1
|
Tôrres PPBF, Meneses GC, Lima LAL, Lopes NC, de Araújo LM, Araújo KMDR, de Souza RN, Domingues-da-Silva RDO, Martins AMC, Daher EDF, da Silva Junior GB. Angiopoietin-2 and endothelial damage associated with viral load in untreated people living with HIV. Int J STD AIDS 2025; 36:498-505. [PMID: 40019463 DOI: 10.1177/09564624251323681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
BackgroundHIV infection is associated with various types of endothelial damage. Early and accurate diagnosis of endothelial dysfunction may help prevent adverse outcomes. For the first time, this cross-sectional study aims to investigate the effects of increased viral load on endothelial damage and nephrinuria in untreated people living with HIV.MethodsPeople living with HIV not on treatment were included. Laboratory parameters, such as viral load and CD4 count were collected. Participants were divided into three groups according to the tertiles of viral load: low, moderate and high viral load groups. Urinary nephrin, vascular cell adhesion molecule 1 (VCAM-1), angiopoietin-2 and syndecan-1 were quantified by sandwich ELISA assays kits.ResultsA total of 49 patients were examined. The high viral load group (3rd tertile) exhibited a greater frequency of nephrinuria and significantly higher levels of syndecan-1 (58 [48-93] vs 43 [38-65] ng/mL, p = .049) and angiopoietin-2 (2.58 [1.5-3.06] vs 1.34 [0.89-1.76] ng/mL, p = .035). Syndecan-1 levels positively correlated with viral load (rho = 0.452, p = .006), while angiopoietin-2 was positively correlated with viral load (rho = 0.529, p = .001) and inversely correlated with CD4 count (rho = -0.493, p = .003). No significant associations were found for VCAM-1 levels.ConclusionUntreated people living with HIV with elevated viral loads exhibited more pronounced endothelial damage and vascular inflammation, emphasizing the critical importance of early initiation of antiretroviral treatment to mitigate these complications. However, the study's findings should be interpreted with caution due to the small sample size, which may limit the generalizability of the results. Future studies with larger cohorts are needed to confirm these findings.
Collapse
Affiliation(s)
| | - Gdayllon Cavalcante Meneses
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | - Lana Andrade Lucena Lima
- Public Health and Medical Sciences Graduate Programs, Federal University of Fortaleza, Fortaleza, Brazil
| | - Nicole Coelho Lopes
- Pharmacology Post-Graduate Program, Federal University of Ceará, Fortaleza, Brazil
| | - Leticia Machado de Araújo
- Public Health and Medical Sciences Graduate Programs, Federal University of Fortaleza, Fortaleza, Brazil
| | | | - Rayane Nascimento de Souza
- Medical Sciences Post-Graduate Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará. Fortaleza, Ceará, Brazil
| | - Raoni de Oliveira Domingues-da-Silva
- Medical Sciences Post-Graduate Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará. Fortaleza, Ceará, Brazil
| | - Alice Maria Costa Martins
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Ceará, Fortaleza, Brazil
| | - Elizabeth De Francesco Daher
- Medical Sciences Post-Graduate Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará. Fortaleza, Ceará, Brazil
| | - Geraldo Bezerra da Silva Junior
- Collective Health Post-Graduate Program, School of Medicine, Health Sciences Center, University of Fortaleza, Fortaleza, Brazil
| |
Collapse
|
2
|
Muendlein A, Leiherer A, Drexel H. Evaluation of circulating glypican 4 as a novel biomarker in disease - A comprehensive review. J Mol Med (Berl) 2025; 103:355-364. [PMID: 39961831 DOI: 10.1007/s00109-025-02520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 01/18/2025] [Indexed: 04/17/2025]
Abstract
Glypican 4 (GPC4), a member of the cell surface heparan sulfate proteoglycan family, plays a crucial role in regulating various cell signaling and developmental processes. Its ability to be released from the cell surface into the bloodstream through shedding makes it a promising blood-based biomarker in health and disease. In this context, circulating GPC4 has been initially proposed as an insulin-sensitizing adipokine being linked with various conditions of insulin resistance. In addition, serum levels of GPC4 can indicate glycocalyx shedding and associated pathophysiological states, such as systemic inflammation. Particularly in a morbid and elderly population, increased GPC4 concentrations may reflect general organ dysfunction and an advanced state of multimorbidity, showing a strong association with the prognosis of severe conditions such as heart failure or advanced cancer. This comprehensive review is the first to summarize the existing scientific knowledge on the role of circulating GPC4 as a novel diagnostic and prognostic biomarker across different pathologic conditions. We also discuss in detail the putative underlying pathophysiological mechanisms behind these findings.
Collapse
Affiliation(s)
- A Muendlein
- Vorarlberg Institute for Vascular Investigation & Treatment, (VIVIT), Feldkirch, Austria.
| | - A Leiherer
- Vorarlberg Institute for Vascular Investigation & Treatment, (VIVIT), Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein (UFL), Triesen, Principality of Liechtenstein
| | - H Drexel
- Vorarlberg Institute for Vascular Investigation & Treatment, (VIVIT), Feldkirch, Austria
- Private University in the Principality of Liechtenstein (UFL), Triesen, Principality of Liechtenstein
- Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
3
|
Cacciatore S, Andaloro S, Bernardi M, Oterino Manzanas A, Spadafora L, Figliozzi S, Asher E, Rana JS, Ecarnot F, Gragnano F, Calabrò P, Gallo A, Andò G, Manzo-Silberman S, Roeters van Lennep J, Tosato M, Landi F, Biondi-Zoccai G, Marzetti E, Sabouret P. Chronic Inflammatory Diseases and Cardiovascular Risk: Current Insights and Future Strategies for Optimal Management. Int J Mol Sci 2025; 26:3071. [PMID: 40243756 PMCID: PMC11989023 DOI: 10.3390/ijms26073071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Chronic inflammation is a pivotal driver in the progression of atherosclerosis, significantly contributing to the burden of cardiovascular disease (CVD). Patients with chronic inflammatory diseases, such as inflammatory bowel diseases (IBDs) (e.g., ulcerative colitis and Crohn's disease), rheumatological disorders, as well as individuals with auto-immune diseases (such as systemic lupus erythematosus), present a higher risk of major adverse cardiac events (MACEs). Despite their elevated CVD risk, these populations remain underrepresented in cardiovascular research, leading to a critical underestimation of their cardiovascular risk (CVR) in clinical practice. Furthermore, even recent CVR scores poorly predict the risk of events in these specific populations. This narrative review examines the physiopathological mechanisms linking chronic inflammation, immunomodulation, atherosclerosis, thrombosis and cardiovascular events. We review data from epidemiological studies and clinical trials to explore the potential cardiovascular benefits of anti-inflammatory and immunomodulatory therapies. Despite existing evidence, significant gaps in knowledge remain. Future research is mandatory, focusing on innovative strategies for risk stratification and optimization, including lipidomics, proteomics, advanced inflammatory markers, microbiota profiling, and cardiovascular imaging. Addressing these unmet needs will enhance understanding of cardiovascular risk in chronic inflammatory diseases, enabling tailored interventions and better outcomes.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Silvia Andaloro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
| | - Marco Bernardi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (M.B.); (L.S.); (G.B.-Z.)
| | - Armando Oterino Manzanas
- Department of Cardiology, Hospital Universitario de Salamanca-IBSAL, Paseo de San Vicente, 58-182, 37007 Salamanca, Spain;
| | - Luigi Spadafora
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (M.B.); (L.S.); (G.B.-Z.)
| | - Stefano Figliozzi
- IRCCS Humanitas Research Hospital, Via Alessandro Manzoni, 56, Rozzano, 20089 Milano, Italy;
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 4, Pieve Emanuele, 20090 Milano, Italy
| | - Elad Asher
- Jesselson Integrated Heart Center, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Shmuel (Hans) Beyth St. 12, Jerusalem 9103102, Israel;
| | - Jamal S. Rana
- Division of Cardiology, Kaiser Permanente Northern California, 1 Kaiser Plaza, Oakland, CA 94612, USA;
- Division of Research, Kaiser Permanente Northern California, 1 Kaiser Plaza, Oakland, CA 94612, USA
| | - Fiona Ecarnot
- Department of Cardiology, University Hospital, Boulevard Fleming, 25000 Besançon, France;
- SINERGIES Unit, University Marie & Louis Pasteur, 19 Rue Ambroise Paré, 25000 Besançon, France
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Via Leonardo Bianchi, Ospedale Monaldi, 80131 Naples, Italy; (F.G.); (P.C.)
- Division of Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, Via Ferdinando Palasciano, 81100 Caserta, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Via Leonardo Bianchi, Ospedale Monaldi, 80131 Naples, Italy; (F.G.); (P.C.)
- Division of Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, Via Ferdinando Palasciano, 81100 Caserta, Italy
| | - Antonio Gallo
- INSERM UMR1166, IHU ICAN, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Pitié-Salpêtrière Hospital, Sorbonne University, AP-HP, 47–83 Bd de l’Hôpital, 75013 Paris, France;
| | - Giuseppe Andò
- Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria Policlinico “Gaetano Martino”, Via Consolare Valeria, 1, 98124 Messina, Italy;
| | - Stephane Manzo-Silberman
- ACTION Study Group, Inserm UMRS1166, Heart Institute, Pitié-Salpetriere Hospital, Sorbonne University, 47-83 Bd de l’Hôpital, 75013 Paris, France; (S.M.-S.); (P.S.)
| | - Jeanine Roeters van Lennep
- Department of Internal Medicine, Cardiovascular Institute, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Matteo Tosato
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy; (M.B.); (L.S.); (G.B.-Z.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera, 1, 48033 Cotignola, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy;
| | - Pierre Sabouret
- ACTION Study Group, Inserm UMRS1166, Heart Institute, Pitié-Salpetriere Hospital, Sorbonne University, 47-83 Bd de l’Hôpital, 75013 Paris, France; (S.M.-S.); (P.S.)
| |
Collapse
|
4
|
Kitasato L, Yamaoka-Tojo M, Iwaya T, Murayama Y, Ikeda Y, Hashikata T, Oikawa J, Suzuki M, Misawa N, Kawashima R, Ogawa F, Ako J. Rivaroxaban as a Protector of Oxidative Stress-Induced Vascular Endothelial Glycocalyx Damage via the IQGAP1/PAR1-2/PI3K/Akt Pathway. J Vasc Res 2024; 62:22-36. [PMID: 39496251 PMCID: PMC11797952 DOI: 10.1159/000542419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024] Open
Abstract
INTRODUCTION The vascular endothelial glycocalyx, crucial for blood vessel integrity and homeostasis, is vulnerable to oxidative stress, leading to endothelial dysfunction, which strongly correlates with cardiovascular disease (CVD). This study investigates the protective effects of rivaroxaban, a factor X inhibitor, on the glycocalyx under oxidative stress condition. METHODS We examined the impact of rivaroxaban on human umbilical vein endothelial cells exposed to acute and chronic H2O2-induced oxidative stress. RESULTS Rivaroxaban dose-dependently suppressed syndecan-1, a key component of the glycocalyx, shedding from cell surface, and enhanced protease-activated receptor (PAR)1-PAR2/phosphatidylinositol-3-kinase (PI3K)-dependent cell viability after acute induction of H2O2. This protective effect was linked to the translocation of IQGAP1, a scaffold protein that modulates the actin cytoskeleton, to the perinucleus from the cell membrane. Under chronic H2O2 treatments, rivaroxaban improves cell viability accompanied by an increase in hyaluronidase activities, aiding the turnover and remodeling of hyaluronic acid within the glycocalyx. CONCLUSION We identify that rivaroxaban protects against oxidative stress-induced endothelial glycocalyx damage and cell viability through IQGAP1/PAR1-2/PI3K/Akt pathway, offering a potential to be a therapeutic target for CVD prevention. INTRODUCTION The vascular endothelial glycocalyx, crucial for blood vessel integrity and homeostasis, is vulnerable to oxidative stress, leading to endothelial dysfunction, which strongly correlates with cardiovascular disease (CVD). This study investigates the protective effects of rivaroxaban, a factor X inhibitor, on the glycocalyx under oxidative stress condition. METHODS We examined the impact of rivaroxaban on human umbilical vein endothelial cells exposed to acute and chronic H2O2-induced oxidative stress. RESULTS Rivaroxaban dose-dependently suppressed syndecan-1, a key component of the glycocalyx, shedding from cell surface, and enhanced protease-activated receptor (PAR)1-PAR2/phosphatidylinositol-3-kinase (PI3K)-dependent cell viability after acute induction of H2O2. This protective effect was linked to the translocation of IQGAP1, a scaffold protein that modulates the actin cytoskeleton, to the perinucleus from the cell membrane. Under chronic H2O2 treatments, rivaroxaban improves cell viability accompanied by an increase in hyaluronidase activities, aiding the turnover and remodeling of hyaluronic acid within the glycocalyx. CONCLUSION We identify that rivaroxaban protects against oxidative stress-induced endothelial glycocalyx damage and cell viability through IQGAP1/PAR1-2/PI3K/Akt pathway, offering a potential to be a therapeutic target for CVD prevention.
