1
|
da Silva NM, Leite NPDM, Carvalho AE, Almeida VDD, Santos ÍKD, Cavalcanti JRLDP, Fernandes TAADM, Nascimento EGCD, Andrade MFD. The Role of Extracellular Traps in HIV Infection. AIDS Res Hum Retroviruses 2024; 40:308-316. [PMID: 37772695 DOI: 10.1089/aid.2022.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection is still an important public health problem, which justifies the research of new therapies to combat it. Recent studies show that Extracellular Traps (ETs) are cellular mechanisms useful in the capture and destruction of some viruses, such as the HIV. Here, we show that neutrophils from peripheral blood, genital tissues, and placenta are activated when exposed to human immunodeficiency virus type 1 (HIV-1) and release Neutrophil Extracellular Traps (NETs). The NETs can capture, neutralize, and inactivate the virus and, also, protect other target cells from HIV infection, as long as the DNA and other constituents of the NETs remain intact. Further, the review indicates that the immunoprotective role of NETs in the context of HIV-1 infection is a promising finding for the development of new antiviral therapies. It is necessary, however, the development of studies that evaluate the tissue injury that NETs can cause and the biological relationships with other cells to improve them as therapeutic targets.
Collapse
Affiliation(s)
- Natanias Macson da Silva
- Graduate Program in Health and Society, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
- Department of Biomedical Sciences, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
| | | | - Amanda Estevam Carvalho
- Multicenter Graduate Program in Biochemistry and Molecular Biology, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
| | - Valéria Duarte de Almeida
- Multicenter Graduate Program in Physiological Sciences, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
| | - Ísis Kelly Dos Santos
- Department of Physical Education, School of Physical Education, University of Rio Grande do Norte State, Mossoro, Brazil
| | - José Rodolfo Lopes de Paiva Cavalcanti
- Graduate Program in Health and Society, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
- Department of Biomedical Sciences, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
- Multicenter Graduate Program in Biochemistry and Molecular Biology, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
- Multicenter Graduate Program in Physiological Sciences, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
| | - Thales Allyrio Araújo de Medeiros Fernandes
- Graduate Program in Health and Society, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
- Department of Biomedical Sciences, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
- Multicenter Graduate Program in Biochemistry and Molecular Biology, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
- Multicenter Graduate Program in Physiological Sciences, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
| | - Ellany Gurgel Cosme do Nascimento
- Graduate Program in Health and Society, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
- Department of Biomedical Sciences, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
| | - Micássio Fernandes de Andrade
- Graduate Program in Health and Society, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
- Multicenter Graduate Program in Biochemistry and Molecular Biology, School of Health Sciences, University of Rio Grande do Norte State, Mossoro, Brazil
- Department of Health Sciences, School of Biological and Health Sciences, Federal Rural University of the Semi-arid, Mossoro, Brazil
| |
Collapse
|
2
|
Day CJ, Hardison RL, Spillings BL, Poole J, Jurcisek JA, Mak J, Jennings MP, Edwards JL. Complement Receptor 3 Mediates HIV-1 Transcytosis across an Intact Cervical Epithelial Cell Barrier: New Insight into HIV Transmission in Women. mBio 2022; 13:e0217721. [PMID: 35012346 PMCID: PMC8749410 DOI: 10.1128/mbio.02177-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Transmission of HIV across the mucosal surface of the female reproductive tract to engage subepithelial CD4-positive T cells is not fully understood. Cervical epithelial cells express complement receptor 3 (CR3) (integrin αMβ2 or CD11b/CD18). In women, the bacterium Neisseria gonorrhoeae uses CR3 to invade the cervical epithelia to cause cervicitis. We hypothesized that HIV may also use CR3 to transcytose across the cervical epithelia. Here, we show that HIV-1 strains bound with high affinity to recombinant CR3 in biophysical assays. HIV-1 bound CR3 via the I-domain region of the CR3 alpha subunit, CD11b, and binding was dependent on HIV-1 N-linked glycans. Mannosylated glycans on the HIV surface were a high-affinity ligand for the I-domain. Man5 pentasaccharide, representative of HIV N-glycans, could compete with HIV-1 for CR3 binding. Using cellular assays, we show that HIV bound to CHO cells by a CR3-dependent mechanism. Antibodies to the CR3 I-domain or to the HIV-1 envelope glycoprotein blocked the binding of HIV-1 to primary human cervical epithelial (Pex) cells, indicating that CR3 was necessary and sufficient for HIV-1 adherence to Pex cells. Using Pex cells in a Transwell model system, we show that, following transcytosis across an intact Pex cell monolayer, HIV-1 is able to infect TZM-bl reporter cells. Targeting the HIV-CR3 interaction using antibodies, mannose-binding lectins, or CR3-binding small-molecule drugs blocked HIV transcytosis. These studies indicate that CR3/Pex may constitute an efficient pathway for HIV-1 transmission in women and also demonstrate strategies that may prevent transmission via this pathway. IMPORTANCE In women, the lower female reproductive tract is the primary site for HIV infection. How HIV traverses the epithelium to infect CD4 T cells in the submucosa is ill-defined. Cervical epithelial cells have a protein called CR3 on their surface. We show that HIV-1 binds to CR3 with high affinity and that this interaction is necessary and sufficient for HIV adherence to, and transcytosis across, polarized, human primary cervical epithelial cells. This suggests a unique role for CR3 on epithelial cells in dually facilitating HIV-1 attachment and entry. The HIV-CR3 interaction may constitute an efficient pathway for HIV delivery to subepithelial lymphocytes following virus transmission across an intact cervical epithelial barrier. Strategies with potential to prevent transmission via this pathway are presented.
