1
|
Markowska M, Niemczyk S, Romejko K. Melatonin Treatment in Kidney Diseases. Cells 2023; 12:cells12060838. [PMID: 36980179 PMCID: PMC10047594 DOI: 10.3390/cells12060838] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Melatonin is a neurohormone that is mainly secreted by the pineal gland. It coordinates the work of the superior biological clock and consequently affects many processes in the human body. Disorders of the waking and sleeping period result in nervous system imbalance and generate metabolic and endocrine derangements. The purpose of this review is to provide information regarding the potential benefits of melatonin use, particularly in kidney diseases. The impact on the cardiovascular system, diabetes, and homeostasis causes melatonin to be indirectly connected to kidney function and quality of life in people with chronic kidney disease. Moreover, there are numerous reports showing that melatonin plays a role as an antioxidant, free radical scavenger, and cytoprotective agent. This means that the supplementation of melatonin can be helpful in almost every type of kidney injury because inflammation, apoptosis, and oxidative stress occur, regardless of the mechanism. The administration of melatonin has a renoprotective effect and inhibits the progression of complications connected to renal failure. It is very important that exogenous melatonin supplementation is well tolerated and that the number of side effects caused by this type of treatment is low.
Collapse
|
2
|
Abstract
The pineal gland is a interface between light-dark cycle and shows neuro-endocrine functions. Melatonin is the primary hormone of pineal gland, secreted at night. The night-time melatonin peak regulates the physiological functions at dark. Melatonin has several unique features as it synchronises internal rhythm with daily and seasonal variations, regulates circadian rhythm and sleep-wake cycle. Physiologically melatonin involves in detoxification of free radicals, immune functions, neuro-protection, oncostatic effects, cardiovascular functions, reproduction, and foetal development. The precise functions of melatonin are exhibited by specific receptors. In relation to pathophysiology, impaired melatonin secretion promotes sleep disorder, cancer progression, type-2 diabetes, and neurodegenerative diseases. Several reports have highlighted the therapeutic benefits of melatonin specially related to cancer protection, sleep disorder, psychiatric disorders, and jet lag problems. This review will touch the most of the area of melatonin-oriented health impacts and its therapeutic aspects.
Collapse
|
3
|
Light-Induced Functional Pinealectomy: Expression of MT2 Receptors in Liver Cells of C57BL/6 Mice after Melatonin Treatment. Bull Exp Biol Med 2022; 173:569-574. [DOI: 10.1007/s10517-022-05590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 10/14/2022]
|
4
|
Ishihara A, Park I, Suzuki Y, Yajima K, Cui H, Yanagisawa M, Sano T, Kido J, Tokuyama K. Metabolic responses to polychromatic LED and OLED light at night. Sci Rep 2021; 11:12402. [PMID: 34117328 PMCID: PMC8196130 DOI: 10.1038/s41598-021-91828-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Light exposure at night has various implications for human health, but little is known about its effects on energy metabolism during subsequent sleep. We investigated the effects of polychromatic white light using conventional light-emitting diodes (LED) and an alternative light source, organic light-emitting diodes (OLED), producing reduced spectral content in the short wavelength of blue light (455 nm). Ten male participants were exposed to either LED, OLED (1000 lx), or dim (< 10 lx) light for 4 h before sleep in a metabolic chamber. Following OLED exposure, energy expenditure and core body temperature during sleep were significantly decreased (p < 0.001). Fat oxidation during sleep was significantly reduced (p = 0.001) after the exposure to LED compared with OLED. Following exposure to OLED, fat oxidation positively correlated with the 6-sulfatoxymelatonin levels, suggesting that the role of melatonin in lipolysis differs depending on the light. These findings advance our knowledge regarding the role of light in energy metabolism during sleep and provide a potential alternative to mitigate the negative consequences of light exposure at night.
Collapse
Affiliation(s)
- Asuka Ishihara
- grid.20515.330000 0001 2369 4728International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki Japan ,grid.20515.330000 0001 2369 4728Ph.D. Program in Human Biology, School of Integrative Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Insung Park
- grid.20515.330000 0001 2369 4728International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Yoko Suzuki
- grid.20515.330000 0001 2369 4728International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Katsuhiko Yajima
- grid.411949.00000 0004 1770 2033Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Huiyun Cui
- grid.20515.330000 0001 2369 4728Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Masashi Yanagisawa
- grid.20515.330000 0001 2369 4728International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Takeshi Sano
- grid.268394.20000 0001 0674 7277Innovation Center for Organic Electronics, Yamagata University, Yamagata, Japan
| | - Junji Kido
- grid.268394.20000 0001 0674 7277Graduate School of Organic Materials Science, Yamagata University, Yamagata, Japan
| | - Kumpei Tokuyama
- grid.20515.330000 0001 2369 4728International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki Japan
| |
Collapse
|
5
|
Kampmann U, Lauritzen ES, Grarup N, Jessen N, Hansen T, Møller N, Støy J. Acute metabolic effects of melatonin-A randomized crossover study in healthy young men. J Pineal Res 2021; 70:e12706. [PMID: 33220095 DOI: 10.1111/jpi.12706] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 01/12/2023]
Abstract
Melatonin regulates circadian rhythm, but may also have effects on glucose homeostasis. A common G-allele in the MTNR1B locus has been associated with an increased risk of type 2 diabetes (T2DM). We aimed to examine acute effects of high doses of melatonin on glucose metabolism with attention to MTNR1B genotype. Twenty men were examined in a double-blinded, randomized crossover study on two nonconsecutive days with four doses of 10 mg oral melatonin or placebo. Insulin sensitivity and insulin secretion were assessed by an intravenous glucose tolerance test (IVGTT) and a hyperinsulinaemic-euglycaemic clamp (HEC). Blood samples were drawn to determine the metabolic profile and MTNR1B rs10830963 genotype. Indirect calorimetry and blood pressure measurements were also performed. Insulin sensitivity index was significantly reduced on the melatonin day (P = .028) in the whole group and in homozygous carriers of the rs10830963 C-allele (P = .041). Glucose during the IVGTT was unaffected, but there was a tendency towards lower insulin and C-peptide levels in the first minutes after glucose administration in G-allele carriers. Systolic blood pressure decreased and lipid oxidation increased significantly on the melatonin day in rs10830963 G-allele carriers. Overall, our study reports that acute administration of melatonin in supra-physiological doses may have a negative impact on insulin sensitivity. Clinical trial registration number (clinicaltrial.gov): NCT03204877.
