1
|
Nunes ML, Félix B, Nunes F, Santos I. Systematic development and refinement of a user-centered evidence-based digital toolkit for supporting self-care in gestational diabetes mellitus. Sci Rep 2025; 15:12009. [PMID: 40199963 PMCID: PMC11978992 DOI: 10.1038/s41598-025-96318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Gestational diabetes mellitus (GDM) is a pregnancy complication affecting many women, requiring changes in behaviours, which command them to learn self-care practices shortly. Digital interventions have been developed to support women with GDM. However, they have often overlooked women's needs and characteristics and failed to frame self-care theories into their design. To address this issue, we adopted a mixed methods approach to develop and refine a user-centred, evidence-based digital Toolkit for supporting self-care in GDM, providing behavioural and educational content, particularly about nutrition. To inform the development and refinement of the Toolkit, we conducted a literature review, observed sixty-six nutrition appointments, interviewed eleven dietitians and seventeen patients, and held co-creation sessions with two dietitians, all of which were analysed using a deductive Thematic Analysis. To validate the Toolkit, we conducted a survey with seventeen healthcare professionals, which was analysed using descriptive statistics. The final version of the NUTRIA Toolkit consists of four main modules with thirty-eight artefacts, including behavioural tools to assist women in GDM management. Despite some limitations, this study robustly endorsed the development and refinement of a user-centred, evidence-based Toolkit for supporting self-care in GDM, aiming for future feasibility and trial testing.
Collapse
Affiliation(s)
| | | | | | - Inês Santos
- Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
2
|
Daida T, Shin BC, Cepeda C, Devaskar SU. Neurodevelopment Is Dependent on Maternal Diet: Placenta and Brain Glucose Transporters GLUT1 and GLUT3. Nutrients 2024; 16:2363. [PMID: 39064806 PMCID: PMC11279700 DOI: 10.3390/nu16142363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glucose is the primary energy source for most mammalian cells and its transport is affected by a family of facilitative glucose transporters (GLUTs) encoded by the SLC2 gene. GLUT1 and GLUT3, highly expressed isoforms in the blood-brain barrier and neuronal membranes, respectively, are associated with multiple neurodevelopmental disorders including epilepsy, dyslexia, ADHD, and autism spectrum disorder (ASD). Dietary therapies, such as the ketogenic diet, are widely accepted treatments for patients with the GLUT1 deficiency syndrome, while ameliorating certain symptoms associated with GLUT3 deficiency in animal models. A ketogenic diet, high-fat diet, and calorie/energy restriction during prenatal and postnatal stages can also alter the placental and brain GLUTs expression with long-term consequences on neurobehavior. This review focuses primarily on the role of diet/energy perturbations upon GLUT isoform-mediated emergence of neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomoko Daida
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, at the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.D.); (B.-C.S.)
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, at the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.D.); (B.-C.S.)
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sherin U. Devaskar
- Department of Pediatrics, Division of Neonatology and Developmental Biology and Neonatal Research Center, at the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (T.D.); (B.-C.S.)
| |
Collapse
|
3
|
Wang Y, Sun P, Zhao Z, Yan Y, Yue W, Yang K, Liu R, Huang H, Wang Y, Chen Y, Li N, Feng H, Li J, Liu Y, Chen Y, Shen B, Zhao L, Yin C. Identify gestational diabetes mellitus by deep learning model from cell-free DNA at the early gestation stage. Brief Bioinform 2023; 25:bbad492. [PMID: 38168840 PMCID: PMC10782912 DOI: 10.1093/bib/bbad492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common complication of pregnancy, which has significant adverse effects on both the mother and fetus. The incidence of GDM is increasing globally, and early diagnosis is critical for timely treatment and reducing the risk of poor pregnancy outcomes. GDM is usually diagnosed and detected after 24 weeks of gestation, while complications due to GDM can occur much earlier. Copy number variations (CNVs) can be a possible biomarker for GDM diagnosis and screening in the early gestation stage. In this study, we proposed a machine-learning method to screen GDM in the early stage of gestation using cell-free DNA (cfDNA) sequencing data from maternal plasma. Five thousand and eighty-five patients from north regions of Mainland China, including 1942 GDM, were recruited. A non-overlapping sliding window method was applied for CNV coverage screening on low-coverage (~0.2×) sequencing data. The CNV coverage was fed to a convolutional neural network with attention architecture for the binary classification. The model achieved a classification accuracy of 88.14%, precision of 84.07%, recall of 93.04%, F1-score of 88.33% and AUC of 96.49%. The model identified 2190 genes associated with GDM, including DEFA1, DEFA3 and DEFB1. The enriched gene ontology (GO) terms and KEGG pathways showed that many identified genes are associated with diabetes-related pathways. Our study demonstrates the feasibility of using cfDNA sequencing data and machine-learning methods for early diagnosis of GDM, which may aid in early intervention and prevention of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Yipeng Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, P. R. China
| | - Pei Sun
- BGI-Beijing Clinical Laboratories, BGI-Shenzhen, Beijing 101300, P. R. China
| | - Zicheng Zhao
- Shenzhen Byoryn Technology Co., Ltd., Shenzhen 518118, P. R. China
- Shanxi Keda Research Institute, Taiyuan 030000, P. R. China
| | - Yousheng Yan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, P. R. China
| | - Wentao Yue
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, P. R. China
| | - Kai Yang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, P. R. China
| | - Ruixia Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, P. R. China
| | - Hui Huang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, P. R. China
| | - Yinan Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen 518055, P. R. China
| | - Yin Chen
- Shenzhen Byoryn Technology Co., Ltd., Shenzhen 518118, P. R. China
| | - Nan Li
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, P. R. China
| | - Hailong Feng
- BGI-Beijing Clinical Laboratories, BGI-Shenzhen, Beijing 101300, P. R. China
| | - Jing Li
- Shenzhen Byoryn Technology Co., Ltd., Shenzhen 518118, P. R. China
| | - Yifan Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, P. R. China
| | - Yujiao Chen
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, P. R. China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, 610041, P. R. China
| | - Lijian Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen 518083, P. R. China
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, P. R. China
| |
Collapse
|
4
|
Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci 2022; 16:909762. [PMID: 35937892 PMCID: PMC9354026 DOI: 10.3389/fnins.2022.909762] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Gintare Urbonaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agne Knyzeliene
- Centre for Cardiovascular Science, The Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fanny Sophia Bunn
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Adomas Smalskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022; 199:115012. [PMID: 35393120 PMCID: PMC9050949 DOI: 10.1016/j.bcp.2022.115012] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, CA 94143, United States
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Christopher Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States
| | - Troy A Roepke
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Min Ji Kim
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Etienne Blanc
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Robert Barouki
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, United States
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Dominique Lagadic-Gossmann
- Research Institute for Environmental and Occupational Health, University of Rennes, INSERM, EHESP, Rennes, France
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States.
| |
Collapse
|
6
|
Zorzetto PS, Araújo CSDS, Araújo LF, Roque FDA, Granghelli CA, Leite BGDS, Gonçalves JG, Ceccantini ML, Fagundes NS, Fontinhas-Netto GDV, De Marco M, Surai PF. Replacing dietary sodium selenite with a lower level of hydroxy-selenomethionine improves the performance of broiler breeders and their progeny. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1977727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Priscila Spínola Zorzetto
- Department of Animal Nutritrion and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Brazil
| | - Cristiane Soares da Silva Araújo
- Department of Animal Nutritrion and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Brazil
| | | | | | - Carlos Alexandre Granghelli
- Department of Animal Nutritrion and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Brazil
| | | | | | | | | | | | | | - Peter Fyodorovich Surai
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, Moscow, Russia
- Department of Animal Nutrition, Szent Istvan University, Godollo, Hungary
| |
Collapse
|
7
|
Liu Y, Wang Z, Zhao L. Identification of diagnostic cytosine-phosphate-guanine biomarkers in patients with gestational diabetes mellitus via epigenome-wide association study and machine learning. Gynecol Endocrinol 2021; 37:857-862. [PMID: 34254540 DOI: 10.1080/09513590.2021.1937101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To explore gestational diabetes mellitus (GDM) diagnostic markers and establish the predictive model of GDM. METHODS We downloaded the DNA methylation data of GSE70453 and GSE102177 from the Gene Expression Omnibus database. Epigenome-wide association study (EWAS) was performed to analyze the relationship between cytosine-phosphate-guanine (CpG) methylation and GDM. And then the logistic regression models were constructed, with the β-values of CpG sites as predictor variable and the GDM occurrence as binary outcome variable. Data from GSE70453 served as training sets and data from GSE102177 served as verification sets. RESULTS The EWAS and overlap analysis identified nine-shared significant CpGs in the two DNA methylation data sets. Remarkably, these nine CpGs were differently methylated in GDM samples compared to their matched normal specimens, among which five fully methylated CpGs were finally selected. Importantly, we established a binary logistic regression model based on the above five CpGs, in which cg11169102, cg21179618 and cg21620107 were critical. Hence, we further built a logistic regression model by using the three CpGs and found that the area under the curve was 0.8209. The validation of the model by using the verification sets indicated the area under the curve was 0.8519. CONCLUSIONS We identified potential CpG biomarkers for the diagnosis of gestational diabetes mellitus patients through using EWAS and Logistic regression models in combination.
Collapse
Affiliation(s)
- Yan Liu
- Department of Obstetrics, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Zhenglu Wang
- Biobank, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Lin Zhao
- Department of Obstetrics, Tianjin First Central Hospital, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Identification of Diagnostic CpG Signatures in Patients with Gestational Diabetes Mellitus via Epigenome-Wide Association Study Integrated with Machine Learning. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1984690. [PMID: 34104645 PMCID: PMC8162250 DOI: 10.1155/2021/1984690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Background Gestational diabetes mellitus (GDM) is the most prevalent metabolic disease during pregnancy, but the diagnosis is controversial and lagging partly due to the lack of useful biomarkers. CpG methylation is involved in the development of GDM. However, the specific CpG methylation sites serving as diagnostic biomarkers of GDM remain unclear. Here, we aimed to explore CpG signatures and establish the predicting model for the GDM diagnosis. Methods DNA methylation data of GSE88929 and GSE102177 were obtained from the GEO database, followed by the epigenome-wide association study (EWAS). GO and KEGG pathway analyses were performed by using the clusterProfiler package of R. The PPI network was constructed in the STRING database and Cytoscape software. The SVM model was established, in which the β-values of selected CpG sites were the predictor variable and the occurrence of GDM was the outcome variable. Results We identified 62 significant CpG methylation sites in the GDM samples compared with the control samples. GO and KEGG analyses based on the 62 CpG sites demonstrated that several essential cellular processes and signaling pathways were enriched in the system. A total of 12 hub genes related to the identified CpG sites were found in the PPI network. The SVM model based on the selected CpGs within the promoter region, including cg00922748, cg05216211, cg05376185, cg06617468, cg17097119, and cg22385669, was established, and the AUC values of the training set and testing set in the model were 0.8138 and 0.7576. The AUC value of the independent validation set of GSE102177 was 0.6667. Conclusion We identified potential diagnostic CpG signatures by EWAS integrated with the SVM model. The SVM model based on the identified 6 CpG sites reliably predicted the GDM occurrence, contributing to the diagnosis of GDM. Our finding provides new insights into the cross-application of EWAS and machine learning in GDM investigation.
