding of AAA. Furthermore, we discuss the potential role of microRNAs and long noncoding RNAs as clinical biomarkers and therapeutics.
Collapse
Affiliation(s)
- Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering,
Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Reinier A. Boon
- Institute for Cardiovascular Regeneration, Center of
Molecular Medicine, Goethe University, Frankfurt, Germany
- Department of Physiology, Amsterdam Cardiovascular
Sciences, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The
Netherlands
- German Center of Cardiovascular Research DZHK, Frankfurt,
Germany
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm,
Sweden
- Department of Vascular and Endovascular Surgery, Technical
University Munich, Munich, Germany
- German Center for Cardiovascular Research DZHK, Munich,
Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of
Molecular Medicine, Goethe University, Frankfurt, Germany
- German Center of Cardiovascular Research DZHK, Frankfurt,
Germany
- Corresponding authors: Hanjoong Jo, PhD, John and Jan Portman
Professor, Wallace H. Coulter Department of Biomedical Engineering, Emory
University and Georgia Institute of Technology, 1760 Haygood Drive, Atlanta, GA
30322, , Stefanie Dimmeler, PhD, Institute for
Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt, Germany,
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering,
Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Division of Cardiology, Emory University, Atlanta, GA,
USA
- Corresponding authors: Hanjoong Jo, PhD, John and Jan Portman
Professor, Wallace H. Coulter Department of Biomedical Engineering, Emory
University and Georgia Institute of Technology, 1760 Haygood Drive, Atlanta, GA
30322, , Stefanie Dimmeler, PhD, Institute for
Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University
Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt, Germany,
| |
Collapse
|
22
|
Potential Medication Treatment According to Pathological Mechanisms in Abdominal Aortic Aneurysm. J Cardiovasc Pharmacol 2019; 71:46-57. [PMID: 28953105 DOI: 10.1097/fjc.0000000000000540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disease with high mortality. Because of the lack of effective medications to stop or reverse the progression of AAA, surgical operation has become the most predominant recommendation of treatment for patients. There are many potential mechanisms, including inflammation, smooth muscle cell apoptosis, extracellular matrix degradation, oxidative stress, and so on, involving in AAA pathogenesis. According to those mechanisms, some potential therapeutic drugs have been proposed and tested in animal models and even in clinical trials. This review focuses on recent advances in both pathogenic mechanisms and potential pharmacologic therapies of AAA.
Collapse
|
23
|
Kojima K, Kimura S, Hayasaka K, Mizusawa M, Misawa T, Yamakami Y, Sagawa Y, Ohtani H, Hishikari K, Sugiyama T, Hikita H, Takahashi A. Observation of an Asymptomatic Dissecting Aortic Aneurysm Using Non-Obstructive Angioscopy. Int Heart J 2018; 59:1462-1465. [DOI: 10.1536/ihj.18-018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | | | | | | | - Toru Misawa
- Cardiovascular Center, Yokosuka Kyosai Hospital
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang TH, Chi DC, Jiang WL, Qiang S. Marfan syndrome combined with huge abdominal aortic aneurysm size of 20 × 11 cm: A case report of surgical approach. Medicine (Baltimore) 2018; 97:e09398. [PMID: 30212924 PMCID: PMC6156054 DOI: 10.1097/md.0000000000009398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Abdominal aortic aneurysm is one of the most common aneurisms. Patients presenting with secondary back pain should be given prompt medical attention. Herein, a rare case of a giant abdominal aortic aneurysm that was successfully treated with surgery is described. PATIENT CONCERNS A 33-year-old Chinese male suffered from Marfan syndrome combined with giant abdominal aortic aneurysm, and presented with back pain, fever, nausea, vomiting, abdominal distention, and constipation. After undergoing numerous tests, the patient underwent an abdominal aortic aneurysm resection coupled with artificial graft bypass. The patient's recovery was smooth, and he was discharged 14 days after the operation in stable condition. DIAGNOSIS Abdominal aortic aneurysm. INTERVENTIONS The patient underwent a surgery involving mass resection and artificial graft bypass. OUTCOME The patient was discharged 14 days after surgery in stable condition. LESSONS Giant abdominal aortic aneurysms are rarely seen, and aneurysmectomy associated with prosthetic vascular graft repair is an effective and standard treatment for such aneurysms.
Collapse
Affiliation(s)
| | | | | | - Shuai Qiang
- Department of Plastic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
25
|
Akimoto S, Suzuki JI, Aoyama N, Ikeuchi R, Watanabe H, Tsujimoto H, Wakayama K, Kumagai H, Ikeda Y, Akazawa H, Komuro I. A Novel Bioabsorbable Sheet That Delivers NF-κB Decoy Oligonucleotide Restrains Abdominal Aortic Aneurysm Development in Rats. Int Heart J 2018; 59:1134-1141. [PMID: 30101856 DOI: 10.1536/ihj.17-632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
For the suppression of inflammation in the aneurysm development, we focused on inhibition of an important transcription factor, nuclear factor-kappa B (NF-κB), using a decoy strategy. We newly developed a novel bioabsorbable sheet that delivers NF-κB decoy oligodeoxynucleotide (ODN).We treated 5-week-old SD rats that were induced with abdominal aortic aneurysm (AAA) using 0.5 M CaCl2 with an NF-κB decoy sheet. Four weeks after AAA induction, aortic tissue was excised for further examinations. We showed that this bioabsorbable sheet could deliver the decoy ODN into the target tissues and dissolve within a week. Treatment with the NF-κB decoy sheet reduced the aneurysm size compared with the controls. It also suppressed inflammation due to the effect of NF-κB decoy ODN. Immunohistochemistry revealed that the expression of CD31, CD4, and CD11b in the NF-κB decoy sheet group was significantly lower than in the control sheet group. The NF-κB decoy sheet was absorbed on the target tissue.We have revealed that the bioabsorbable sheet mediated decoy ODN is effective for transfection into target organs. We have also indicated that NF-κB decoy ODN transfection using this sheet has the potential to suppress the dilatation of aneurysm. The bioabsorbable sheet mediated transfection of the decoy ODN can be beneficial for the clinical treatment of AAA and other NF-κB-related cardiovascular diseases.
Collapse
Affiliation(s)
- Shouta Akimoto
- Department of Advanced Clinical Science and Therapeutics, School of Medicine, The University of Tokyo
| | - Jun-Ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, School of Medicine, The University of Tokyo
| | - Norio Aoyama
- Department of Oral Interdisciplinary Medicine, Kanagawa Dental University
| | | | | | | | - Kouji Wakayama
- Department of Advanced Clinical Science and Therapeutics, School of Medicine, The University of Tokyo
| | - Hidetoshi Kumagai
- Department of Advanced Clinical Science and Therapeutics, School of Medicine, The University of Tokyo
| | - Yuichi Ikeda
- Department of Cardiovascular Medicine, School of Medicine, The University of Tokyo
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, School of Medicine, The University of Tokyo
| | - Issei Komuro
- Department of Cardiovascular Medicine, School of Medicine, The University of Tokyo
| |
Collapse
|
26
|
Wang SK, Green LA, Gutwein AR, Kenyon B, Motaganahalli RL, Fajardo A, Gupta AK, Murphy MP. Metformin does not reduce inflammation in diabetics with abdominal aortic aneurysm or at high risk of abdominal aortic aneurysm formation. Vascular 2018; 26:608-614. [PMID: 29871586 DOI: 10.1177/1708538118777657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The protective effect of diabetes mellitus on abdominal aortic aneurysm formation and growth has been repeatedly observed in population studies but continues to be poorly understood. However, recent investigations have suggested that metformin, a staple antihyperglycemic medication, may be independently protective against abdominal aortic aneurysm formation and growth. Therefore, we describe the effect of metformin in abdominal aortic aneurysm and at-risk patients on markers of inflammation, the driver of early abdominal aortic aneurysm formation and growth. METHODS Peripheral blood was collected from patients previously diagnosed with abdominal aortic aneurysm or presenting for their U.S. Preventive Task Force-recommended abdominal aortic aneurysm screening. Plasma and circulating peripheral blood mononuclear cells were isolated using Ficoll density centrifugation. Circulating plasma inflammatory and regulatory cytokines were assessed with enzyme-linked immunosorbent assays. CD4+ cell phenotyping was performed using flow cytometric analysis and expressed as a proportion of total CD4+ cells. To determine the circulating antibody to self-antigen response, a modified enzyme-linked immunosorbent assay was performed against antibodies to collagen type V and elastin fragments. RESULTS Peripheral blood was isolated from 266 patients without diabetes mellitus ( n=182), with diabetes mellitus not treated with metformin ( n=34), and with diabetes mellitus actively taking metformin ( n=50) from 2015 to 2017. We found no differences in the expression of Tr1, Th17, and Treg CD4+ fractions within diabetics ± metformin. When comparing inflammatory cytokines, we detected no differences in IL-1β, IL-6, IL-17, IL-23, IFN-γ, and TNF-α. Conversely, no differences were observed pertaining to the expression to regulatory cytokines IL-4, IL-10, IL-13, TSG-6, or TGF-β. Lastly, no differences in expression of collagen type V and elastin fragment antigen and/or antibodies were detected with metformin use in diabetics. CONCLUSION Metformin in diabetics at-risk for abdominal aortic aneurysm or diagnosed with abdominal aortic aneurysm does not seem to alter the peripheral inflammatory environment.