Collapse
Affiliation(s)
- Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Esben S Lauritzen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Grarup
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Research Laboratory for Biochemical Pathology, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Torben Hansen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Niels Møller
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julie Støy
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Samanta S. Melatonin: an endogenous miraculous indolamine, fights against cancer progression. J Cancer Res Clin Oncol 2020; 146:1893-1922. [PMID: 32583237 DOI: 10.1007/s00432-020-03292-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Melatonin is an amphipathic indolamine molecule ubiquitously present in all organisms ranging from cyanobacteria to humans. The pineal gland is the site of melatonin synthesis and secretion under the influence of the retinohypothalamic tract. Some extrapineal tissues (skin, lens, gastrointestinal tract, testis, ovary, lymphocytes, and astrocytes) also enable to produce melatonin. Physiologically, melatonin regulates various functions like circadian rhythm, sleep-wake cycle, gonadal activity, redox homeostasis, neuroprotection, immune-modulation, and anticancer effects in the body. Inappropriate melatonin secretion advances the aging process, tumorigenesis, visceral adiposity, etc. METHODS: For the preparation of this review, I had reviewed the literature on the multidimensional activities of melatonin from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Wiley Online ResearchGate, and Google Scholar databases to search relevant articles. Specifically, I focused on the roles and mechanisms of action of melatonin in cancer prevention. RESULTS The actions of melatonin are primarily mediated by G-protein coupled MT1 and MT2 receptors; however, several intracellular protein and nuclear receptors can modulate the activity. Normal levels of the melatonin protect the cells from adverse effects including carcinogenesis. Therapeutically, melatonin has chronomedicinal value; it also shows a remarkable anticancer property. The oncostatic action of melatonin is multidimensional, associated with the advancement of apoptosis, the arrest of the cell cycle, inhibition of metastasis, and antioxidant activity. CONCLUSION The present review has emphasized the mechanism of the anti-neoplastic activity of melatonin that increases the possibilities of the new approaches in cancer therapy.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department Physiology, Midnapore College, Paschim Medinipur, Midnapore, West Bengal, 721101, India.
| |
Collapse
|
7
|
de Luis DA, Izaola O, Primo D, Aller R. Dietary-fat effect of the rs10830963 polymorphism in MTNR1B on insulin resistance in response to 3 months weight-loss diets. ENDOCRINOLOGÍA, DIABETES Y NUTRICIÓN (ENGLISH ED.) 2020. [DOI: 10.1016/j.endien.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Melatonin in der Behandlung von Insomnien und Schlaf-Wach-Rhythmusstörungen im Kindes- und Jugendalter. SOMNOLOGIE 2019. [DOI: 10.1007/s11818-019-0210-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Adverse Events Associated with Melatonin for the Treatment of Primary or Secondary Sleep Disorders: A Systematic Review. CNS Drugs 2019; 33:1167-1186. [PMID: 31722088 DOI: 10.1007/s40263-019-00680-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Melatonin is widely available either on prescription for the treatment of sleep disorders or as an over-the-counter dietary supplement. Melatonin has also recently been licensed in the UK for the short-term treatment of jetlag. Little is known about the potential for adverse events (AEs), in particular AEs resulting from long-term use. Concern has been raised over the possible risks of exposure in certain populations including pre-adolescent children and patients with epilepsy or asthma. OBJECTIVES The aim of this systematic review was to assess the evidence for AEs associated with short-term and longer-term melatonin treatment for sleep disorders. METHODS A literature search of the PubMed/Medline database and Google Scholar was conducted to identify randomised, placebo-controlled trials (RCTs) of exogenous melatonin administered for primary or secondary sleep disorders. Studies were included if they reported on both the types and frequencies of AEs. Studies of pre-term infants, studies of < 1 week in duration or involving single doses of melatonin and studies in languages other than English were excluded. Findings from open-label studies that raised concerns relating to AE reports in patients were also examined. Studies were assessed for quality of reporting against the Consolidated Standards of Reporting Trials (CONSORT) checklist and for risk of bias against the Cochrane Collaboration risk-of-bias criteria. RESULTS 37 RCTs met criteria for inclusion. Daily melatonin doses ranged from 0.15 mg to 12 mg. Subjects were monitored for up to 29 weeks, but most studies were of much shorter duration (4 weeks or less). The most frequently reported AEs were daytime sleepiness (1.66%), headache (0.74%), other sleep-related AEs (0.74%), dizziness (0.74%) and hypothermia (0.62%). Very few AEs considered to be serious or of clinical significance were reported. These included agitation, fatigue, mood swings, nightmares, skin irritation and palpitations. Most AEs either resolved spontaneously within a few days with no adjustment in melatonin, or immediately upon withdrawal of treatment. Melatonin was generally regarded as safe and well tolerated. Many studies predated publication of the CONSORT checklist and consequently did not conform closely to the guidelines. Similarly, only eight studies were judged 'good' overall with respect to the Cochrane risk-of-bias criteria. Of the remaining papers, 16 were considered 'fair' and 13 'poor' but publication of almost half of the papers preceded that of the earliest version of the guidelines. CONCLUSION Few, generally mild to moderate, AEs were associated with exogenous melatonin. No AEs that were life threatening or of major clinical significance were identified. The scarcity of evidence from long-term RCTs, however, limits the conclusions regarding the safety of continuous melatonin therapy over extended periods. There are insufficient robust data to allow a meaningful appraisal of concerns that melatonin may result in more clinically significant adverse effects in potentially at-risk populations. Future studies should be designed to comply with appropriate quality standards for RCTs, which most past studies have not.