Collapse
|
9
|
Huerta-Cervantes M, Peña-Montes DJ, López-Vázquez MÁ, Montoya-Pérez R, Cortés-Rojo C, Olvera-Cortés ME, Saavedra-Molina A. Effects of Gestational Diabetes in Cognitive Behavior, Oxidative Stress and Metabolism on the Second-Generation Off-Spring of Rats. Nutrients 2021; 13:1575. [PMID: 34066827 PMCID: PMC8150291 DOI: 10.3390/nu13051575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Gestational diabetes (GD) has a negative impact on neurodevelopment, resulting in cognitive and neurological deficiencies. Oxidative stress (OS) has been reported in the brain of the first-generation offspring of GD rats. OS has been strongly associated with neurodegenerative diseases. In this work, we determined the effect of GD on the cognitive behavior, oxidative stress and metabolism of second-generation offspring. GD was induced with streptozotocin (STZ) in pregnant rats to obtain first-generation offspring (F1), next female F1 rats were mated with control males to obtain second-generation offspring (F2). Two and six-month-old F2 males and females were employed. Anxious-type behavior, spatial learning and spatial working memory were evaluated. In cerebral cortex and hippocampus, the oxidative stress and serum biochemical parameters were measured. Male F2 GD offspring presented the highest level of anxiety-type behavior, whilst females had the lowest level of anxiety-type behavior at juvenile age. In short-term memory, adult females presented deficiencies. The offspring F2 GD females presented modifications in oxidative stress biomarkers in the cerebral cortex as lipid-peroxidation, oxidized glutathione and catalase activity. We also observed metabolic disturbances, particularly in the lipid and insulin levels of male and female F2 GD offspring. Our results suggest a transgenerational effect of GD on metabolism, anxiety-like behavior, and spatial working memory.
Collapse
Affiliation(s)
- Maribel Huerta-Cervantes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| | - Miguel Ángel López-Vázquez
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, Mexico;
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| | - María Esther Olvera-Cortés
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, Mexico;
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.); (C.C.-R.)
| |
Collapse
|
10
|
Impact of the exposome on the development and function of pancreatic β-cells. Mol Aspects Med 2021; 87:100965. [PMID: 33965231 DOI: 10.1016/j.mam.2021.100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
The development and plasticity of the endocrine pancreas responds to both the intrauterine and postnatal exposome in a constant attempt to predict and respond to alterations in nutritional availability and metabolic requirements. Both under- and over-nutrition in utero, or exposure to adverse environmental pollutants or maternal behaviors, can each lead to altered β-cell or function at birth, and a subsequent mismatch in pancreatic hormonal demands and secretory capacity postnatally. This can be further exacerbated by metabolic stress postnatally such as from obesity or pregnancy, resulting in an increased risk of gestational diabetes, type 2 diabetes, and even type 1 diabetes. This review will discuss evidence identifying the cellular pathways in early life whereby the plasticity of the endocrine pancreatic can become pathologically limited. By necessity, much of this evidence has been gained from animal models, although extrapolation to human fetal development is possible from the fetal growth trajectory and study of the newborn. Cellular limitations to plasticity include the balance between β-cell proliferation and apoptosis, the appearance of β-cell oxidative stress, impaired glucose-stimulated insulin secretion, and sensitivity to circulating cytokines and responsiveness to programmed death receptor-1. Evidence suggests that many of the cellular pathways responsible for limiting β-cell plasticity are related to paracrine interactions within the islets of Langerhans.
Collapse
|
11
|
Kawamura T, Tanaka H, Tachibana R, Yoshikawa K, Maki S, Toriyabe K, Takeuchi H, Katsuragi S, Tanaka K, Ikeda T. Maternal tadalafil therapy for fetal growth restriction prevents non-alcoholic fatty liver disease and adipocyte hypertrophy in the offspring. Sci Rep 2021; 11:1186. [PMID: 33441894 PMCID: PMC7806616 DOI: 10.1038/s41598-020-80643-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 12/17/2020] [Indexed: 11/18/2022] Open
Abstract
We aimed to investigate the effects of maternal tadalafil therapy on fetal programming of metabolic function in a mouse model of fetal growth restriction (FGR). Pregnant C57BL6 mice were divided into the control, L-NG-nitroarginine methyl ester (L-NAME), and tadalafil + L-NAME groups. Six weeks after birth, the male pups in each group were given a high-fat diet. A glucose tolerance test (GTT) was performed at 15 weeks and the pups were euthanized at 20 weeks. We then assessed the histological changes in the liver and adipose tissue, and the adipocytokine production. We found that the non-alcoholic fatty liver disease activity score was higher in the L-NAME group than in the control group (p < 0.05). Although the M1 macrophage numbers were significantly higher in the L-NAME/high-fat diet group (p < 0.001), maternal tadalafil administration prevented this change. Moreover, the epididymal adipocyte size was significantly larger in the L-NAME group than in the control group. This was also improved by maternal tadalafil administration (p < 0.05). Further, we found that resistin levels were significantly lower in the L-NAME group compared to the control group (p < 0.05). The combination of exposure to maternal L-NAME and a high-fat diet induced glucose impairment and non-alcoholic fatty liver disease. However, maternal tadalafil administration prevented these complications. Thus, deleterious fetal programming caused by FGR might be modified by in utero intervention with tadalafil.
Collapse
Affiliation(s)
- Takuya Kawamura
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hiroaki Tanaka
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryota Tachibana
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kento Yoshikawa
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shintaro Maki
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kuniaki Toriyabe
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hiroki Takeuchi
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shinji Katsuragi
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kayo Tanaka
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
12
|
Schlatterer SD, du Plessis AJ. Exposures influencing the developing central autonomic nervous system. Birth Defects Res 2020; 113:845-863. [PMID: 33270364 DOI: 10.1002/bdr2.1847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Autonomic nervous system function is critical for transition from in-utero to ex-utero life and is associated with neurodevelopmental and neuropsychiatric outcomes later in life. Adverse prenatal and neonatal conditions and exposures can impair or alter ANS development and, as a result, may also impact long-term neurodevelopmental outcomes. The objective of this article is to provide a broad overview of the impact of factors that are known to influence autonomic development during the fetal and early neonatal period, including maternal mood and stress during and after pregnancy, fetal growth restriction, congenital heart disease, toxic exposures, and preterm birth. We touch briefly on the typical development of the ANS, then delve into both in-utero and ex-utero maternal and fetal factors that may impact developmental trajectory of the ANS and, thus, have implications in transition and in long-term developmental outcomes. While many types of exposures and conditions have been shown to impact development of the autonomic nervous system, there is still much to be learned about the mechanisms underlying these influences. In the future, more advanced neuromonitoring tools will be required to better understand autonomic development and its influence on long-term neurodevelopmental and neuropsychological function, especially during the fetal period.
Collapse
Affiliation(s)
- Sarah D Schlatterer
- Children's National Hospital, Prenatal Pediatrics Institute, Washington, District of Columbia, USA.,George Washington University School of Health Sciences, Departments of Neurology and Pediatrics, Washington, District of Columbia, USA
| | - Adre J du Plessis
- Children's National Hospital, Prenatal Pediatrics Institute, Washington, District of Columbia, USA.,George Washington University School of Health Sciences, Departments of Neurology and Pediatrics, Washington, District of Columbia, USA
| |
Collapse
|
13
|
de Souza Mesquita LM, Mennitti LV, de Rosso VV, Pisani LP. The role of vitamin A and its pro-vitamin carotenoids in fetal and neonatal programming: gaps in knowledge and metabolic pathways. Nutr Rev 2020; 79:76-87. [DOI: 10.1093/nutrit/nuaa075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Vitamin A (VA) and its pro-vitamin carotenoids are naturally occurring lipophilic compounds involved in several cellular processes and metabolic pathways. Despite their broad spectrum of activities in the general population, dietary deficiencies of these compounds can potentially affect pregnancy outcomes. Since maternal nutritional status and diet composition during pregnancy and lactation can have long-lasting effects in offspring until adulthood, this study presents an overview of VA and the role of pro-VA carotenoids during pregnancy and lactation – the nutrition, metabolism, and biological effects in the offspring. The review aimed to discuss the pro-VA carotenoids and VA-associated pathways and summarize the results with reference to gestational disorders, and VA and pro-VA carotenoids as preventive agents. Also, considering that obesity, overweight, and metabolic diseases are major public health concerns worldwide, fetal and neonatal development is discussed, highlighting the physiological role of these molecules in obesity prevention. This review comprehensively summarizes the current data and shows the potential impact of these compounds on nutritional status in pregnancy and lactation.
Collapse
Affiliation(s)
- Leonardo M de Souza Mesquita
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Vila Mathias, Santos, São Paulo, Brazil
| | - Laís V Mennitti
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Vila Mathias, Santos, São Paulo, Brazil
| | - Veridiana V de Rosso
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Vila Mathias, Santos, São Paulo, Brazil
| | - Luciana P Pisani
- Departamento de Biociências, Laboratório de Nutrição e Fisiologia Endócrina (LaNFE), Universidade Federal de São Paulo, Vila Mathias, Santos, São Paulo, Brazil
| |
Collapse
|
14
|
Asrani P, Pinto NM, Puchalski MD, Ou Z, Silver RM, Zinkhan EK, Heuser CC, Nance A, Miller TA. Maternal Predictors of Disparate Outcomes in Children With Single Ventricle Congenital Heart Disease. J Am Heart Assoc 2020; 9:e014363. [PMID: 32515252 PMCID: PMC7429050 DOI: 10.1161/jaha.119.014363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Significant variability in morbidity and mortality persists for children with functionally single ventricle congenital heart disease (SV-CHD) despite standardization in medical and surgical care. We hypothesized that maternal health factors may be associated with an increased risk of poor outcomes in children with SV-CHD. Methods and Results This retrospective, observational, cohort study included term maternal-infant pairs with a diagnosis of SV-CHD who underwent surgical palliation from 2006 to 2015 at Primary Children's Hospital. Pairs lacking maternal variables of interest or infant follow-up data were excluded. The association of maternal risk factors of abnormal pre-pregnancy body mass index, abnormal gestational weight gain (<7 or >20 kg), hypertensive disorders, and gestational diabetes mellitus with death/transplant and hemodynamics were analyzed using regression models. Of 190 infants, 135 (71%) maternal-infant dyads had complete data for inclusion. Death or transplant occurred in 48 infants (36%) during an average follow-up of 2.2 years (0.1-11.7 years). Abnormal gestational weight gain was associated with an increased risk of death and/or transplant in logistic regression (odds ratio, 3.22; 95% CI, 1.32-7.86; P=0.01), but not Cox regression (hazard ratio, 1.9; 95% CI, 1.0-3.7; P=0.055). Mean pulmonary artery pressures were higher in the setting of abnormal gestational weight gain (16.5±2.9 versus 14.7±3.0 mm Hg; P<0.001), and abnormal pre-pregnancy body mass index (15.7±3.5 versus 14.2±2.1 mm Hg; P<0.001) in the systemic right ventricle group. Conclusions Abnormal gestational weight gain (excessive or inadequate) is a novel risk factor for worse outcomes in SV-CHD. The fetoplacental environment may alter the trajectory of vascular development to impact outcomes in infants with SV-CHD.