Collapse
Affiliation(s)
- Christopher J. Day
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Rachael L. Hardison
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | | - Jessica Poole
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Joseph A. Jurcisek
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Jennifer L. Edwards
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Barré‐Sinoussi F, Abdool Karim SS, Albert J, Bekker L, Beyrer C, Cahn P, Calmy A, Grinsztejn B, Grulich A, Kamarulzaman A, Kumarasamy N, Loutfy MR, El Filali KM, Mboup S, Montaner JSG, Munderi P, Pokrovsky V, Vandamme A, Young B, Godfrey‐Faussett P. Expert consensus statement on the science of HIV in the context of criminal law. J Int AIDS Soc 2018; 21:e25161. [PMID: 30044059 PMCID: PMC6058263 DOI: 10.1002/jia2.25161] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Globally, prosecutions for non-disclosure, exposure or transmission of HIV frequently relate to sexual activity, biting, or spitting. This includes instances in which no harm was intended, HIV transmission did not occur, and HIV transmission was extremely unlikely or not possible. This suggests prosecutions are not always guided by the best available scientific and medical evidence. DISCUSSION Twenty scientists from regions across the world developed this Expert Consensus Statement to address the use of HIV science by the criminal justice system. A detailed analysis of the best available scientific and medical research data on HIV transmission, treatment effectiveness and forensic phylogenetic evidence was performed and described so it may be better understood in criminal law contexts. Description of the possibility of HIV transmission was limited to acts most often at issue in criminal cases. The possibility of HIV transmission during a single, specific act was positioned along a continuum of risk, noting that the possibility of HIV transmission varies according to a range of intersecting factors including viral load, condom use, and other risk reduction practices. Current evidence suggests the possibility of HIV transmission during a single episode of sex, biting or spitting ranges from no possibility to low possibility. Further research considered the positive health impact of modern antiretroviral therapies that have improved the life expectancy of most people living with HIV to a point similar to their HIV-negative counterparts, transforming HIV infection into a chronic, manageable health condition. Lastly, consideration of the use of scientific evidence in court found that phylogenetic analysis alone cannot prove beyond reasonable doubt that one person infected another although it can be used to exonerate a defendant. CONCLUSIONS The application of up-to-date scientific evidence in criminal cases has the potential to limit unjust prosecutions and convictions. The authors recommend that caution be exercised when considering prosecution, and encourage governments and those working in legal and judicial systems to pay close attention to the significant advances in HIV science that have occurred over the last three decades to ensure current scientific knowledge informs application of the law in cases related to HIV.
Collapse
Affiliation(s)
| | - Salim S Abdool Karim
- Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
- Centre for the AIDS Program of Research in South AfricaUniversity of KwaZulu‐NatalDurbanSouth Africa
- Weill Medical CollegeCornell UniversityNew YorkNYUSA
| | - Jan Albert
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Linda‐Gail Bekker
- Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Chris Beyrer
- Department of EpidemiologyCenter for AIDS Research and Center for Public Health and Human RightsJohn Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
| | - Pedro Cahn
- Infectious Diseases UnitJuan A. Fernandez Hospital Buenos AiresCABAArgentina
- Buenos Aires University Medical SchoolBuenos AiresArgentina
- Fundación HuéspedBuenos AiresArgentina
| | - Alexandra Calmy
- Infectious DiseasesGeneva University HospitalGenevaSwitzerland
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas‐FiocruzFiocruz, Rio de JaneiroBrazil
| | - Andrew Grulich
- Kirby InstituteUniversity of New South WalesSydneyNSWAustralia
| | | | | | - Mona R Loutfy
- Women's College Research InstituteTorontoCanada
- Women's College HospitalTorontoCanada
- Department of MedicineUniversity of TorontoTorontoCanada
| | - Kamal M El Filali
- Infectious Diseases UnitIbn Rochd Universtiy HospitalCasablancaMorocco
| | - Souleymane Mboup
- Institut de Recherche en Santéde Surveillance Epidemiologique et de FormationsDakarSenegal
| | - Julio SG Montaner
- Faculty of MedicineUniversity of British ColumbiaVancouverCanada
- BC Centre for Excellence in HIV/AIDSVancouverCanada
| | - Paula Munderi
- International Association of Providers of AIDS CareKampalaUganda
| | - Vadim Pokrovsky
- Russian Peoples’ Friendship University (RUDN‐ University)MoscowRussian Federation
- Central Research Institute of EpidemiologyFederal Service on Customers’ Rights Protection and Human Well‐being SurveillanceMoscowRussian Federation
| | - Anne‐Mieke Vandamme
- KU LeuvenDepartment of Microbiology and ImmunologyRega Institute for Medical Research, Clinical and Epidemiological VirologyLeuvenBelgium
- Center for Global Health and Tropical MedicineUnidade de MicrobiologiaInstituto de Higiene e Medicina TropicalUniversidade Nova de LisboaLisbonPortugal
| | - Benjamin Young
- International Association of Providers of AIDS CareWashingtonDCUSA
| | - Peter Godfrey‐Faussett
- UNAIDSGenevaSwitzerland
- Department of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonEngland
| |
Collapse
|
4
|
Dong XH, Ho MH, Liu B, Hildreth J, Dash C, Goodwin JS, Balasubramaniam M, Chen CH, Xie H. Role of Porphyromonas gingivalis outer membrane vesicles in oral mucosal transmission of HIV. Sci Rep 2018; 8:8812. [PMID: 29891956 PMCID: PMC5995904 DOI: 10.1038/s41598-018-27284-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/21/2018] [Indexed: 12/21/2022] Open
Abstract
The association between mucosal microbiota and HIV-1 infection has garnered great attention in the field of HIV-1 research. Previously, we reported a receptor-independent HIV-1 entry into epithelial cells mediated by a Gram-negative invasive bacterium, Porphyromonas gingivalis. Here, we present evidence showing that P. gingivalis outer membrane vesicles (OMVs) promote mucosal transmission of HIV-1. We demonstrated, using the Dynabeads technology, a specific interaction between HIV-1 and P. gingivalis OMVs which led to an OMV-dependent viral entry into oral epithelial cells. HIV-1 was detected in human oral keratinocytes (HOKs) after a 20 minute exposure to the HIV-vesicle complexes. After entry, most of the complexes appeared to dissociate, HIV-1 was reverse-transcribed, and viral DNA was integrated into the genome of HOKs. Meanwhile, some of the complexes exited the original host and re-entered neighboring HOKs and permissive cells of HIV-1. Moreover, P. gingivalis vesicles enhanced HIV-1 infection of MT4 cells at low infecting doses that are not able to establish an efficient infection alone. These findings suggest that invasive bacteria and their OMVs with ability to interact with HIV-1 may serve as a vehicle to translocate HIV through the mucosa, establish mucosal transmission of HIV-1, and enhance HIV-1 infectivity.