Collapse
|
10
|
de Luis DA, Izaola O, Primo D, Aller R. Dietary-fat effect of the rs10830963 polymorphism in MTNR1B on insulin resistance in response to 3 months weight-loss diets. ACTA ACUST UNITED AC 2019; 67:43-52. [PMID: 30981681 DOI: 10.1016/j.endinu.2019.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/17/2019] [Accepted: 02/05/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND & AIMS The risk allele (G) of rs10830963 in the melatonin receptor 1 B (MTNR1B) gene presents an association with obesity. We study the effect of this SNP on cardiovascular risk factors and weight loss secondary to 2hypocaloric diets. METHODS 361 obese subjects were randomly allocated during 3 months (Diet M - high monounsaturated fat hypocaloric diet vs. Diet P - high polyunsaturated fat hypocaloric diet). Anthropometric parameters, fasting blood glucose, C-reactive protein (CRP), insulin concentration, insulin resistance (HOMA-IR), lipid profile and adipocytokines levels were measured. Genotype of MTNR1B gene polymorphism (rs10830963) was evaluated. RESULTS All anthropometric parameters, systolic blood pressure and leptin levels decreased in all subjects after both diets. This improvement of anthropometric parameters was higher in non G allele carriers than G allele carriers. After dietary intervention with Diet M, (CC vs. CG + GG); total cholesterol (delta: -10.4 ± 2.1mg/dl vs. -6.4 ± 1.2mg/dl: P <.05), LDL-cholesterol (delta:-7.1 ± 0.9mg/dl vs. -2.8 ± 0.8mg/dl: P <.05), insulin (delta:-3.0 ± 0.8 UI/L vs. -2.0 ± 1.0 UI/L: P<.05) and HOMA-IR (delta:-3.4 ± 1.0 units vs. -2.9 ± 0.9 units: P<.05) improved in no G allele carriers. After Diet P, in the group of subjects without G allele CC, insulin levels (delta: -2.9 ± 1.0 UI/L vs. -0.6 ± 0.2 UI/L: P <.05) and HOMA-IR (delta (CC vs. CG + GG): -0.8 ± 0.2 units vs. -0.4 ± 0.3 units: P <.05) decreased, too. CONCLUSIONS Our study detected a relationship of rs10830963 MTNR1B SNP with body weight loss and insulin resistance modification induced by 2different hypocaloric. Only monounsaturated enriched hypocaloric diet and in no-G allele carriers showed a significant effect on lipoproteins.
Collapse
Affiliation(s)
- Daniel Antonio de Luis
- Centro de Investigacion de Endocrinología y Nutrición Clínica, Facultad de Medicina, Valladolid, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España.
| | - Olatz Izaola
- Centro de Investigacion de Endocrinología y Nutrición Clínica, Facultad de Medicina, Valladolid, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España
| | - David Primo
- Centro de Investigacion de Endocrinología y Nutrición Clínica, Facultad de Medicina, Valladolid, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España
| | - Rocio Aller
- Centro de Investigacion de Endocrinología y Nutrición Clínica, Facultad de Medicina, Valladolid, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España
| |
Collapse
|
11
|
Paredes JF, Lopez-Olmeda JF, Muñoz-Cueto JA, Sánchez-Vázquez F. Circadian expression of DNA methylation and demethylation genes in zebrafish gonads. Chronobiol Int 2018; 35:920-932. [PMID: 29509082 DOI: 10.1080/07420528.2018.1440403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This research aimed at investigating the light synchronization and endogenous origin of daily expression rhythms of eight key genes involved in epigenetic mechanisms (DNA methylation and demethylation) in zebrafish gonads. To this end, 84 zebrafish were distributed into six tanks, each one containing 14 fish (7 males and 7 females). Animals were subjected to 12 h light:12 h dark cycles (LD, lights on at ZT0 h) and fed randomly three times a day during the light phase. Locomotor activity rhythms were recorded in each tank for 20 days to test their synchronization to light. Then, zebrafish were fasted for one day and gonad samples were collected every 4 h during a 24 h cycle (ZT2, 6, 10, 14, 18, and 22 h). The results revealed that most of the epigenetic genes investigated exhibited a significant daily rhythm. DNA methylation genes (dnmt4, dnmt5, dnmt7) exhibited a daily rhythm of expression with a nocturnal acrophase (ZT14:01~ZT22:17 h), except for dnmt7 in males (ZT2:25 h). Similarly, all DNA demethylation genes (tet2, tdg, mb4, gadd45aa, and apobec2b) revealed the existence of statistically significant daily rhythms, except for gadd45aa in females. In females, tdg, mb4, and apobec2b presented a nocturnal peak (ZT14:20 ~ ZT22:04 h), whereas the tet2 acrophase was diurnal (ZT4:02 h). In males, tet2, tdg, and gadd45aa had nocturnal acrophases (ZT18:26~ZT21:31 h), whereas mb4 and apobec2b displayed diurnal acrophases (ZT5:28 and ZT4:02 h, respectively). To determine the endogenous nature of gene expression rhythms, another experiment was performed: 12 groups of 14 fish (7 males and 7 females) were kept in complete darkness (DD) and sampled every 4 h during a 48 h cycle (CT2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, and 46 h). Under DD, most of the genes (7 out of 8) presented circadian rhythmicity with different endogenous periodicities (tau), suggesting that the epigenetic mechanisms of DNA methylation and demethylation in the gonads follow an internal control, functioning as part of the translation network linking the environment into somatic signals in fish reproduction.