Collapse
Affiliation(s)
- Priyanka Asrani
- Division of Pediatric CardiologyDepartment of PediatricsUniversity of UtahSalt Lake CityUT
| | - Nelangi M. Pinto
- Division of Pediatric CardiologyDepartment of PediatricsUniversity of UtahSalt Lake CityUT
| | - Michael D. Puchalski
- Division of Pediatric CardiologyDepartment of PediatricsUniversity of UtahSalt Lake CityUT
| | - Zhining Ou
- Center for Clinical and Translational Science Study Design and Biostatistics CenterUniversity of UtahSalt Lake CityUT
| | - Robert M. Silver
- Division of Maternal‐Fetal MedicineDepartment of Obstetrics and GynecologyUniversity of UtahSalt Lake CityUT
| | - Erin K. Zinkhan
- Division of NeonatologyDepartment of PediatricsUniversity of UtahSalt Lake CityUT
| | - Cara C. Heuser
- Division of Maternal‐Fetal MedicineDepartment of Obstetrics and GynecologyUniversity of UtahSalt Lake CityUT
| | - Amy Nance
- Utah Birth Defects NetworkUtah Department of HealthSalt Lake CityUT
| | - Thomas A. Miller
- Division of Pediatric CardiologyDepartment of PediatricsUniversity of UtahSalt Lake CityUT
| |
Collapse
|
15
|
Huerta-Cervantes M, Peña-Montes DJ, Montoya-Pérez R, Trujillo X, Huerta M, López-Vázquez MÁ, Olvera-Cortés ME, Saavedra-Molina A. Gestational Diabetes Triggers Oxidative Stress in Hippocampus and Cerebral Cortex and Cognitive Behavior Modifications in Rat Offspring: Age- and Sex-Dependent Effects. Nutrients 2020; 12:nu12020376. [PMID: 32023917 PMCID: PMC7071266 DOI: 10.3390/nu12020376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/04/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes (GD) has been linked with an increased risk of developing metabolic disorders and behavioral abnormalities in the offspring. Oxidative stress is strongly associated with neurodegeneration and cognitive disruption. In the offspring brains in a GD experimental rat model, increased oxidative stress in the prenatal and postnatal stages was reported. However, long-term alterations to offspring behavior and oxidative stress, caused by changes in the cerebral cortex and hippocampus, remain unclear. In this study, we evaluated the effect of GD on young and adult male and female rat offspring in metabolic parameters, cognitive behavior, and oxidative stress. GD was induced using streptozotocin in dams. Next, the offspring were evaluated at two and six months of age. Anxiety-like behavior was evaluated using the elevated plus maze and open field maze; spatial learning and short-term memory were evaluated using the Morris water maze and radial maze, respectively. We determined oxidative stress biomarkers (reactive oxygen species (ROS), lipid peroxidation and glutathione status) and antioxidant enzymes (superoxide dismutase and catalase) in the brain of offspring. We observed that male GD offspring showed a reduced level of anxiety at both ages as they spent less time in the closed arms of the elevated plus maze at adult age ((P = 0.019, d = 1.083 ( size effect)) and spent more time in the open area of an open field (P = 0.0412, d = 0.743) when young and adult age (P = 0.018, d = 0.65). Adult female GD offspring showed a reduced level of anxiety (P = 0.036; d = 0.966), and young female GD offspring showed a deficiency in spatial learning (P = 0.0291 vs. control, d = 3.207). Adult male GD offspring showed a deficiency in short-term memory (P = 0.017, d = 1.795). We found an increase in ROS and lipid peroxidation, a disruption in the glutathione status, and decreased activity of catalase and superoxide dismutase (P < 0.05 vs. control, d > 1.0), in the cerebral cortex and hippocampus of male and female GD offspring. GD altered metabolism; male offspring of both ages and adult females showed a high level of triglycerides and a lower level of high-density lipoprotein-cholesterol (P < 0.05 vs. control, d > 1.0). Young and adult female offspring displayed higher insulin levels (P < 0.05, d > 1.0). These results suggest that gestational diabetes modifies oxidative stress and cognitive behavior in an age- and sex-dependent manner.
Collapse
Affiliation(s)
- Maribel Huerta-Cervantes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mich., Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.)
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mich., Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.)
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, Colima, Mexico; (X.T.); (M.H.)
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mich., Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.)
| | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, Colima, Mexico; (X.T.); (M.H.)
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, Colima, Mexico; (X.T.); (M.H.)
| | - Miguel Ángel López-Vázquez
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58341 Morelia, Mich., Mexico;
| | - María Esther Olvera-Cortés
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58341 Morelia, Mich., Mexico;
- Correspondence: (A.S.-M.); (M.E.O-C.); Tel.: +52-443-326-5790 (A.S.-M.); + 52-443-322-2600 (M.E.O-C.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mich., Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.)
- Correspondence: (A.S.-M.); (M.E.O-C.); Tel.: +52-443-326-5790 (A.S.-M.); + 52-443-322-2600 (M.E.O-C.)
| |
Collapse
|
16
|
Environmental Exposures during Puberty: Window of Breast Cancer Risk and Epigenetic Damage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020493. [PMID: 31941024 PMCID: PMC7013753 DOI: 10.3390/ijerph17020493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
During puberty, a woman’s breasts are vulnerable to environmental damage (“window of vulnerability”). Early exposure to environmental carcinogens, endocrine disruptors, and unhealthy foods (refined sugar, processed fats, food additives) are hypothesized to promote molecular damage that increases breast cancer risk. However, prospective human studies are difficult to perform and effective interventions to prevent these early exposures are lacking. It is difficult to prevent environmental exposures during puberty. Specifically, young women are repeatedly exposed to media messaging that promotes unhealthy foods. Young women living in disadvantaged neighborhoods experience additional challenges including a lack of access to healthy food and exposure to contaminated air, water, and soil. The purpose of this review is to gather information on potential exposures during puberty. In future directions, this information will be used to help elementary/middle-school girls to identify and quantitate environmental exposures and develop cost-effective strategies to reduce exposures.
Collapse
|
17
|
Bittle J, Menezes EC, McCormick ML, Spitz DR, Dailey M, Stevens HE. The Role of Redox Dysregulation in the Effects of Prenatal Stress on Embryonic Interneuron Migration. Cereb Cortex 2019; 29:5116-5130. [PMID: 30877797 PMCID: PMC7199998 DOI: 10.1093/cercor/bhz052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 01/09/2023] Open
Abstract
Maternal stress during pregnancy is associated with increased risk of psychiatric disorders in offspring, but embryonic brain mechanisms disrupted by prenatal stress are not fully understood. Our lab has shown that prenatal stress delays inhibitory neural progenitor migration. Here, we investigated redox dysregulation as a mechanism for embryonic cortical interneuron migration delay, utilizing direct manipulation of pro- and antioxidants and a mouse model of maternal repetitive restraint stress starting on embryonic day 12. Time-lapse, live-imaging of migrating GAD67GFP+ interneurons showed that normal tangential migration of inhibitory progenitor cells was disrupted by the pro-oxidant, hydrogen peroxide. Interneuron migration was also delayed by in utero intracerebroventricular rotenone. Prenatal stress altered glutathione levels and induced changes in activity of antioxidant enzymes and expression of redox-related genes in the embryonic forebrain. Assessment of dihydroethidium (DHE) fluorescence after prenatal stress in ganglionic eminence (GE), the source of migrating interneurons, showed increased levels of DHE oxidation. Maternal antioxidants (N-acetylcysteine and astaxanthin) normalized DHE oxidation levels in GE and ameliorated the migration delay caused by prenatal stress. Through convergent redox manipula-tions, delayed interneuron migration after prenatal stress was found to critically involve redox dysregulation. Redox biology during prenatal periods may be a target for protecting brain development.
Collapse
Affiliation(s)
- Jada Bittle
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, USA
| | - Edenia C Menezes
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd, Iowa City, IA, USA
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, B180 Medical Laboratories, Iowa City, IA, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, B180 Medical Laboratories, Iowa City, IA, USA
| | - Michael Dailey
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, 2312 PBDB, 169 Newton Rd, Iowa City, IA, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, 2312 PBDB, 169 Newton Rd, Iowa City, IA, USA
| |
Collapse
|
18
|
Zhu Z, Cao F, Li X. Epigenetic Programming and Fetal Metabolic Programming. Front Endocrinol (Lausanne) 2019; 10:764. [PMID: 31849831 PMCID: PMC6901800 DOI: 10.3389/fendo.2019.00764] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
Fetal metabolic programming caused by the adverse intrauterine environment can induce metabolic syndrome in adult offspring. Adverse intrauterine environment introduces fetal long-term relatively irreversible changes in organs and metabolism, and thus causes fetal metabolic programming leading metabolic syndrome in adult offspring. Fetal metabolic programming of obesity and insulin resistance plays a key role in this process. The mechanism of fetal metabolic programming is still not very clear. It is suggested that epigenetic programming, also induced by the adverse intrauterine environment, is a critical underlying mechanism of fetal metabolic programming. Fetal epigenetic programming affects gene expression changes and cellular function through epigenetic modifications without DNA nucleotide sequence changes. Epigenetic modifications can be relatively stably retained and transmitted through mitosis and generations, and thereby induce the development of metabolic syndrome in adult offspring. This manuscript provides an overview of the critical role of epigenetic programming in fetal metabolic programming.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Children's Hospital of Soochow University, Suzhou, China
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Fang Cao
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Xiaozhong Li
- Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Hawkins LJ, Storey KB. Advances and applications of environmental stress adaptation research. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110623. [PMID: 31778815 DOI: 10.1016/j.cbpa.2019.110623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Evolution has produced animals that survive extreme fluctuations in environmental conditions including freezing temperatures, anoxia, desiccating conditions, and prolonged periods without food. For example, the wood frog survives whole-body freezing every winter, arresting all gross physiological functions, but recovers functions upon thawing in the spring. Likewise, many small mammals hibernate for months at a time with minimal metabolic activity, organ perfusion, and movement, yet do not suffer significant muscle atrophy upon arousal. These conditions and the biochemical adaptations employed to deal with them can be viewed as Nature's answer to problems that humans wish to answer, particularly in a biomedical context. This review focuses on recent advances in the field of animal environmental stress adaptation, starting with an emphasis on new areas of research such as epigenetics and microRNA. We then examine new and emerging technologies such as genome editing, novel sequencing applications, and single cell analysis and how these can push us closer to a deeper understanding of biochemical adaptation. Next, evaluate the potential contributions of new high-throughput technologies (e.g. next-generation sequencing, mass spectrometry proteomics) to better understanding the adaptations that support these extreme phenotypes. Concluding, we examine some of the human applications that can be gained from understanding the principles of biochemical adaptation including organ preservation and treatments for conditions such as ischemic stroke and muscle disuse atrophy.