Collapse
Affiliation(s)
- S Keisin Wang
- Department of Surgery, Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, USA
| | - Linden A Green
- Department of Surgery, Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, USA
| | - Ashley R Gutwein
- Department of Surgery, Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, USA
| | - Bianca Kenyon
- Department of Surgery, Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, USA
| | - Raghu L Motaganahalli
- Department of Surgery, Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, USA
| | - Andres Fajardo
- Department of Surgery, Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, USA
| | - Alok K Gupta
- Department of Surgery, Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, USA
| | - Michael P Murphy
- Department of Surgery, Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
27
|
The oral administration of clarithromycin prevents the progression and rupture of aortic aneurysm. J Vasc Surg 2018; 68:82S-92S.e2. [PMID: 29550174 DOI: 10.1016/j.jvs.2017.12.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The pathogenesis of aortic aneurysm (AA) is associated with chronic inflammation in the aortic wall with increased levels of matrix metalloproteinases (MMPs). Clarithromycin (CAM) has been reported to suppresses MMP activity. In this study, we investigated whether CAM could prevent the formation and rupture of AA. METHODS Male apolipoprotein E-deficient mice (28-30 weeks of age) were infused with angiotensin II for 28 days. CAM (100 mg/kg/d) or saline (as a control) was administered orally to the mice every day (CAM group, n = 13; control group, n = 13). After the administration period, the aortic diameter, elastin content, macrophage infiltration, MMP levels, and levels of inflammatory cytokines, including nuclear factor κB (NF-κB), were measured. RESULTS The aortic diameter was significantly suppressed in the CAM group (P < .001). No rupture death was observed in the CAM group in contrast to five deaths (38%) in the control group (P < .01). CAM significantly suppressed the degradation of aortic elastin (56.3% vs 16.5%; P < .001) and decreased the infiltration of inflammatory macrophages (0.05 vs 0.16; P < .01). Compared with the controls, the enzymatic activity of MMP-2 and MMP-9 was significantly reduced in the CAM group (MMP-2, 0.15 vs 0.56 [P < .01]; MMP-9, 0.12 vs 0.60 [P < .01]), and the levels of interleukin 1β (346.6 vs 1066.0; P < .05), interleukin 6 (128.4 vs 346.2; P < .05), and phosphorylation of NF-κB were also decreased (0.3 vs 2.0; P < .01). CONCLUSIONS CAM suppressed the progression and rupture of AA through the suppression of inflammatory macrophage infiltration, a reduction in MMP-2 and MMP-9 activity, and the inhibition of elastin degradation associated with the suppression of NF-κB phosphorylation.
Collapse
|
28
|
Wang X, Zhao R, Zhang H, Zhou M, Zhang M, Qiao T. Levo-Tetrahydropalmatine Attenuates Progression of Abdominal Aortic Aneurysm in an Elastase Perfusion Rat Model via Suppression of Matrix Metalloproteinase and Monocyte Chemotactic Protein-1. Med Sci Monit 2018; 24:652-660. [PMID: 29388563 PMCID: PMC5804302 DOI: 10.12659/msm.906153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Levo-tetrahydropalmatine (L-THP) is a tetrahydro protoberberine isoquinoline alkaloid obtained from the genera Stephania and Corydalis. In the present research, we evaluated the effects of L-THP on the progression of aortic aneurysms (AAs) in experimental rats induced with perfusion of elastase. MATERIAL AND METHODS Thirty-six Sprague-Dawley rats were divided into sham-operated, control, and L-THP treated groups (n=12 in each group). The rats in the control group and the L-THP group received intra-aortic perfusion of elastase to induce AAs; the sham-operated group received perfusion of saline. The rats in the L-THP group received a dose of 15 mg/kg/day, the control and the sham group received saline treatment. The animals were evaluated for aortic diameters (ADs) and systolic blood pressure (SBP) just before and after the elastase perfusion, and 24 days after perfusion. The extracts of the aortas were evaluated by western blotting and immunohistochemistry. RESULTS In the control group, a significant increase in aortic size was observed (p<0.05) compared to the sham group after 24 days post-perfusion, whereas the L-THP group showed a decrease in diameter compared to the control group (p<0.05). The SBP increased significantly in the control group compared to the sham group. The L-THP group showed reduction in SBP, exhibited decreased expression of metalloproteinase and monocyte chemotactic protein-1, and the tissue samples also exhibited significant decreased levels of iNOS compared to the control group. L-THP treatment prevented loss of vascular smooth muscle cells (VSMCs) of the aortic walls. CONCLUSIONS L-THP inhibited progression of AAs in rats by curbing inflammation, oxidative stress, and conserving VSMCs, suggesting a new therapeutic approach for managing AAs.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/pathology
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/physiopathology
- Berberine Alkaloids/pharmacology
- Berberine Alkaloids/therapeutic use
- Blood Pressure/drug effects
- Chemokine CCL2/metabolism
- Disease Models, Animal
- Disease Progression
- Male
- Matrix Metalloproteinases/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Nitric Oxide Synthase Type II/metabolism
- Pancreatic Elastase
- Perfusion
- Rats, Sprague-Dawley
- Staining and Labeling
- Systole/drug effects
Collapse
Affiliation(s)
- Xin Wang
- Department of Vascular Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Department of Vascular Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, P.R. China
| | - Rong Zhao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Nanjing, Changzhou, P.R. China
| | - Honggang Zhang
- Department of Vascular Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Min Zhou
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, P.R. China
| | - Ming Zhang
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, P.R. China
| | - Tong Qiao
- Department of Vascular Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
29
|
Leng X, Zhou B, Deng X, Davis L, Lessner SM, Sutton MA, Shazly T. Experimental and numerical studies of two arterial wall delamination modes. J Mech Behav Biomed Mater 2018; 77:321-330. [DOI: 10.1016/j.jmbbm.2017.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
30
|
Hosoyama K, Saiki Y. Muse Cells and Aortic Aneurysm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:273-291. [PMID: 30484235 DOI: 10.1007/978-4-431-56847-6_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aorta is a well-organized, multilayered structure comprising several cell types, namely, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and fibroblasts, as well as an extracellular matrix (ECM), which includes elastic and collagen fibers. Aortic aneurysms (AAs) are defined as progressive enlargements of the aorta that carries an incremental risk of rupture as the diameter increases over time. The destruction of the aortic wall tissue is triggered by atherosclerosis, inflammation, and oxidative stress, leading to the activation of matrix metalloproteinases (MMPs), and inflammatory cytokines and chemokines, resulting in the loss of the structural back bone of VSMCs, ECM, and ECs. To date, cell-based therapy has been applied to animal models using several types of cells, such as VSMCs, ECs, and mesenchymal stem cells (MSCs). Although these cells indeed deliver beneficial outcomes for AAs, particularly by paracrine and immunomodulatory effects, the attenuation of aneurysmal dilation with a robust tissue repair is insufficient. Meanwhile, multilineage-differentiating stress-enduring (Muse) cells are known to be endogenous non-tumorigenic pluripotent-like stem cells that are included as several percent of MSCs. Since Muse cells are pluripotent-like, they have the ability to differentiate into cells representative of all three germ layers from a single cell and to self-renew. Moreover, Muse cells are able to home to the site of damage following simple intravenous injection and repair the tissue by replenishing new functional cells through spontaneous differentiation into tissue-compatible cells. Given these unique properties, Muse cells are expected to provide an efficient therapeutic efficacy for AA by simple intravenous injection. In this chapter, we summarize several studies on Muse cell therapy for AA including our recent data, in comparison with other kinds of cell therapies.