Collapse
Affiliation(s)
| | - Jose Fernando Lopez-Olmeda
- b Department of Physiology, Faculty of Biology , University of Murcia , Murcia , Spain.,c Kalrsruhe Institute of Technology , Institute of Toxicology and Genetics , Eggenstein , Germany
| | - Jose A Muñoz-Cueto
- d Department of Biology, Faculty of Marine and Environmental Sciences, Faculty of Marine and Environmental Sciences , University of Cadiz , Cádiz , Spain.,e CACYTMAR , Research Institutes , Puerto Real , Spain
| | | |
Collapse
|
12
|
Gubin DG, Nelaeva AA, Uzhakova AE, Hasanova YV, Cornelissen G, Weinert D. Disrupted circadian rhythms of body temperature, heart rate and fasting blood glucose in prediabetes and type 2 diabetes mellitus. Chronobiol Int 2017; 34:1136-1148. [PMID: 28759269 DOI: 10.1080/07420528.2017.1347670] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a progressive disruption of 24-h rhythms in fasting blood glucose (FBG), body temperature (BT) and heart rate (HR) associated with metabolic dysfunction and the development of prediabetes (PD) and type 2 diabetes mellitus (T2DM) in overweight middle-aged (40-69 years old) humans. Increasing BT and HR mean values and declining 24-h BT and HR amplitudes accompany adverse changes in metabolic state. Increased nocturnal BT and a phase delay of the 24-h BT rhythm, deviant 24-h HR profile and a phase advance of the 24-h HR and FBG rhythms are early signs of the PD metabolic state. In T2DM, the 24-h FBG rhythm is no longer detectable, and the 24-h amplitudes of BT and HR are greatly diminished. In addition, lepton and creatinine values were lowered in T2DM. Moreover, positive correlations between FBG and body mass index, BMI, and negative correlations between the 24-h amplitude of FBG and BMI indicate that overweight is an additional factor causing disruption of the circadian rhythms. Further studies on circadian disruption as a consequence of metabolic dysfunction are necessary. The quantitative analysis of changing circadian BT and HR rhythms may provide prognostic markers of T2DM and therapeutic targets for its prevention and correction.
Collapse
Affiliation(s)
- D G Gubin
- a Department of Biology , Medical University , Tyumen , Russia
| | - A A Nelaeva
- b Department of Endocrinology , Medical University , Tyumen , Russia
| | - A E Uzhakova
- b Department of Endocrinology , Medical University , Tyumen , Russia
| | - Y V Hasanova
- b Department of Endocrinology , Medical University , Tyumen , Russia
| | - G Cornelissen
- c Halberg Chronobiology Center , University of Minnesota , Minneapolis , MN , USA
| | - D Weinert
- d Institute of Biology/Zoology , Martin Luther University , Halle-Wittenberg , Germany
| |
Collapse
|
13
|
Declerck K, Remy S, Wohlfahrt-Veje C, Main KM, Van Camp G, Schoeters G, Vanden Berghe W, Andersen HR. Interaction between prenatal pesticide exposure and a common polymorphism in the PON1 gene on DNA methylation in genes associated with cardio-metabolic disease risk-an exploratory study. Clin Epigenetics 2017; 9:35. [PMID: 28396702 PMCID: PMC5382380 DOI: 10.1186/s13148-017-0336-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/30/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Prenatal environmental conditions may influence disease risk in later life. We previously found a gene-environment interaction between the paraoxonase 1 (PON1) Q192R genotype and prenatal pesticide exposure leading to an adverse cardio-metabolic risk profile at school age. However, the molecular mechanisms involved have not yet been resolved. It was hypothesized that epigenetics might be involved. The aim of the present study was therefore to investigate whether DNA methylation patterns in blood cells were related to prenatal pesticide exposure level, PON1 Q192R genotype, and associated metabolic effects observed in the children. METHODS Whole blood DNA methylation patterns in 48 children (6-11 years of age), whose mothers were occupationally unexposed or exposed to pesticides early in pregnancy, were determined by Illumina 450 K methylation arrays. RESULTS A specific methylation profile was observed in prenatally pesticide exposed children carrying the PON1 192R-allele. Differentially methylated genes were enriched in several neuroendocrine signaling pathways including dopamine-DARPP32 feedback (appetite, reward pathways), corticotrophin releasing hormone signaling, nNOS, neuregulin signaling, mTOR signaling, and type II diabetes mellitus signaling. Furthermore, we were able to identify possible candidate genes which mediated the associations between pesticide exposure and increased leptin level, body fat percentage, and difference in BMI Z score between birth and school age. CONCLUSIONS DNA methylation may be an underlying mechanism explaining an adverse cardio-metabolic health profile in children carrying the PON1 192R-allele and prenatally exposed to pesticides.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
| | - Sylvie Remy
- Department of Epidemiology and Social Medicine, Antwerp University, Universiteitsplein 1, Antwerp, Belgium.,Flemish Institute for Technological Research (VITO), Unit Environmental Risk and Health, Boeretang 200, Mol, Belgium
| | - Christine Wohlfahrt-Veje
- Department of Growth and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Katharina M Main
- Department of Growth and Reproduction, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Unit Environmental Risk and Health, Boeretang 200, Mol, Belgium.,Department of Biomedical Sciences, Antwerp University, Universiteitsplein 1, Antwerp, Belgium.,Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium
| | - Helle R Andersen
- Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Cheng M, Liu X, Yang M, Han L, Xu A, Huang Q. Computational analyses of type 2 diabetes-associated loci identified by genome-wide association studies. J Diabetes 2017; 9:362-377. [PMID: 27121852 DOI: 10.1111/1753-0407.12421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/31/2016] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) of type 2 diabetes (T2D) have discovered a number of loci that contribute to susceptibility to the disease. Future challenges include elucidation of functional mechanisms through which these GWAS-identified loci modulate T2D disease risk. The aim of the present study was to comprehensively characterize T2D associated single nucleotide polymorphisms (SNPs) and genes through computational approaches. METHODS Computational biology approaches used in the present study included comparative genomic analyses and functional annotation using GWAS3D and RegulomeDB, investigation of the effects of T2D-associated SNPs on miRNA binding and protein phosphorylation, and gene ontology, pathway enrichment, protein-protein interaction (PPI) networks and functional module analysis of T2D-associated genes from previously published GWAS. RESULTS Computational analysis identified a number of T2D GWAS-associated SNPs that were located at protein binding sites, including CCCTC-binding factor (CTCF), E1A binding protein p300 (EP300), hepatocyte nuclear factor 4alpha (HNF4A), transcription factor 7 like 2 (TCF7L2), forkhead box A1 (FOXA1) and A2 (FOXA2), and potentially affected the binding of miRNAs and protein phosphorylation. Pathway enrichment analysis confirmed two well-known maturity onset diabetes of the young and T2D pathways, whereas PPI network analysis identified highly interconnected "hub" genes, such as TCF7L2, melatonin receptor 1B (MTNR1B), and solute carrier family 30 (zinc transporter), member 8 (SLC30A8), that created two tight subnetworks. CONCLUSIONS The results provide objectives and clues for future experimental studies and further insights into the molecular pathogenesis of T2D.