Collapse
Affiliation(s)
- Xin-Hong Dong
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37027,, USA
| | - Meng-Hsuan Ho
- School of Dentistry, Meharry Medical College, Nashville, TN, 37027, USA
| | - Bindong Liu
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37027,, USA
| | - James Hildreth
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN, 37027,, USA
| | - Chandravanu Dash
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37027, USA
| | - J Shawn Goodwin
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37027, USA
| | | | - Chin-Ho Chen
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, TN, 37027, USA.
| |
Collapse
|
5
|
Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, Sato K. Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front Immunol 2018; 8:1823. [PMID: 29379496 PMCID: PMC5775519 DOI: 10.3389/fimmu.2017.01823] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome and its infection leads to the onset of several disorders such as the depletion of peripheral CD4+ T cells and immune activation. HIV-1 is recognized by innate immune sensors that then trigger the production of type I interferons (IFN-Is). IFN-Is are well-known cytokines eliciting broad anti-viral effects by inducing the expression of anti-viral genes called interferon-stimulated genes (ISGs). Extensive in vitro studies using cell culture systems have elucidated that certain ISGs such as APOBEC3G, tetherin, SAM domain and HD domain-containing protein 1, MX dynamin-like GTPase 2, guanylate-binding protein 5, and schlafen 11 exert robust anti-HIV-1 activity, suggesting that IFN-I responses triggered by HIV-1 infection are detrimental for viral replication and spread. However, recent studies using animal models have demonstrated that at both the acute and chronic phase of infection, the role of IFN-Is produced by HIV or SIV infection in viral replication, spread, and pathogenesis, may not be that straightforward. In this review, we describe the pluses and minuses of HIV-1 infection stimulated IFN-I responses on viral replication and pathogenesis, and further discuss the possibility for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew Soper
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Izumi Kimura
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shumpei Nagaoka
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoriyuki Konno
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keisuke Yamamoto
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
6
|
Wu TJ, Chiu HY, Yu J, Cautela MP, Sarmento B, das Neves J, Catala C, Pazos-Perez N, Guerrini L, Alvarez-Puebla RA, Vranješ-Đurić S, Ignjatović NL. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. NANOTECHNOLOGIES IN PREVENTIVE AND REGENERATIVE MEDICINE 2018. [PMCID: PMC7156018 DOI: 10.1016/b978-0-323-48063-5.00001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanotechnology is an enabling technology with great potential for applications in stem cell research and regenerative medicine. Fluorescent nanodiamond (FND), an inherently biocompatible and nontoxic nanoparticle, is well suited for such applications. We had developed a prospective isolation method using CD157, CD45, and CD54 to obtain lung stem cells. Labeling of CD45−CD54+CD157+ cells with FNDs did not eliminate their abilities for self-renewal and differentiation. The FND labeling in combination with cell sorting, fluorescence lifetime imaging microscopy, and immunostaining identified transplanted stem cells allowed tracking of their engraftment and regenerative capabilities with single-cell resolution. Time-gated fluorescence (TGF) imaging in mouse tissue sections indicated that they reside preferentially at the bronchoalveolar junctions of lungs, especially in naphthalene-injured mice. Our results presented in Subchapter 1.1 demonstrate not only the remarkable homing capacity and regenerative potential of the isolated stem cells, but also the ability of finding rare lung stem cells in vivo using FNDs. The topical use of antiretroviral-based microbicides, namely of a dapivirine ring, has been recently shown to partially prevent transmission of HIV through the vaginal route. Among different formulation approaches, nanotechnology tools and principles have been used for the development of tentative vaginal and rectal microbicide products. Subchapter 1.2 provides an overview of antiretroviral drug nanocarriers as novel microbicide candidates and discusses recent and relevant research on the topic. Furthermore, advances in developing vaginal delivery platforms for the administration of promising antiretroviral drug nanocarriers are reviewed. Although mostly dedicated to the discussion of nanosystems for vaginal use, the development of rectal nanomicrobicides is also addressed. Infectious diseases are currently responsible for over 8 million deaths per year. Efficient treatments require accurate recognition of pathogens at low concentrations, which in the case of blood infection (septicemia) can go as low as 1 mL–1. Detecting and quantifying bacteria at such low concentrations is challenging and typically demands cultures of large samples of blood (∼1 mL) extending over 24–72 h. This delay seriously compromises the health of patients and is largely responsible for the death toll of bacterial infections. Recent advances in nanoscience, spectroscopy, plasmonics, and microfluidics allow for the development of optical devices capable of monitoring minute amounts of analytes in liquid samples. In Subchapter 1.3 we critically discuss these recent developments that will, in the future, enable the multiplex identification and quantification of microorganisms directly on their biological matrix with unprecedented speed, low cost, and sensitivity. Radiolabeled nanoparticles (NPs) are finding an increasing interest in a broad range of biomedical applications. They may be used to detect and characterize diseases, to deliver relevant therapeutics, and to study the pharmacokinetic/pharmacodynamic parameters of nanomaterials. The use of radiotracer techniques in the research of novel NPs offers many advantages, but there are still some limitations. The binding of radionuclides to NPs has to be irreversible to prevent their escape to other tissues or organs. Due to the short half-lives of radionuclides, the manufacturing process is time limited and difficult, and there is also a risk of contamination. Subchapter 1.4 presents the main selection criteria for radionuclides and applicable radiolabeling procedures used for the radiolabeling of various NPs. Also, an overview of different types of NPs that have so far been labeled with radionuclides is presented.
Collapse
Affiliation(s)
- Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan
| | - Hsiao-Yu Chiu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,China Medical University, Taichung, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,Institute of Cellular and Organismic Biology, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hu M, Zhou T, Dezzutti CS, Rohan LC. The Effect of Commonly Used Excipients on the Epithelial Integrity of Human Cervicovaginal Tissue. AIDS Res Hum Retroviruses 2017; 32:992-1004. [PMID: 27611224 DOI: 10.1089/aid.2016.0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pharmaceutical excipients are widely used in vaginal drug products. The epithelial integrity of the cervicovaginal tissue is important for HIV-1 prevention. However, the effects of excipients on cervicovaginal epithelium remain unknown. This study aims at assessing the effects of vaginal product excipients on the integrity of human cervicovaginal epithelium and on a lead HIV prevention antiretroviral drug, tenofovir (TFV). In the current study, nine excipients commonly used in vaginal formulations were incubated for 6 h with excised human ectocervical tissue. The effects of the excipients were examined by measuring the transepithelial electrical resistance (TEER), epithelial morphology, paracellular/transcellular permeability, and cell viability. The efficacy of TFV for preventing HIV-1 infection in the ex vivo cultured ectocervix was also tested. We found that disodium ethyl-enediaminetetraacetate (EDTA), sorbic acid, and benzoic acid had no effect on the tissue TEER. Butylated hydroxyanisole, glycerin, propylene glycol, methylparaben, and propylparaben slightly to moderately decreased tissue TEER, whereas citric acid significantly decreased the TEER in a time-dependent manner. Tissue morphology observed post-exposure strongly correlated with TEER data; however, a less strong correlation was observed between paracellular permeability and TEER data after exposure to different excipients. In addition, treatment with EDTA, methylparaben, and propylene glycol at tested levels had no effect on the efficacy of TFV in preventing tissue HIV-1 infection. In conclusion, the combined measurements of TEER, morphology, permeability, and viability using human cervicovaginal tissue represent a clinically relevant platform for safety evaluation of excipients and formulated products for HIV-1 prevention.