Collapse
Affiliation(s)
- Katsuhiro Hosoyama
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikatsu Saiki
- Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
31
|
Wang SK, Xie J, Green LA, McCready RA, Motaganahalli RL, Fajardo A, Babbey CC, Murphy MP. TSG-6 is highly expressed in human abdominal aortic aneurysms. J Surg Res 2017; 220:311-319. [PMID: 29180197 PMCID: PMC5864112 DOI: 10.1016/j.jss.2017.06.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND The formation of abdominal aortic aneurysms (AAA) is characterized by a dominance of proinflammatory forces that result in smooth muscle cell apoptosis, extracellular matrix degradation, and progressive diameter expansion. Additional defects in the antiinflammatory response may also play a role but have yet to be fully characterized. TSG-6 (TNF-stimulated gene-6) is a potent antiinflammatory protein involved in extracellular matrix stabilization and cell migration active in many pathological conditions. Here, we describe its role in AAA formation. METHODS Blood and/or aortic tissue samples were collected from organ donors, subjects undergoing elective AAA screening, and open surgical AAA repair. Aortic specimens collected were preserved for IHC or immediately assayed after tissue homogenization. Protein concentrations in tissue and plasma were assayed by ELISA. All immune cell populations were assayed using FACS. In vitro, macrophage polarization from monocytes was performed with young, healthy donor PBMCs. RESULTS TSG-6 was found to be abnormally elevated in both the plasma and aortic wall of patients with AAA compared with healthy and risk-factor matched non-AAA donors. We observed the highest tissue concentration of TSG-6 in the less-diseased proximal and distal shoulders compared with the central aspect of the aneurysm. IHC localized most TSG-6 to the tunica media with minor expression in the tunica adventitia of the aortic wall. Higher concentrations of both M1 and M2 macrophages where also observed, however M1/M2 ratios were unchanged from healthy controls. We observed no difference in M1/M2 ratios in the peripheral blood of risk-factor matched non-AAA and AAA patients. Interesting, TSG-6 inhibited the polarization of the antiinflammatory M2 phenotype in vitro. CONCLUSIONS AAA formation results from an imbalance of inflammatory forces causing aortic wall infiltration of mononuclear cells leading to the vessel breakdown. In the AAA condition, we report an elevation of TSG-6 expression in both the aortic wall and the peripheral circulation.
Collapse
Affiliation(s)
- S Keisin Wang
- Indiana University School of Medicine, Richard Roudebush Veteran Affairs Medical Center, Department of Surgery, Division of Vascular Surgery and Center for Aortic Disease, Indianapolis, Indiana
| | - Jie Xie
- Indiana University School of Medicine, Richard Roudebush Veteran Affairs Medical Center, Department of Surgery, Division of Vascular Surgery and Center for Aortic Disease, Indianapolis, Indiana
| | - Linden A Green
- Indiana University School of Medicine, Richard Roudebush Veteran Affairs Medical Center, Department of Surgery, Division of Vascular Surgery and Center for Aortic Disease, Indianapolis, Indiana
| | - Robert A McCready
- Indiana University School of Medicine, Richard Roudebush Veteran Affairs Medical Center, Department of Surgery, Division of Vascular Surgery and Center for Aortic Disease, Indianapolis, Indiana
| | - Raghu L Motaganahalli
- Indiana University School of Medicine, Richard Roudebush Veteran Affairs Medical Center, Department of Surgery, Division of Vascular Surgery and Center for Aortic Disease, Indianapolis, Indiana
| | - Andres Fajardo
- Indiana University School of Medicine, Richard Roudebush Veteran Affairs Medical Center, Department of Surgery, Division of Vascular Surgery and Center for Aortic Disease, Indianapolis, Indiana
| | - Clifford C Babbey
- Indiana University School of Medicine, Richard Roudebush Veteran Affairs Medical Center, Department of Surgery, Division of Vascular Surgery and Center for Aortic Disease, Indianapolis, Indiana
| | - Michael P Murphy
- Indiana University School of Medicine, Richard Roudebush Veteran Affairs Medical Center, Department of Surgery, Division of Vascular Surgery and Center for Aortic Disease, Indianapolis, Indiana.
| |
Collapse
|
32
|
Ren P, Hughes M, Krishnamoorthy S, Zou S, Zhang L, Wu D, Zhang C, Curci JA, Coselli JS, Milewicz DM, LeMaire SA, Shen YH. Critical Role of ADAMTS-4 in the Development of Sporadic Aortic Aneurysm and Dissection in Mice. Sci Rep 2017; 7:12351. [PMID: 28955046 PMCID: PMC5617887 DOI: 10.1038/s41598-017-12248-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/04/2017] [Indexed: 01/28/2023] Open
Abstract
Sporadic aortic aneurysm and dissections (AADs) are common vascular diseases that carry a high mortality rate. ADAMTS-4 (a disintegrin-like and metalloproteinase with thrombospondin motifs-4) is a secreted proteinase involved in inflammation and matrix degradation. We previously showed ADAMTS-4 levels were increased in human sporadic descending thoracic AAD (TAAD) samples. Here, we provide evidence that ADAMTS-4 contributes to aortic destruction and sporadic AAD development. In a mouse model of sporadic AAD induced by a high-fat diet and angiotensin II infusion, ADAMTS-4 deficiency (Adamts-4−/−) significantly reduced challenge-induced aortic diameter enlargement, aneurysm formation, dissection and aortic rupture. Aortas in Adamts-4−/− mice showed reduced elastic fibre destruction, versican degradation, macrophage infiltration, and apoptosis. Interestingly, ADAMTS-4 was directly involved in smooth muscle cell (SMC) apoptosis. Under stress, ADAMTS-4 translocated to the nucleus in SMCs, especially in apoptotic SMCs. ADAMTS-4 directly cleaved and degraded poly ADP ribose polymerase-1 (a key molecule in DNA repair and cell survival), leading to SMC apoptosis. Finally, we showed significant ADAMTS-4 expression in aortic tissues from patients with sporadic ascending TAAD, particularly in SMCs. Our findings indicate that ADAMTS-4 induces SMC apoptosis, degrades versican, promotes inflammatory cell infiltration, and thus contributes to sporadic AAD development.
Collapse
Affiliation(s)
- Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Michael Hughes
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Swapna Krishnamoorthy
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Sili Zou
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA.,Department of Vascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Darrell Wu
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - John A Curci
- Division of Vascular Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joseph S Coselli
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA.,Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA. .,Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA.