Collapse
Affiliation(s)
- Mengrong Cheng
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Xinhong Liu
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Mei Yang
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Lanchun Han
- College of Life Sciences, Central China Normal University, Wuhan, China
- Institute of Public Health and Molecular Medicine Analysis, Central China Normal University, Wuhan, China
| | - Aimin Xu
- Li Cha Chung Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingyang Huang
- College of Life Sciences, Central China Normal University, Wuhan, China
- Institute of Public Health and Molecular Medicine Analysis, Central China Normal University, Wuhan, China
| |
Collapse
|
15
|
Hardeland R. Melatonin and the pathologies of weakened or dysregulated circadian oscillators. J Pineal Res 2017; 62. [PMID: 27763686 DOI: 10.1111/jpi.12377] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
Dynamic aspects of melatonin's actions merit increasing future attention. This concerns particularly entirely different effects in senescent, weakened oscillators and in dysregulated oscillators of cancer cells that may be epigenetically blocked. This is especially obvious in the case of sirtuin 1, which is upregulated by melatonin in aged tissues, but strongly downregulated in several cancer cells. These findings are not at all controversial, but are explained on the basis of divergent changes in weakened and dysregulated oscillators. Similar findings can be expected to occur in other accessory oscillator components that are modulated by melatonin, among them several transcription factors and metabolic sensors. Another cause of opposite effects concerns differences between nocturnally active laboratory rodents and the diurnally active human. This should be more thoroughly considered in the field of metabolic syndrome and related pathologies, especially with regard to type 2 diabetes and other aspects of insulin resistance. Melatonin was reported to impair glucose tolerance in humans, especially in carriers of the risk allele of the MT2 receptor gene, MTNR1B, that contains the SNP rs10830963. These findings contrast with numerous reports on improvements of glucose tolerance in preclinical studies. However, the relationship between melatonin and insulin may be more complex, as indicated by loss-of-function mutants of the MT2 receptor that are also prodiabetic, by the age-dependent time course of risk allele overexpression, by progressive reduction in circadian amplitudes and melatonin secretion, which are aggravated in diabetes. By supporting high-amplitude rhythms, melatonin may be beneficial in preventing or delaying diabetes.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Michurina SV, Ishchenko IY, Arkhipov SA, Klimontov VV, Rachkovskaya LN, Konenkov VI, Zavyalov EL. Effects of Melatonin, Aluminum Oxide, and Polymethylsiloxane Complex on the Expression of LYVE-1 in the Liver of Mice with Obesity and Type 2 Diabetes Mellitus. Bull Exp Biol Med 2016; 162:269-272. [PMID: 27909960 DOI: 10.1007/s10517-016-3592-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Indexed: 11/26/2022]
Abstract
The effects of melatonin, aluminum oxide, and polymethylsiloxane complex on the expression of LYVE-1 (lymphatic vessel endothelial hyaluronan receptor) in the liver were studied in db/db mice with experimental obesity and type 2 diabetes mellitus. The complex or placebo was administered daily by gavage from week 8 to week 16 of life. The animals receiving the complex exhibited enhanced, in comparison with the placebo group, immunohistochemical LYVE-1+ staining of endothelial cells in sinusoids. Enhanced expression of LYVE-1 was associated with less pronounced dilatation of interlobular arteries, veins, and lymphatic vessels. Thee findings suggest a protective effect of the complex towards structural changes in the liver of mice with obesity and type 2 diabetes.
Collapse
Affiliation(s)
- S V Michurina
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia.