Collapse
Affiliation(s)
- Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
20
|
Systemic endocrinopathies (thyroid conditions and diabetes): impact on postnatal life of the offspring. Fertil Steril 2019; 111:1076-1091. [PMID: 31155115 DOI: 10.1016/j.fertnstert.2019.04.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022]
Abstract
Fetal programming may influence childhood and adult life, determining the risk of specific diseases. During earlier stages of pregnancy, the transfer of maternal thyroid hormones to the fetus is vital for adequate neurologic development. The presence of severe maternal thyroid dysfunction, particularly severe iodine deficiency, is devastating, leading to irreversible neurologic sequelae. Moreover, mild maternal thyroid conditions, such as a mild-to-moderate iodine deficiency, may also lead to milder neurologic and behavioral conditions later during the life of the offspring. Maternal dysglycemia due to pregestational or gestational diabetes mellitus is another common situation in which fetal development encounters a hostile environment. Hyperglycemia in utero may trigger metabolic conditions in the offspring, including abnormalities of glucose tolerance and weight excess. Physicians assisting pregnant women have to be aware about these conditions, because they may go unnoticed if not properly screened. Because an early diagnosis and appropriate management may prevent most of the possible negative consequences for the progeny, the prevention, early diagnosis, and proper management of these endocrine conditions should be offered to all women undergoing pregnancy. Here, we comprehensively review the current evidence about the effects of maternal thyroid dysfunction and maternal dysglycemia on the cognitive function and carbohydrate metabolism in the offspring, two prevalent conditions of utmost importance for the child's health and development.
Collapse
|
21
|
Milk Fat Globule Membrane Supplementation Promotes Neonatal Growth and Alleviates Inflammation in Low-Birth-Weight Mice Treated with Lipopolysaccharide. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4876078. [PMID: 31187046 PMCID: PMC6521396 DOI: 10.1155/2019/4876078] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022]
Abstract
Impaired intestinal mucosal integrity and immunity are frequently observed in low-birth-weight (LBW) animals, which lead to inadequate growth and high neonatal mortality. However, the mechanisms of intestinal dysfunction in LBW animals are still unclear. Milk fat globule membrane (MFGM), a protein-lipid complex surrounding the fat globules in milk, has many healthful benefits for animals. Therefore, this study was conducted to explore the effect of MFGM supplementation on intestinal injury and inflammation in LBW mouse pups while being challenged with lipopolysaccharide (LPS). C57BL/6J LBW female neonatal mice were fed on breast milk and divided into four groups, including two normal diet groups (ND; CON group and LPS group) and the diet supplemented with two dosages of MFGM, namely, MFGM100 (ND plus MFGM at 100 mg/kg BW) and MFGM200 (ND plus MFGM at 200 mg/kg BW) from postnatal day (PND) 4 to PND 21. At PND21, pups from the LPS group, MFGM100 group, and MFGM200 group were injected intraperitoneally with LPS while the pups from the CON group were injected with equivalent volume of sterile saline. After 4 h of LPS administration, all pups were slaughtered and then the plasma, mid-ileum, and mid-colon tissue samples were collected. Our results showed that MFGM supplementation promoted the body weight from PND16 to PND21 and attenuated intestinal inflammation manifested by reduced histological damage, decreased secretion of TNF-α, IL-6, IFN-γ, and IL-1β, and improved oxidative stress characterized by increased SOD activity and decreased secretion of MDA. Expression of tight junction proteins (ZO-1, occludin, and claudin-1), MUC1, and MUC2 was increased in MFGM presupplemented groups compared to the LPS-challenged mice with normal diet. Meanwhile, the expression of proinflammatory cytokines and TLRs was decreased by MFGM presupplementation. Collectively, MFGM is a critical nutrient with an ability to improve the growth performance of LBW mouse pups, especially during the LPS challenge, by promoting the intestinal epithelial integrity and inhibiting inflammation through activating of TLR2 and TLR4 signals.
Collapse
|
22
|
Lobmaier SM, Ortiz JU, Sewald M, Müller A, Schmidt G, Haller B, Oberhoffer R, Schneider KTM, Giussani DA, Wacker-Gussmann A. Influence of gestational diabetes on fetal autonomic nervous system: a study using phase-rectified signal-averaging analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:347-351. [PMID: 28782142 DOI: 10.1002/uog.18823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/02/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES Maternal gestational diabetes mellitus (GDM) is known to influence fetal physiology. Phase-rectified signal averaging (PRSA) is an innovative signal-processing technique that can be used to investigate fetal heart signals. The PRSA-calculated variables average acceleration capacity (AAC) and average deceleration capacity (ADC) are established indices of autonomic nervous system (ANS) function. The aim of this study was to evaluate the influence of GDM on the fetal cardiovascular and ANS function in human pregnancy using PRSA. METHODS This was a prospective clinical case-control study of 58 mothers with diagnosed GDM and 58 gestational-age matched healthy controls in the third trimester of pregnancy. Fetal cardiotocography (CTG) recordings were performed in all cases at entry to the study, and a follow-up recording was performed in 19 GDM cases close to delivery. The AAC and ADC indices were calculated by the PRSA method and fetal heart rate short-term variation (STV) by CTG software according to Dawes-Redman criteria. RESULTS Mean gestational age of both groups at study entry was 35.7 weeks. There was a significant difference in mean AAC (1.97 ± 0.33 bpm vs 2.42 ± 0.57 bpm; P < 0.001) and ADC (1.94 ± 0.32 bpm vs 2.28 ± 0.46 bpm; P < 0.001) between controls and fetuses of diabetic mothers. This difference could not be demonstrated using standard computerized fetal CTG analysis of STV (controls, 10.8 ± 3.0 ms vs GDM group, 11.3 ± 2.5 ms; P = 0.32). Longitudinal fetal heart rate measurements in a subgroup of women with diabetes were not significantly different from those at study entry. CONCLUSIONS Our findings show increased ANS activity in fetuses of diabetic mothers in late gestation. Analysis of human fetal cardiovascular and ANS function by PRSA may offer improved surveillance over conventional techniques linking GDM pregnancy to future cardiovascular dysfunction in the offspring. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- S M Lobmaier
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - J U Ortiz
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - M Sewald
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - A Müller
- Medizinische Klinik und Deutsches Herzzentrum München, Technical University of Munich, Munich, Germany
| | - G Schmidt
- Medizinische Klinik und Deutsches Herzzentrum München, Technical University of Munich, Munich, Germany
| | - B Haller
- Institute for Medical Statistics and Epidemiology (IMSE), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - R Oberhoffer
- Deutsches Herzzentrum München, Klinik für Kinderkardiologie und Angeborene Herzfehler, Munich, Germany
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - K T M Schneider
- Department of Gynecology and Obstetrics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - D A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A Wacker-Gussmann
- Deutsches Herzzentrum München, Klinik für Kinderkardiologie und Angeborene Herzfehler, Munich, Germany
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
23
|
Mohan R, Baumann D, Alejandro EU. Fetal undernutrition, placental insufficiency, and pancreatic β-cell development programming in utero. Am J Physiol Regul Integr Comp Physiol 2018; 315:R867-R878. [PMID: 30110175 DOI: 10.1152/ajpregu.00072.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of obesity and type 2 (T2D) diabetes is a major health concern in the United States and around the world. T2D is a complex disease characterized by pancreatic β-cell failure in association with obesity and insulin resistance in peripheral tissues. Although several genes associated with T2D have been identified, it is speculated that genetic variants account for only <10% of the risk for this disease. A strong body of data from both human epidemiological and animal studies shows that fetal nutrient factors in utero confer significant susceptibility to T2D. Numerous studies done in animals have shown that suboptimal maternal environment or placental insufficiency causes intrauterine growth restriction (IUGR) in the fetus, a critical factor known to predispose offspring to obesity and T2D, in part by causing permanent consequences in total functional β-cell mass. This review will focus on the potential contribution of the placenta in fetal programming of obesity and TD and its likely impact on pancreatic β-cell development and growth.
Collapse
Affiliation(s)
- Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Daniel Baumann
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | - Emilyn Uy Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
24
|
Michalczyk AA, Janus ED, Judge A, Ebeling PR, Best JD, Ackland MJ, Asproloupos D, Dunbar JA, Ackland ML. Transient epigenomic changes during pregnancy and early postpartum in women with and without type 2 diabetes. Epigenomics 2018; 10:419-431. [PMID: 29561170 DOI: 10.2217/epi-2017-0129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AIM To investigate epigenomic changes in pregnancy and early postpartum in women with and without type 2 diabetes. METHODS Dimethylation of histones H3K4, H3K9, H3K27, H3K36 and H3K79 was measured in white blood cells of women at 30 weeks pregnancy, at 8-10 and 20 weeks postpartum and in never-pregnant women. RESULTS Dimethylation levels of all five histones were different between women in pregnancy and early postpartum compared with never-pregnant women and were different between women with and without type 2 diabetes. CONCLUSION Histone methylation changes are transient in pregnancy and early postpartum and may represent normal physiological responses to hormones. Different epigenomic profiles in women with type 2 diabetes mellitus may correlate with hormonal responses, leading to high risk pregnancy outcomes.