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA. .,Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
33
|
Li G, Qin L, Wang L, Li X, Caulk AW, Zhang J, Chen PY, Xin S. Inhibition of the mTOR pathway in abdominal aortic aneurysm: implications of smooth muscle cell contractile phenotype, inflammation, and aneurysm expansion. Am J Physiol Heart Circ Physiol 2017; 312:H1110-H1119. [PMID: 28213405 DOI: 10.1152/ajpheart.00677.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/18/2022]
Abstract
The development of effective pharmacological treatment of abdominal aortic aneurysm (AAA) potentially offers great benefit to patients with preaneurysmal aortic dilation by slowing the expansion of aneurysms and reducing the need for surgery. To date, therapeutic targets for slowing aortic dilation have had low efficacy. Thus, in this study, we aim to elucidate possible mechanisms driving aneurysm progression to identify potential targets for pharmacological intervention. We demonstrate that mechanistic target of rapamycin (mTOR) signaling is overactivated in aortic smooth muscle cells (SMCs), which contributes to murine AAA. Rapamycin, a typical mTOR pathway inhibitor, dramatically limits the expansion of the abdominal aorta following intraluminal elastase perfusion. Furthermore, reduction of aortic diameter is achieved by inhibition of the mTOR pathway, which preserves and/or restores the contractile phenotype of SMCs and downregulates macrophage infiltration, matrix metalloproteinase expression, and inflammatory cytokine production. Taken together, these results highlight the important role of the mTOR cascade in aneurysm progression and the potential application of rapamycin as a therapeutic candidate for AAA. NEW & NOTEWORTHY This study provides novel observations that mechanistic target of rapamycin (mTOR) signaling is overactivated in aortic smooth muscle cells and contributes to mouse abdominal aortic aneurysm (AAA) and that rapamycin protects against aneurysm development. Our data highlight the importance of preservation and/or restoration of the smooth muscle cell contractile phenotype and reduction of inflammation by mTOR inhibition in AAA.
Collapse
Affiliation(s)
- Guangxin Li
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Lei Wang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xuan Li
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Alexander W. Caulk
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; and
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Pei-Yu Chen
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Sivaraman B, Swaminathan G, Moore L, Fox J, Seshadri D, Dahal S, Stoilov I, Zborowski M, Mecham R, Ramamurthi A. Magnetically-responsive, multifunctional drug delivery nanoparticles for elastic matrix regenerative repair. Acta Biomater 2017; 52:171-186. [PMID: 27884774 DOI: 10.1016/j.actbio.2016.11.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/14/2016] [Accepted: 11/20/2016] [Indexed: 12/23/2022]
Abstract
Arresting or regressing growth of abdominal aortic aneurysms (AAAs), localized expansions of the abdominal aorta are contingent on inhibiting chronically overexpressed matrix metalloproteases (MMPs)-2 and -9 that disrupt elastic matrix within the aortic wall, concurrent with providing a stimulus to augmenting inherently poor auto-regeneration of these matrix structures. In a recent study we demonstrated that localized, controlled and sustained delivery of doxycycline (DOX; a tetracycline-based antibiotic) from poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), enhances elastic matrix deposition and MMP-inhibition at a fraction of the therapeutically effective oral dose. The surface functionalization of these NPs with cationic amphiphiles, which enhances their arterial uptake, was also shown to have pro-matrix regenerative and anti-MMP effects independent of the DOX. Based on the hypothesis that the incorporation of superparamagnetic iron oxide NPs (SPIONs) within these PLGA NPs would enhance their targetability to the AAA site under an applied external magnetic field, we sought to evaluate the functional effects of NPs co-encapsulating DOX and SPIONs (DOX-SPION NPs) on elastic matrix regeneration and MMP synthesis/activity in vitro within aneurysmal smooth muscle cell (EaRASMC) cultures. The DOX-SPION NPs were mobile under an applied external magnetic field, while enhancing elastic matrix deposition 1.5-2-fold and significantly inhibiting MMP-2 synthesis and MMP-2 and -9 activities, compared to NP-untreated control cultures. These results illustrate that the multifunctional benefits of NPs are maintained following SPION co-incorporation. Additionally, preliminary studies carried out demonstrated enhanced targetability of SPION-loaded NPs within proteolytically-disrupted porcine carotid arteries ex vivo, under the influence of an applied external magnetic field. Thus, this dual-agent loaded NP system proffers a potential non-surgical option for treating small growing AAAs, via controlled and sustained drug release from multifunctional, targetable nanocarriers. STATEMENT OF SIGNIFICANCE Proactive screening of high risk elderly patients now enables early detection of abdominal aortic aneurysms (AAAs). There are no established drug-based therapeutic alternatives to surgery for AAAs, which is unsuitable for many elderly patients, and none which can achieve restore disrupted and lost elastic matrix in the AAA wall, which is essential to achieve growth arrest or regression. We have developed a first generation design of polymer nanoparticles (NPs) for AAA tissue localized delivery of doxycycline, a modified tetracycline drug at low micromolar doses at which it provides both pro-elastogenic and anti-proteolytic benefits that can augment elastic matrix regenerative repair. The nanocarriers themselves are also uniquely chemically functionalized on their surface to also provide them pro-elastin-regenerative & anti-matrix degradative properties. To provide an active driving force for efficient uptake of intra-lumenally infused NPs to the AAA wall, in this work, we have rendered our polymer NPs mobile in an applied magnetic field via co-incorporation of super-paramagnetic iron oxide NPs. We demonstrate that such modifications significantly improve wall uptake of the NPs with no significant changes to their physical properties and regenerative benefits. Such NPs can potentially stimulate structural repair in the AAA wall following one time infusion to delay or prevent AAA growth to rupture. The therapy can provide a non-surgical treatment option for high risk AAA patients.
Collapse
|
35
|
Brangsch J, Reimann C, Collettini F, Buchert R, Botnar RM, Makowski MR. Molecular Imaging of Abdominal Aortic Aneurysms. Trends Mol Med 2017; 23:150-164. [PMID: 28110838 DOI: 10.1016/j.molmed.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/06/2016] [Accepted: 12/11/2016] [Indexed: 12/21/2022]
Abstract
Abdominal aortic aneurysms (AAAs) represent a vascular disease with severe complications. AAAs are currently the overall 10th leading cause of death in western countries and their incidence is rising. Although different diagnostic techniques are currently available in clinical practice, including ultrasound (US), magnetic resonance imaging (MRI), and computed tomography (CT), imaging-based prediction of life-threatening complications such as aneurysm-rupture remains challenging. Molecular imaging provides a novel diagnostic approach for in vivo visualization of biological processes and pathological alterations at a cellular and molecular level. Its overall aim is to improve our understanding of disease pathogenesis and to facilitate novel diagnostic pathways. This review outlines recent preclinical and clinical developments in molecular MRI, positron emission tomography (PET), and single-photon emission computed tomography (SPECT) for imaging of AAAs.
Collapse
Affiliation(s)
- Julia Brangsch
- Department of Radiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Carolin Reimann
- Department of Radiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Federico Collettini
- Department of Radiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ralf Buchert
- Department of Radiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - René M Botnar
- Department of Radiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Division of Imaging Sciences and Biomedical Engineering, King's College London, London WC2R 2LS, UK; Wellcome Trust and Engineering and Physical Sciences Research Council (EPSRC) Medical Engineering Centre, King's College London, London SE1 7EH, UK; British Heart Foundation (BHF) Centre of Excellence, King's College London, London SE5 9NU, UK; National Institute for Health Research (NIHR) Biomedical Research Centre, King's College London, London SE1 9RT, UK
| | - Marcus R Makowski
- Department of Radiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Division of Imaging Sciences and Biomedical Engineering, King's College London, London WC2R 2LS, UK.