Collapse
Affiliation(s)
- Lisa Kitasato
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Minako Yamaoka-Tojo
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Toshiyuki Iwaya
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
- Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
| | - Yusuke Murayama
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
- Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
| | - Yuki Ikeda
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takehiro Hashikata
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Jun Oikawa
- Department of Kitasato Clinical Research Center, Kitasato University School of Medicine, Sagamihara, Japan
| | - Machika Suzuki
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Nonoka Misawa
- Department of Regulation Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Rei Kawashima
- Department of Regulation Biochemistry, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Fumihiro Ogawa
- Department of Emergency Medicine, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
5
|
Scarlatescu E, Iba T, Maier CL, Moore H, Othman M, Connors JM, Levy JH. Deranged Balance of Hemostasis and Fibrinolysis in Disseminated Intravascular Coagulation: Assessment and Relevance in Different Clinical Settings. Anesthesiology 2024; 141:570-583. [PMID: 38861325 DOI: 10.1097/aln.0000000000005023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Affiliation(s)
- Ecaterina Scarlatescu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; and Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Cheryl L Maier
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Hunter Moore
- Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Maha Othman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; School of Baccalaureate Nursing, St. Lawrence College, Kingston, Ontario, Canada; and Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Jean Marie Connors
- Hematology Division Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
6
|
Masenga SK, Liweleya S, Kirabo A. High salt intake and HIV infection on endothelial glycocalyx shedding in salt-sensitive hypertension. Front Cell Dev Biol 2024; 12:1395885. [PMID: 39081863 PMCID: PMC11286502 DOI: 10.3389/fcell.2024.1395885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
The endothelial glycocalyx is closely associated with various physiological and pathophysiological events. Significant modification of the endothelial glycocalyx is an early process in the pathogenesis of cardiovascular disease. High dietary salt and HIV infection damages the endothelial glycocalyx causing endothelial dysfunction and increasing the risk for salt-sensitive hypertension and cardiovascular disease. The two factors, HIV infection and dietary salt are critical independent predictors of hypertension and cardiovascular disease and often synergize to exacerbate and accelerate disease pathogenesis. Salt-sensitive hypertension is more common among people living with HIV and is associated with risk for cardiovascular disease, stroke, heart attack and even death. However, the underlying mechanisms linking endothelial glycocalyx damage to dietary salt and HIV infection are lacking. Yet, both HIV infection/treatment and dietary salt are closely linked to endothelial glycocalyx damage and development of salt-sensitive hypertension. Moreover, the majority of individuals globally, consume more salt than is recommended and the burden of HIV especially in sub-Sahara Africa is disproportionately high. In this review, we have discussed the missing link between high salt and endothelial glycocalyx shedding in the pathogenesis of salt-sensitive hypertension. We have further elaborated the role played by HIV infection and treatment in modifying endothelial glycocalyx integrity to contribute to the development of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Situmbeko Liweleya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Center for Immunobiology, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, United States
- Vanderbilt Institute for Global Health, Nashville, TN, United States
| |
Collapse
|
7
|
O'Neil M, Demeulenaere SK, DeChristopher PJ, Holthaus E, Jeske W, Glynn L, Husain A, Muraskas J. Syndecan-1 Level, a Marker of Endothelial Glycocalyx Degradation, Is Associated With Fetal Exposure to Chorioamnionitis and Is a Potential Biomarker for Early-Onset Neonatal Sepsis. Pediatr Dev Pathol 2024; 27:318-326. [PMID: 38616561 DOI: 10.1177/10935266241235504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The goal of this investigation was to identify the association between Syndecan-1 (S1) serum levels in preterm newborns exposed to chorioamnionitis (CA) in utero and the potential of S1 as a biomarker of early-onset neonatal sepsis. A cohort of preterm newborns born <33 weeks gestational age was recruited. Within 48 hours of birth, 0.5 mL of blood was drawn to obtain S1 levels, measured via ELISA. Placentas were examined and classified as having (1) no CA, (2) CA without umbilical cord involvement, or (3) CA with inflammation of the umbilical cord (funisitis). S1 levels were compared between preterm newborns without exposure to CA verus newborns with exposure to CA (including with and without funisitis). Preterm newborns exposed to CA were found to have significantly elevated S1 levels compared to those unexposed. Although S1 levels could not differentiate fetal exposure to CA from exposure to CA with funisitis, the combined CA groups had significantly higher S1 levels compared to those not exposed to CA. S1 level has the potential to become a clinically useful biomarker that could assist in the management of mothers and preterm newborns with CA and funisitis. Furthermore, S1 level could aid in the diagnosis and treatment of early-onset neonatal sepsis.
Collapse
Affiliation(s)
- Michaela O'Neil
- Loyola University Chicago, Maywood, IL, USA
- The University of Chicago, Chicago, IL, USA
| | | | | | - Emily Holthaus
- Loyola University Chicago, Maywood, IL, USA
- UT Southwestern Medical Center, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
8
|
Bender M, Abicht JM, Reichart B, Leuschen M, Wall F, Radan J, Neumann E, Mokelke M, Buttgereit I, Michel S, Ellgass R, Gieseke K, Steen S, Paskevicius A, Denner J, Godehardt AW, Tönjes RR, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Müller MB, Längin M. The Endothelial Glycocalyx in Pig-to-Baboon Cardiac Xenotransplantation-First Insights. Biomedicines 2024; 12:1336. [PMID: 38927543 PMCID: PMC11201800 DOI: 10.3390/biomedicines12061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiac xenotransplantation has seen remarkable success in recent years and is emerging as the most promising alternative to human cardiac allotransplantation. Despite these achievements, acute vascular rejection still presents a challenge for long-term xenograft acceptance and new insights into innate and adaptive immune responses as well as detailed characterizations of signaling pathways are necessary. In allotransplantation, endothelial cells and their sugar-rich surface-the endothelial glycocalyx-are known to influence organ rejection. In xenotransplantation, however, only in vitro data exist on the role of the endothelial glycocalyx so far. Thus, in the current study, we analyzed the changes of the endothelial glycocalyx components hyaluronan, heparan sulfate and syndecan-1 after pig-to-baboon cardiac xenotransplantations in the perioperative (n = 4) and postoperative (n = 5) periods. These analyses provide first insights into changes of the endothelial glycocalyx after pig-to-baboon cardiac xenotransplantation and show that damage to the endothelial glycocalyx seems to be comparable or even less pronounced than in similar human settings when current strategies of cardiac xenotransplantation are applied. At the same time, data from the experiments where current strategies, like non-ischemic preservation, growth inhibition or porcine cytomegalovirus (a porcine roseolovirus (PCMV/PRV)) elimination could not be applied indicate that damage of the endothelial glycocalyx also plays an important role in cardiac xenotransplantation.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katja Gieseke
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Martin B. Müller
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
9
|
Ider M, Ceylan C, Naseri A, Ceylan O, Durgut MK, Ok M, Iyigun SS, Erol BB, Sahin HB, Kilickaya MC. Evaluation of endothelial glycocalyx injury biomarkers in feline hemotropic mycoplasmosis. Sci Rep 2024; 14:12931. [PMID: 38839816 PMCID: PMC11153643 DOI: 10.1038/s41598-024-62359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
The present study aimed to investigate endothelial glycocalyx (eGCx) damage in cats with feline hemotropic mycoplasmosis caused by Mycoplasma haemofelis using selected biomarkers and to determine the diagnostic and prognostic significance of these biomarkers. The study included 25 cats with feline hemotropic mycoplasmosis and 10 healthy cats. Clinical examination, blood gas analysis, complete blood count, and biochemical analysis were performed. Hemotropic mycoplasmosis diagnosed by microscopic examination and molecularly confirmed by PCR targeting the Mycoplasma haemofelis 16s rRNA gene. To evaluate endothelial glycocalyx damage, syndecan-1, endothelin-1 (ET-1), asymmetric dimethylarginine (ADMA), and vascular endothelial growth factor-A (VEGF-A) concentrations were measured using cat-specific commercial ELISA kits. Of the cats with feline hemotropic mycoplasmosis, 14 (56%) survived and 11 (44%) died. While syndecan-1 and ET-1 concentrations were significantly higher in cats with hemotropic mycoplasmosis compared to the control group (p < 0.001), no statistically significant difference was found for ADMA and VEGF-A concentrations (p > 0.05). Endothelial glycocalyx biomarkers showed significant correlations with each other and with hematological parameters (p < 0.01). The results of the ROC analysis showed that ET-1 with area under the curve (AUC) of 0.821 (p < 0.01) and VEGF-A with AUC of 0.805 (p < 0.010) were found to be significant prognostic indicators. In conclusion, this study demonstrated that serum syndecan-1 and ET-1 can be used as diagnostic and serum ET-1 and VEGF-A as prognostic biomarkers in cats with hemotropic mycoplasmosis. Our results indicate the development of eGCx damage in feline hemotropic mycoplasmosis and suggest that glycocalyx disruption may contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- Merve Ider
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey.
| | - Ceylan Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Amir Naseri
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Onur Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Murat Kaan Durgut
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Mahmut Ok
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Suleyman Serhat Iyigun
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Busra Burcu Erol
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Hatice Betul Sahin
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Merve Cansu Kilickaya
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
10
|
Smood B, Smith C, Dori Y, Mavroudis CD, Fuller S, Gaynor JW, Maeda K. Lymphatic failure and lymphatic interventions: Knowledge gaps and future directions for a new frontier in congenital heart disease. Semin Pediatr Surg 2024; 33:151426. [PMID: 38820801 PMCID: PMC11229519 DOI: 10.1016/j.sempedsurg.2024.151426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Lymphatic failure is a broad term that describes the lymphatic circulation's inability to adequately transport fluid and solutes out of the interstitium and into the systemic venous circulation, which can result in dysfunction and dysregulation of immune responses, dietary fat absorption, and fluid balance maintenance. Several investigations have recently elucidated the nexus between lymphatic failure and congenital heart disease, and the associated morbidity and mortality is now well-recognized. However, the precise pathophysiology and pathogenesis of lymphatic failure remains poorly understood and relatively understudied, and there are no targeted therapeutics or interventions to reliably prevent its development and progression. Thus, there is growing enthusiasm towards the development and application of novel percutaneous and surgical lymphatic interventions. Moreover, there is consensus that further investigations are needed to delineate the underlying mechanisms of lymphatic failure, which could help identify novel therapeutic targets and develop innovative procedures to improve the overall quality of life and survival of these patients. With these considerations, this review aims to provide an overview of the lymphatic circulation and its vasculature as it relates to current understandings into the pathophysiology and pathogenesis of lymphatic failure in patients with congenital heart disease, while also summarizing strategies for evaluating and managing lymphatic complications, as well as specific areas of interest for future translational and clinical research efforts.
Collapse
Affiliation(s)
- Benjamin Smood
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States of America; Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America.
| | - Christopher Smith
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104 United States of America
| | - Yoav Dori
- Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104 United States of America
| | - Constantine D Mavroudis
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States of America; Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Stephanie Fuller
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States of America; Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - J William Gaynor
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States of America; Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| | - Katsuhide Maeda
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, United States of America; Division of Cardiovascular Surgery, Department of Surgery, The University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America; Jill and Mark Fishman Center for Lymphatic Disorders, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
11
|
Mocan D, Lala RI, Puschita M, Pilat L, Darabantiu DA, Pop-Moldovan A. The Congestion "Pandemic" in Acute Heart Failure Patients. Biomedicines 2024; 12:951. [PMID: 38790913 PMCID: PMC11117769 DOI: 10.3390/biomedicines12050951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Congestion not only represents a cardinal sign of heart failure (HF) but is also now recognized as the primary cause of hospital admissions, rehospitalization, and mortality among patients with acute heart failure (AHF). Congestion can manifest through various HF phenotypes in acute settings: volume overload, volume redistribution, or both. Recognizing the congestion phenotype is paramount, as it implies different therapeutic strategies for decongestion. Among patients with AHF, achieving complete decongestion is challenging, as more than half still experience residual congestion at discharge. Residual congestion is one of the strongest predictors of future cardiovascular events and poor outcomes. Through this review, we try to provide a better understanding of the congestion phenomenon among patients with AHF by highlighting insights into the pathophysiological mechanisms behind congestion and new diagnostic and management tools to achieve and maintain efficient decongestion.
Collapse
Affiliation(s)
- Daniela Mocan
- Multidisciplinary Doctoral School, Vasile Goldis Western University of Arad, 310025 Arad, Romania; (D.M.)
| | - Radu Ioan Lala
- Multidisciplinary Doctoral School, Vasile Goldis Western University of Arad, 310025 Arad, Romania; (D.M.)