Collapse
Affiliation(s)
- Agnes A Michalczyk
- Centre for Cellular & Molecular Biology, School of Life & Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Edward D Janus
- University of Melbourne, Western Centre for Health Research & Education, Western Health, St Albans VIC 3021, Australia.,General Internal Medicine Unit, Western Health, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Alisha Judge
- Centre for Cellular & Molecular Biology, School of Life & Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria 3168, Australia
| | - James D Best
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore
| | - Michael J Ackland
- The Alfred Centre, Monash University, Melbourne, Victoria 3004, Australia
| | - Dino Asproloupos
- Centre for Population Health Research, Faculty of Health, Deakin University, Burwood, Victoria 3125, Australia
| | - James A Dunbar
- Centre for Population Health Research, Faculty of Health, Deakin University, Burwood, Victoria 3125, Australia
| | - M Leigh Ackland
- Centre for Cellular & Molecular Biology, School of Life & Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
25
|
Sun D, Wang T, Heianza Y, Huang T, Shang X, Lv J, Li S, Harville E, Chen W, Fonseca V, Qi L. Birthweight and cardiometabolic risk patterns in multiracial children. Int J Obes (Lond) 2018; 42:20-27. [PMID: 28925411 PMCID: PMC5762398 DOI: 10.1038/ijo.2017.196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/17/2017] [Accepted: 07/23/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVES Prenatal growth, which is widely marked by birthweight, may have a pivotal role in affecting the lifelong risk of cardiometabolic disorders; however, comprehensive evaluation of its relations with childhood cardiometabolic risk patterns and the ethnic and gender disparities in national representative populations is still lacking. The aim of this study was to evaluate the associations between birthweight and comprehensive patterns of cardiometabolic risk in a nationally representative sample of children and adolescents. SUBJECTS/METHODS Prospective analyses were performed using data from 28 153 children 0 to 15 years in the National Health and Nutrition Examination Survey from 1999 through 2014. We defined childhood cardiometabolic disorders using standard definitions for obesity, high blood pressure, hyperglycemia and dyslipidemia. RESULTS Five birthweight categories <2.5, 2.5-3.0, 3.0-3.5, 3.5-4.2 and ⩾4.2 kg accounted for 8.2%, 17.9%, 35.7%, 27.9% and 10.4% of the population, respectively. In all children, with increasing birthweight, we observed significantly increasing trends of the risk of general and central obesity (P for trend <0.01) and significantly decreasing trends of the risk of high systolic blood pressure (SBP), high HbA1c and low high-density lipoprotein cholesterol (HDL-C) (P for trend <0.05). The associations were independent of current body mass index (BMI). In addition, we found that the relations of birthweight with high waist circumference in Black children showed U-shape, as well as high SBP in Mexican and Hispanic children. Moreover, we found that the associations of low birthweight with high SBP and low HDL-C appeared to more prominent significant in boys, whereas the inverse association with high HbA1c was more evident in girls. CONCLUSIONS Our data indicate that birthweight is significantly related to childhood cardiometabolic risk, independent of current BMI, and the associations exhibit race and gender-specific patterns.
Collapse
Affiliation(s)
- D Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - T Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Shanghai Institute of Endocrine and Metabolic Diseases, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - T Huang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - X Shang
- Department of Pediatrics, Children's Hospital New Orleans, New Orleans, LA, USA
| | - J Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - S Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - E Harville
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - W Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - V Fonseca
- Department of Pediatrics, Section of Endocrinology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - L Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Higa R, Roberti SL, Capobianco E, Fornes D, White V, Jawerbaum A. Pro-oxidant/pro-inflammatory alterations in the offspring´s heart of mild diabetic rats are regulated by maternal treatments with a mitochondrial antioxidant. Reprod Toxicol 2017. [DOI: 10.1016/j.reprotox.2017.06.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
27
|
Fried RL, Mayol NL, McDade TW, Kuzawa CW. Maternal metabolic adaptations to pregnancy among young women in Cebu, Philippines. Am J Hum Biol 2017; 29. [PMID: 28429514 DOI: 10.1002/ajhb.23011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/27/2017] [Accepted: 04/01/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Evidence that fetal development has long-term impacts on health has increased interest in maternal-fetal nutrient exchange. Although maternal metabolism is known to change during gestation to accommodate fetal nutrient demands, little is known about these modifications outside of a Western, clinical context. This study characterizes maternal metabolic adaptations to pregnancy, and their associations with offspring birth weight (BW), among women living in the Philippines. METHODS Fasting glucose, triglycerides, insulin, leptin, and adiponectin were assessed in 808 participants in the Cebu Longitudinal Health and Nutrition Survey (Metropolitan Cebu, Philippines). Cross-sectional relationships between metabolites and hormones and gestational and lactational status were evaluated. Among the subset of currently pregnant women, associations between maternal glucose and triglycerides and offspring BW were also examined. RESULTS Women in their second and third trimesters had significantly lower fasting glucose and adiponectin compared to nulliparous women, and leptin levels and triglyceride levels were notably higher late in pregnancy (all P < .05). Among pregnant women, fasting glucose was a positive predictor of offspring BW, but only in males (P = .012, R2 = .28). Hormones and metabolites in post-partum women trend back toward levels found in nulliparous women, with some differences by breastfeeding status. CONCLUSIONS We find evidence for marked changes in maternal lipid and carbohydrate metabolism during pregnancy, consistent with known adaptations to support fetal growth. The finding of sex-specific relationships between maternal glucose and offspring BW adds to evidence for greater impacts of the maternal-gestational environment on biology and health in male offspring.
Collapse
Affiliation(s)
- Ruby L Fried
- Department of Anthropology, Northwestern University, Evanston, Illinois, 60208
| | - Nanette L Mayol
- USC - Office of Population Studies Foundation, University of San Carlos, Talamban, Cebu City, 6000, Philippines
| | - Thom W McDade
- Department of Anthropology, Northwestern University, Evanston, Illinois, 60208.,Cells 2 Society, The Center for Social Disparities and Health at the Institute for Policy Research, Northwestern University, Evanston, Illinois, 60208
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, Evanston, Illinois, 60208.,Cells 2 Society, The Center for Social Disparities and Health at the Institute for Policy Research, Northwestern University, Evanston, Illinois, 60208
| |
Collapse
|
28
|
Elshenawy S, Simmons R. Maternal obesity and prenatal programming. Mol Cell Endocrinol 2016; 435:2-6. [PMID: 27392495 DOI: 10.1016/j.mce.2016.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
Obesity is a significant and increasing public health concern in the United States and worldwide. Clinical and epidemiological evidence clearly shows that genetic and environmental factors contribute to the increased susceptibility of humans to obesity and its associated comorbidities; the interplay of these factors is explained by the concept of epigenetics. The impact of maternal obesity goes beyond the newborn period; fetal programming during the critical window of pregnancy, can have long term detrimental effects on the offspring as well as future generations. Emerging evidence is uncovering a link between the clinical and molecular findings in the offspring with epigenetic changes in the setting of maternal obesity. Research targeted towards reducing the transgenerational propagation and developmental programming of obesity is vital in reducing the increasing rates of disease.
Collapse
Affiliation(s)
- Summer Elshenawy
- Children's Hospital of Philadelphia, 3516 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Rebecca Simmons
- Perelman School of Medicine at University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Kelstrup L, Hjort L, Houshmand-Oeregaard A, Clausen TD, Hansen NS, Broholm C, Borch-Johnsen L, Mathiesen ER, Vaag AA, Damm P. Gene Expression and DNA Methylation of PPARGC1A in Muscle and Adipose Tissue From Adult Offspring of Women With Diabetes in Pregnancy. Diabetes 2016; 65:2900-10. [PMID: 27388218 DOI: 10.2337/db16-0227] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/05/2016] [Indexed: 11/13/2022]
Abstract
Prenatal exposure to maternal hyperglycemia is associated with an increased risk of later adverse metabolic health. Changes in the regulation of peroxisome proliferator-activated receptor-γ coactivator-1α (PPARGC1A) in skeletal muscle and subcutaneous adipose tissue (SAT) is suggested to play a role in the developmental programming of dysmetabolism based on studies of human subjects exposed to an abnormal intrauterine environment (e.g., individuals with a low birth weight). We studied 206 adult offspring of women with gestational diabetes mellitus (O-GDM) or type 1 diabetes (O-T1D) and of women from the background population (O-BP) using a clinical examination, oral glucose tolerance test, and gene expression and DNA methylation of PPARGC1A in skeletal muscle and SAT. Plasma glucose was significantly higher for both O-GDM and O-T1D compared with O-BP (P < 0.05). PPARGC1A gene expression in muscle was lower in O-GDM compared with O-BP (P = 0.0003), whereas no differences were found between O-T1D and O-BP in either tissue. PPARGC1A DNA methylation percentages in muscle and SAT were similar among all groups. Decreased PPARGC1A gene expression in muscle has previously been associated with abnormal insulin function and may thus contribute to the increased risk of metabolic disease in O-GDM. The unaltered PPARGC1A gene expression in muscle of O-T1D suggests that factors other than intrauterine hyperglycemia may contribute to the decreased PPARGC1A expression in O-GDM.
Collapse
Affiliation(s)
- Louise Kelstrup
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Line Hjort
- Diabetes and Metabolism Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Danish Diabetes Academy, Odense, Denmark
| | - Azadeh Houshmand-Oeregaard
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark Diabetes and Metabolism Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tine D Clausen
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Department of Obstetrics and Gynecology, Hilleroed Hospital, University of Copenhagen, Hilleroed, Denmark
| | - Ninna S Hansen
- Diabetes and Metabolism Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christa Broholm
- Diabetes and Metabolism Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Liv Borch-Johnsen
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Elisabeth R Mathiesen
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Allan A Vaag
- Diabetes and Metabolism Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Implications of maternal conditions and pregnancy course on offspring’s medical problems in adult life. Arch Gynecol Obstet 2016; 294:673-9. [DOI: 10.1007/s00404-016-4178-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/08/2016] [Indexed: 01/26/2023]
|
31
|
Ding GL, Liu Y, Liu ME, Pan JX, Guo MX, Sheng JZ, Huang HF. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J Androl 2016; 17:948-53. [PMID: 25814158 PMCID: PMC4814953 DOI: 10.4103/1008-682x.150844] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The effects of diabetes mellitus include long-term damages, dysfunctions, and failures of various organs. An important complication of diabetes is the disturbance in the male reproductive system. Glucose metabolism is an important event in spermatogenesis. Moreover, glucose metabolism is also important for maintaining basic cell activity, as well as specific functions, such as motility and fertilization ability in mature sperm. Diabetic disease and experimentally induced diabetes both demonstrated that either type 1 diabetes or type 2 diabetes could have detrimental effects on male fertility, especially on sperm quality, such as sperm motility, sperm DNA integrity, and ingredients of seminal plasma. Epigenetic modifications are essential during spermatogenesis. The epigenetic regulation represents chromatin modifications including DNA methylation, histone modifications, remodeling of nucleosomes and the higher-order chromatin reorganization and noncoding RNAs. If spermatogenesis is affected during the critical developmental window, embryonic gonadal development, and germline differentiation, environmentally-induced epigenetic modifications may become permanent in the germ line epigenome and have a potential impact on subsequent generations through epigenetic transgenerational inheritance. Diabetes may influence the epigenetic modification during sperm spermatogenesis and that these epigenetic dysregulation may be inherited through the male germ line and passed onto more than one generation, which in turn may increase the risk of diabetes in offspring.