| |
Collapse
|
36
|
Venkataraman L, Sivaraman B, Vaidya P, Ramamurthi A. Nanoparticulate delivery of agents for induced elastogenesis in three-dimensional collagenous matrices. J Tissue Eng Regen Med 2016; 10:1041-1056. [PMID: 24737693 PMCID: PMC4440849 DOI: 10.1002/term.1889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/04/2013] [Accepted: 02/24/2014] [Indexed: 12/27/2022]
Abstract
The degradation of elastic matrix in the infrarenal aortic wall is a critical parameter underlying the formation and progression of abdominal aortic aneurysms. It is mediated by the chronic overexpression of matrix metalloprotease (MMP)-2 and MMP-9, leading to a progressive loss of elasticity and weakening of the aortic wall. Delivery of therapeutic agents to inhibit MMPs, while concurrently coaxing cell-based regenerative repair of the elastic matrix represents a potential strategy for slowing or arresting abdominal aortic aneurysm growth. Previous studies have demonstrated elastogenic induction of healthy and aneurysmal aortic smooth muscle cells and inhibition of MMPs, following exogenous delivery of elastogenic factors such as transforming growth factor (TGF)-β1, as well as MMP-inhibitors such as doxycycline (DOX) in two-dimensional culture. Based on these findings, and others that demonstrated elastogenic benefits of nanoparticulate delivery of these agents in two-dimensional culture, poly(lactide-co-glycolide) nanoparticles were developed for localized, controlled and sustained delivery of DOX and TGF-β1 to human aortic smooth muscle cells within a three-dimensional gels of type I collagen, which closely simulate the arterial tissue microenvironment. DOX and TGF-β1 released from these nanoparticles influenced elastogenic outcomes positively within the collagen constructs over 21 days of culture, which were comparable to that induced by exogenous supplementation of DOX and TGF-β1 within the culture medium. However, this was accomplished at doses ~20-fold lower than the exogenous dosages of the agents, illustrating that their localized, controlled and sustained delivery from nanoparticles embedded within a three-dimensional scaffold is an efficient strategy for directed elastogenesis. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lavanya Venkataraman
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195
- Department of Bioengineering, Clemson University, Clemson, SC 29634
| | | | - Pratik Vaidya
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195
- Department of Bioengineering, Clemson University, Clemson, SC 29634
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
37
|
Cheuk BLY, Cheng SWK. Expression of Integrin •5•1 and the Relationship to Collagen and Elastin Content in Human Suprarenal and Infrarenal Aortas. Vasc Endovascular Surg 2016; 39:245-51. [PMID: 15920653 DOI: 10.1177/153857440503900305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The infrarenal aorta is especially prone to the development of aneurysm, suggesting an intrinsic structural and molecular difference in different parts of the aorta. Previous study from this laboratory has implicated a potential role of integrin a5b1 in maintaining aortic integrity. The aim of this study was to investigate the expression of integrin a5b1 and the relationship to collagen and elastin content between 2 different aortic segments. In this study, the variation of smooth muscle cells and the localization of integrin a5b1 in the suprarenal and infrarenal aorta tissues removed from organ donors were studied immunohistochemically. The biochemical analysis for matrix proteins and integrin a5b1 protein was done by Western Blot on the corresponding tissues. All interested protein content was normalized to the smooth muscle a-actin protein. No significant difference of smooth muscle cells density between the 2 segments of aortas was observed. Integrin a5b1 was localized in the outer layer of all aortic media. The authors found that the ratio of collagen/elastin in infrarenal aortas was significantly increased 2-fold because elastin content in infrarenal aortas decreased 49% as compared with suprarenal aortas. Integrin a5b1 content relative to its specific ligand — collagen—did not differ between these 2 different aortic segments. These results suggest that the infrarenal aorta differed biochemically from the suprarenal aorta. A decrease in infrarenal elastin without a corresponding decrease in collagen and integrin a5b1 may affect the compliance and integrity of the distal aorta. These intrinsic anatomic differences may be important in the susceptibility of the infrarenal aortas to aneurysm formation.
Collapse
Affiliation(s)
- Bernice L Y Cheuk
- Department of Surgery, University of Hong Kong Medical Centre, Queen Mary Hospital, Hong Kong, China
| | | |
Collapse
|
38
|
Martorell S, Hueso L, Gonzalez-Navarro H, Collado A, Sanz MJ, Piqueras L. Vitamin D Receptor Activation Reduces Angiotensin-II-Induced Dissecting Abdominal Aortic Aneurysm in Apolipoprotein E-Knockout Mice. Arterioscler Thromb Vasc Biol 2016; 36:1587-97. [PMID: 27283745 DOI: 10.1161/atvbaha.116.307530] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 05/27/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a vascular disorder characterized by chronic inflammation of the aortic wall. Low concentrations of vitamin D3 are associated with AAA development; however, the potential direct effect of vitamin D3 on AAA remains unknown. This study evaluates the effect of oral treatment with the vitamin D3 receptor (VDR) ligand, calcitriol, on dissecting AAA induced by angiotensin-II (Ang-II) infusion in apoE(-/-) mice. APPROACH AND RESULTS Oral treatment with calcitriol reduced Ang-II-induced dissecting AAA formation in apoE(-/-) mice, which was unrelated to systolic blood pressure or plasma cholesterol concentrations. Immunohistochemistry and reverse-transcription polymerase chain reaction analysis demonstrated a significant increase in macrophage infiltration, neovessel formation, matrix metalloproteinase-2 and matrix metalloproteinase-9, chemokine (CCL2 [(C-C motif) ligand 2], CCL5 [(C-C motif) ligand 5], and CXCL1 [(C-X-C motif) ligand 1]) and vascular endothelial growth factor expression in suprarenal aortic walls of apoE(-/-) mice infused with Ang-II, and all were significantly reduced by cotreatment with calcitriol. Phosphorylation of extracellular signal-regulated kinases 1/2, p38 mitogen-activated protein kinase, and nuclear factor-κB was also decreased in the suprarenal aortas of apoE(-/-) mice cotreated with calcitriol. These effects were accompanied by a marked increase in VDR-retinoid X receptor (RXR) interaction in the aortas of calcitriol-treated mice. In vitro, VDR activation by calcitriol in human endothelial cells inhibited Ang-II-induced leukocyte-endothelial cell interactions, morphogenesis, and production of endothelial proinflammatory and angiogenic chemokines through VDR-RXR interactions, and knockdown of VDR or RXR abolished the inhibitory effects of calcitriol. CONCLUSIONS VDR activation reduces dissecting AAA formation induced by Ang-II in apoE(-/-) mice and may constitute a novel therapeutic strategy to prevent AAA progression.
Collapse
Affiliation(s)
- Sara Martorell
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.)
| | - Luisa Hueso
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.)
| | - Herminia Gonzalez-Navarro
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.)
| | - Aida Collado
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.)
| | - Maria-Jesus Sanz
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.).
| | - Laura Piqueras
- From the Institute of Health Research-INCLIVA, Department of Pharmacology, Valencia, Spain (S.M., L.H., H.G.-N., A.C., M.-J.S., L.P.); Faculty of Medicine, Department of Pharmacology, University of Valencia, Valencia, Spain (M.-J.S.); and Diabetes and Associated Metabolic Disorders Unit, CIBERDEM, Madrid, Spain (H.G.-N.).
| |
Collapse
|
39
|
Lo RC, Schermerhorn ML. Abdominal aortic aneurysms in women. J Vasc Surg 2016; 63:839-44. [PMID: 26747679 PMCID: PMC4769685 DOI: 10.1016/j.jvs.2015.10.087] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/16/2015] [Indexed: 01/15/2023]
Abstract
Abdominal aortic aneurysm (AAA) has long been recognized as a condition predominantly affecting males, with sex-associated differences described for almost every aspect of the disease from pathophysiology and epidemiology to morbidity and mortality. Women are generally spared from AAA formation by the immunomodulating effects of estrogen, but once they develop, the natural history of AAAs in women appears to be more aggressive, with more rapid expansion, a higher tendency to rupture at smaller diameters, and higher mortality following rupture. However, simply repairing AAAs at smaller diameters in women is a debatable solution, as even elective endovascular AAA repair is fraught with higher morbidity and mortality in women compared to men. The goal of this review is to summarize what is currently known about the effect of gender on AAA presentation, treatment, and outcomes. Additionally, we aim to review current controversies over screening recommendations and threshold for repair in women.