- Cardiology Department, Arad County Clinical Emergency Hospital, 310037 Arad, Romania
| | - Maria Puschita
- Multidisciplinary Doctoral School, Vasile Goldis Western University of Arad, 310025 Arad, Romania; (D.M.)
| | - Luminita Pilat
- Multidisciplinary Doctoral School, Vasile Goldis Western University of Arad, 310025 Arad, Romania; (D.M.)
| | | | - Adina Pop-Moldovan
- Multidisciplinary Doctoral School, Vasile Goldis Western University of Arad, 310025 Arad, Romania; (D.M.)
- Cardiology Department, Arad County Clinical Emergency Hospital, 310037 Arad, Romania
| |
Collapse
|
12
|
Kršek A, Batičić L, Ćurko-Cofek B, Batinac T, Laškarin G, Miletić-Gršković S, Sotošek V. Insights into the Molecular Mechanism of Endothelial Glycocalyx Dysfunction during Heart Surgery. Curr Issues Mol Biol 2024; 46:3794-3809. [PMID: 38785504 PMCID: PMC11119104 DOI: 10.3390/cimb46050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
The endothelial glycocalyx (EGC) is a layer of proteoglycans (associated with glycosaminoglycans) and glycoproteins, which adsorbs plasma proteins on the luminal surface of endothelial cells. Its main function is to participate in separating the circulating blood from the inner layers of the vessels and the surrounding tissues. Physiologically, the EGC stimulates mechanotransduction, the endothelial charge, thrombocyte adhesion, leukocyte tissue recruitment, and molecule extravasation. Hence, severe impairment of the EGC has been implicated in various pathological conditions, including sepsis, diabetes, chronic kidney disease, inflammatory disorders, hypernatremia, hypervolemia, atherosclerosis, and ischemia/reperfusion injury. Moreover, alterations in EGC have been associated with altered responses to therapeutic interventions in conditions such as cardiovascular diseases. Investigation into the function of the glycocalyx has expanded knowledge about vascular disorders and indicated the need to consider new approaches in the treatment of severe endothelial dysfunction. This review aims to present the current understanding of the molecular mechanisms underlying cardiovascular diseases and to elucidate the impact of heart surgery on EGC dysfunction.
Collapse
Affiliation(s)
- Antea Kršek
- Faculty of Rijeka, University of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Silvija Miletić-Gršković
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
13
|
Grushko OG, Cho S, Tate AM, Rosenson RS, Pinsky DJ, Haus JM, Hummel SL, Goonewardena SN. Glycocalyx Disruption Triggers Human Monocyte Activation in Acute Heart Failure Syndromes. Cardiovasc Drugs Ther 2024; 38:305-313. [PMID: 36260206 DOI: 10.1007/s10557-022-07390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Acute heart failure (AHF) syndromes manifest increased inflammation and vascular dysfunction; however, mechanisms that integrate the two in AHF remain largely unknown. The glycocalyx (GAC) is a sugar-based shell that envelops all mammalian cells. Much GAC research has focused on its role in vascular responses, with comparatively little known about how the GAC regulates immune cell function. METHODS In this study, we sought to determine if GAC degradation products are elevated in AHF patients, how these degradation products relate to circulating inflammatory mediators, and whether the monocyte GAC (mGAC) itself modulates monocyte activation. Inflammatory markers and GAC degradation products were profiled using ELISAs. Flow cytometry was used to assess the mGAC and RNA-seq was employed to understand the role of the mGAC in regulating inflammatory activation programs. RESULTS In a cohort of hospitalized AHF patients (n = 17), we found that (1) the GAC degradation product heparan sulfate (HS) was elevated compared with age-matched controls (4396 and 2903 ng/mL; p = 0.01) and that (2) HS and soluble CD14 (a marker of monocyte activation) levels were closely related (Pearson's r = 0.65; p = 0.002). Mechanistically, Toll-like receptor (TLR) activation of human monocytes results in GAC remodeling and a decrease in the mGAC (71% compared with no treatment; p = 0.0007). Additionally, we found that ex vivo enzymatic removal of HS and disruption of the mGAC triggers human monocyte activation and amplifies monocyte inflammatory responses. Specifically, using RNA-seq, we found that enzymatic degradation of the mGAC increases transcription of inflammatory (IL6, CCL3) and vascular (tissue factor/F3) mediators. CONCLUSION These studies indicate that the mGAC is dynamically remodeled during monocyte activation and that mGAC remodeling itself may contribute to the heightened inflammation associated with AHF.
Collapse
Affiliation(s)
- Olga G Grushko
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Steven Cho
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Ashley M Tate
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Robert S Rosenson
- Metabolism and Lipids Unit, Icahn School of Medicine at Mount Sinai, Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Mount Sinai, NY, USA
| | - David J Pinsky
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Scott L Hummel
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA
- VA Ann Arbor Health System, Ann Arbor, MI, USA
| | - Sascha N Goonewardena
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Frankel Cardiovascular Center, 1500 East Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA.
- VA Ann Arbor Health System, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Vondenhoff S, Schunk SJ, Noels H. Increased cardiovascular risk in patients with chronic kidney disease. Herz 2024; 49:95-104. [PMID: 38416185 PMCID: PMC10917854 DOI: 10.1007/s00059-024-05235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Cardiovascular disease (CVD) is highly prevalent in patients suffering from chronic kidney disease (CKD). The risk of patients with CKD developing CVD is manifested already in the early stages of CKD development. The impact of declined kidney function on increased cardiovascular risk and the underlying mechanisms are complex and multifactorial. This review discusses the impact of (a) traditional cardiovascular risk factors such as smoking, dyslipidemia, diabetes, and hypertension as well as (b) CKD-specific pathophysiological and molecular mechanisms associated with an increased cardiovascular risk. The latter include uremic toxins, post-translational modifications and uremic lipids, innate immune cell activation and inflammation, oxidative stress, endothelial cell dysfunction, increased coagulation and altered platelet responses, vascular calcification, renin-angiotensin-aldosterone-system (RAAS) and sympathetic activation, as well as anemia. Unraveling the complex interplay of different risk factors, especially in the context of patient subcohorts, will help to find new therapeutic approaches in order to reduce the increased cardiovascular risk in this vulnerable patient cohort.
Collapse
Affiliation(s)
- Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074, Aachen, Germany
- Biochemistry Department, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen University, 52074, Aachen, Germany
| | - Stefan J Schunk
- Klinik für Innere Medizin IV, Nieren- und Hochdruckkrankheiten, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074, Aachen, Germany.
- Biochemistry Department, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
- Aachen-Maastricht Institute for Cardiorenal Research (AMICARE), University Hospital Aachen, Aachen, Germany.
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
15
|
Xu C, Tsihlis G, Chau K, Trinh K, Rogers NM, Julovi SM. Novel Perspectives in Chronic Kidney Disease-Specific Cardiovascular Disease. Int J Mol Sci 2024; 25:2658. [PMID: 38473905 PMCID: PMC10931927 DOI: 10.3390/ijms25052658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects > 10% of the global adult population and significantly increases the risk of cardiovascular disease (CVD), which remains the leading cause of death in this population. The development and progression of CVD-compared to the general population-is premature and accelerated, manifesting as coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. CKD and CV disease combine to cause multimorbid cardiorenal syndrome (CRS) due to contributions from shared risk factors, including systolic hypertension, diabetes mellitus, obesity, and dyslipidemia. Additional neurohormonal activation, innate immunity, and inflammation contribute to progressive cardiac and renal deterioration, reflecting the strong bidirectional interaction between these organ systems. A shared molecular pathophysiology-including inflammation, oxidative stress, senescence, and hemodynamic fluctuations characterise all types of CRS. This review highlights the evolving paradigm and recent advances in our understanding of the molecular biology of CRS, outlining the potential for disease-specific therapies and biomarker disease detection.
Collapse
Affiliation(s)
- Cuicui Xu
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
| | - George Tsihlis
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
| | - Katrina Chau
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
- Blacktown Clinical School, School of Medicine, Western Sydney University, Sydney, NSW 2148, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
| | - Natasha M. Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| | - Sohel M. Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| |
Collapse
|
16
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
17
|
Robbin V, Bansal V, Siddiqui F, Allen M, Hoppensteadt-Moorman D, Kantarcioglu B, Abulencia E, Magpoc E, Fareed J, Syed M. Endogenous Dysregulation of Thromboinflammatory Biomarkers in End-Stage Renal Disease, and Their Amplification by Heart Failure. Clin Appl Thromb Hemost 2024; 30:10760296241263858. [PMID: 39140866 PMCID: PMC11325466 DOI: 10.1177/10760296241263858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
In patients with end-stage renal disease (ESRD), heart failure with reduced ejection fraction (HFrEF) is a common comorbidity. Thromboinflammatory processes in both conditions represent complex pathophysiology, demonstrated by dysregulation of thromboinflammatory biomarkers, and commonly resulting in the combined pathology of cardiorenal syndrome. We sought to investigate the effects of HFrEF on these biomarkers in patients with ESRD, and observe the relationship to mortality. Blood samples from 73 patients with ESRD (mean age 67 ± 13 years, 56% male) and 40 healthy controls were analyzed via enzyme-linked immunosorbent assay and other chromogenic methods for angiopoietin-2 (Ang2), endogenous glycosaminoglycans, fatty acid binding protein, interleukin-6, lipopolysaccharide, free fatty acids, NT-pro B-type natriuretic peptide, tumor necrosis factor α, vascular endothelial growth factor, and von Willebrand factor. Patients were stratified into those with or without HFrEF (EF < 50%). Patients had highly prevalent comorbidities including coronary artery disease 46%, diabetes 69%, hypertension 97%, and smoking 49%. Most biomarkers were upregulated in ESRD compared to controls. Patients with HFrEF and ESRD had greater interleukin-6 and NT-pro B-type natriuretic peptide and lesser lipopolysaccharide compared to ESRD only. Spearman correlations between most biomarkers were increased in HFrEF + ESRD over ESRD only. Ang-2 was associated with mortality in this cohort. The dysregulation of thromboinflammation in ESRD is somewhat amplified in comorbid HFrEF. Correlation among biomarkers in this cohort indicates the mechanisms of thromboinflammatory biomarker generation in ESRD and HFrEF share an integrative process. Ang2, interleukin-6, and lipopolysaccharide show promise as biomarkers for risk stratification among patients with both HFrEF and ESRD.
Collapse
Affiliation(s)
- Vanessa Robbin
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Vinod Bansal
- Department of Nephrology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Fakiha Siddiqui
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
- Program in Health Sciences. UCAM - Universidad Católica San Antonio de Murcia, Spain
| | - Madeline Allen
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Debra Hoppensteadt-Moorman
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Bulent Kantarcioglu
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Emma Abulencia
- Department of Nephrology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Evangeline Magpoc
- Department of Nephrology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Jawed Fareed
- Department of Vascular Biology and Hemostasis, Cardiovascular Research Institute, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Mushabbar Syed
- Department of Cardiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
18
|
Bulle EB, Blanken B, Klanderman RB, van Manen L, Juffermans NP, Vlaar APJ. Exploring NT-proBNP, syndecan-1, and cytokines as biomarkers for transfusion-associated circulatory overload in a critically ill patient population receiving a single-unit red blood cell transfusion. Transfusion 2023; 63:2052-2060. [PMID: 37797228 DOI: 10.1111/trf.17561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Transfusion-associated circulatory overload (TACO) is an often underdiagnosed pulmonary transfusion complication. A biomarker could aid with the diagnosis. To date, B-type natriuretic peptide (BNP) and N-terminal prohormone B-type natriuretic peptide (NT-proBNP) seem the most promising biomarkers in the general hospital population. The aim was to evaluate NT-proBNP as a biomarker for TACO in a critically ill patient population and explore syndecan-1 and cytokines as other potential biomarkers. STUDY DESIGN AND METHODS A retrospective study was performed using samples and clinical data collected during a prospective observational study. Adult patients admitted to the intensive care and transfused with a single red blood cell unit were included. TACO cases were retrospectively identified using a case definition based on the current TACO definition. The primary biomarker was NT-proBNP, also we measured syndecan-1 IL-6, IL-8, and IL-10. All markers were measured directly before transfusion, 1 and 24 h after transfusion. RESULTS Our cohort included 64 patients, 12 of which were identified as TACO patients. TACO patients had a lower PaO2 /FiO2 ratio and were more often ventilated following transfusion compared to non-TACO patients. There was no significant difference in NT-proBNP between pre- and post-transfusion levels nor between TACO and non-TACO patients. Syndecan-1 was significantly elevated in TACO patients both pre- and post-transfusion compared to non-TACO patients. DISCUSSION NT-proBNP was not associated with TACO in this critically ill patient population. Interestingly, levels of syndecan-1 were increased in TACO patients at baseline. More research is needed to clarify this association and its possibilities as a biomarker to predict patients at risk for TACO.