Collapse
Affiliation(s)
- Minlu Hu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Tian Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Charlene S. Dezzutti
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa C. Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Association between gp120 envelope V1V2 and V4V5 variable loop profiles in a defined HIV-1 transmission cluster. AIDS 2015; 29:1161-71. [PMID: 26035318 DOI: 10.1097/qad.0000000000000692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Variations in the HIV-1 gp120 Env variable loop sequences correlate with virus phenotypes associated with transmission and/or disease progression. We aimed to identify whether signature sequences could be identified in the gp120 Env between acute infection and chronic infection viruses obtained from a group of individuals infected with closely related viruses. METHODS To analyse acute infection versus chronic infection viruses, we studied a transmission cluster of 11 individuals, in which six presented during acute infection and five during chronic infection. Multiple HIV-1 gp120 Env clones were sequenced from each patient with predicted amino acid sequences compared between the groups. RESULTS Cluster analysis of V1V5 Env sequences (n = 215) identified that acute infection viruses had lower potential N-linked glycosylation site (PNGS) densities than viruses from chronic infection, with a higher amino acid length/PNGS ratio. We found a negative correlation between the V1V2 and V4V5 regions for both amino acid length (Pearson P < 0.01) and PNGS numbers (Pearson P < 0.01) during HIV-1 transmission. This association was lost following seroconversion. These findings were confirmed by analysing sequences from the Los Alamos database that were selected and grouped according to timing of transmission. This included acute infection sequences collected 0-10 days (n = 400) and chronic infection sequences 0.5-3 years postseroconversion (n = 394). CONCLUSION Our observations are consistent with a structural association between the V1V2 and V4V5 gp120 regions that is lost following viral transmission. These structural considerations should be taken into consideration when devising HIV-1 immunogens aimed at inducing protective antibody responses targeting transmitted viruses.
Collapse
|
9
|
Goldfien GA, Barragan F, Chen J, Takeda M, Irwin JC, Perry J, Greenblatt RM, Smith-McCune KK, Giudice LC. Progestin-Containing Contraceptives Alter Expression of Host Defense-Related Genes of the Endometrium and Cervix. Reprod Sci 2015; 22:814-28. [PMID: 25634912 DOI: 10.1177/1933719114565035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epidemiological studies indicate that progestin-containing contraceptives increase susceptibility to HIV, although the underlying mechanisms involving the upper female reproductive tract are undefined. To determine the effects of depot medroxyprogesterone acetate (DMPA) and the levonorgestrel intrauterine system (LNG-IUS) on gene expression and physiology of human endometrial and cervical transformation zone (TZ), microarray analyses were performed on whole tissue biopsies. In endometrium, activated pathways included leukocyte chemotaxis, attachment, and inflammation in DMPA and LNG-IUS users, and individual genes included pattern recognition receptors, complement components, and other immune mediators. In cervical TZ, progestin treatment altered expression of tissue remodeling and viability but not immune function genes. Together, these results indicate that progestins influence expression of immune-related genes in endometrium relevant to local recruitment of HIV target cells with potential to increase susceptibility and underscore the importance of the upper reproductive tract when assessing the safety of contraceptive products.
Collapse
Affiliation(s)
- Gabriel A Goldfien
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Fatima Barragan
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph Chen
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret Takeda
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Juan C Irwin
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jean Perry
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ruth M Greenblatt
- Departments of Clinical Pharmacy, Medicine, Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Karen K Smith-McCune
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Linda C Giudice
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Alfano M, Graziano F, Genovese L, Poli G. Macrophage Polarization at the Crossroad Between HIV-1 Infection and Cancer Development. Arterioscler Thromb Vasc Biol 2013; 33:1145-52. [DOI: 10.1161/atvbaha.112.300171] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mononuclear phagocytes play a fundamental role in the tissue homeostasis and innate defenses against viruses and other microbial pathogens. In addition, they are likely involved in several steps of cancer development. Circulating monocytes and tissue macrophages are target cells of viral infections, including human cytomegalovirus, human herpes virus 8, and the HIV, and alterations of their functional and phenotypic properties are likely involved in many tissue-degenerative diseases, including atherosclerosis and cancer. Different tissue microenvironments as well as their pathological alterations can profoundly affect the polarization state of macrophages toward the extreme phenotypes conventionally termed M1 and M2. Thus, targeting disease-associated macrophages is considered a potential approach particularly in the context of cancer-associated tumor-associated macrophages, supporting malignant cell growth and progression toward a metastatic phenotype. Of note is the fact that tumor-associated macrophages isolated from established tumors display phenotypic and functional features similar to those of in vitro–derived M2-polarized cells. Concerning HIV-1 infection, viral eradication strategies in the context of combination antiretroviral therapy should also consider the possibility to deplete, at least transiently, certain mononuclear phagocytes subsets, although the possibility of distinguishing those that are either infected or pathogenically altered remains a goal of future research. In the present review, we will focus on the recent literature concerning the role of human macrophage polarization in viral infections and cancer.