Collapse
Affiliation(s)
- Ruby C Lo
- Beth Israel Deaconess Medical Center, Boston, Mass
| | | |
Collapse
|
40
|
Yan YW, Fan J, Bai SL, Hou WJ, Li X, Tong H. Zinc Prevents Abdominal Aortic Aneurysm Formation by Induction of A20-Mediated Suppression of NF-κB Pathway. PLoS One 2016; 11:e0148536. [PMID: 26918963 PMCID: PMC4769024 DOI: 10.1371/journal.pone.0148536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/19/2016] [Indexed: 01/09/2023] Open
Abstract
Chronic inflammation and degradation of elastin are the main processes in the development of abdominal aortic aneurysm (AAA). Recent studies show that zinc has an anti-inflammatory effect. Based on these, zinc may render effective therapy for the treatment of the AAA. Currently, we want to investigate the effects of zinc on AAA progression and its related molecular mechanism. Rat AAA models were induced by periaortic application of CaCl2. AAA rats were treated by daily intraperitoneal injection of ZnSO4 or vehicle alone. The aorta segments were collected at 4 weeks after surgery. The primary rat aortic vascular smooth muscle cells (VSMCs) were stimulated with TNF-α alone or with ZnSO4 for 3 weeks. The results showed that zinc supplementation significantly suppressed the CaCl2-induced expansion of the abdominal aortic diameter, as well as a preservation of medial elastin fibers in the aortas. Zinc supplementation also obviously attenuated infiltration of the macrophages and lymphocytes in the aortas. In addition, zinc reduced MMP-2 and MMP-9 production in the aortas. Most importantly, zinc treatment significantly induced A20 expression, along with inhibition of the NF-κB canonical signaling pathway in vitro in VSMCs and in vivo in rat AAA. This study demonstrated, for the first time, that zinc supplementation could prevent the development of rat experimental AAA by induction of A20-mediated inhibition of the NF-κB canonical signaling pathway.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/prevention & control
- Cells, Cultured
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Elastin/metabolism
- I-kappa B Kinase/metabolism
- I-kappa B Proteins/metabolism
- Inflammation/metabolism
- Inflammation/prevention & control
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase Inhibitors/pharmacology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Rats
- Rats, Wistar
- Signal Transduction/drug effects
- Tumor Necrosis Factor alpha-Induced Protein 3
- Zinc Sulfate/pharmacology
Collapse
Affiliation(s)
- Ya-Wei Yan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Shu-Ling Bai
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
- * E-mail:
| | - Wei-Jian Hou
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Xiang Li
- Department of Cell Biology, College of Basic Medicine, China Medical University, Shenyang, China
| | - Hao Tong
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| |
Collapse
|
41
|
Wei R, Liu LS, Wang LW, Li YB, Zhang T, Liu J, Zuo SW, Jia SH, Song YX, Wu ZY, Duan C, Ge YY, Li HB, Xiong J, Jia X, Wang X, Kong W, Xu XP, Guo W, Huo Y. Association of Resting Heart Rate with Infrarenal Aortic Diameter: A Cross Sectional Study in Chinese Hypertensive Adults. Eur J Vasc Endovasc Surg 2015; 50:714-21. [PMID: 26474738 DOI: 10.1016/j.ejvs.2015.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/27/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Elevated resting heart rate (RHR) has been shown to be a risk marker for cardiovascular disease. Results from studies on the effects of RHR in large arteries are limited to the functional changes of those arteries, while the association between RHR and aortic diameter remains largely understudied. METHODS This was a cross sectional study of hypertensive Chinese adults from rural areas. The maximum infrarenal aortic diameter (maxIAD) from renal arteries to the iliac bifurcation was obtained by ultrasound. MaxIADs in different RHR groups were compared in males and females separately because of the significant differences between sexes. Multiple regression analysis was used to determinate the correlation between RHR and maxIAD. Further interactions between three factors (BMI, smoking, and anti-hypertensive regimens) and RHR for maxIAD were examined using subgroup analysis. RESULTS 19,200 subjects were enrolled in the study, with an average age of 64.8±7.4 years and 61.6% females. Only 22 cases (0.11%) were detected with AAA, with males (n = 17) presenting a higher AAA incidence than females (n = 5). In subjects ≥65 years, there were 18 (0.19%) AAA, and 15 (83.3%) had a history of smoking. In the total subjects, the mean maxIAD ranged from 15.7±2.1 mm to 15.2±2.2 mm as RHR changed from the lowest quartile to the highest (≥84 bpm) in males, with a similar tendency observed in females. The correlation coefficient of RHR on maxIAD was -0.17 in males and -0.12 in females. Further subgroup analysis revealed that smoking exaggerated the correlation between RHR and maxIAD, but only in females. CONCLUSIONS A low AAA incidence was observed in this hypertensive Chinese population. There was a negative association between RHR and maxIAD, potentially exaggerated by smoking, especially in females.
Collapse
Affiliation(s)
- R Wei
- Department of Vascular and Endovascular Surgery, General Hospital of People's Liberation Army, Beijing, People's Republic of China; School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - L S Liu
- Institute of Biomedicine, Anhui Medical University, Hefei, People's Republic of China
| | - L W Wang
- Institute of Biomedicine, Anhui Medical University, Hefei, People's Republic of China
| | - Y B Li
- National Clinical Research Center for Kidney Diseases, Southern Medical University, Guangzhou, People's Republic of China
| | - T Zhang
- Department of Vascular and Endovascular Surgery, General Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - J Liu
- Department of Vascular and Endovascular Surgery, General Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - S W Zuo
- Department of Vascular and Endovascular Surgery, General Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - S H Jia
- Department of Vascular and Endovascular Surgery, General Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Y X Song
- Department of Vascular and Endovascular Surgery, General Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Z Y Wu
- Department of Vascular and Endovascular Surgery, General Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - C Duan
- Department of Vascular and Endovascular Surgery, General Hospital of People's Liberation Army, Beijing, People's Republic of China; School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Y Y Ge
- Department of Vascular and Endovascular Surgery, General Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - H B Li
- Institute of Biomedicine, Anhui Medical University, Hefei, People's Republic of China
| | - J Xiong
- Department of Vascular and Endovascular Surgery, General Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - X Jia
- Department of Vascular and Endovascular Surgery, General Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - X Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China
| | - W Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, People's Republic of China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China
| | - X P Xu
- Institute of Biomedicine, Anhui Medical University, Hefei, People's Republic of China
| | - W Guo
- Department of Vascular and Endovascular Surgery, General Hospital of People's Liberation Army, Beijing, People's Republic of China.
| | - Y Huo
- Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China.
| |
Collapse
|
42
|
Fibrinolytic PLGA nanoparticles for slow clot lysis within abdominal aortic aneurysms attenuate proteolytic loss of vascular elastic matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:145-156. [PMID: 26652359 DOI: 10.1016/j.msec.2015.09.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/17/2015] [Accepted: 09/13/2015] [Indexed: 01/19/2023]
Abstract
Abdominal aortic aneurysms (AAAs) involve chronic overexpression of proteases in the aortic wall that result in disruption of elastic fibers and consequent loss of vessel elasticity. Nearly 75% of AAAs contain flow-obstructing, fibrin-rich intraluminal thrombi (ILT), which act as a) a bioinert shield, protecting the underlying AAA wall from high hemodynamic stresses, and b) a reservoir of inflammatory cells and proteases that cause matrix breakdown. For these reasons, restoring flow through the aorta lumen and facilitating transmural diffusion of therapeutics from circulation to the AAA wall must be achieved by slow thrombolysis of the ILT to render it porous without rapid breakdown. Intravenously dosed tissue plasminogen activator (tPA) has been shown to rapidly lyse ILTs in acute stroke and myocardial infarctions. For future use in opening up AAA segments, in this study, we investigated the ability of tPA released from poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) to slowly lyse fibrin clots without inducing proteolytic injury and matrix synthesis-inhibitory effects on cultured rat aneurysmal smooth muscle cells (EaRASMCs). Fibrin clot lysis time was greatly extended over that in presence of exogenous tPA. Surface functionalization of NPs with a cationic amphiphile allowed them to bind to anionic fibrin clot, release tPA at a slower rate and to lyse the clot as a front proceeding outwards in unlike the more rapid and homogenous lysis that occurred due to anionic PLGA NPs. Elastic matrix content was decreased in EaRASMC cultures exposed to byproducts of clot lysis with exogenous tPA, but not tPA-NPs, and was likely due to increased proteolytic activity (MMPs, plasmin) in EaRASMC cultures exposed to exogenous tPA-lysed clots. Our results suggest that gradual ILT lysis via slow release of tPA from NPs will be likely beneficial over exogenous tPA delivery in preserving elastic matrix content and attenuating matrilysis in the adjoining AAA wall, in vivo, while rendering the ILT porous to facilitate transmural delivery of endoluminally delivered AAA therapeutics.