Collapse
Affiliation(s)
- Esther B Bulle
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Britt Blanken
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Robert B Klanderman
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa van Manen
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care, OLVG Hospital, Amsterdam, The Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Muendlein A, Heinzle C, Leiherer A, Brandtner EM, Geiger K, Gaenger S, Fraunberger P, Mader A, Saely CH, Drexel H. Circulating glypican-4 is a new predictor of all-cause mortality in patients with heart failure. Clin Biochem 2023; 121-122:110675. [PMID: 37844682 DOI: 10.1016/j.clinbiochem.2023.110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Heart failure confers a high burden of morbidity and mortality. However, risk prediction in heart failure patients still is limited. Blood-based biomarkers hold promise to improve clinical risk assessment. Recently we have identified circulating glypican-4 (GPC4) as a significant predictor of mortality in coronary angiography patients and patients with peripheral artery disease. The impact of serum GPC4 on mortality in patients with heart failure is unknown and is addressed in this prospective cohort study. METHODS We prospectively recorded all-cause mortality in 288 patients with heart failure. GPC4 levels were measured using an enzyme-linked immunosorbent assay at baseline. RESULTS During the 24-month follow-up period, 28.1% (n = 81) of the patients died. Serum GPC4 significantly predicted all-cause mortality (hazard ratio (HR) per doublingof GPC4 = 3.57 [2.31-5.53]; P < 0.001). Subgroup analysis showed that GPC4 was significantly associated with all-cause mortality in patients with reduced ejection fraction (HR per doubling = 3.25 [1.75-6.04]; P < 0.001) as well as in those with preserved ejection fraction (HR per doubling = 3.07 [1.22-7.70]; P = 0.017). The association between serum GPC4 and all-cause mortality remained significant in multivariable Cox regression analysis correcting for traditional risk factors (P = 0.035). Results from C-statistics indicated an additional prognostic value of GPC4 relative to NT-proBNP for the prediction of two-year all-cause mortality (P = 0.030). CONCLUSION Circulating GPC4 independently predicts all-cause mortality in patients with heart failure.
Collapse
Affiliation(s)
- Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria.
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Medical Central Laboratories, Feldkirch, Austria
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Medical Central Laboratories, Feldkirch, Austria; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Eva Maria Brandtner
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Medical Central Laboratories, Feldkirch, Austria
| | - Stella Gaenger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | | | - Arthur Mader
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Department of Internal Medicine I, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Christoph H Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein; Department of Internal Medicine I, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria; Private University in the Principality of Liechtenstein, Triesen, Liechtenstein; Vorarlberger Landeskrankenhausbetriebsgesellschaft, Feldkirch, Austria; Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
20
|
Nukala SB, Jousma J, Yan G, Han Z, Kwon Y, Cho Y, Liu C, Gagnon K, Pinho S, Rehman J, Shao NY, Ong SB, Lee WH, Ong SG. Modulation of lncRNA links endothelial glycocalyx to vascular dysfunction of tyrosine kinase inhibitor. Cardiovasc Res 2023; 119:1997-2013. [PMID: 37267414 PMCID: PMC10439712 DOI: 10.1093/cvr/cvad087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/28/2023] [Accepted: 04/19/2023] [Indexed: 06/04/2023] Open
Abstract
AIMS Novel cancer therapies leading to increased survivorship of cancer patients have been negated by a concomitant rise in cancer therapies-related cardiovascular toxicities. Sunitinib, a first line multi-receptor tyrosine kinase inhibitor, has been reported to cause vascular dysfunction although the initiating mechanisms contributing to this side effect remain unknown. Long non-coding RNAs (lncRNAs) are emerging regulators of biological processes in endothelial cells (ECs); however, their roles in cancer therapies-related vascular toxicities remain underexplored. METHODS AND RESULTS We performed lncRNA expression profiling to identify potential lncRNAs that are dysregulated in human-induced pluripotent stem cell-derived ECs (iPSC-ECs) treated with sunitinib. We show that the lncRNA hyaluronan synthase 2 antisense 1 (HAS2-AS1) is significantly diminished in sunitinib-treated iPSC-ECs. Sunitinib was found to down-regulate HAS2-AS1 by an epigenetic mechanism involving hypermethylation. Depletion of HAS2-AS1 recapitulated sunitinib-induced detrimental effects on iPSC-ECs, whereas CRISPR-mediated activation of HAS2-AS1 reversed sunitinib-induced dysfunction. We confirmed that HAS2-AS1 stabilizes the expression of its sense gene HAS2 via an RNA/mRNA heteroduplex formation. Knockdown of HAS2-AS1 led to reduced synthesis of hyaluronic acid (HA) and up-regulation of ADAMTS5, an enzyme involved in extracellular matrix degradation, resulting in disruption of the endothelial glycocalyx which is critical for ECs. In vivo, sunitinib-treated mice showed reduced coronary flow reserve, accompanied by a reduction in Has2os and degradation of the endothelial glycocalyx. Finally, we identified that treatment with high molecular-weight HA can prevent the deleterious effects of sunitinib both in vitro and in vivo by preserving the endothelial glycocalyx. CONCLUSIONS Our findings highlight the importance of lncRNA-mediated regulation of the endothelial glycocalyx as an important determinant of sunitinib-induced vascular toxicity and reveal potential novel therapeutic avenues to attenuate sunitinib-induced vascular dysfunction.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Gege Yan
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Zhenbo Han
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Youjeong Kwon
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Chuyu Liu
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Keith Gagnon
- Division of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, 1245 Lincoln Drive Carbondale, IL 62901-4413, USA
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale IL 62901, USA
| | - Sandra Pinho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
| | - Jalees Rehman
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 840 S Wood Street, Chicago, IL 60612, USA
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Sang-Bing Ong
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), 9/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
- Centre for Cardiovascular Genomics and Medicine (CCGM), Lui Che Woo Institute of Innovative Medicine, 10/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), Hong Kong Children's Hospital (HKCH), 8/F, Tower A,1 Shing Cheong Road, Kowloon Bay, Hong Kong, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 North 5th Street, Phoenix, AZ 85004, USA
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, Chicago, IL 60607, USA
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), 9/F, Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
| |
Collapse
|
21
|
Fragkou PC, Ikonomidis I, Benas D, Kavatha D, Moschopoulos CD, Protopapas K, Kostelli G, Thymis J, Mpirmpa D, Galani I, Tsakona M, Oikonomopoulou C, Theocharous G, Gorgoulis VG, Gallos P, Tsiodras S, Antoniadou A, Papadopoulos A, Triantafyllidi H. Endothelial Glycocalyx Integrity in Treatment-Naïve People Living with HIV before and One Year after Antiretroviral Treatment Initiation. Viruses 2023; 15:1505. [PMID: 37515191 PMCID: PMC10383742 DOI: 10.3390/v15071505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Endothelial glycocalyx (EG) derangement has been associated with cardiovascular disease (CVD). Studies on EG integrity among people living with HIV (PLWH), are lacking. We conducted a prospective cohort study among treatment-naïve PLWH who received emtricitabine/tenofovir alafenamide, combined with either an integrase strand transfer inhibitor (INSTI, dolutegravir, raltegravir or elvitegravir/cobicistat), or a protease inhibitor (PI, darunavir/cobicistat). We assessed EG at baseline, 24 (±4) and 48 (±4) weeks, by measuring the perfused boundary region (PBR, inversely proportional to EG thickness), in sublingual microvessels. In total, 66 consecutive PLWH (60 (90.9%) males) with a median age (interquartile range, IQR) of 37 (12) years, were enrolled. In total, 40(60.6%) received INSTI-based regimens. The mean (standard deviation) PBR decreased significantly from 2.17 (0.29) μm at baseline to 2.04 (0.26) μm (p = 0.019), and then to 1.93 (0.3) μm (p < 0.0001) at 24 (±4) and 48 (±4) weeks, respectively. PBR did not differ among treatment groups. PLWH on INSTIs had a significant PBR reduction at 48 (±4) weeks. Smokers and PLWH with low levels of viremia experienced the greatest PBR reduction. This study is the first to report the benefit of antiretroviral treatment on EG improvement in treatment-naïve PLWH and depicts a potential bedside biomarker and therapeutic target for CVD in PLWH.
Collapse
Affiliation(s)
- Paraskevi C Fragkou
- First Department of Critical Care and Pulmonary Services, Evangelismos Hospital, Athens Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | - Ignatios Ikonomidis
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dimitrios Benas
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dimitra Kavatha
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Charalampos D Moschopoulos
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Protopapas
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Gavriella Kostelli
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - John Thymis
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dionysia Mpirmpa
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Irene Galani
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria Tsakona
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Chrysanthi Oikonomopoulou
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Athens Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Athens Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Parisis Gallos
- Computational Biomedicine Laboratory, Department of Digital Systems, University of Piraeus, 18536 Piraeus, Greece
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anastasia Antoniadou
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Antonios Papadopoulos
- Fourth Department of Internal Medicine, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Helen Triantafyllidi
- Second Department of Cardiology, Attikon University Hospital, Athens Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
22
|
Sembajwe LF, Ssekandi AM, Namaganda A, Muwonge H, Kasolo JN, Kalyesubula R, Nakimuli A, Naome M, Patel KP, Masenga SK, Kirabo A. Glycocalyx-Sodium Interaction in Vascular Endothelium. Nutrients 2023; 15:2873. [PMID: 37447199 PMCID: PMC10343370 DOI: 10.3390/nu15132873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The glycocalyx generally covers almost all cellular surfaces, where it participates in mediating cell-surface interactions with the extracellular matrix as well as with intracellular signaling molecules. The endothelial glycocalyx that covers the luminal surface mediates the interactions of endothelial cells with materials flowing in the circulating blood, including blood cells. Cardiovascular diseases (CVD) remain a major cause of morbidity and mortality around the world. The cardiovascular risk factors start by causing endothelial cell dysfunction associated with destruction or irregular maintenance of the glycocalyx, which may culminate into a full-blown cardiovascular disease. The endothelial glycocalyx plays a crucial role in shielding the cell from excessive exposure and absorption of excessive salt, which can potentially cause damage to the endothelial cells and underlying tissues of the blood vessels. So, in this mini review/commentary, we delineate and provide a concise summary of the various components of the glycocalyx, their interaction with salt, and subsequent involvement in the cardiovascular disease process. We also highlight the major components of the glycocalyx that could be used as disease biomarkers or as drug targets in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lawrence Fred Sembajwe
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Abdul M. Ssekandi
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Agnes Namaganda
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Haruna Muwonge
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Josephine N. Kasolo
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Robert Kalyesubula
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda;
| | - Mwesigwa Naome
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Kabwe P.O. Box 80415, Zambia;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
23
|
Vahldieck C, Cianflone E, Fels B, Löning S, Depelmann P, Sabatino J, Salerno N, Karsten CM, Torella D, Weil J, Sun D, Goligorsky MS, Kusche-Vihrog K. Endothelial Glycocalyx and Cardiomyocyte Damage Is Prevented by Recombinant Syndecan-1 in Acute Myocardial Infarction. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:474-492. [PMID: 36669683 PMCID: PMC10123521 DOI: 10.1016/j.ajpath.2022.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
The outer layer of endothelial cells (ECs), consisting of the endothelial glycocalyx (eGC) and the cortex (CTX), provides a protective barrier against vascular diseases. Structural and functional impairments of their mechanical properties are recognized as hallmarks of endothelial dysfunction and can lead to cardiovascular events, such as acute myocardial infarction (AMI). This study investigated the effects of AMI on endothelial nanomechanics and function and the use of exogenous recombinant syndecan-1 (rSyn-1), a major component of the eGC, as recovering agent. ECs were exposed in vitro to serum samples collected from patients with AMI. In addition, in situ ECs of ex vivo aorta preparations derived from a mouse model for AMI were employed. Effects were quantified by using atomic force microscopy-based nanoindentation measurements, fluorescence staining, and histologic examination of the mouse hearts. AMI serum samples damaged eGC/CTX and augmented monocyte adhesion to the endothelial surface. In particular, the anaphylatoxins C3a and C5a played an important role in these processes. The impairment of endothelial function could be prevented by rSyn-1 treatment. In the mouse model of myocardial infarction, pretreatment with rSyn-1 alleviated eGC/CTX deterioration and reduced cardiomyocyte damage in histologic analyses. However, echocardiographic measurements did not indicate a functional benefit. These results provide new insights into the underlying mechanisms of AMI-induced endothelial dysfunction and perspectives for future studies on the benefit of rSyn-1 in post-AMI treatment.
Collapse
Affiliation(s)
- Carl Vahldieck
- Institute of Physiology, University of Luebeck, Luebeck, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein Campus Luebeck, University of Luebeck, Luebeck, Germany.