Collapse
Affiliation(s)
| | | | | | | | | | | | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030; The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou 310058, China
| |
Collapse
|
32
|
Differential Expression of Long Noncoding RNAs between Sperm Samples from Diabetic and Non-Diabetic Mice. PLoS One 2016; 11:e0154028. [PMID: 27119337 PMCID: PMC4847876 DOI: 10.1371/journal.pone.0154028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/07/2016] [Indexed: 11/28/2022] Open
Abstract
To investigate the potential core reproduction-related genes associated with the development of diabetes, the expression profiles of long noncoding RNA (lncRNA) and messenger RNA (mRNA) in the sperm of diabetic mice were studied. We used microarray analysis to detect the expression of lncRNAs and coding transcripts in six diabetic and six normal sperm samples, and differentially expressed lncRNAs and mRNAs were identified through Volcano Plot filtering. The function of differentially expressed mRNA was determined by pathway and gene ontology (GO) analysis, and the function of lncRNAs was studied by subgroup analysis and their physical or functional relationships with corresponding mRNAs. A total of 7721 lncRNAs and 6097 mRNAs were found to be differentially expressed between the diabetic and normal sperm groups. The diabetic sperm exhibited aberrant expression profiles for lncRNAs and mRNAs, and GO and pathway analyses showed that the functions of differentially expressed mRNAs were closely related with many processes involved in the development of diabetes. Furthermore, potential core genes that might play important roles in the pathogenesis of diabetes-related low fertility were revealed by lncRNA- and mRNA-interaction studies, as well as coding-noncoding gene co-expression analysis based on the microarray expression profiles.
Collapse
|
33
|
Adamu HA, Imam MU, Ooi DJ, Esa NM, Rosli R, Ismail M. Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring. Food Nutr Res 2016; 60:30209. [PMID: 26842399 PMCID: PMC4740094 DOI: 10.3402/fnr.v60.30209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 11/14/2022] Open
Abstract
Background Evidence suggests perinatal environments influence the risk of developing insulin resistance. Objective The present study was aimed at determining the effects of intrauterine exposure to germinated brown rice (GBR) and GBR-derived gamma (γ) aminobutyric acid (GABA) extract on epigenetically mediated high fat diet–induced insulin resistance. Design Pregnant Sprague Dawley rats were fed high-fat diet (HFD), HFD+GBR, or HFD+GABA throughout pregnancy until 4 weeks postdelivery. The pups were weighed weekly and maintained on normal pellet until 8 weeks postdelivery. After sacrifice, biochemical markers of obesity and insulin resistance including oral glucose tolerance test, adiponectin, leptin, and retinol binding protein-4 (RBP4) were measured. Hepatic gene expression changes and the global methylation and histone acetylation levels were also evaluated. Results Detailed analyses revealed that mothers given GBR and GABA extract, and their offspring had increased adiponectin levels and reduced insulin, homeostasis model assessment of insulin resistance, leptin, oxidative stress, and RBP4 levels, while their hepatic mRNA levels of GLUT2 and IPF1 were increased. Furthermore, GBR and GABA extract lowered global DNA methylation levels and modulated H3 and H4 acetylation levels. Conclusions These results showed that intrauterine exposure to GBR-influenced metabolic outcomes in offspring of rats with underlying epigenetic changes and transcriptional implications that led to improved glucose homeostasis.
Collapse
Affiliation(s)
- Hadiza Altine Adamu
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mustapha Umar Imam
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia;
| | - Der-Jiun Ooi
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Department of Nutrition and Dietetics, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rozita Rosli
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Pra Malaysia, Serdang, Selangor, Malaysia
| | - Maznah Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; .,Department of Nutrition and Dietetics, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
34
|
Monteiro LJ, Norman JE, Rice GE, Illanes SE. Fetal programming and gestational diabetes mellitus. Placenta 2015; 48 Suppl 1:S54-S60. [PMID: 26724985 DOI: 10.1016/j.placenta.2015.11.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/11/2023]
Abstract
Gestational diabetes mellitus is defined by new-onset glucose intolerance during pregnancy. About 2-5% of all pregnant women develop gestational diabetes during their pregnancies and the prevalence has increased considerably during the last decade. This metabolic condition is manifested when pancreatic β-cells lose their ability to compensate for increased insulin resistance during pregnancy, however, the pathogenesis of the disease remains largely unknown. Gestational diabetes is strongly associated with adverse pregnancy outcome as well as with long-term adverse effects on the offspring which likely occurs due to epigenetic modifications of the fetal genome. In the current review we address gestational diabetes and the short and long term complications for both mothers and offspring focusing on the importance of fetal programming in conferring risk of developing diseases in adulthood.
Collapse
Affiliation(s)
- Lara J Monteiro
- Department of Obstetrics & Gynecology, Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Jane E Norman
- Tommy's Centre for Fetal and Maternal Health, Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Gregory E Rice
- Centre for Clinical Diagnostics, Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia
| | - Sebastián E Illanes
- Department of Obstetrics & Gynecology, Laboratory of Reproductive Biology, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile; Centre for Clinical Diagnostics, Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research, Brisbane, QLD, Australia.
| |
Collapse
|
35
|
Blue EK, Sheehan BM, Nuss ZV, Boyle FA, Hocutt CM, Gohn CR, Varberg KM, McClintick JN, Haneline LS. Epigenetic Regulation of Placenta-Specific 8 Contributes to Altered Function of Endothelial Colony-Forming Cells Exposed to Intrauterine Gestational Diabetes Mellitus. Diabetes 2015; 64:2664-75. [PMID: 25720387 PMCID: PMC4477353 DOI: 10.2337/db14-1709] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/15/2015] [Indexed: 12/19/2022]
Abstract
Intrauterine exposure to gestational diabetes mellitus (GDM) is linked to development of hypertension, obesity, and type 2 diabetes in children. Our previous studies determined that endothelial colony-forming cells (ECFCs) from neonates exposed to GDM exhibit impaired function. The current goals were to identify aberrantly expressed genes that contribute to impaired function of GDM-exposed ECFCs and to evaluate for evidence of altered epigenetic regulation of gene expression. Genome-wide mRNA expression analysis was conducted on ECFCs from control and GDM pregnancies. Candidate genes were validated by quantitative RT-PCR and Western blotting. Bisulfite sequencing evaluated DNA methylation of placenta-specific 8 (PLAC8). Proliferation and senescence assays of ECFCs transfected with siRNA to knockdown PLAC8 were performed to determine functional impact. Thirty-eight genes were differentially expressed between control and GDM-exposed ECFCs. PLAC8 was highly expressed in GDM-exposed ECFCs, and PLAC8 expression correlated with maternal hyperglycemia. Methylation status of 17 CpG sites in PLAC8 negatively correlated with mRNA expression. Knockdown of PLAC8 in GDM-exposed ECFCs improved proliferation and senescence defects. This study provides strong evidence in neonatal endothelial progenitor cells that GDM exposure in utero leads to altered gene expression and DNA methylation, suggesting the possibility of altered epigenetic regulation.
Collapse
Affiliation(s)
- Emily K Blue
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - BreAnn M Sheehan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Zia V Nuss
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Frances A Boyle
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Caleb M Hocutt
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Cassandra R Gohn
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Kaela M Varberg
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Jeanette N McClintick
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Laura S Haneline
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
36
|
Franco JG, Dias-Rocha CP, Fernandes TP, Albuquerque Maia L, Lisboa PC, Moura EG, Pazos-Moura CC, Trevenzoli IH. Resveratrol treatment rescues hyperleptinemia and improves hypothalamic leptin signaling programmed by maternal high-fat diet in rats. Eur J Nutr 2015; 55:601-610. [PMID: 25801629 DOI: 10.1007/s00394-015-0880-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Perinatal high-fat diet is associated with obesity and metabolic diseases in adult offspring. Resveratrol has been shown to exert antioxidant and anti-obesity actions. However, the effects of resveratrol on leptinemia and leptin signaling are still unknown as well as whether resveratrol treatment can improve metabolic outcomes programmed by maternal high-fat diet. We hypothesize that resveratrol treatment in male rats programmed by high-fat diet would decrease body weight and food intake, and leptinemia with changes in central leptin signaling. METHODS Female Wistar rats were divided into two groups: control group (C), which received a standard diet containing 9 % of the calories as fat, and high-fat group (HF), which received a diet containing 28 % of the calories as fat. Dams were fed in C or HF diet during 8 weeks before mating and throughout gestation and lactation. C and HF male offspring received standard diet throughout life. From 150 until 180 days of age, offspring received resveratrol (30 mg/Kg body weight/day) or vehicle (carboxymethylcellulose). RESULTS HF offspring had increased body weight, hyperphagia and increased subcutaneous and visceral fat mass compared to controls, and resveratrol treatment decreased adiposity. HF offspring had increased leptinemia as well as increased SOCS3 in the arcuate nucleus of the hypothalamus, which suggest central leptin resistance. Resveratrol treatment rescued leptinemia and increased p-STAT3 content in the hypothalamus with no changes in SOCS3, suggesting improvement in leptin signaling. CONCLUSIONS Collectively, our data suggest that resveratrol could reverse hyperleptinemia and improve central leptin action in adult offspring from HF mothers attenuating obesity.
Collapse
Affiliation(s)
- J G Franco
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, sl G0-16, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - C P Dias-Rocha
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, sl G0-16, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - T P Fernandes
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, sl G0-16, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - L Albuquerque Maia
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P C Lisboa
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - E G Moura
- Laboratório de Fisiologia Endócrina, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C C Pazos-Moura
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, sl G0-16, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - I H Trevenzoli
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, sl G0-16, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
37
|
Ma RCW, Tutino GE, Lillycrop KA, Hanson MA, Tam WH. Maternal diabetes, gestational diabetes and the role of epigenetics in their long term effects on offspring. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:55-68. [PMID: 25792090 DOI: 10.1016/j.pbiomolbio.2015.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/27/2015] [Accepted: 02/23/2015] [Indexed: 01/18/2023]
Abstract
There is a global epidemic of obesity and diabetes, and current efforts to curb the diabetes epidemic have had limited success. Epidemiological studies have highlighted increased risk of obesity, diabetes and cardiovascular complications in offspring exposed to maternal diabetes, and gestational diabetes increases the risk of diabetes in subsequent generations, thereby setting up a vicious cycle of "diabetes begetting diabetes". This relationship between maternal hyperglycaemia and long-term health in the offspring is likely to become even more important with an increasing proportion of young woman being affected by diabetes, and the number of pregnancies complicated by hyperglycaemia continuing to rise. Animal models of gestational diabetes or maternal hyperglycaemia have highlighted long-term changes in the offspring with some instances of sex bias, including increased adiposity, insulin resistance, β-cell dysfunction, hypertension, as well as other structural and functional changes. Furthermore, several of these changes appear to be transmissible to later generations through the maternal line. Epigenetic changes play an important role in regulating gene expression, especially during early development. Recent studies have identified a number of epigenetic modifications in the offspring associated with maternal hyperglycaemia. In this review, we provide an overview of the epidemiological evidence linking maternal hyperglycaemia with adverse long-term outcome in the offspring, as well as of some of the studies that explore the underlying epigenetic mechanisms. A better understanding of the pathways involved may provide novel approaches for combating this global epidemic.