Collapse
|
43
|
Angiotensin II-induced TLR4 mediated abdominal aortic aneurysm in apolipoprotein E knockout mice is dependent on STAT3. J Mol Cell Cardiol 2015; 87:160-70. [PMID: 26299839 DOI: 10.1016/j.yjmcc.2015.08.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/22/2022]
Abstract
Abdominal Aortic Aneurysm (AAA) is a major cause of mortality and morbidity in men over 65 years of age. Male apolipoprotein E knockout (ApoE(-/-)) mice infused with angiotensin II (AngII) develop AAA. Although AngII stimulates both JAK/STAT and Toll-like receptor 4 (TLR4) signaling pathways, their involvement in AngII mediated AAA formation is unclear. Here we used the small molecule STAT3 inhibitor, S3I-201, the TLR4 inhibitor Eritoran and ApoE(-/-)TLR4(-/-) mice to evaluate the interaction between STAT3 and TLR4 signaling in AngII-induced AAA formation. ApoE(-/-) mice infused for 28 days with AngII developed AAAs and increased STAT3 activation and TLR4 expression. Moreover, AngII increased macrophage infiltration and the ratio of M1 (pro-inflammatory)/M2 (healing) macrophages in aneurysmal tissue as early as 7-10 days after AngII infusion. STAT3 inhibition with S3I-201 decreased the incidence and severity of AngII-induced AAA formation and decreased MMP activity and the ratio of M1/M2 macrophages. Furthermore, AngII-mediated AAA formation, MMP secretion, STAT3 phosphorylation and the ratio of M1/M2 macrophages were markedly decreased in ApoE(-/-)TLR4(-/-) mice, and in Eritoran-treated ApoE(-/-) mice. TLR4 and pSTAT3 levels were also increased in human aneurysmal tissue. These data support a role of pSTAT3 in TLR4 dependent AAA formation and possible therapeutic roles for TLR4 and/or STAT3 inhibition in AAA.
Collapse
|
44
|
Tanios F, Gee M, Pelisek J, Kehl S, Biehler J, Grabher-Meier V, Wall W, Eckstein HH, Reeps C. Interaction of Biomechanics with Extracellular Matrix Components in Abdominal Aortic Aneurysm Wall. Eur J Vasc Endovasc Surg 2015; 50:167-74. [DOI: 10.1016/j.ejvs.2015.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
|
45
|
Abbas A, Cecelja M, Hussain T, Greil G, Modarai B, Waltham M, Chowienczyk PJ, Smith A. Thoracic but not abdominal phase contrast magnetic resonance-derived aortic pulse wave velocity is elevated in patients with abdominal aortic aneurysm. J Hypertens 2015; 33:1032-8. [DOI: 10.1097/hjh.0000000000000516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Tanweer O, Wilson TA, Metaxa E, Riina HA, Meng H. A comparative review of the hemodynamics and pathogenesis of cerebral and abdominal aortic aneurysms: lessons to learn from each other. J Cerebrovasc Endovasc Neurosurg 2014; 16:335-49. [PMID: 25599042 PMCID: PMC4296046 DOI: 10.7461/jcen.2014.16.4.335] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/13/2014] [Accepted: 10/29/2014] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Cerebral aneurysms (CAs) and abdominal aortic aneurysms (AAAs) are degenerative vascular pathologies that manifest as abnormal dilations of the arterial wall. They arise with different morphologies in different types of blood vessels under different hemodynamic conditions. Although treated as different pathologies, we examine common pathways in their hemodynamic pathogenesis in order to elucidate mechanisms of formation. MATERIALS AND METHODS A systematic review of the literature was performed. Current concepts on pathogenesis and hemodynamics were collected and compared. RESULTS CAs arise as saccular dilations on the cerebral arteries of the circle of Willis under high blood flow, high wall shear stress (WSS), and high wall shear stress gradient (WSSG) conditions. AAAs arise as fusiform dilations on the infrarenal aorta under low blood flow, low, oscillating WSS, and high WSSG conditions. While at opposite ends of the WSS spectrum, they share high WSSG, a critical factor in arterial remodeling. This alone may not be enough to initiate aneurysm formation, but may ignite a cascade of downstream events that leads to aneurysm development. Despite differences in morphology and the structure, CAs and AAAs share many histopathological and biomechanical characteristics. Endothelial cell damage, loss of elastin, and smooth muscle cell loss are universal findings in CAs and AAAs. Increased matrix metalloproteinases and other proteinases, reactive oxygen species, and inflammation also contribute to the pathogenesis of both aneurysms. CONCLUSION Our review revealed similar pathways in seemingly different pathologies. We also highlight the need for cross-disciplinary studies to aid in finding similarities between pathologies.
Collapse
Affiliation(s)
- Omar Tanweer
- Department of Neurosurgery, New York University School of Medicine, NY, United States
| | - Taylor A Wilson
- Department of Neurosurgery, New York University School of Medicine, NY, United States
| | - Eleni Metaxa
- Foundation for Research and Technology - Hellas Institute of Applied and Computational Mathematics, Crete, Greece
| | - Howard A Riina
- Department of Neurosurgery, New York University School of Medicine, NY, United States
| | - Hui Meng
- Toshiba Stroke Research Center, University at Buffalo, NY, United States. ; Department of Mechanical and Aerospace Engineering, University at Buffalo, NY, United States. ; Department of Neurosurgery, University at Buffalo, NY, United States
| |
Collapse
|
47
|
Zampetaki A, Attia R, Mayr U, Gomes RSM, Phinikaridou A, Yin X, Langley SR, Willeit P, Lu R, Fanshawe B, Fava M, Barallobre-Barreiro J, Molenaar C, So PW, Abbas A, Jahangiri M, Waltham M, Botnar R, Smith A, Mayr M. Role of miR-195 in aortic aneurysmal disease. Circ Res 2014; 115:857-66. [PMID: 25201911 DOI: 10.1161/circresaha.115.304361] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Abdominal aortic aneurysms constitute a degenerative process in the aortic wall. Both the miR-29 and miR-15 families have been implicated in regulating the vascular extracellular matrix. OBJECTIVE Our aim was to assess the effect of the miR-15 family on aortic aneurysm development. METHODS AND RESULTS Among the miR-15 family members, miR-195 was differentially expressed in aortas of apolipoprotein E-deficient mice on angiotensin II infusion. Proteomics analysis of the secretome of murine aortic smooth muscle cells, after miR-195 manipulation, revealed that miR-195 targets a cadre of extracellular matrix proteins, including collagens, proteoglycans, elastin, and proteins associated with elastic microfibrils, albeit miR-29b showed a stronger effect, particularly in regulating collagens. Systemic and local administration of cholesterol-conjugated antagomiRs revealed better inhibition of miR-195 compared with miR-29b in the uninjured aorta. However, in apolipoprotein E-deficient mice receiving angiotensin II, silencing of miR-29b, but not miR-195, led to an attenuation of aortic dilation. Higher aortic elastin expression was accompanied by an increase of matrix metalloproteinases 2 and 9 in mice treated with antagomiR-195. In human plasma, an inverse correlation of miR-195 was observed with the presence of abdominal aortic aneurysms and aortic diameter. CONCLUSIONS We provide the first evidence that miR-195 may contribute to the pathogenesis of aortic aneurysmal disease. Although inhibition of miR-29b proved more effective in preventing aneurysm formation in a preclinical model, miR-195 represents a potent regulator of the aortic extracellular matrix. Notably, plasma levels of miR-195 were reduced in patients with abdominal aortic aneurysms suggesting that microRNAs might serve as a noninvasive biomarker of abdominal aortic aneurysms.