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Benedikt Fels
- Institute of Physiology, University of Luebeck, Luebeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| | - Samuel Löning
- Institute of Physiology, University of Luebeck, Luebeck, Germany
| | - Patrik Depelmann
- Institute of Physiology, University of Luebeck, Luebeck, Germany
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy; Division of Pediatric Cardiology, Department of Women's and Children's Health, University Hospital Padua, Padua, Italy; Pediatric Research Institute "Città della Speranza", Padua, Italy
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Luebeck, Luebeck, Germany
| | - Dong Sun
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York
| | - Michael S Goligorsky
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Luebeck, Luebeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| |
Collapse
|
24
|
Iba T, Levy JH, Thachil J, Susen S, Levi M, Scarlatescu E. Communication from the Scientific Standardization Committees of the International Society on Thrombosis and Haemostasis on vascular endothelium-related biomarkers in disseminated intravascular coagulation. J Thromb Haemost 2023; 21:691-699. [PMID: 36696178 DOI: 10.1016/j.jtha.2022.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/21/2022] [Accepted: 11/06/2022] [Indexed: 01/26/2023]
Abstract
Disseminated intravascular coagulation (DIC) is not a disease criterion but a pathomechanistic process that accompanies various underlying diseases. According to the International Society on Thrombosis and Haemostasis definition, endothelial injury is an essential component in addition to systemic coagulation activation. Despite this definition, current diagnostic criteria for DIC do not include biomarkers for vascular endothelial injury. Endothelial cells are critical for hemostatic regulation because they produce various antithrombotic substances and express anticoagulant factors at the same time as facilitating coagulation, inflammatory reactions, platelet aggregation, and fibrinolysis with acute injury. Endothelial cells also exhibit various receptors, adhesion molecules, and the critical role of glycocalyx that regulates cellular interactions in thromboinflammation. For clinicians, biomarkers suitable for assessing endothelial injury are not readily available. Although we still do not have ideal biomarkers, antithrombin activity and von Willebrand factor can be candidates for the endothelium-related markers because those reflect the severity and are available in most clinical settings. Further, the dysfunction of endothelial cell in DIC arising from various underlying diseases is likely highly variable. For example, the involvement of endothelial dysfunction is significant in sepsis-induced coagulopathy, while moderate in trauma-induced coagulopathy, and variable in hematologic malignancy-associated coagulopathy. Because of the complexity of disease status associated with DIC, further research searching clinically available endothelium-related biomarkers is expected to establish individualized diagnostic criteria and potential therapeutic approaches.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester, UK
| | - Sophie Susen
- Department of Hematology and Transfusion, Lille University Hospital, Lille, France
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Center, the Netherlands and Department of Medicine, University College London Hospitals NHS Foundation Trust, and Cardio-metabolic Programme-NIHR UCLH/UCL BRC London, UK
| | - Ecaterina Scarlatescu
- University of Medicine and Pharmacy "Carol Davila," Bucharest and Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
25
|
Eglin CM, Wright J, Shepherd AI, Massey H, Hollis S, Towse J, Young JS, Maley MJ, Bailey SJ, Wilkinson C, Montgomery H, Tipton MJ. Plasma biomarkers of endothelial function, inflammation and oxidative stress in individuals with non-freezing cold injury. Exp Physiol 2023; 108:448-464. [PMID: 36808666 PMCID: PMC10988512 DOI: 10.1113/ep090722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are biomarkers of endothelial function, oxidative stress and inflammation altered by non-freezing cold injury (NFCI)? What is the main finding and its importance? Baseline plasma [interleukin-10] and [syndecan-1] were elevated in individuals with NFCI and cold-exposed control participants. Increased [endothelin-1] following thermal challenges might explain, in part, the increased pain/discomfort experienced with NFCI. Mild to moderate chronic NFCI does not appear to be associated with either oxidative stress or a pro-inflammatory state. Baseline [interleukin-10] and [syndecan-1] and post-heating [endothelin-1] are the most promising candidates for diagnosis of NFCI. ABSTRACT Plasma biomarkers of inflammation, oxidative stress, endothelial function and damage were examined in 16 individuals with chronic NFCI (NFCI) and matched control participants with (COLD, n = 17) or without (CON, n = 14) previous cold exposure. Venous blood samples were collected at baseline to assess plasma biomarkers of endothelial function (nitrate, nitrite and endothelin-1), inflammation [interleukin-6 (IL-6), interleukin-10 (IL-10), tumour necrosis factor alpha and E-selectin], oxidative stress [protein carbonyl, 4-hydroxy-2-nonenal (4-HNE), superoxide dismutase and nitrotyrosine) and endothelial damage [von Willebrand factor, syndecan-1 and tissue type plasminogen activator (TTPA)]. Immediately after whole-body heating and separately, foot cooling, blood samples were taken for measurement of plasma [nitrate], [nitrite], [endothelin-1], [IL-6], [4-HNE] and [TTPA]. At baseline, [IL-10] and [syndecan-1] were increased in NFCI (P < 0.001 and P = 0.015, respectively) and COLD (P = 0.033 and P = 0.030, respectively) compared with CON participants. The [4-HNE] was elevated in CON compared with both NFCI (P = 0.002) and COLD (P < 0.001). [Endothelin-1] was elevated in NFCI compared with COLD (P < 0.001) post-heating. The [4-HNE] was lower in NFCI compared with CON post-heating (P = 0.032) and lower than both COLD (P = 0.02) and CON (P = 0.015) post-cooling. No between-group differences were seen for the other biomarkers. Mild to moderate chronic NFCI does not appear to be associated with a pro-inflammatory state or oxidative stress. Baseline [IL-10] and [syndecan-1] and post-heating [endothelin-1] are the most promising candidates for diagnosing NFCI, but it is likely that a combination of tests will be required.
Collapse
Affiliation(s)
- Clare M. Eglin
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Jennifer Wright
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Anthony I. Shepherd
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Heather Massey
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Sarah Hollis
- Regional Occupational Health Team (ROHT) CatterickCatterick GarrisonUK
| | - Jonathan Towse
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - John S. Young
- National Horizons CentreTeesside UniversityMiddlesbroughUK
| | - Matthew J. Maley
- Environmental Ergonomics Research CentreLoughborough School of Design and Creative ArtsLoughborough UniversityLoughboroughUK
| | - Stephen J. Bailey
- National Centre for Sport and Exercise MedicineSchool of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Chris Wilkinson
- School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | | | - Michael J. Tipton
- Extreme Environments LaboratorySchool of SportHealth and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
26
|
Gui XY, Rabkin SW. C-Reactive Protein, Interleukin-6, Trimethylamine-N-Oxide, Syndecan-1, Nitric Oxide, and Tumor Necrosis Factor Receptor-1 in Heart Failure with Preserved Versus Reduced Ejection Fraction: a Meta-Analysis. Curr Heart Fail Rep 2023; 20:1-11. [PMID: 36479675 DOI: 10.1007/s11897-022-00584-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review was to synthesize the evidence on non-traditional biomarkers from proteomic and metabolomic studies that may distinguish heart failure (HF) with preserved ejection fraction (HFpEF) from heart failure with reduced ejection fraction (HFrEF) and non-HF. RECENT FINDINGS Understanding the pathophysiology of HFpEF continues to be challenging. A number of inflammatory and metabolic biomarkers that have recently been suggested to be involved include C-reactive protein (CRP), interleukin-6 (IL-6), trimethylamine-N-oxide (TMAO), syndecan-1 (SDC-1), nitric oxide (NO), and tumor necrosis factor receptor-1 (TNFR-1). A systematic search was conducted using Medline, EMBASE, and Web of Science with search terms such as "HFpEF," "metabolomics," and "proteomics," and a meta-analysis was conducted. The results demonstrate significantly higher levels of TMAO, CRP, SDC-1, and IL-6 in HFpEF compared to controls without HF and significantly higher levels of TMAO and CRP in HFrEF compared to controls. The results further suggest that HFpEF might be distinguishable from HFrEF based on higher levels of IL-6 and lower levels of SDC-1 and NO. These data may reflect pathophysiological differences between HFpEF and HFrEF.
Collapse
Affiliation(s)
- Xi Yao Gui
- Department of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Simon W Rabkin
- Department of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Division of Cardiology, University of British Columbia, 9Th Floor 2775 Laurel St, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
27
|
The effects of female sexual hormones on the endothelial glycocalyx. CURRENT TOPICS IN MEMBRANES 2023; 91:89-137. [PMID: 37080682 DOI: 10.1016/bs.ctm.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The glycocalyx is a layer composed of carbohydrate side chains bound to core proteins that lines the vascular endothelium. The integrity of the glycocalyx is essential for endothelial cells' performance and vascular homeostasis. The neuroendocrine and immune systems influence the composition, maintenance, activity and degradation of the endothelial glycocalyx. The female organism has unique characteristics, and estrogen and progesterone, the main female hormones are essential to the development and physiology of the reproductive system and to the ability to develop a fetus. Female sex hormones also exert a wide variety of effects on other organs, including the vascular endothelium. They upregulate nitric oxide synthase expression and activity, decrease oxidative stress, increase vasodilation, and protect from vascular injury. This review will discuss how female hormones and pregnancy, which prompts to high levels of estrogen and progesterone, modulate the endothelial glycocalyx. Diseases prevalent in women that alter the glycocalyx, and therapeutic forms to prevent glycocalyx degradation and potential treatments that can reconstitute its structure and function will also be discussed.
Collapse
|
28
|
Mortazavi CM, Hoyt JM, Patel A, Chignalia AZ. The glycocalyx and calcium dynamics in endothelial cells. CURRENT TOPICS IN MEMBRANES 2023; 91:21-41. [PMID: 37080679 DOI: 10.1016/bs.ctm.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The endothelial glycocalyx is a dynamic surface layer composed of proteoglycans, glycoproteins, and glycosaminoglycans with a key role in maintaining endothelial cell homeostasis. Its functions include the regulation of endothelial barrier permeability and stability, the transduction of mechanical forces from the vascular lumen to the vessel walls, serving as a binding site to multiple growth factors and vasoactive agents, and mediating the binding of platelets and the migration of leukocytes during an inflammatory response. Many of these processes are associated with changes in intracellular calcium levels that may occur through mechanisms that alter calcium entry in the endothelium or the release of calcium from the endoplasmic reticulum. Whether the endothelial glycocalyx can regulate calcium dynamics in endothelial cells is unresolved. Interestingly, during cardiovascular disease progression, changes in calcium dynamics are observed in association with the degradation of the glycocalyx and with changes in barrier permeability and vascular reactivity. Herein, we aim to provide a summarized overview of what is known regarding the role of the glycocalyx as a regulator of endothelial barrier and vascular reactivity during homeostatic and pathological conditions and to provide a perspective on how such processes may relate to calcium dynamics in endothelial cells, exploring a possible connection between components of the glycocalyx and calcium-sensitive pathways in the endothelium.
Collapse
Affiliation(s)
- Cameron M Mortazavi
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Jillian M Hoyt
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Aamir Patel
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States
| | - Andreia Z Chignalia
- Department of Anesthesiology, University of Arizona, College of Medicine, Tucson, AZ, United States; Department of Physiology, University of Arizona, College of Medicine, Tucson, AZ, United States; Department of Pharmacology & Toxicology, University of Arizona, College of Pharmacy, Tucson, AZ, United States.
| |
Collapse
|
29
|
Wadowski PP, Piechota-Polańczyk A, Andreas M, Kopp CW. Cardiovascular Disease Management in the Context of Global Crisis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:689. [PMID: 36613012 PMCID: PMC9819164 DOI: 10.3390/ijerph20010689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/28/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) initiated a pandemic that has deteriorated health care access and thus disadvantaged vulnerable populations [...].
Collapse
Affiliation(s)
- Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Aleksandra Piechota-Polańczyk
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
30
|
A Dietary Supplement Containing Fucoidan Preserves Endothelial Glycocalyx through ERK/MAPK Signaling and Protects against Damage Induced by CKD Serum. Int J Mol Sci 2022; 23:ijms232415520. [PMID: 36555160 PMCID: PMC9779516 DOI: 10.3390/ijms232415520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
(1) Damage to the endothelial glycocalyx (eGC), a protective layer lining the endothelial luminal surface, is associated with chronic kidney disease (CKD), which leads to a worsening of cardiovascular outcomes in these patients. Currently, there are no targeted therapeutic approaches. Whether the dietary supplement EndocalyxTM (ECX) protects against endothelial damage caused by uremic toxins is unknown. (2) We addressed this question by performing atomic force microscopy measurements on living endothelial cells. We examined the effect of ECX on eGC thickness at baseline and with pooled serum from hemodialysis patients. ECX was also successfully administered in vivo in mice, in which eGC was assessed using perfused boundary region measurements by intravital microscopy of cremasteric vessels. (3) Both ECX and fucoidan significantly improved baseline eGC thickness. Our data indicate that these effects are dependent on ERK/MAPK and PI3K signaling. After incubation with eGC damaging serum from dialysis patients, ECX increased eGC height. Intravital microscopy in mice revealed a relevant increase in baseline eGC dimensions after feeding with ECX. (4) We identified a dietary supplement containing glycocalyx substrates and fucoidan as potential mediators of eGC preservation in vitro and in vivo. Our findings suggest that fucoidan may be an essential component responsible for protecting the eGC in acute settings. Moreover, ECX might contribute to both protection and rebuilding of the eGC in the context of CKD.