- Federal Research Center, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - I Yu Ishchenko
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
- Federal Research Center, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S A Arkhipov
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
- Federal Research Center, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V V Klimontov
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
- Federal Research Center, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L N Rachkovskaya
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
- Federal Research Center, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V I Konenkov
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
- Federal Research Center, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E L Zavyalov
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
- Federal Research Center, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
Wongchitrat P, Lansubsakul N, Kamsrijai U, Sae-Ung K, Mukda S, Govitrapong P. Melatonin attenuates the high-fat diet and streptozotocin-induced reduction in rat hippocampal neurogenesis. Neurochem Int 2016; 100:97-109. [PMID: 27620814 DOI: 10.1016/j.neuint.2016.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
A deviant level of melatonin in blood circulation has been associated with the development of diabetes and with learning and memory deficiencies. Melatonin might have an important function in diabetes control; however, the mechanism of melatonin in diabetes remains unknown. The present study aimed to investigate the hyperglycemic condition induced by high-fat diet (HFD) feeding and streptozotocin (STZ) injection and to examine the effect of melatonin on adult hippocampal functions. HFD-fed and STZ-treated rats significantly increased blood glucose level. The present study showed that HFD-fed and STZ-treated rats significantly impaired memory in the Morris Water Maze task, reduced neurogenesis in the hippocampus shown by a reduction in nestin, doublecortin (DCX) and β-III tubulin immunoreactivities, reduced axon terminal markers, synaptophysin, reduced dendritic marker including postsynaptic density 95 (PSD-95) and the glutamate receptor subunit NR2A. Moreover, a significant downregulation of melatonin receptor, insulin receptor-β (IR-β) and both p-IR-β and phosphorylated extracellular signal-regulated kinase (p-ERK) occurred in HFD-fed and STZ-treated rats, while the level of glial fibrillary acidic protein (GFAP) increased. Treatment of melatonin, rats had shorter escape latencies and remained in the target quadrant longer compared to the HFD-fed and STZ-treated rats. Melatonin attenuated the reduction of neurogenesis, synaptogenesis and the induction of astrogliosis. Moreover, melatonin countered the reduction of melatonin receptor, insulin receptor and downstream signaling pathway for insulin. Our data suggested that the dysfunction of insulin signaling pathway occurred in the diabetes may provide a convergent mechanism of hippocampal impaired neurogenesis and synaptogenesis lead to impair memory while melatonin reverses these effects, suggesting that melatonin may reduce the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Niyada Lansubsakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand; Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Utcharaporn Kamsrijai
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Kwankanit Sae-Ung
- Innovative Learning Center, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
18
|
Burkhalter H, De Geest S, Wirz-Justice A, Cajochen C. Melatonin rhythms in renal transplant recipients with sleep-wake disturbances. Chronobiol Int 2016; 33:810-20. [PMID: 27101434 DOI: 10.3109/07420528.2016.1169192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We assessed salivary melatonin levels in renal transplant (RTx) recipients who participated in a randomised, multicentre wait-list controlled trial on the effect of bright light therapy on their sleep and circadian rhythms. A large proportion of RTx recipients in our cohort had unexpectedly low melatonin values, which precluded calculation of the dim-light melatonin onset (DLMO) as a circadian marker. Thus, the aim of this post hoc analysis was to describe the melatonin profile of home-dwelling RTx recipients diagnosed with sleep-wake disturbances (SWDs). The participants were characterised by means of sleep questionnaires, validated psychometric instruments [Pittsburgh sleep quality Index (PSQI), Epworth sleepiness scale (ESS), Morningness-Eveningness Questionnaire (MEQ) and Depression, Anxiety and Stress Scale (DASS)] in addition to melatonin assay in saliva. Data were analysed with descriptive statistics and group comparisons made with appropriate post hoc tests. RTx recipients [n = 29 (aged 54.83 ± 13.73, transplanted 10.62 ± 6.84 years ago)] were retrospectively grouped into two groups: RTx recipients whose dim light melatonin onset (DLMO) could be calculated (n = 11) and those whose DLMO could not be calculated (n = 18). RTx recipients having a measurable DLMO had a number of differences from those without DLMO: they were younger [46.4 ± 14.9 compared to 60.0 ± 10.3 (p = .007)], had higher haemoglobin values [135.36 ± 12.01 versus 122.82 ± 11.56 (p = .01)], less anxiety [4 (0;8) versus 12 (6.5;14) (p = .021)] and a better overall sense of coherence [SOC Score: 71.09 ± 12.78 versus 56.28 ± 15.48 (p = 0.013)]. These results suggest that RTx recipients whose DLMO could be calculated have less health impairments, underlying the relevance of a stable circadian system.
Collapse
Affiliation(s)
- Hanna Burkhalter
- a Centre for Sleep Medicine , Hirslanden Group , Zürich , Switzerland.,b Institute of Nursing Science, University of Basel , Basel , Switzerland
| | - Sabina De Geest
- b Institute of Nursing Science, University of Basel , Basel , Switzerland.,c Academic Center for Nursing and Midwifery , KU Leuven , Belgium
| | - Anna Wirz-Justice
- d Centre for Chronobiology , Psychiatric Hospital of the University of Basel , Basel , Switzerland
| | - Christian Cajochen
- d Centre for Chronobiology , Psychiatric Hospital of the University of Basel , Basel , Switzerland
| |
Collapse
|
19
|
Matuszek MA, Anton A, Thillainathan S, Armstrong NJ. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women. PLoS One 2015. [PMID: 26196519 PMCID: PMC4510533 DOI: 10.1371/journal.pone.0133611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities. Method Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians. Results There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000), triglycerides (P = .050), low density lipoprotein (P = .009) and non-fasting blood glucose (15 min) (P = .024) were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC). Non-fasting insulin in South Asians (15–120 min), in South East/East Asians (60–120 min), and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006). The molar ratio of C-peptide AUC/Insulin AUC (P = .045) and adiponectin (P = .037) were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022) and rs10830963 (P = 0.009), which are both near the melatonin receptor MTNR1B. Conclusions Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Maria A. Matuszek
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| | - Angelyn Anton
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
20
|
Junior JPL, Frigeri HR, Dos Santos-Weiss ICR, de Souza EM, Rego FGM, Picheth G, Alberton D. The MTNR1B gene polymorphism rs10830963 is associated with gestational diabetes in a Brazilian population. Gene 2015; 568:114-5. [PMID: 25982863 DOI: 10.1016/j.gene.2015.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022]
Affiliation(s)
- João Paulo Lobo Junior
- Graduate Program in Pharmaceutical Sciences, Department of Clinical Analysis, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Henrique R Frigeri