Collapse
Affiliation(s)
- Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China.
| | - Greg E Tutino
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Karen A Lillycrop
- Centre for Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton, UK
| | - Mark A Hanson
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Wing Hung Tam
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
38
|
Mueller CA, Eme J, Burggren WW, Roghair RD, Rundle SD. Challenges and opportunities in developmental integrative physiology. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:113-24. [PMID: 25711780 DOI: 10.1016/j.cbpa.2015.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 01/20/2023]
Abstract
This review explores challenges and opportunities in developmental physiology outlined by a symposium at the 2014 American Physiological Society Intersociety Meeting: Comparative Approaches to Grand Challenges in Physiology. Across animal taxa, adverse embryonic/fetal environmental conditions can alter morphological and physiological phenotypes in juveniles or adults, and capacities for developmental plasticity are common phenomena. Human neonates with body sizes at the extremes of perinatal growth are at an increased risk of adult disease, particularly hypertension and cardiovascular disease. There are many rewarding areas of current and future research in comparative developmental physiology. We present key mechanisms, models, and experimental designs that can be used across taxa to investigate patterns in, and implications of, the development of animal phenotypes. Intraspecific variation in the timing of developmental events can be increased through developmental plasticity (heterokairy), and could provide the raw material for selection to produce heterochrony--an evolutionary change in the timing of developmental events. Epigenetics and critical windows research recognizes that in ovo or fetal development represent a vulnerable period in the life history of an animal, when the developing organism may be unable to actively mitigate environmental perturbations. 'Critical windows' are periods of susceptibility or vulnerability to environmental or maternal challenges, periods when recovery from challenge is possible, and periods when the phenotype or epigenome has been altered. Developmental plasticity may allow survival in an altered environment, but it also has possible long-term consequences for the animal. "Catch-up growth" in humans after the critical perinatal window has closed elicits adult obesity and exacerbates a programmed hypertensive phenotype (one of many examples of "fetal programing"). Grand challenges for developmental physiology include integrating variation in developmental timing within and across generations, applying multiple stressor dosages and stressor exposure at different developmental timepoints, assessment of epigenetic and parental influences, developing new animal models and techniques, and assessing and implementing these designs and models in human health and development.
Collapse
Affiliation(s)
- C A Mueller
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - J Eme
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - W W Burggren
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA.
| | - R D Roghair
- Stead Family Department of Pediatrics, University of Iowa, 1270 CBRB JPP, Iowa City, IA 52242, USA.
| | - S D Rundle
- Marine Biology and Ecology Research Centre, Plymouth University, 611 Davy Building Drake Circus, Plymouth, Devon PL4 8AA, UK.
| |
Collapse
|
39
|
Abstract
Obesity in pregnancy is the leading cause of maternal and fetal morbidity, and gestational weight gain (GWG) is one modifiable risk factor that improves pregnancy outcomes. Most pregnant women gain more than the 2009 Institute of Medicine recommendations, particularly overweight and obese women. GWG even less than the 2009 IOM guidelines in obese women may improve pregnancy outcomes and reduce large-for-gestational-age (LGA) infants, an independent risk factor for childhood obesity, without increasing small-for-gestational-age (SGA) infants. Unfortunately, despite the fact that over 50 interventional trials designed to decrease excess GWG have been conducted, these interventions have been only modestly effective, and interventions designed to facilitate weight postpartum weight loss have also been disappointing. Successful interventions are of paramount importance not only to improve pregnancy outcomes but also for the future metabolic health of the mother and her infant, and may be key in attenuating the trans-generational risk on childhood obesity.
Collapse
Affiliation(s)
- Jacinda M. Nicklas
- Division of General Internal Medicine, University of Colorado School of Medicine, 12348 E. Montview Blvd, C263, Aurora, CO 80045, 303-724-9028 (work phone), 617-510-7273 (cell phone), 303-724-9976 (fax)
| | - Linda A. Barbour
- Professor of Medicine and Obstetrics and Gynecology, Divisions of Endocrinology, Metabolism, and Diabetes and Maternal-Fetal Medicine, University of Colorado School of Medicine, Mail Stop 8106, 12801 E. 17 Avenue, Aurora, CO 80045, 303-724-3921 (work phone), 303-594-0474 (cell phone), 303-724-3920 (fax)
| |
Collapse
|
40
|
Choi Y, Mango SE. Hunting for Darwin's gemmules and Lamarck's fluid: Transgenerational signaling and histone methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1440-53. [DOI: 10.1016/j.bbagrm.2014.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 01/22/2023]
|
41
|
Correia-Santos AM, Suzuki A, Vicente GC, Dos Anjos JS, Pereira AD, Lenzi-Almeida KC, Boaventura GT. Effect of maternal use of flaxseed oil during pregnancy and lactation on glucose metabolism and pancreas histomorphometry of male offspring from diabetic rats. Diabetes Res Clin Pract 2014; 106:634-42. [PMID: 25451892 DOI: 10.1016/j.diabres.2014.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/16/2014] [Accepted: 09/14/2014] [Indexed: 11/30/2022]
Abstract
AIM Investigate if the maternal use of flaxseed oil prevents pancreatic alterations in the offspring of diabetic mothers. METHODS Diabetes was induced in female wistar rats (n=12) by a high-fat diet and low-dose of streptozotocin. After the confirmation of the diabetes (glucose >300 mg/dL), rats were mated and once pregnancy was confirmed, they were allocated into three groups (n=6): high-fat group (HFG); flaxseed oil group (FOG); and control group (CG) (nondiabetic rats). At weaning, male offspring (n=12/group) received a standard chow diet. The animals were euthanized in two phases: at 100 and at 180 days, (n=6/group). The pancreas was collected for histomorphometric and immunohistochemistry analysis. RESULTS HFG showed hypertrophy of pancreatic islets at 100 and at 180 days (p<0.0001), while the FOG offspring had islets with smaller diameters compared to HFG at both phases of sacrifice (p<0.0001). HFG had a lower percentage of small islets when compared to CG and FOG, which had a higher percentage when compared to HFG (p=0.0053) at 100 days. At 180 days HFG showed higher percentage of larger islets (p=0.00137) and lower percentage of smaller islets (p=0.00112), when compared to FOG. HFG showed lower islet insulin immunodensity at 100 days (p<0.0001) and 180 days (p<0.0001), whereas FOG was similar to CG (p<0.0001) at 100 days and higher at 180 days (p<0.0001). CONCLUSIONS Flaxseed oil reduced the damage caused by maternal hyperglycemia, promoting normal pancreas histomorphometry and β cell mass.
Collapse
Affiliation(s)
- André Manoel Correia-Santos
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Nutrition College, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.
| | - Akemi Suzuki
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Nutrition College, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Gabriela Câmara Vicente
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Nutrition College, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Juliana Saraiva Dos Anjos
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Nutrition College, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Aline D'Avila Pereira
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Nutrition College, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | | - Gilson Teles Boaventura
- Laboratory of Experimental Nutrition, Department of Nutrition and Dietetics, Nutrition College, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Alejandro EU, Gregg B, Wallen T, Kumusoglu D, Meister D, Chen A, Merrins MJ, Satin LS, Liu M, Arvan P, Bernal-Mizrachi E. Maternal diet-induced microRNAs and mTOR underlie β cell dysfunction in offspring. J Clin Invest 2014; 124:4395-410. [PMID: 25180600 DOI: 10.1172/jci74237] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 07/24/2014] [Indexed: 01/07/2023] Open
Abstract
A maternal diet that is low in protein increases the susceptibility of offspring to type 2 diabetes by inducing long-term alterations in β cell mass and function. Nutrients and growth factor signaling converge through mTOR, suggesting that this pathway participates in β cell programming during fetal development. Here, we revealed that newborns of dams exposed to low-protein diet (LP0.5) throughout pregnancy exhibited decreased insulin levels, a lower β cell fraction, and reduced mTOR signaling. Adult offspring of LP0.5-exposed mothers exhibited glucose intolerance as a result of an insulin secretory defect and not β cell mass reduction. The β cell insulin secretory defect was distal to glucose-dependent Ca2+ influx and resulted from reduced proinsulin biosynthesis and insulin content. Islets from offspring of LP0.5-fed dams exhibited reduced mTOR and increased expression of a subset of microRNAs, and blockade of microRNA-199a-3p and -342 in these islets restored mTOR and insulin secretion to normal. Finally, transient β cell activation of mTORC1 signaling in offspring during the last week of pregnancy of mothers fed a LP0.5 rescued the defect in the neonatal β cell fraction and metabolic abnormalities in the adult. Together, these findings indicate that a maternal low-protein diet alters microRNA and mTOR expression in the offspring, influencing insulin secretion and glucose homeostasis.
Collapse
|
43
|
Kramer CK, Hamilton JK, Ye C, Hanley AJ, Connelly PW, Sermer M, Zinman B, Retnakaran R. Antepartum determinants of rapid early-life weight gain in term infants born to women with and without gestational diabetes. Clin Endocrinol (Oxf) 2014; 81:387-94. [PMID: 24612153 DOI: 10.1111/cen.12437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/21/2013] [Accepted: 02/18/2014] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Rapid weight gain in the first 3 months of life has been associated with an unfavourable cardio-metabolic phenotype in adulthood. However, little is known about the antepartum determinants of this rapid weight gain, which may reflect key developmental exposures that program metabolic pathways. Thus, we sought to characterize the antepartum determinants of rapid weight gain in the first 3 months of life in infants exposed to gestational diabetes mellitus (GDM), a patient population at risk for early cardio-metabolic disease. DESIGN Prospective observational cohort study. PATIENTS Pregnant women with (n = 90) and without GDM (n = 250) underwent detailed antepartum metabolic characterization, followed by assessment of their term offspring at age 3 months. MEASUREMENTS Rapid infant weight gain in the first 3 months was defined as weight gain ≥ 0·5 SD. RESULTS No features of maternal metabolic function in pregnancy (including insulin sensitivity, lipid profile, adiponectin, leptin and C-reactive protein) were associated with infant weight gain in either the GDM or non-GDM group. Interestingly, although all infants were born at term (≥37 weeks), length of gestation was inversely associated with weight gain at 3 months in the infants of women with GDM (β = -148·5, P = 0·01). In these infants, length of gestation <39 weeks was an independent predictor of rapid weight gain (OR = 7·9, 95%CI 1·7-38, P = 0·009) in the fully adjusted model. These associations were not observed in infants of women without GDM. CONCLUSIONS Delivery before 39 weeks is independently associated with rapid weight gain in the first 3 months of life in term infants of women with GDM and hence may be an antepartum marker of future cardio-metabolic risk.