Collapse
|
31
|
Kantarcioglu B, Mehrotra S, Papineni C, Siddiqui F, Kouta A, Hoppensteadt D, Bansal V, Darki A, Van Thiel DH, Fareed J. Endogenous Glycosaminoglycans in Various Pathologic Plasma Samples as Measured by a Fluorescent Quenching Method. Clin Appl Thromb Hemost 2022; 28:10760296221144047. [PMID: 36474353 PMCID: PMC9732799 DOI: 10.1177/10760296221144047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endogenous glycosaminoglycans (GAGs) with a similar structure to heparin are widely distributed in various tissues. A fluorescence probe, namely Heparin Red, can detect polyanionic GAGs in plasma samples. The purpose of this study is to measure endogenous GAGs in various plasma samples obtained from different pathologic states in comparison to healthy controls utilizing this method. Plasma samples were obtained from patient groups including atrial fibrillation (AF), end-stage-renal-disease (ESRD), diabetes mellitus (DM), sepsis, cancer, liver disease (LD), and pulmonary embolism (PE). Normal human plasma (NHP) was used as healthy controls. The Heparin Red kit from Red Probes (Münster, Germany) was used for the quantification of endogenous GAGs in each sample before and after heparinase I degradation. All results were compiled as group means ± SD for comparison. NHP was found to have relatively low levels of endogenous GAGs with a mean concentration of 0.06 μg/mL. The AF, ESRD, DM, and sepsis patient samples had a mean endogenous GAG concentration of 0.55, 0.72, 0.92, and 0.94 μg/mL, respectively. The levels of endogenous GAGs were highest in cancer, LD, and PE patient plasma samples with a mean concentration of 1.95, 2.78, and 2.83 μg/mL, respectively. Heparinase I degradation resulted in a decline in GAG levels in plasma samples. These results clearly show that detectable Heparin Red sensitive endogenous GAGs are present in circulating plasma at varying levels in various patient groups. Additional studies are necessary to understand this complex pathophysiology.
Collapse
Affiliation(s)
- Bulent Kantarcioglu
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA,Bulent Kantarcioglu, Department of
Pathology and Laboratory Medicine, Cardiovascular Research Institute, Loyola
University Chicago, Health Sciences Division, Maywood, IL 60153, USA.
| | - Siddharth Mehrotra
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA
| | - Charulatha Papineni
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA,Department of Molecular Pharmacology and Neuroscience,
Loyola
University Chicago, Maywood, IL, USA
| | - Fakiha Siddiqui
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA,Program in Health Sciences, UCAM - Universidad Católica San Antonio de
Murcia, Murcia, Spain
| | - Ahmed Kouta
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA,Department of Molecular Pharmacology and Neuroscience,
Loyola
University Chicago, Maywood, IL, USA
| | - Debra Hoppensteadt
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA
| | - Vinod Bansal
- Department of Internal Medicine, Nephrology,
Loyola
University Medical Center, Maywood, IL,
USA
| | - Amir Darki
- Cardiology Department, Loyola University Medical
Center, Maywood, IL, USA
| | - David H. Van Thiel
- Division of Gastroenterology and Hepatology,
Rush Oak Park
Hospital, Oak Park, Illinois and Rush
University Medical Center, Chicago, IL, USA
| | - Jawed Fareed
- Department of Pathology and Laboratory Medicine, Cardiovascular
Research Institute, Loyola
University Chicago, Health Sciences
Division, Maywood, IL, USA
| |
Collapse
|
32
|
Suzuki A, Tomita H, Okada H. Form follows function: The endothelial glycocalyx. Transl Res 2022; 247:158-167. [PMID: 35421613 DOI: 10.1016/j.trsl.2022.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Three types of capillaries, namely continuous, fenestrated, and sinusoidal, form the microvascular system; each type has a specialized structure and function to respond to the demands of the organs they supply. The endothelial glycocalyx, a gel-like layer of glycoproteins that covers the luminal surface of the capillary endothelium, is also thought to maintain organ and vascular homeostasis by exhibiting different morphologies based on the functions of the organs and capillaries in which it is found. Recent advances in analytical technology have enabled more detailed observations of the endothelial glycocalyx, revealing that it indeed differs in structure across various organs. Furthermore, differences in the lectin staining patterns suggest the presence of different endothelial glycocalyx components across various organs. Interestingly, injury to the endothelial glycocalyx due to various pathologic and physiological stimuli causes the release of these components into the blood. Thus, circulating glycocalyx components may be useful biomarkers of organ dysfunction and disease severity. Moreover, a recent study suggested that chronic injury to the glycocalyx reduces the production of these glycocalyx components and changes their structure, leading it to become more vulnerable to external stimuli. In this review, we have summarized the various endothelial glycocalyx structures and their functions.
Collapse
Affiliation(s)
- Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
33
|
du Preez HN, Aldous C, Kruger HG, Johnson L. N-Acetylcysteine and Other Sulfur-Donors as a Preventative and Adjunct Therapy for COVID-19. Adv Pharmacol Pharm Sci 2022; 2022:4555490. [PMID: 35992575 PMCID: PMC9385285 DOI: 10.1155/2022/4555490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
The airway epithelial glycocalyx plays an important role in preventing severe acute respiratory syndrome coronavirus 2 entry into the epithelial cells, while the endothelial glycocalyx contributes to vascular permeability and tone, as well as modulating immune, inflammatory, and coagulation responses. With ample evidence in the scientific literature that coronavirus disease 2019 (COVID-19) is related to epithelial and endothelial dysfunction, preserving the glycocalyx should be the main focus of any COVID-19 treatment protocol. The most studied functional unit of the glycocalyx is the glycosaminoglycan heparan sulfate, where the degree and position of the sulfate groups determine the biological activity. N-acetylcysteine (NAC) and other sulfur donors contribute to the inorganic sulfate pool, the rate-limiting molecule in sulfation. NAC is not only a precursor to glutathione but also converts to hydrogen sulfide, inorganic sulfate, taurine, Coenzyme A, and albumin. By optimising inorganic sulfate availability, and therefore sulfation, it is proposed that COVID-19 can be prevented or at least most of the symptoms attenuated. A comprehensive COVID-19 treatment protocol is needed to preserve the glycocalyx in both the prevention and treatment of COVID-19. The use of NAC at a dosage of 600 mg bid for the prevention of COVID-19 is proposed, but a higher dosage of NAC (1200 mg bid) should be administered upon the first onset of symptoms. In the severe to critically ill, it is advised that IV NAC should be administered immediately upon hospital admission, and in the late stage of the disease, IV sodium thiosulfate should be considered. Doxycycline as a protease inhibitor will prevent shedding and further degradation of the glycocalyx.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Lin Johnson
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
34
|
Muendlein A, Heinzle C, Leiherer A, Geiger K, Brandtner EM, Gaenger S, Fraunberger P, Saely CH, Drexel H. Serum glypican-4 is associated with the 10-year clinical outcome of patients with peripheral artery disease. Int J Cardiol 2022; 369:54-59. [DOI: 10.1016/j.ijcard.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
|
35
|
Chung EYM, Trinh K, Li J, Hahn SH, Endre ZH, Rogers NM, Alexander SI. Biomarkers in Cardiorenal Syndrome and Potential Insights Into Novel Therapeutics. Front Cardiovasc Med 2022; 9:868658. [PMID: 35669475 PMCID: PMC9163439 DOI: 10.3389/fcvm.2022.868658] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Heart and kidney failure often co-exist and confer high morbidity and mortality. The complex bi-directional nature of heart and kidney dysfunction is referred to as cardiorenal syndrome, and can be induced by acute or chronic dysfunction of either organ or secondary to systemic diseases. The five clinical subtypes of cardiorenal syndrome are categorized by the perceived primary precipitant of organ injury but lack precision. Traditional biomarkers such as serum creatinine are also limited in their ability to provide an early and accurate diagnosis of cardiorenal syndrome. Novel biomarkers have the potential to assist in the diagnosis of cardiorenal syndrome and guide treatment by evaluating the relative roles of implicated pathophysiological pathways such as hemodynamic dysfunction, neurohormonal activation, endothelial dysfunction, inflammation and oxidative stress, and fibrosis. In this review, we assess the utility of biomarkers that correlate with kidney and cardiac (dys)function, inflammation/oxidative stress, fibrosis, and cell cycle arrest, as well as emerging novel biomarkers (thrombospondin-1/CD47, glycocalyx and interleukin-1β) that may provide prediction and prognostication of cardiorenal syndrome, and guide potential development of targeted therapeutics.
Collapse
Affiliation(s)
- Edmund Y. M. Chung
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- *Correspondence: Edmund Y. M. Chung,
| | - Katie Trinh
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | | | - Zoltan H. Endre
- Department of Nephrology, Prince of Wales Hospital, Randwick, NSW, Australia
- Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Natasha M. Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Department of Renal Medicine, Westmead Hospital, Westmead, NSW, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, The Children’s Hospital at Westmead, Westmead, NSW, Australia
- Department of Nephrology, The Children’s Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
36
|
Kantarcioglu B, Darki A, Siddiqui F, Hoppensteadt D, Lewis J, Krämer R, Adiguzel C, Fareed J. The Relevance of Anti-PF4 Antibody Isotypes and Endogenous Glycosaminoglycans and their Relationship with Inflammatory Biomarkers in Pulmonary Embolism Patients. Clin Appl Thromb Hemost 2022; 28:10760296221091770. [PMID: 35360982 PMCID: PMC8980416 DOI: 10.1177/10760296221091770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction Previous studies have shown that inflammation may contribute to the interplay of endogenous glycosaminoglycans (GAGs) and anti-PF4 antibodies. In this study, we quantified the levels of anti-PF4 antibody isotypes and endogenous GAGs together with inflammatory biomarkers in pulmonary embolism (PE) patients to determine whether there is a relationship in between. Identification of this relationship may provide insight to the complex pathophysiology of PE and HIT and may also be useful for development of potential prognostic, diagnostic and therapeutic interventions. Materials and Methods Plasma samples from PE patients (n: 210) were analyzed for anti-PF4 antibody isotypes and various thrombo-inflammatory cytokines utilizing commercially available biochip array and ELISA methods. The endogenous GAG levels in PE patients’ plasma were quantified using a fluorescence quenching method. The collected data analyzed to demonstrate the relationship between various parameters. Results The endogenous GAG levels were increased in the PE group (P < .05). The levels of anti-PF4 antibody isotypes were higher in varying levels in comparison to the normal group (P < .05). Inflammatory cytokines have shown varying levels of increase with IL-6, IL-8 and IL-10 showing the most pronounced values. Mortality outcome was related to increased GAGs and some of the cytokines. Conclusion In this study, we demonstrated increased levels of anti-PF4 antibody isotypes, endogenous GAGs, and inflammatory biomarkers in a large patient cohort in PE. The levels of the endogenous GAGs and inflammatory biomarkers were associated with PE severity and mortality. More studies are needed to understand this complex pathophysiology.
Collapse
Affiliation(s)
- Bulent Kantarcioglu
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Amir Darki
- Division of Cardiovascular Disease, Loyola University Medical Center, Loyola Stritch School of Medicine, Maywood, IL, USA
- Department of Internal Medicine, Loyola University Medical Center, Loyola Stritch School of Medicine, Maywood, IL, USA
| | - Fakiha Siddiqui
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Debra Hoppensteadt
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Joseph Lewis
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, USA
| | - Roland Krämer
- Institute of Inorganic Chemistry, Heidelberg University, Heidelberg, Germany
| | - Cafer Adiguzel
- Department of Internal Medicine, Division of Hematology, Bahcesehir University, Istanbul, Turkey
| | - Jawed Fareed
- Department of Pathology and Laboratory Medicine, Health Sciences Division, Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
37
|
Nukala SB, Jousma J, Cho Y, Lee WH, Ong SG. Long non-coding RNAs and microRNAs as crucial regulators in cardio-oncology. Cell Biosci 2022; 12:24. [PMID: 35246252 PMCID: PMC8895873 DOI: 10.1186/s13578-022-00757-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Significant improvements in the modern era of anticancer therapeutic strategies have increased the survival rate of cancer patients. Unfortunately, cancer survivors have an increased risk of cardiovascular diseases, which is believed to result from anticancer therapies. The emergence of cardiovascular diseases among cancer survivors has served as the basis for establishing a novel field termed cardio-oncology. Cardio-oncology primarily focuses on investigating the underlying molecular mechanisms by which anticancer treatments lead to cardiovascular dysfunction and the development of novel cardioprotective strategies to counteract cardiotoxic effects of cancer therapies. Advances in genome biology have revealed that most of the genome is transcribed into non-coding RNAs (ncRNAs), which are recognized as being instrumental in cancer, cardiovascular health, and disease. Emerging studies have demonstrated that alterations of these ncRNAs have pathophysiological roles in multiple diseases in humans. As it relates to cardio-oncology, though, there is limited knowledge of the role of ncRNAs. In the present review, we summarize the up-to-date knowledge regarding the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in cancer therapy-induced cardiotoxicities. Moreover, we also discuss prospective therapeutic strategies and the translational relevance of these ncRNAs.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, ABC-1 Building, 425 North 5th Street, Phoenix, AZ, 85004, USA.