- Graduate Program in Pharmaceutical Sciences, Department of Clinical Analysis, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Izabella C R Dos Santos-Weiss
- Graduate Program in Pharmaceutical Sciences, Department of Clinical Analysis, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR, Brazil
| | - Fabiane G M Rego
- Graduate Program in Pharmaceutical Sciences, Department of Clinical Analysis, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Geraldo Picheth
- Graduate Program in Pharmaceutical Sciences, Department of Clinical Analysis, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Dayane Alberton
- Graduate Program in Pharmaceutical Sciences, Department of Clinical Analysis, Federal University of Parana (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
21
|
Huerta-Chagoya A, Vázquez-Cárdenas P, Moreno-Macías H, Tapia-Maruri L, Rodríguez-Guillén R, López-Vite E, García-Escalante G, Escobedo-Aguirre F, Parra-Covarrubias A, Cordero-Brieño R, Manzo-Carrillo L, Zacarías-Castillo R, Vargas-García C, Aguilar-Salinas C, Tusié-Luna T. Genetic determinants for gestational diabetes mellitus and related metabolic traits in Mexican women. PLoS One 2015; 10:e0126408. [PMID: 25973943 PMCID: PMC4431878 DOI: 10.1371/journal.pone.0126408] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 03/05/2015] [Indexed: 12/13/2022] Open
Abstract
Epidemiological and physiological similarities among Gestational Diabetes Mellitus (GDM) and Type 2 Diabetes (T2D) suggest that both diseases, share a common genetic background. T2D risk variants have been associated to GDM susceptibility. However, the genetic architecture of GDM is not yet completely understood. We analyzed 176 SNPs for 115 loci previously associated to T2D, GDM and body mass index (BMI), as well as a set of 118 Ancestry Informative Markers (AIMs), in 750 pregnant Mexican women. Association with GDM was found for two of the most frequently replicated T2D loci: a TCF7L2 haplotype (CTTC: rs7901695, rs4506565, rs7903146, rs12243326; P=2.16x10-06; OR=2.95) and a KCNQ1 haplotype (TTT: rs2237892, rs163184, rs2237897; P=1.98x10-05; OR=0.55). In addition, we found two loci associated to glycemic traits: CENTD2 (60’ OGTT glycemia: rs1552224, P=0.03727) and MTNR1B (HOMA B: rs1387153, P=0.05358). Remarkably, a major susceptibility SLC16A11 locus for T2D in Mexicans was not shown to play a role in GDM risk. The fact that two of the main T2D associated loci also contribute to the risk of developing GDM in Mexicans, confirm that both diseases share a common genetic background. However, lack of association with a Native American contribution T2D risk haplotype, SLC16A11, suggests that other genetic mechanisms may be in play for GDM.
Collapse
Affiliation(s)
- Alicia Huerta-Chagoya
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
| | - Paola Vázquez-Cárdenas
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
| | | | - Leonardo Tapia-Maruri
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
| | - Rosario Rodríguez-Guillén
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
| | - Erika López-Vite
- Departamento de Ginelocología y Obstetricia, Hospital General O´Horan, Mérida, Yucatán, México
| | | | - Fernando Escobedo-Aguirre
- Departamento de Ginecología y Medicina Perinatal, Centro Médico Nacional 20 de Noviembre, D.F., Mexico City, Mexico
| | | | - Roberto Cordero-Brieño
- Departamento de Ginecología y Obstetricia, Hospital General Manuel Gea González, D.F., Mexico City, Mexico
| | - Lizette Manzo-Carrillo
- Departamento de Ginecología y Obstetricia, Hospital General Manuel Gea González, D.F., Mexico City, Mexico
| | - Rogelio Zacarías-Castillo
- Departamento de Ginecología y Obstetricia, Hospital General Manuel Gea González, D.F., Mexico City, Mexico
| | - Carlos Vargas-García
- Departamento de Ginecología y Obstetricia, Centro de Investigación Materno Infantil GEN, D.F., Mexico City, Mexico
| | - Carlos Aguilar-Salinas
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salcador Zubirán, D.F., Mexico City, Mexico
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto de Investigaciones Biomédicas, UNAM / Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, D.F., Mexico City, Mexico
- * E-mail:
| |
Collapse
|
22
|
Abstract
Most living beings, including humans, must adapt to rhythmically occurring daily changes in their environment that are generated by the Earth's rotation. In the course of evolution, these organisms have acquired an internal circadian timing system that can anticipate environmental oscillations and thereby govern their rhythmic physiology in a proactive manner. In mammals, the circadian timing system coordinates virtually all physiological processes encompassing vigilance states, metabolism, endocrine functions and cardiovascular activity. Research performed during the past two decades has established that almost every cell in the body possesses its own circadian timekeeper. The resulting clock network is organized in a hierarchical manner. A master pacemaker, located in the suprachiasmatic nucleus (SCN) of the hypothalamus, is synchronized every day to the photoperiod. In turn, the SCN determines the phase of the cellular clocks in peripheral organs through a wide variety of signalling pathways dependent on feeding cycles, body temperature rhythms, oscillating bloodborne signals and, in some organs, inputs of the peripheral nervous system. A major purpose of circadian clocks in peripheral tissues is the temporal orchestration of key metabolic processes, including food processing (metabolism and xenobiotic detoxification). Here, we review some recent findings regarding the molecular and cellular composition of the circadian timing system and discuss its implications for the temporal coordination of metabolism in health and disease. We focus primarily on metabolic disorders such as obesity and type 2 diabetes, although circadian misalignments (shiftwork or 'social jet lag') have also been associated with the aetiology of human malignancies.
Collapse
Affiliation(s)
- C Dibner
- Department of Endocrinology, Diabetes, Nutrition and Hypertension, University Hospital of Geneva, Geneva, Switzerland
| | | |
Collapse
|
23
|
Liu C, Chung M. Genetics and epigenetics of circadian rhythms and their potential roles in neuropsychiatric disorders. Neurosci Bull 2015; 31:141-159. [PMID: 25652815 PMCID: PMC4821655 DOI: 10.1007/s12264-014-1495-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/19/2015] [Indexed: 01/07/2023] Open
Abstract
Circadian rhythm alterations have been implicated in multiple neuropsychiatric disorders, particularly those of sleep, addiction, anxiety, and mood. Circadian rhythms are known to be maintained by a set of classic clock genes that form complex mutual and self-regulatory loops. While many other genes showing rhythmic expression have been identified by genome-wide studies, their roles in circadian regulation remain largely unknown. In attempts to directly connect circadian rhythms with neuropsychiatric disorders, genetic studies have identified gene mutations associated with several rare sleep disorders or sleep-related traits. Other than that, genetic studies of circadian genes in psychiatric disorders have had limited success. As an important mediator of environmental factors and regulators of circadian rhythms, the epigenetic system may hold the key to the etiology or pathology of psychiatric disorders, their subtypes or endophenotypes. Epigenomic regulation of the circadian system and the related changes have not been thoroughly explored in the context of neuropsychiatric disorders. We argue for systematic investigation of the circadian system, particularly epigenetic regulation, and its involvement in neuropsychiatric disorders to improve our understanding of human behavior and disease etiology.