Collapse
Affiliation(s)
- Anna Zampetaki
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.).
| | - Rizwan Attia
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Ursula Mayr
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Renata S M Gomes
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Alkystis Phinikaridou
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Xiaoke Yin
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Sarah R Langley
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Peter Willeit
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Ruifang Lu
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Bruce Fanshawe
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Marika Fava
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Javier Barallobre-Barreiro
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Chris Molenaar
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Po-Wah So
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Abeera Abbas
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Marjan Jahangiri
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Matthew Waltham
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Rene Botnar
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Alberto Smith
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.)
| | - Manuel Mayr
- From the King's British Heart Foundation Centre (A.Z., R.A., U.M., R.S.M.G., A.P., X.Y., S.R.L., R.L., B.F., M.F., J.B.-B., C.M., A.A., M.W., R.B., A.S., M.M.) and Institute of Psychiatry (P.-W.S.), King's College London, United Kingdom; Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (P.W.); and Department of Cardiac Surgery, St George's Healthcare NHS Trust, London, United Kingdom (M.F., M.J.).
| |
Collapse
|
48
|
Cook JR, Carta L, Galatioto J, Ramirez F. Cardiovascular manifestations in Marfan syndrome and related diseases; multiple genes causing similar phenotypes. Clin Genet 2014; 87:11-20. [PMID: 24867163 DOI: 10.1111/cge.12436] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 01/08/2023]
Abstract
Cardiovascular abnormalities are the major cause of morbidity and mortality in Marfan syndrome (MFS) and a few clinically related diseases that share, with MFS, the pathogenic contribution of dysregulated transforming growth factor β (TGFβ) signaling. They include Loeys-Dietz syndrome, Shprintzen-Goldberg syndrome, aneurysm-osteoarthritis syndrome and syndromic thoracic aortic aneurysms. Unlike the causal association of MFS with mutations in an extracellular matrix protein (ECM), the aforementioned conditions are due to defects in components of the TGFβ pathway. While TGFβ antagonism is being considered as a potential new therapy for these heritable syndromes, several points still need to be clarified in relevant animal models before this strategy could be safely applied to patients. Among others, unresolved issues include whether elevated TGFβ signaling is responsible for all MFS manifestations and is the common trigger of disease in MFS and related conditions. The scope of our review is to highlight the clinical and experimental findings that have forged our understanding of the natural history and molecular pathogenesis of cardiovascular manifestations in this group of syndromic conditions.
Collapse
Affiliation(s)
- J R Cook
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | | |
Collapse
|
49
|
Peng C, Gu P, Zhou J, Huang J, Wang W. Inhibition of rho-kinase by fasudil suppresses formation and progression of experimental abdominal aortic aneurysms. PLoS One 2013; 8:e80145. [PMID: 24244631 PMCID: PMC3828185 DOI: 10.1371/journal.pone.0080145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022] Open
Abstract
Objective Accumulating evidence suggests that inflammatory cell infiltration is crucial pathogenesis during the initiation and progression of abdominal aortic aneurysm (AAA). Given Rho-kinase (ROCK), an important kinase control the actin cytoskeleton, regulates the inflammatory cell infiltration, thus, we investigate the possibility and mechanism of preventing experimental AAA progression via targeting ROCK in mice porcine pancreatic elastase (PPE) model. Methods and Results AAA was created in 10-week-old male C57BL/6 mice by transient intraluminal porcine pancreatic elastase infusion into the infrarenal aorta. The mRNA level of RhoA, RhoC, ROCK1 and ROCK2 were elevated in aneurismal aorta. Next, PPE infusion mice were orally administrated with vehicle or ROCK inhibitor (Fasudil at dose of 200 mg/kg/day) during the period of day 1 prior to PPE infusion to day 14 after PPE infusion. PPE infusion mice treated with Fasudil produced significantly smaller aneurysms as compare to PPE infusion mice treated with vehicle. AAAs developed in all vehicle-treated groups within 14 days, whereas AAAs developed in six mice (66%, 6/9) treated with Fasudil within 14 days. Furthermore, our semi-quantitative histological analysis revealed that blood vessels and macrophages were significantly reduced in Fasudil treated mice during the AAA progression. Finally, when mice with existing AAAs were treated with Fasudil, the enlargement was nearly completely suppressed. Conclusion Fasudil inhibits experimental AAA progression and stabilize existing aneurysms, through mechanisms likely related to impaired mural macrophage infiltration and angiogenesis. These findings suggest that ROCK inhibitor may hold substantial translational value for AAA diseases.
Collapse
Affiliation(s)
- Chen Peng
- Department of Vascular Surgery,Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Gu
- Department of Vascular Surgery,Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Zhou
- Department of Stomatolog, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhua Huang
- Department of Vascular Surgery,Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Vascular Surgery,Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
50
|
Fu XM, Yamawaki-Ogata A, Oshima H, Ueda Y, Usui A, Narita Y. Intravenous administration of mesenchymal stem cells prevents angiotensin II-induced aortic aneurysm formation in apolipoprotein E-deficient mouse. J Transl Med 2013; 11:175. [PMID: 23875706 PMCID: PMC3726376 DOI: 10.1186/1479-5876-11-175] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/17/2013] [Indexed: 12/31/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are known to be capable of suppressing inflammatory responses. We previously reported that intra-abdominal implantation of bone marrow-derived MSCs (BM-MSCs) sheet by laparotomy attenuated angiotensin II (AngII)-induced aortic aneurysm (AA) growth in apolipoprotein E-deficient (apoE−/−) mice through anti-inflammation effects. However, cell delivery by laparotomy is invasive; we here demonstrated the effects of multiple intravenous administrations of BM-MSCs on AngII-induced AA formation. Methods BM-MSCs were isolated from femurs and tibiae of male apoE−/− mice. Experimental AA was induced by AngII infusion for 28 days in apoE−/− mice. Mice received weekly intravenous administration of BM-MSCs (n=12) or saline (n=10). After 4 weeks, AA formation incidence, aortic diameter, macrophage accumulation, matrix metalloproteinase (MMP)’ activity, elastin content, and cytokines were evaluated. Results AngII induced AA formation in 100% of the mice in the saline group and 50% in the BM-MSCs treatment group (P < 0.05). A significant decrease of aortic diameter was observed in the BM-MSCs treatment group at ascending and infrarenal levels, which was associated with decreased macrophage infiltration and suppressed activities of MMP-2 and MMP-9 in aortic tissues, as well as a preservation of elastin content of aortic tissues. In addition, interleukin (IL)-1β, IL-6, and monocyte chemotactic protein-1 significantly decreased while insulin-like growth factor-1 and tissue inhibitor of metalloproteinases-2 increased in the aortic tissues of BM-MSCs treatment group. Conclusions Multiple intravenous administrations of BM-MSCs attenuated the development of AngII-induced AA in apoE−/− mice and may become a promising alternative therapeutic strategy for AA progression.
Collapse
Affiliation(s)
- Xian-ming Fu
- Department of Cardiothoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya Aichi 466-8550, Japan
| | | | | | | | | | | |
Collapse
|