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
| |
Collapse
|
38
|
Jakob A, Bohlig S, König M, Nussbaum C, Dalla-Pozza R, Hermann M, Haas NA, Pastor-Villaescusa B. Kawasaki disease and increased cardiovascular risk: Is there a link to circulating glycocalyx biomarkers? Microvasc Res 2022; 140:104269. [PMID: 34699846 DOI: 10.1016/j.mvr.2021.104269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
AIMS Kawasaki disease (KD) is an acute systemic vasculitis with possible long-term impact of general cardio-vascular health. An endothelial glycocalyx disorder during the disease's acute phase might predispose to long-term vascular anomalies leading to endothelial dysfunction and atherosclerosis. To investigate any association between increased cardiovascular risk and endothelial glycocalyx, we assessed circulating glycocalyx components in patients with a KD history, and analysed their association with acute-phase clinical features and more importantly, with patients' current cardiovascular risk factors. METHODS This prospective observational cohort study included 51 subjects: 31 patients with a history of KD, and 20 healthy subjects matched for age and sex. We analysed serum syndecan-1 and hyaluronan via ELISA. We assessed features reported during the acute phase of KD such as blood counts, C-reactive protein (CRP) levels and coronary artery aneurysms (CAA), and their current blood pressure and lipid markers in relation to measured glycocalyx components. RESULTS Our multivariate analysis revealed that hyaluronan and syndecan-1 levels were not associated with KD. However, the latter exhibited a significant association with acute-phase blood count alterations in patients with KD. Furthermore, significant interactions of hyaluronan and syndecan-1 with certain cardiovascular risk factors like blood lipids and blood pressure were only present in KD patients. CONCLUSION Vasculitis during KD's acute phase might predispose to a long-term endothelial glycocalyx alteration, influenced by other factors having a vascular impact such as blood pressure and circulating lipids. CLINICAL TRIAL REGISTRATION German Clinical Trials Register on 25th February 2016, DRKS00010071 https://www.drks.de/drks_web/.
Collapse
Affiliation(s)
- André Jakob
- Ludwig-Maximilians-University of Munich, Department of Pediatric Cardiology, Marchioninistr. 15, 81377 Munich, Germany.
| | - Sarah Bohlig
- Ludwig-Maximilians-University of Munich, Department of Pediatric Cardiology, Marchioninistr. 15, 81377 Munich, Germany
| | - Miriam König
- Ludwig-Maximilians-University of Munich, Department of Pediatric Cardiology, Marchioninistr. 15, 81377 Munich, Germany
| | - Claudia Nussbaum
- Div. of Neonatology, Dr. von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Robert Dalla-Pozza
- Div. of Neonatology, Dr. von Hauner Children's Hospital, LMU Munich, 80337 Munich, Germany
| | - Mathias Hermann
- Ludwig-Maximilians-University of Munich, Department of Pediatric Cardiology, Marchioninistr. 15, 81377 Munich, Germany
| | - Nikolaus A Haas
- Ludwig-Maximilians-University of Munich, Department of Pediatric Cardiology, Marchioninistr. 15, 81377 Munich, Germany
| | - Belén Pastor-Villaescusa
- Ludwig-Maximilians-University of Munich, Department of Pediatric Cardiology, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
39
|
Muendlein A, Brandtner EM, Leiherer A, Geiger K, Heinzle C, Gaenger S, Fraunberger P, Mader A, Saely CH, Drexel H. Serum glypican-4 is a marker of future vascular risk and mortality in coronary angiography patients. Atherosclerosis 2022; 345:33-38. [DOI: 10.1016/j.atherosclerosis.2022.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
|
40
|
du Preez HN, Aldous C, Hayden MR, Kruger HG, Lin J. Pathogenesis of COVID-19 described through the lens of an undersulfated and degraded epithelial and endothelial glycocalyx. FASEB J 2021; 36:e22052. [PMID: 34862979 DOI: 10.1096/fj.202101100rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
The glycocalyx surrounds every eukaryotic cell and is a complex mesh of proteins and carbohydrates. It consists of proteoglycans with glycosaminoglycan side chains, which are highly sulfated under normal physiological conditions. The degree of sulfation and the position of the sulfate groups mainly determine biological function. The intact highly sulfated glycocalyx of the epithelium may repel severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) through electrostatic forces. However, if the glycocalyx is undersulfated and 3-O-sulfotransferase 3B (3OST-3B) is overexpressed, as is the case during chronic inflammatory conditions, SARS-CoV-2 entry may be facilitated by the glycocalyx. The degree of sulfation and position of the sulfate groups will also affect functions such as immune modulation, the inflammatory response, vascular permeability and tone, coagulation, mediation of sheer stress, and protection against oxidative stress. The rate-limiting factor to sulfation is the availability of inorganic sulfate. Various genetic and epigenetic factors will affect sulfur metabolism and inorganic sulfate availability, such as various dietary factors, and exposure to drugs, environmental toxins, and biotoxins, which will deplete inorganic sulfate. The role that undersulfation plays in the various comorbid conditions that predispose to coronavirus disease 2019 (COVID-19), is also considered. The undersulfated glycocalyx may not only increase susceptibility to SARS-CoV-2 infection, but would also result in a hyperinflammatory response, vascular permeability, and shedding of the glycocalyx components, giving rise to a procoagulant and antifibrinolytic state and eventual multiple organ failure. These symptoms relate to a diagnosis of systemic septic shock seen in almost all COVID-19 deaths. The focus of prevention and treatment protocols proposed is the preservation of epithelial and endothelial glycocalyx integrity.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Melvin R Hayden
- Division of Endocrinology Diabetes and Metabolism, Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA.,Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
41
|
Kornacki J, Gutaj P, Kalantarova A, Sibiak R, Jankowski M, Wender-Ozegowska E. Endothelial Dysfunction in Pregnancy Complications. Biomedicines 2021; 9:1756. [PMID: 34944571 PMCID: PMC8698592 DOI: 10.3390/biomedicines9121756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/29/2022] Open
Abstract
The endothelium, which constitutes the inner layer of blood vessels and lymphatic structures, plays an important role in various physiological functions. Alterations in structure, integrity and function of the endothelial layer during pregnancy have been associated with numerous gestational complications, including clinically significant disorders, such as preeclampsia, fetal growth restriction, and diabetes. While numerous experimental studies have focused on establishing the role of endothelial dysfunction in pathophysiology of these gestational complications, their mechanisms remain unknown. Numerous biomarkers of endothelial dysfunction have been proposed, together with the mechanisms by which they relate to individual gestational complications. However, more studies are required to determine clinically relevant markers specific to a gestational complication of interest, as currently most of them present a significant overlap. Although the independent diagnostic value of such markers remains to be insufficient for implementation in standard clinical practice at the moment, inclusion of certain markers in predictive multifactorial models can improve their prognostic value. The future of the research in this field lies in the fine tuning of the clinical markers to be used, as well as identifying possible therapeutic techniques to prevent or reverse endothelial damage.
Collapse
Affiliation(s)
- Jakub Kornacki
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| | - Paweł Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| | - Anastasia Kalantarova
- Medicine Program, Poznan University of Medical Sciences, 41 Jackowskiego Street, 60-512 Poznan, Poland;
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland;
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland;
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| |
Collapse
|
42
|
Veluswamy P, Wacker M, Stavridis D, Reichel T, Schmidt H, Scherner M, Wippermann J, Michels G. The SARS-CoV-2/Receptor Axis in Heart and Blood Vessels: A Crisp Update on COVID-19 Disease with Cardiovascular Complications. Viruses 2021; 13:1346. [PMID: 34372552 PMCID: PMC8310117 DOI: 10.3390/v13071346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.
Collapse
Affiliation(s)
- Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Dimitrios Stavridis
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Thomas Reichel
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Hendrik Schmidt
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Maximilian Scherner
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Guido Michels
- Department of Acute and Emergency Care, Sankt Antonius-Hospital Eschweiler, 52249 Eschweiler, Germany;
| |
Collapse
|
43
|
Fang H, Li HF, He MH, Yang M, Zhang JP. HDAC3 Downregulation Improves Cerebral Ischemic Injury via Regulation of the SDC1-Dependent JAK1/STAT3 Signaling Pathway Through miR-19a Upregulation. Mol Neurobiol 2021; 58:3158-3174. [PMID: 33634377 DOI: 10.1007/s12035-021-02325-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022]
Abstract
Histone deacetylase (HDAC) inhibitors can protect the brain from ischemic injury. This study aimed to identify the regulation of HDAC3 in cerebral ischemic injury. Middle cerebral artery occlusion (MCAO) was performed to establish a mouse model with cerebral ischemic injury, in which expression of HDAC3 and miR-19a was evaluated using RT-qPCR. In MCAO mice with silencing of HDAC3, infarct volume was determined using 2,3,5-triphenyl tetrazolium chloride (TTC) staining, and serum levels of TNF-α, IL-6, and IL-8 were measured using ELISA. An in vitro model was constructed in human umbilical vein endothelial cells (HUVECs) with oxygen-glucose deprivation/reoxygenation (OGD/R), followed by gain- and loss-of-function experiments. Relationships among miR-19a, HDAC3, and syndecan-1 (SDC1) were explored using RIP, ChIP, and dual-luciferase reporter assays. The expression of HDAC3, SDC1, JAK1, and STAT3 along with the extent of JAK1 and STAT3 phosphorylation was measured by Western blot analysis. HUVEC viability, apoptosis, and angiogenesis were assessed by CCK-8, flow cytometry, and angiogenesis assays in vitro separately. We found elevated HDAC3 and downregulated miR-19a expression in the MCAO mice. Decreased TNF-α, IL-6, and IL-8 serum levels were observed in response to silencing of HDAC3. HDAC3 inhibited the expression of miR-19a, which in turn targeted SDC1, leading to JAK1/STAT3 signaling pathway activation. HDAC3 overexpression or miR-19a inhibition repressed HUVEC viability and angiogenesis but enhanced HUVEC apoptosis. Our data unraveled the mechanism whereby HDAC3 inhibition ameliorated cerebral ischemic injury by activating the JAK1/STAT3 signaling pathway through miR-19a-mediated SDC1 inhibition.
Collapse
Affiliation(s)
- Hua Fang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, People's Republic of China
- Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, People's Republic of China
- Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Hua-Feng Li
- Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ming-Hai He
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, People's Republic of China
- Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, People's Republic of China
- Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Miao Yang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, People's Republic of China
- Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, People's Republic of China
- Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China
| | - Jian-Ping Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, People's Republic of China.
- Department of Anesthesiology, Guizhou University People's Hospital, Guiyang, 550002, People's Republic of China.
- Laboratory of Anesthesiology & Perioperative Medicine, Guizhou University School of Medicine, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
44
|
Sušić L, Maričić L, Vincelj J, Vadoci M, Sušić T. Understanding the association between endothelial dysfunction and left ventricle diastolic dysfunction in development of coronary artery disease and heart failure. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021204. [PMID: 34212905 PMCID: PMC8343725 DOI: 10.23750/abm.v92i3.11495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022]
Abstract
Cardiovascular diseases (CVDs) have been the most common cause of death worldwide for decades. Until recently the most affected patients were middle-aged and elderly, predominantly men, with more frequent ST elevation myocardial infarction (STEMI) caused by obstructive coronary artery disease (CAD). However, in the last two decades we have noticed an increased incidence of ischemia with non-obstructive coronary arteries (INOCA), which includes myocardial infarction with non-obstructive coronary arteries (MINOCA) and non-myocardial infarction syndromes, such as microvascular and vasospastic angina, conditions that have been particularly pronounced in women and young adults - the population we considered low-risky till than. Therefore, it has become apparent that for this group of patients conventional methods of assessing the risk of future cardiovascular (CV) events are no longer specific and sensitive enough. Heart failure with preserved ejection fraction (HFpEF) is another disease, the incidence of which has been rising rapidly during last two decades, and predominantly affects elderly population. Although the etiology and pathophysiology of INOCA and HFpEF are complex and not fully understood, there is no doubt that the underlying cause of both conditions is endothelial dysfunction (ED) which further promotes the development of left ventricular diastolic dysfunction (LVDD). Plasma biomarkers of ED, as well as natriuretic peptides (NPs), have been intensively investigated recently, and some of them have great potential for early detection and better assessment of CV risk in the future.