Collapse
Affiliation(s)
- Chunyu Liu
- State Key Laboratory of Medical Genetics of China, Changsha, 410078, China,
| | | |
Collapse
|
24
|
Pin Arboledas G, Merino Andreu M, de la Calle Cabrera T, Hidalgo Vicario M, Rodríguez Hernández P, Soto Insuga V, Madrid Pérez J. Consenso sobre el uso de melatonina en niños y adolescentes con dificultades para iniciar el sueño. An Pediatr (Barc) 2014; 81:328.e1-9. [DOI: 10.1016/j.anpedi.2014.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022] Open
|
25
|
Mirzaei K, Xu M, Qi Q, de Jonge L, Bray GA, Sacks F, Qi L. Variants in glucose- and circadian rhythm-related genes affect the response of energy expenditure to weight-loss diets: the POUNDS LOST Trial. Am J Clin Nutr 2014; 99:392-9. [PMID: 24335056 PMCID: PMC3893729 DOI: 10.3945/ajcn.113.072066] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Circadian rhythm has been shown to be related to glucose metabolism and risk of diabetes, probably through effects on energy balance. Recent genome-wide association studies identified variants in circadian rhythm-related genes (CRY2 and MTNR1B) associated with glucose homeostasis. OBJECTIVE We tested whether CRY2 and MTNR1B genotypes affected changes in measures of energy expenditure in response to a weight-loss diet intervention in a 2-y randomized clinical trial, the POUNDS (Preventing Overweight Using Novel Dietary Strategies) LOST Trial. DESIGN The variants CRY2 rs11605924 (n = 721) and MTNR1B rs10830963 (n = 722) were genotyped in overweight or obese adults who were randomly assigned to 1 of 4 weight-loss diets that differed in their proportions of macronutrients. Respiratory quotient (RQ) and resting metabolic rate (RMR) were measured. RESULTS By 2 y of diet intervention, the A allele of CRY2 rs11605924 was significantly associated with a greater reduction in RQ (P = 0.03) and a greater increase in RMR and RMR/kg (both P = 0.04). The G allele of MTNR1B rs10830963 was significantly associated with a greater increase in RQ (P = 0.01) but was not related to changes in RMR and RMR/kg. In addition, we found significant gene-diet fat interactions for both CRY2 (P-interaction = 0.02) and MTNR1B (P-interaction < 0.001) in relation to 2-y changes in RQ. CONCLUSIONS Our data indicate that variants in the circadian-related genes CRY2 and MTNR1B may affect long-term changes in energy expenditure, and dietary fat intake may modify the genetic effects. This trial was registered at www.clinicaltrials.gov as NCT00072995.
Collapse
Affiliation(s)
- Khadijeh Mirzaei
- Department of Nutrition, Harvard School of Public Health, Boston, MA (KM, MX, QQ, FS, and LQ); the Pennington Biomedical Research Center of the Louisiana State University System, Baton Rouge, LA (LdJ and GAB); and the Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (LQ)
| | | | | | | | | | | | | |
Collapse
|
26
|
Cutando A, López-Valverde A, de Diego RG, de Vicente J, Reiter R, Herrero Fernández M, Ferrera MJ. Effect of topical application of melatonin to the gingiva on salivary osteoprotegerin, RANKL and melatonin levels in patients with diabetes and periodontal disease. Odontology 2013; 102:290-6. [DOI: 10.1007/s10266-013-0122-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 06/02/2013] [Indexed: 01/14/2023]
|
27
|
Melatonin receptor genes in vertebrates. Int J Mol Sci 2013; 14:11208-23. [PMID: 23712359 PMCID: PMC3709728 DOI: 10.3390/ijms140611208] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/28/2013] [Accepted: 05/20/2013] [Indexed: 01/06/2023] Open
Abstract
Melatonin receptors are members of the G protein-coupled receptor (GPCR) family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A) and MT2 (or Mel1b or MTNR1B) receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C), has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.
Collapse
|
28
|
Hardeland R. Chronobiology of Melatonin beyond the Feedback to the Suprachiasmatic Nucleus-Consequences to Melatonin Dysfunction. Int J Mol Sci 2013; 14:5817-41. [PMID: 23481642 PMCID: PMC3634486 DOI: 10.3390/ijms14035817] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 12/28/2022] Open
Abstract
The mammalian circadian system is composed of numerous oscillators, which gradually differ with regard to their dependence on the pacemaker, the suprachiasmatic nucleus (SCN). Actions of melatonin on extra-SCN oscillators represent an emerging field. Melatonin receptors are widely expressed in numerous peripheral and central nervous tissues. Therefore, the circadian rhythm of circulating, pineal-derived melatonin can have profound consequences for the temporal organization of almost all organs, without necessarily involving the melatonin feedback to the suprachiasmatic nucleus. Experiments with melatonin-deficient mouse strains, pinealectomized animals and melatonin receptor knockouts, as well as phase-shifting experiments with explants, reveal a chronobiological role of melatonin in various tissues. In addition to directly steering melatonin-regulated gene expression, the pineal hormone is required for the rhythmic expression of circadian oscillator genes in peripheral organs and to enhance the coupling of parallel oscillators within the same tissue. It exerts additional effects by modulating the secretion of other hormones. The importance of melatonin for numerous organs is underlined by the association of various diseases with gene polymorphisms concerning melatonin receptors and the melatonin biosynthetic pathway. The possibilities and limits of melatonergic treatment are discussed with regard to reductions of melatonin during aging and in various diseases.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner Str. 28, Göttingen D-37073, Germany.
| |
Collapse
|