Collapse
Affiliation(s)
- Massimo Alfano
- From the AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy (M.A., F.G., L.G., G.P.); and Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy (F.G., L.G., G.P.)
| | - Francesca Graziano
- From the AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy (M.A., F.G., L.G., G.P.); and Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy (F.G., L.G., G.P.)
| | - Luca Genovese
- From the AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy (M.A., F.G., L.G., G.P.); and Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy (F.G., L.G., G.P.)
| | - Guido Poli
- From the AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy (M.A., F.G., L.G., G.P.); and Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy (F.G., L.G., G.P.)
| |
Collapse
|
11
|
Rinaldo CR. HIV-1 Trans Infection of CD4(+) T Cells by Professional Antigen Presenting Cells. SCIENTIFICA 2013; 2013:164203. [PMID: 24278768 PMCID: PMC3820354 DOI: 10.1155/2013/164203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Since the 1990s we have known of the fascinating ability of a complex set of professional antigen presenting cells (APCs; dendritic cells, monocytes/macrophages, and B lymphocytes) to mediate HIV-1 trans infection of CD4(+) T cells. This results in a burst of virus replication in the T cells that is much greater than that resulting from direct, cis infection of either APC or T cells, or trans infection between T cells. Such APC-to-T cell trans infection first involves a complex set of virus subtype, attachment, entry, and replication patterns that have many similarities among APC, as well as distinct differences related to virus receptors, intracellular trafficking, and productive and nonproductive replication pathways. The end result is that HIV-1 can sequester within the APC for several days and be transmitted via membrane extensions intracellularly and extracellularly to T cells across the virologic synapse. Virus replication requires activated T cells that can develop concurrently with the events of virus transmission. Further research is essential to fill the many gaps in our understanding of these trans infection processes and their role in natural HIV-1 infection.
Collapse
Affiliation(s)
- Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Rodriguez-Plata MT, Puigdomènech I, Izquierdo-Useros N, Puertas MC, Carrillo J, Erkizia I, Clotet B, Blanco J, Martinez-Picado J. The infectious synapse formed between mature dendritic cells and CD4(+) T cells is independent of the presence of the HIV-1 envelope glycoprotein. Retrovirology 2013; 10:42. [PMID: 23590845 PMCID: PMC3640963 DOI: 10.1186/1742-4690-10-42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since cell-mediated infection of human immunodeficiency virus type 1 (HIV-1) is more efficient than cell-free infection, cell-to-cell propagation plays a crucial role in the pathogenesis of HIV-1 infection. Transmission of HIV-1 is enabled by two types of cellular contacts, namely, virological synapses between productively infected cells and uninfected target cells and infectious synapses between uninfected dendritic cells (DC) harboring HIV-1 and uninfected target cells. While virological synapses are driven by expression of the viral envelope glycoprotein on the cell surface, little is known about the role of envelope glycoprotein during contact between DC and T cells. We explored the contribution of HIV-1 envelope glycoprotein, adhesion molecules, and antigen recognition in the formation of conjugates comprising mature DC (mDC) and CD4(+) T cells in order to further evaluate their role in mDC-mediated HIV-1 transmission at the immunological synapse. RESULTS Unlike virological synapse, HIV-1 did not modulate the formation of cell conjugates comprising mDC harboring HIV-1 and non-activated primary CD4(+) T cells. Disruption of interactions between ICAM-1 and LFA-1, however, resulted in a 60% decrease in mDC-CD4(+) T-cell conjugate formation and, consequently, in a significant reduction of mDC-mediated HIV-1 transmission to non-activated primary CD4(+) T cells (p < 0.05). Antigen recognition or sustained MHC-TcR interaction did not enhance conjugate formation, but significantly boosted productive mDC-mediated transmission of HIV-1 (p < 0.05) by increasing T-cell activation and proliferation. CONCLUSIONS Formation of the infectious synapse is independent of the presence of the HIV-1 envelope glycoprotein, although it does require an interaction between ICAM-1 and LFA-1. This interaction is the main driving force behind the formation of mDC-CD4(+) T-cell conjugates and enables transmission of HIV-1 to CD4(+) T cells. Moreover, antigen recognition boosts HIV-1 replication without affecting the frequency of cellular conjugates. Our results suggest a determinant role for immune activation driven by mDC-CD4(+) T-cell contacts in viral dissemination and that this activation likely contributes to the pathogenesis of HIV-1 infection.
Collapse
Affiliation(s)
- Maria T Rodriguez-Plata
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, 08916, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin mediates HIV-1 infection of and transmission by M2a-polarized macrophages in vitro. AIDS 2013; 27:707-16. [PMID: 23211775 DOI: 10.1097/qad.0b013e32835cfc82] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To assess in-vitro effects of monocyte-derived macrophage (MDM) polarization into M1 and M2a cells on HIV-1 replication and transmission and obtain new insights into the potential importance of macrophage polarization in vivo. DESIGN Human peripheral blood monocytes were differentiated into MDM for 7 days. Control and MDM polarized into M1 or M2a cells were exposed to different strains of HIV-1 and assessed for their ability to bind and transmit virus to CD4 T lymphocytes. METHODS MDM were incubated with either tumour necrosis factor-alpha (TNF-α) along with interferon-gamma (IFN-γ) or with interleukin-4 (IL-4) for 18 h to obtain M1 or M2a cells, respectively. Expression of cell surface antigens, including CD4 and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN), was evaluated by flow cytometry. C-C chemokine receptor type 5 (CCR5)-dependent (R5) HIV-1 binding, DNA synthesis and viral replication were assessed in the presence or absence of anti-DC-SIGN blocking mAbs. Transmission of C-X-C chemokine receptor type 4 (CXCR4)-dependent (X4) and R5 HIV-1 from MDM to IL-2 activated CD4 T cells was also investigated. RESULTS DC-SIGN was strongly upregulated on M2a-MDM and downregulated on M1-MDM compared with control MDM. DC-SIGN facilitated HIV-1 entry and DNA synthesis in M2a-MDM, compensating for their low levels of CD4 cell expression. M2a-MDM efficiently transmitted both R5 and X4 HIV-1 to CD4 T cells in a DC-SIGN-dependent manner. CONCLUSION DC-SIGN facilitates HIV-1 infection of M2a-MDM, and HIV-1 transfer from M2a-MDM to CD4 T cells. M2a-polarized tissue macrophages may play an important role in the capture and spread of HIV-1 in mucosal tissues and placenta.