Collapse
Affiliation(s)
- Livija Sušić
- Department of Internal Medicine, Osijek-Baranja County Health Center, Osijek, Croatia and Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia.
| | - Lana Maričić
- Cardiology, University Hospital Centre Osijek, Osijek, Croatia; Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia.
| | - Josip Vincelj
- Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia.
| | - Milena Vadoci
- 1Department of Internal Medicine, Osijek-Baranja County Health Center, Osijek, Croatia.
| | | |
Collapse
|
45
|
Néri AK, da S Junior GB, Meneses GC, Martins AM, F Daher ED, da C Lino DO, Silva RP, Psf Nunes MD, Alencar RL, Rodrigues MS, Saraiva IP. Cardiovascular risk assessment and association with novel biomarkers in patients with Type 2 diabetes mellitus. Biomark Med 2021; 15:561-576. [PMID: 33988460 DOI: 10.2217/bmm-2020-0611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate the association between cardiovascular risk and biomarkers in patients with Type 2 diabetes (T2DM). Methods: Cross-sectional study, with evaluation of traditional and new biomarkers (serum FGF-23, Syndecan-1 [Sdc-1] and vascular cell adhesion molecule-1 [VCAM-1] and urinary VEGF and kidney injury molecule-1 [KIM-1]) and risk scores (Framingham-FRS and UK Prospective Diabetes Study [UKPDS]). Results: 128 diabetics were included, with predominance of high risk by FRS and low risk by UKPDS. There was an independent association of VCAM-1 and VEGF with higher risk by FRS-lipids and UKPDS. Conclusion: There was an independent association of VCAM-1 and VEGF with higher cardiovascular risk, showing a subclinical endothelial dysfunction in T2DM. The inclusion of novel biomarkers to risk scores may increase accuracy when assessing cardiovascular risk of diabetic individuals.
Collapse
Affiliation(s)
- Ane Km Néri
- Postgraduate Program in Collective Health, Health Sciences Center, University of Fortaleza, Fortaleza, Ceará, Brazil.,Cardiology Service, Walter Cantídio Teaching Hospital, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.,School of Medicine, Health Sciences Center, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Geraldo B da S Junior
- Postgraduate Program in Collective Health, Health Sciences Center, University of Fortaleza, Fortaleza, Ceará, Brazil.,Postgraduate Program in Medical Sciences, Health Sciences Center, University of Fortaleza, Fortaleza, Ceará, Brazil.,School of Medicine, Health Sciences Center, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Gdayllon C Meneses
- Postgraduate Program in Medical Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Postgraduate Program in Pharmacology, Department of Medicine, Physiology & Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alice Mc Martins
- Postgraduate Program in Pharmacology, Department of Medicine, Physiology & Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Postgraduate Program in Pharmaceutical Sciences, School of Pharmacy, Dentistry & Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Elizabeth De F Daher
- Postgraduate Program in Medical Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Danielli O da C Lino
- Postgraduate Program in Collective Health, Health Sciences Center, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Ricardo P Silva
- Cardiology Service, Walter Cantídio Teaching Hospital, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Postgraduate Program in Cardiovascular Sciences, Department of Clinical Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marina de Psf Nunes
- School of Medicine, Health Sciences Center, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Renan L Alencar
- School of Medicine, Health Sciences Center, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Mariane S Rodrigues
- School of Medicine, Health Sciences Center, University of Fortaleza, Fortaleza, Ceará, Brazil
| | - Igor P Saraiva
- School of Medicine, Health Sciences Center, University of Fortaleza, Fortaleza, Ceará, Brazil
| |
Collapse
|
46
|
Piotti A, Novelli D, Meessen JMTA, Ferlicca D, Coppolecchia S, Marino A, Salati G, Savioli M, Grasselli G, Bellani G, Pesenti A, Masson S, Caironi P, Gattinoni L, Gobbi M, Fracasso C, Latini R. Endothelial damage in septic shock patients as evidenced by circulating syndecan-1, sphingosine-1-phosphate and soluble VE-cadherin: a substudy of ALBIOS. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:113. [PMID: 33741039 PMCID: PMC7980645 DOI: 10.1186/s13054-021-03545-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023]
Abstract
Background Septic shock is characterized by breakdown of the endothelial glycocalyx and endothelial damage, contributing to fluid extravasation, organ failure and death. Albumin has shown benefit in septic shock patients. Our aims were: (1) to identify the relations between circulating levels of syndecan-1 (SYN-1), sphingosine-1-phosphate (S1P) (endothelial glycocalyx), and VE-cadherin (endothelial cell junctions), severity of the disease, and survival; (2) to evaluate the effects of albumin supplementation on endothelial dysfunction in patients with septic shock. Methods This was a retrospective analysis of a multicenter randomized clinical trial on albumin replacement in severe sepsis or septic shock (the Albumin Italian Outcome Sepsis Trial, ALBIOS). Concentrations of SYN-1, S1P, soluble VE-cadherin and other biomarkers were measured on days 1, 2 and 7 in 375 patients with septic shock surviving up to 7 days after randomization. Results Plasma concentrations of SYN-1 and VE-cadherin rose significantly over 7 days. SYN-1 and VE-cadherin were elevated in patients with organ failure, and S1P levels were lower. SYN-1 and VE-cadherin were independently associated with renal replacement therapy requirement during ICU stay, but only SYN-1 predicted its new occurrence. Both SYN-1 and S1P, but not VE-cadherin, predicted incident coagulation failure. Only SYN-1 independently predicted 90-day mortality. Albumin significantly reduced VE-cadherin, by 9.5% (p = 0.003) at all three time points. Conclusion Circulating components of the endothelial glycocalyx and of the endothelial cell junctions provide insights into severity and progression of septic shock, with special focus on incident coagulation and renal failure. Albumin supplementation lowered circulating VE-cadherin consistently over time. Clinical Trial Registration: ALBIOS ClinicalTrials.gov number NCT00707122. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03545-1.
Collapse
Affiliation(s)
- Arianna Piotti
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Deborah Novelli
- Department of Cardiovascular Medicine, Mario Negri Institute for Pharmacological Research IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | | | | | | | - Antonella Marino
- Anestesia III Terapia Intensiva Adulti, ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Giovanni Salati
- UOC Anestesia E Rianimazione, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Monica Savioli
- Dipartimento Di Anestesia, Rianimazione Ed Emergenza Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Grasselli
- Dipartimento Di Anestesia, Rianimazione Ed Emergenza Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Bellani
- Emergency Department, Ospedale San Gerardo, Monza, Italy.,Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Antonio Pesenti
- Dipartimento Di Anestesia, Rianimazione Ed Emergenza Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Serge Masson
- Department of Cardiovascular Medicine, Mario Negri Institute for Pharmacological Research IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Pietro Caironi
- Department of Anesthesiology and Critical Care, AOU S. Luigi Gonzaga, Orbassano, Italy.,Department of Oncology, Università Degli Studi Di Torino, Turin, Italy
| | - Luciano Gattinoni
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Gӧttingen, Gӧttingen, Germany
| | - Marco Gobbi
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Claudia Fracasso
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research IRCCS, Milan, Italy
| | - Roberto Latini
- Department of Cardiovascular Medicine, Mario Negri Institute for Pharmacological Research IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| | | |
Collapse
|
47
|
Jiang W, Wang X, Geng X, Gu Y, Guo M, Ding X, Zhao S. Novel predictive biomarkers for acute injury superimposed on chronic kidney disease. Nefrologia 2021; 41:165-173. [PMID: 36165377 DOI: 10.1016/j.nefroe.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/12/2020] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Chronic kidney disease (CKD) is a risk factor for the development of acute kidney injury (AKI). Recent studies have revealed numerous biomarkers eligible for AKI prediction. However, the expression and performance of AKI biomarkers in acute injury superimposed on preexisting CKD (AonC) remain elusive. The aim of this study was to evaluate whether biomarkers which robustly expressed in acute kidney injury could predict acute injury based on CKD. MATERIALS AND METHODS Mice were classified into cohorts: AKI, CKD, AonC and sham. The AonC model mice were subjected to renal bilateral ischemia/reperfusion (I/R) injury fourteen days after intraperitoneally administrated with 20mg/kg aristolochic acid. Severity of acute ischemic injury was stratified by clamping the dissected bilateral renal arteries with non-traumatic microvascular clips for 20 or 35min. The AKI mice were induced with renal bilateral I/R injury and CKD mice were crafted with 20mg/kg aristolochic acid administrated intraperitoneally. Histology, genetic and protein expression of biomarkers were measured in three cohorts. RESULTS We found that serum creatinine dramatically increased in severe (sAonC) but not in moderate (mAonC) injury mice. Upregulation of Kidney injury molecule-1 (KIM-1) mRNA, tissue inhibitor of metalloproteinase-2 (TIMP-2), Syndecan-1 (SDC-1) mRNA and insulin-like growth factor binding protein-7 (IGFBP7) protein indicated the onset of mAonC. An increase in neutrophil gelatinase-associated lipocalin (NGAL), rhomboid-like protein 2 (RHBDL2), Syndecan-1 (SDC-1) mRNA and protein, and a decrease in IGFBP7 protein were associated with sAonC. CONCLUSIONS Our study revealed the variational expression of AKI biomarkers in AonC kidneys, and uncovered IGFBP7 protein can be used as a sensitive biomarker to predict and differentiate AonC severity. The performance of RHBDL2 and SDC-1 in predicting severe AonC was promising, providing new biomarkers for predicting AonC.
Collapse
Affiliation(s)
- Wuhua Jiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaoyan Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xuemei Geng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Yulu Gu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Man Guo
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.
| |
Collapse
|
48
|
De Luca M, Bryan DR, Hunter GR. Circulating Levels of the Heparan Sulfate Proteoglycan Syndecan-4 Positively Associate with Blood Pressure in Healthy Premenopausal Women. Biomolecules 2021; 11:biom11030342. [PMID: 33668381 PMCID: PMC7996250 DOI: 10.3390/biom11030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
Syndecans (SDCs) are transmembrane proteins that are present on most cell types where they play a role in multiple physiological processes, including cell-matrix adhesion and inflammation. Growing evidence suggests that elevated levels of both shed SDC1 and SDC4 are associated with hypertension and cardiovascular diseases, but their relationships with cardiovascular risk factors in healthy individuals are unknown. The primary objective of this study was to investigate whether serum levels of SDC4 and SDC1 were associated with body composition, hemodynamic parameters, pro-inflammatory cytokine concentrations, and urinary noradrenaline and dopamine levels in healthy women (17 African American and 20 European American) between the ages of 20 and 40 years old. Univariate analyses revealed only a significant (p < 0.05) inverse correlation between serum SDC1 and body fat percentage. On the other hand, serum SDC4 was positively correlated with systolic blood pressure, diastolic blood pressure, and urinary levels of noradrenaline and dopamine. Serum SDC4 was also a significant predictor of systolic blood pressure in a multivariate regression model that included fat-free mass and urinary dopamine levels as significant independent variables. The result did not change even adjusting for race. Our findings indicate that SDC4 has an important role in the physiological regulation of blood pressure.
Collapse
Affiliation(s)
- Maria De Luca
- Correspondence: ; Tel.: +1-205-934-7033; Fax: +1-205-934-7050
| | | | | |
Collapse
|
49
|
Abstract
The glycocalyx is a dense and diverse coat of glycans and glycoconjugates responsible for maintaining cell surface integrity and regulating the interaction of cells with the external environment. Transmembrane mucins such as MUC1 and MUC16 comprise a major component of the epithelial glycocalyx and are currently used to monitor disease progression in cancer. At the ocular surface, multiple lines of evidence indicate that abnormal expression of the enzymes responsible for glycan biosynthesis during pathological conditions impairs the glycosylation of transmembrane mucins. It is now becoming clear that these changes contribute to modify the interaction of mucins with galectin-3, a multimeric lectin crucial for preserving the ocular surface epithelial barrier. This review highlights the potential of using the epithelial glycocalyx as a reliable source for the generation of biomarkers to diagnose and monitor ocular surface disease.
Collapse
|
50
|
Markers of Endothelial Injury and Dysfunction in Early- and Late-Onset Preeclampsia. Life (Basel) 2020; 10:life10100239. [PMID: 33066445 PMCID: PMC7602169 DOI: 10.3390/life10100239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
With regard to differences in the clinical symptoms of preeclampsia (PE), the degree of endothelial dysfunction may differ between early and late-onset preeclampsia (EOP and LOP). The authors of this study examined it by assessing the endothelial injury level in women with EOP (20 patients) and LOP (20 patients) and in normotensive pregnant women (20 patients) in their late second and third trimesters of pregnancy, using the two markers-the serum concentration of hyaluronan (HA) and the serum level of soluble vascular cell adhesion molecule-1 (sVCAM-1). The serum concentrations of HA and sVCAM-1 did not differ significantly between the EOP and LOP patients. However, these were statistically higher than that of the control group participants (p < 0.05; p < 0.001). A significant correlation between the levels of HA and sVCAM-1 was found both in the entire group of patients with preeclampsia (p = 0.0277) and in women with late-onset disease (p = 0.0364), but not in the patients with early-onset preeclampsia (p = 0.331). The obtained results indicated a comparable level of endothelial injury in the two types of PE. The presence of a similar degree of endothelial injury in patients with EOP and LOP should create awareness among all clinicians about the possible fatal complications in both groups of patients with PE.
Collapse
|