Collapse
Affiliation(s)
- Caroline K Kramer
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, ON, Canada; Division of Endocrinology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Barbour LA. Changing perspectives in pre-existing diabetes and obesity in pregnancy: maternal and infant short- and long-term outcomes. Curr Opin Endocrinol Diabetes Obes 2014; 21:257-63. [PMID: 24937039 DOI: 10.1097/med.0000000000000079] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Climbing obesity rates in women have propelled the increasing prevalence of type 2 diabetes mellitus (T2DM) in pregnancy, and an increasing number of women with type 1 diabetes mellitus (T1DM) are also affected by obesity. Increasing recognition that an intrauterine environment characterized by obesity, insulin resistance, nutrient excess, and diabetes may be fueling the obesity epidemic in children has created enormous pressure to re-examine the conventional wisdom of our current approaches. RECENT FINDINGS Compelling data in pregnancies complicated by diabetes, in particular those accompanied by insulin resistance and obesity, support a fetal programming effect resulting in increased susceptibility to metabolic disease for the offspring later in life. Recent data also underscore the contribution of obesity, lipids, and lesser degrees of hyperglycemia on fetal fat accretion, challenging the wisdom of current gestational weight gain recommendations with and without diabetes. The risks of adverse pregnancy outcomes in T2DM are at least as high as in T1DM and there remains controversy about the ideal glucose treatment targets, the benefit of different insulin analogues, and the role of continuous glucose monitoring in T1DM and T2DM. SUMMARY It has become unmistakably evident that achieving optimal outcomes in mothers with diabetes is clearly impacted by ideal glycemic control but goes far beyond it. The intrauterine metabolic environment seems to have long-term implications on the future health of the offspring so that the effectiveness of our current approaches can no longer be simply measured by whether or not maternal glucose values are at goal.
Collapse
Affiliation(s)
- Linda A Barbour
- Divisions of Endocrinology, Metabolism and Diabetes and Maternal-Fetal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
45
|
Barbour LA. Unresolved controversies in gestational diabetes: implications on maternal and infant health. Curr Opin Endocrinol Diabetes Obes 2014; 21:264-70. [PMID: 24937040 DOI: 10.1097/med.0000000000000080] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Gestational diabetes mellitus (GDM) is a major public health concern because of rising rates and offspring consequences; yet, expert panels are in complete disagreement on how to diagnose and optimally treat GDM. This review underscores why there remains no diagnostic standard, no agreement on whether excess dietary carbohydrate or fat should be reduced, and whether oral hypoglycemic therapy is safe given the unknown offspring effects on hepatic, pancreatic, or fat development. RECENT FINDINGS New diagnostic criteria proposed by the American Diabetes Association would triple the prevalence of GDM (∼18%). Whether the treatment of women with these milder degrees of hyperglycemia will improve pregnancy outcomes is unknown given the powerful effect of obesity alone on excess fetal growth. There are data that restricting carbohydrate in the diet by substituting fat to blunt postprandial glucose levels may worsen maternal insulin resistance and that metformin may increase offspring subcutaneous fat. SUMMARY The adoption of the new American Diabetes Association diagnostic criteria for GDM was rejected by ACOG and not endorsed by the NIH. Yet, varying criteria are used by different centers resulting in confusion for both patient care and research. Both maternal diet and agents that cross the placenta could potentially modify offspring gene expression. Better identification and treatment of mothers and fetuses at risk may have far-reaching implications for maternal and child health.
Collapse
Affiliation(s)
- Linda A Barbour
- Divisions of Endocrinology, Metabolism and Diabetes and Maternal-Fetal Medicine University of Colorado School of Medicine, CO, USA
| |
Collapse
|
46
|
Stupin JH, Arabin B. Overweight and Obesity before, during and after Pregnancy: Part 1: Pathophysiology, Molecular Biology and Epigenetic Consequences. Geburtshilfe Frauenheilkd 2014; 74:639-645. [PMID: 25100878 PMCID: PMC4119104 DOI: 10.1055/s-0034-1368486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 01/04/2023] Open
Abstract
Overweight and obesity before conception as well as excessive weight gain during pregnancy are associated with endocrinological changes of mother and fetus. Insulin resistance physiologically increases during pregnancy, additional obesity further increases insulin resistance. In combination with reduced insulin secretion this leads to gestational diabetes which may develop into type-2-diabetes. The adipose tissue produces TNF-alpha, interleukins and leptin and upregulates these adipokines. Insulin resistance and obesity induce inflammatory processes and vascular dysfunction, which explains the increased rate of pregnancy-related hypertension and pre-eclampsia in obese pregnant women. Between 14 and 28 gestational weeks, the fetal adipose tissue is generated and the number of fat lobules is determined. Thereafter, an increase in adipose tissue is arranged by an enlargement of the lobules (hypertrophy), or even an increase in the number of fat cells (hyperplasia). Human and animal studies have shown that maternal obesity "programmes" the offspring for further obesity and chronic disease. Pregnant women, midwives, physicians and health care politicians should be better informed about prevention, pathophysiological mechanisms, and the burden for society caused by obesity before, during and after pregnancy.
Collapse
Affiliation(s)
- J. H. Stupin
- Clara Angela Foundation, Witten, Berlin
- Clinic of Obstetrics, Charité-Universitätsmedizin Berlin, Berlin
| | - B. Arabin
- Clara Angela Foundation, Witten, Berlin
- Clinic of Obstetrics, Charité-Universitätsmedizin Berlin, Berlin
- Centre for Mother and Child, Phillips-Universität Marburg, Marburg
| |
Collapse
|
47
|
Patterson ES, Waller LE, Kroll KL. Geminin loss causes neural tube defects through disrupted progenitor specification and neuronal differentiation. Dev Biol 2014; 393:44-56. [PMID: 24995796 DOI: 10.1016/j.ydbio.2014.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/13/2023]
Abstract
Geminin is a nucleoprotein that can directly bind chromatin regulatory complexes to modulate gene expression during development. Geminin knockout mouse embryos are preimplantation lethal by the 32-cell stage, precluding in vivo study of Geminin's role in neural development. Therefore, here we used a conditional Geminin allele in combination with several Cre-driver lines to define an essential role for Geminin during mammalian neural tube (NT) formation and patterning. Geminin was required in the NT within a critical developmental time window (embryonic day 8.5-10.5), when NT patterning and closure occurs. Geminin excision at these stages resulted in strongly diminished expression of genes that mark and promote dorsal NT identities and decreased differentiation of ventral motor neurons, resulting in completely penetrant NT defects, while excision after embryonic day 10.5 did not result in NT defects. When Geminin was deleted specifically in the spinal NT, both NT defects and axial skeleton defects were observed, but neither defect occurred when Geminin was excised in paraxial mesenchyme, indicating a tissue autonomous requirement for Geminin in developing neuroectoderm. Despite a potential role for Geminin in cell cycle control, we found no evidence of proliferation defects or altered apoptosis. Comparisons of gene expression in the NT of Geminin mutant versus wild-type siblings at embryonic day 10.5 revealed decreased expression of key regulators of neurogenesis, including neurogenic bHLH transcription factors and dorsal interneuron progenitor markers. Together, these data demonstrate a requirement for Geminin for NT patterning and neuronal differentiation during mammalian neurulation in vivo.
Collapse
Affiliation(s)
- Ethan S Patterson
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Laura E Waller
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
48
|
Sadagurski M, Landeryou T, Blandino-Rosano M, Cady G, Elghazi L, Meister D, See L, Bartke A, Bernal-Mizrachi E, Miller RA. Long-lived crowded-litter mice exhibit lasting effects on insulin sensitivity and energy homeostasis. Am J Physiol Endocrinol Metab 2014; 306:E1305-14. [PMID: 24735888 PMCID: PMC4042097 DOI: 10.1152/ajpendo.00031.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/14/2014] [Indexed: 12/25/2022]
Abstract
The action of nutrients on early postnatal growth can influence mammalian aging and longevity. Recent work has demonstrated that limiting nutrient availability in the first 3 wk of life [by increasing the number of pups in the crowded-litter (CL) model] leads to extension of mean and maximal lifespan in genetically normal mice. In this study, we aimed to characterize the impact of early-life nutrient intervention on glucose metabolism and energy homeostasis in CL mice. In our study, we used mice from litters supplemented to 12 or 15 pups and compared those to control litters limited to eight pups. At weaning and then throughout adult life, CL mice are significantly leaner and consume more oxygen relative to control mice. At 6 mo of age, CL mice had low fasting leptin concentrations, and low-dose leptin injections reduced body weight and food intake more in CL female mice than in controls. At 22 mo, CL female mice also have smaller adipocytes compared with controls. Glucose and insulin tolerance tests show an increase in insulin sensitivity in 6 mo old CL male mice, and females become more insulin sensitive later in life. Furthermore, β-cell mass was significantly reduced in the CL male mice and was associated with reduction in β-cell proliferation rate in these mice. Together, these data show that early-life nutrient intervention has a significant lifelong effect on metabolic characteristics that may contribute to the increased lifespan of CL mice.
Collapse
Affiliation(s)
- Marianna Sadagurski
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, Michigan;
| | - Taylor Landeryou
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Gillian Cady
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan
| | - Lynda Elghazi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Daniel Meister
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Lauren See
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Andrzej Bartke
- Department of Internal Medicine-Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois; and
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan; Endocrinology Section, Medical Service, Veterans Affairs Medical Center, Ann Arbor, Michigan
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
49
|
|
50
|
Joó JG, Karabélyos C, Héjja H, Kornya L, Rigó J. [Epigenetic mechanisms in physiologic and pathologic pregnancies]. Orv Hetil 2014; 155:566-74. [PMID: 24704768 DOI: 10.1556/oh.2014.29861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epigenetic factors are nowadays in the focus of scientific interest in medicine including obstetrics. The environment in utero and early neonatal life may induce a permanent response in the fetus and the newborn leading to enhanced susceptibility to later diseases. There is now growing evidence that the effects of developmental programming may also manifest themselves in the next generations without further suboptimal exposure. The so-called fetal programming may also highlight a tight connection between pathological conditions in pregnancy, environmental factors and the development of chronic diseases in adulthood. Investigation of epigenetic factors may yield new possibilities for the prevention of chronic diseases affecting a significant part of the population.
Collapse
Affiliation(s)
- József Gábor Joó
- Semmelweis Egyetem, Általános Orvostudományi Kar I. Szülészeti és Nőgyógyászati Klinika Budapest Baross utca 27. 1088
| | | | - Hajnalka Héjja
- Semmelweis Egyetem, Általános Orvostudományi Kar I. Szülészeti és Nőgyógyászati Klinika Budapest Baross utca 27. 1088
| | - László Kornya
- Egyesített Szent István és Szent László Kórház Budapest
| | - János Rigó
- Semmelweis Egyetem, Általános Orvostudományi Kar I. Szülészeti és Nőgyógyászati Klinika Budapest Baross utca 27. 1088
| |
Collapse
|