Collapse
|
14
|
Pillay V, Mashingaidze F, Choonara YE, Du Toit LC, Buchmann E, Maharaj V, Ndesendo VM, Kumar P. Qualitative and Quantitative Intravaginal Targeting: Key to Anti-HIV-1 Microbicide Delivery from Test Tube to In Vivo Success. J Pharm Sci 2012; 101:1950-68. [DOI: 10.1002/jps.23098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/27/2011] [Accepted: 02/09/2012] [Indexed: 12/20/2022]
|
15
|
Begay O, Jean-Pierre N, Abraham CJ, Chudolij A, Seidor S, Rodriguez A, Ford BE, Henderson M, Katz D, Zydowsky T, Robbiani M, Fernández-Romero JA. Identification of personal lubricants that can cause rectal epithelial cell damage and enhance HIV type 1 replication in vitro. AIDS Res Hum Retroviruses 2011; 27:1019-24. [PMID: 21309617 DOI: 10.1089/aid.2010.0252] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Over-the-counter personal lubricants are used frequently during vaginal and anal intercourse, but they have not been extensively tested for biological effects that might influence HIV transmission. We evaluated the in vitro toxicity anti-HIV-1 activity and osmolality of popular lubricants. A total of 41 lubricants were examined and compared to Gynol II and Carraguard as positive and negative controls for toxicity, respectively. Cytotoxicity was assessed using the XTT assay. The MAGI assay with R5 and X4 HIV-1 laboratory strains was used to evaluate antiviral activity. The effect of the lubricants on differentiated Caco-2 cell monolayers (transepithelial electrical resistance, TEER) was also measured. None of the lubricants tested showed significant activity against HIV-1. Surprisingly, four of them, Astroglide Liquid, Astroglide Warming Liquid, Astroglide Glycerin & Paraben-Free Liquid, and Astroglide Silken Secret, significantly enhanced HIV-1 replication (p<0.0001). A common ingredient in three of these preparations is polyquaternium-15. In vitro testing of a chemically related compound (MADQUAT) confirmed that this similarly augmented HIV-1 replication. Most of the lubricants were found to be hyperosmolar and the TEER value dropped approximately 60% 2 h after exposure to all lubricants tested. Cells treated with Carraguard, saline, and cell controls maintained about 100% initial TEER value after 2-6 h. We have identified four lubricants that significantly increase HIV-1 replication in vitro. In addition, the epithelial damage caused by these and many other lubricants may have implications for enhancing HIV transmission in vivo. These data emphasize the importance of performing more rigorous safety testing on these products.
Collapse
|
16
|
Abstract
The quest for an effective and safe HIV-1 vaccine has been and still is the aspiration of many scientists and clinicians worldwide. Until recently, the hopes for an effective vaccine were thwarted by the disappointing results and early termination in September 2007 of the STEP study, which saw a subgroup of male vaccine recipients at an increased risk of HIV-1 infection, and the failure of earlier trials of vaccines based on recombinant envelope proteins to provide any level of protection. The results of the STEP study raised important questions in the field of HIV vaccines, including the use of recombinant adenovirus vectors as immunogens, the rationale for the development of T-cell-based vaccines and the development pathway for these vaccines, in terms of assessment of immunogenicity and the challenge models used. The study of neutralizing antibodies has demonstrated that the induction of high-titre, broadly neutralizing antibodies in the majority of recipients is likely to be highly problematic. However, the results of the RV144 Thai trial released in September 2009 have brought new optimism to the field. This study employed envelope-based immunogens delivered as a priming vaccination with a recombinant poxvirus vector and boosting with recombinant proteins. This regimen provided modest protection to HIV-1 infection in a low-risk population. Although the correlates of protection are currently unknown, extensive studies are underway to try to determine these. Neutralizing antibodies were not induced in the RV144 study; however, considerable titres of binding antibodies to HIV-1 viral envelope (Env) were. It is speculated that these antibodies may have provided a means of protection by a mechanism such as antibody-dependent cell-mediated cytotoxicity. In addition, no CD8+ T-cell responses were induced, but robust CD4+ T-cell responses were, and correlates of protection are being sought by analysing the quality of this aspect of the vaccine-induced immune response. The current paradigm for an optimal HIV-1 vaccine is to design immunogens and vaccination protocols that allow the induction of both broadly neutralizing humoral and broadly reactive and effective cell-mediated immunity, to act at sites of possible infection and post-infection, respectively. However, this is challenged by the results of the RV144 trial as neither of these responses were induced but modest protection was observed. Understanding the biology and immunopathology of HIV-1 early following infection, its modes of transmission and the human immune system's response to the virus should aid in the rational design of vaccines of increased efficacy.
Collapse
Affiliation(s)
- C Mee Ling Munier
- HIV Immunovirology Laboratory, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
17
|
Mucosal immunity and HIV-1 infection: applications for mucosal AIDS vaccine development. Curr Top Microbiol Immunol 2011; 354:157-79. [PMID: 21203884 DOI: 10.1007/82_2010_119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Natural transmission of human immunodeficiency virus type 1 (HIV-1) occurs through gastrointestinal and vaginal mucosa. These mucosal tissues are major reservoirs for initial HIV replication and amplification, and the sites of rapid CD4(+) T cell depletion. In both HIV-infected humans and SIV-infected macaques, massive loss of CD4(+) CCR5(+) memory T cells occurs in the gut and vaginal mucosa within the first 10-14 days of infection. Induction of local HIV-specific immune responses by vaccines may facilitate effective control of HIV or SIV replication at these sites. Vaccines that induce mucosal responses, in particular CD8(+) cytotoxic T lymphocytes (CTL), have controlled viral replication at mucosal sites and curtailed systemic dissemination. Thus, there is strong justification for development of next generation vaccines that induce mucosal immune effectors against HIV-1 including CD8(+) CTL, CD4(+) T helper cells and secretory IgA. In addition, further understanding of local innate mechanisms that impact early viral replication will greatly inform future vaccine development. In this review, we examine the current knowledge concerning mucosal AIDS vaccine development. Moreover, we propose immunization strategies that may be able to elicit an effective immune response that can protect against AIDS as well as other mucosal infections.
Collapse
|
18
|
Cassol E, Cassetta L, Alfano M, Poli G. Macrophage polarization and HIV-1 infection. J Leukoc Biol 2009; 87:599-608. [PMID: 20042468 DOI: 10.1189/jlb.1009673] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Edana Cassol
- AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | |
Collapse
|
19
|
Zinyama-Gutsire R, Gomo E, Kallestrup P, Erikstrup C, Ullum H, Butterworth AE, Munyati S, Mduluza T. Downregulation of MIP-1alpha/CCL3 with praziquantel treatment in Schistosoma haematobium and HIV-1 co-infected individuals in a rural community in Zimbabwe. BMC Infect Dis 2009; 9:174. [PMID: 19852800 PMCID: PMC2770052 DOI: 10.1186/1471-2334-9-174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Accepted: 10/23/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemokines have been reported to play an important role in granulomatous inflammation during Schistosoma mansoni infection. However there is less information on their role in Schistosoma haematobium infection, or on the effect of concurrent HIV-1 infection, as a potential modifying influence. METHODS To determine levels of MIP-1alpha/CCL3 chemokine in plasma of S. haematobium and HIV-1 co-infected and uninfected individuals in a rural black Zimbabwean community.A cohort was established of HIV-1 and schistosomiasis infection and co-infection comprising 379 participants. Outcome measures consisted of HIV-1 and schistosomiasis status and levels of MIP-1alpha/CCL3 in plasma at baseline and three months post treatment. An association was established between MIP-1alpha/CCL3 plasma levels with HIV-1 and S. haematobium infections. RESULTS A total of 379 adults formed the established cohort comprising 76 (20%) men and 303 (80%) women. Mean age was 33.25, range 17 - 62 years. The median MIP-1alpha/CCL3 plasma concentration was significantly higher in S. haematobium infected compared with uninfected individuals (p = 0.029). In contrast, there was no difference in the median MIP-1alpha/CCL3 levels between HIV-1 positive and negative individuals (p = 0.631). MIP-1alpha/CCL3 concentration in plasma was significantly reduced at three months after treatment with praziquantel (p = 000). CONCLUSION The results of our study show that the MIP-1alpha/CCL3 levels were positively associated with S. haematobium egg counts at baseline but not with HIV-1 infection status. MIP-1alpha/CCL3 levels were significantly reduced at three months post treatment with praziquantel. We therefore conclude that MIP-1alpha/CCL3 is produced during infection with S haematobium. S. haematobium infection is associated with increased MIP-1alpha/CCL3 levels in an egg intensity-dependent manner and treatment of S. haematobium is associated with a reduction in MIP-1alpha/CCL3.
Collapse
|
20
|
Venkatachari NJ, Alber S, Watkins SC, Ayyavoo V. HIV-1 infection of DC: evidence for the acquisition of virus particles from infected T cells by antigen uptake mechanism. PLoS One 2009; 4:e7470. [PMID: 19829715 PMCID: PMC2759578 DOI: 10.1371/journal.pone.0007470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 09/22/2009] [Indexed: 01/18/2023] Open
Abstract
Dendritic cells (DC) play a pivotal role in transmission and dissemination of HIV-1. Earlier studies reported that DC present at the site of infection trap virus particles via DC-SIGN and transfer the virus to the interacting naïve T cells. This prompted us to ask the question whether DC could acquire virus from infected T cells during DC-T cell interaction. To address this, we investigated the likely transfer of virus from HIV-1 infected T cells to DC and the underlying mechanisms involved. Results indicate that DC acquire virus from infected T cells via antigen uptake mechanism and this results in infection of DC with expression of proteins directed by viral DNA. Further studies with HIV-1 lacking the Env protein also resulted in infection of DC. The use of antibodies against DC-SIGN and DC-SIGN-R ruled out a role for receptor in the infection of DC. Additional data show that DC infection is directly correlated with the ability of DC to take up antigen from infected T cells. Overall, these studies provide evidence to suggest that HIV-1, besides infecting immune cells, also utilizes immunological mechanism(s) to acquire and disseminate virus.
Collapse
Affiliation(s)
- Narasimhan J. Venkatachari
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sean Alber
- Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Trapp S, Derby NR, Singer R, Shaw A, Williams VG, Turville SG, Bess JW, Lifson JD, Robbiani M. Double-stranded RNA analog poly(I:C) inhibits human immunodeficiency virus amplification in dendritic cells via type I interferon-mediated activation of APOBEC3G. J Virol 2009; 83:884-95. [PMID: 19004943 PMCID: PMC2612396 DOI: 10.1128/jvi.00023-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 11/03/2008] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus (HIV) is taken up by and replicates in immature dendritic cells (imDCs), which can then transfer virus to T cells, amplifying the infection. Strategies known to boost DC function were tested for their ability to overcome this exploitation when added after HIV exposure. Poly(I:C), but not single-stranded RNA (ssRNA) or a standard DC maturation cocktail, elicited type I interferon (IFN) and interleukin-12 (IL-12) p70 production and the appearance of unique small (15- to 20-kDa) fragments of APOBEC3G (A3G) and impeded HIV(Bal) replication in imDCs when added up to 60 h after virus exposure. Comparable effects were mediated by recombinant alpha/beta IFN (IFN-alpha/beta). Neutralizing the anti-IFN-alpha/beta receptor reversed poly(I:C)-induced inhibition of HIV replication and blocked the appearance of the small A3G proteins. The poly(I:C)-induced appearance of small A3G proteins was not accompanied by significant differences in A3G mRNA or A3G monomer expression. Small interfering RNA (siRNA) knockdown of A3G could not be used to reverse the poly(I:C)-induced protective effect, since siRNAs nonspecifically activated the DCs, inducing the appearance of the small A3G proteins and inhibiting HIV infection. Notably, the appearance of small A3G proteins coincided with the shift of high-molecular-mass inactive A3G complexes to the low-molecular-mass (LMM) active A3G complexes. The unique immune stimulation by poly(I:C) with its antiviral effects on imDCs marked by the expression of IFN-alpha/beta and active LMM A3G renders poly(I:C) a promising novel strategy to combat early HIV infection in vivo.
Collapse
Affiliation(s)
- Susanna Trapp
- HIV and AIDS Program, Center for Biomedical Research, Population Council, New York, New York 10065,USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Belyakov IM, Ahlers JD. Functional CD8+ CTLs in mucosal sites and HIV infection: moving forward toward a mucosal AIDS vaccine. Trends Immunol 2008; 29:574-85. [PMID: 18838298 DOI: 10.1016/j.it.2008.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/12/2008] [Accepted: 07/14/2008] [Indexed: 01/22/2023]
|
23
|
Abstract
PURPOSE OF REVIEW HIV-1 mucosal transmission plays a critical role in HIV-1 infection and AIDS pathogenesis. This review summarizes the latest advances in biological studies of HIV-1 mucosal transmission, highlighting the implications of these studies in the development of microbicides to prevent HIV-1 transmission. RECENT FINDINGS New studies of initial HIV-1 infection using improved culture models updated the current view of mucosal transmission. Mechanistic studies enhanced our understanding of cell-cell transmission of HIV-1 mediated by the major target cells, including dendritic cells, CD4(+) T cells, and macrophages. Increasing evidence indicated the significance of host factors and immune responses in HIV-1 mucosal infection and transmission. SUMMARY Recent progress in HIV-1 mucosal infection and transmission enriches our knowledge of virus-host interactions and viral pathogenesis. Functional studies of HIV-1 interactions with host cells can provide new insights into the design of more effective approaches to combat HIV-1 infection and AIDS.
Collapse
Affiliation(s)
- Li Wu
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
24
|
Frank I, Stössel H, Gettie A, Turville SG, Bess JW, Lifson JD, Sivin I, Romani N, Robbiani M. A fusion inhibitor prevents spread of immunodeficiency viruses, but not activation of virus-specific T cells, by dendritic cells. J Virol 2008; 82:5329-39. [PMID: 18367527 PMCID: PMC2395170 DOI: 10.1128/jvi.01987-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 03/14/2008] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) play a key role in innate immune responses, and their interactions with T cells are critical for the induction of adaptive immunity. However, immunodeficiency viruses are efficiently captured by DCs and can be transmitted to and amplified in CD4(+) T cells, with potentially deleterious effects on the induction of immune responses. In DC-T-cell cocultures, contact with CD4(+), not CD8(+), T cells preferentially facilitated virus movement to and release at immature and mature DC-T-cell contact sites. This occurred within 5 min of DC-T-cell contact. While the fusion inhibitor T-1249 did not prevent virus capture by DCs or the release of viruses at the DC-T-cell contact points, it readily blocked virus transfer to and amplification in CD4(+) T cells. Higher doses of T-1249 were needed to block the more robust replication driven by mature DCs. Virus accumulated in DCs within T-1249-treated cocultures but these DCs were actually less infectious than DCs isolated from untreated cocultures. Importantly, T-1249 did not interfere with the stimulation of virus-specific CD4(+) and CD8(+) T-cell responses when present during virus-loading of DCs or for the time of the DC-T-cell coculture. These results provide clues to identifying strategies to prevent DC-driven virus amplification in CD4(+) T cells while maintaining virus-specific immunity, an objective critical in the development of microbicides and therapeutic vaccines.
Collapse
Affiliation(s)
- I Frank
- Center for Biomedical Research, Population Council, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Letvin NL. Correlates of immune protection and the development of a human immunodeficiency virus vaccine. Immunity 2007; 27:366-9. [PMID: 17892845 DOI: 10.1016/j.immuni.2007.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Because established vaccine technologies are not likely to provide protection against human immunodeficiency virus (HIV) infection, efforts are being focused on defining immunologic and virologic correlates of HIV containment with the hope that this information will provide direction to new approaches for HIV vaccination.
Collapse
|
26
|
Matrix metalloproteinase dysregulation in HIV infection: implications for therapeutic strategies. Trends Mol Med 2007; 13:449-59. [PMID: 18029231 DOI: 10.1016/j.molmed.2007.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/10/2007] [Accepted: 09/12/2007] [Indexed: 11/23/2022]
Abstract
The emerging role of immune activation and inflammation in the pathogenesis of human immunodeficiency virus (HIV) disease has stimulated the search for new approaches for managing HIV infection. Recent evidence suggests that an imbalance between matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of MMPs (TIMPs) might contribute to HIV-associated pathology by inducing remodelling of the extracellular matrix. Here, we discuss the evidence and the potential mechanisms for altered MMP or TIMP function in HIV infection and disease. Furthermore, we outline the possible medical implications for the use of compounds that target MMP activity, and we propose that antiretroviral drugs, particularly HIV protease inhibitors (PIs), and compounds with anti-inflammatory properties, such as statins, natural omega-3 fatty acids and tetracyclines, which inhibit MMP function, might represent useful therapeutic approaches to mitigate potential MMP-related damage during HIV infection.
Collapse
|
27
|
Spear GT, St John E, Zariffard MR. Bacterial vaginosis and human immunodeficiency virus infection. AIDS Res Ther 2007; 4:25. [PMID: 17953761 PMCID: PMC2164939 DOI: 10.1186/1742-6405-4-25] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 10/22/2007] [Indexed: 01/08/2023] Open
Abstract
Epidemiologic studies indicate that bacterial vaginosis (BV), a common alteration of lower genital tract flora in women, is associated with increased susceptibility to HIV infection. Other recent studies show that HIV is detected more frequently and at higher levels in the lower genital tract of HIV-seropositive women with BV. In vitro studies show that genital tract secretions from women with BV or flora associated with BV induce HIV expression in infected cells. The increased HIV expression appears to be due at least in part to activation through Toll-like receptors (TLR), specifically TLR2. Further research is needed to elucidate how BV contributes to HIV acquisition and transmission.
Collapse
|
28
|
Hicks CB, Gay C, Ferrari G. Acute HIV infection: the impact of anti-retroviral treatment on cellular immune responses. Clin Exp Immunol 2007; 149:211-6. [PMID: 17590167 PMCID: PMC1941962 DOI: 10.1111/j.1365-2249.2007.03437.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The overall value of initiating anti-retroviral therapy during the acute phase of human immunodeficiency virus type 1 (HIV-1) infection remains unclear. From a clinical perspective, the lack of data from controlled randomized clinical trials limits understanding of long-term effects of treatment on the clinical course of HIV infection. Based on available data, the impact of anti-retroviral therapy during acute infection on the immune response against HIV-1 is not particularly encouraging. Recent observations on the very early depletion of lymphocyte reservoirs in the gastrointestinal tract may partially explain the limited benefit of anti-retroviral therapy initiated during the acute phase of HIV-1 infection. This may also help to explain the dichotomy between early observations demonstrating apparent immunological benefit with early anti-retroviral treatment that were associated none the less with inability to control viral replication following treatment interruption.
Collapse
Affiliation(s)
- C B Hicks
- Duke University Medical Center, Department of Medicine, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|