1
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
2
|
Bądzyńska B, Sadowski J. Reinvestigation of the tonic natriuretic action of intrarenal dopamine: comparison of two variants of salt-dependent hypertension and spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 2021; 48:1280-1287. [PMID: 34056731 DOI: 10.1111/1440-1681.13529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 01/11/2023]
Abstract
The intrarenal dopamine system has been thoroughly investigated at all levels, especially its role in salt-dependent and other forms of hypertension. However, the evidence regarding dopamine's tonic influence on renal tubular transport of sodium remains equivocal. We reinvestigated its tonic influence on sodium excretion and systemic and renal haemodynamics. Early effects of dopamine D1 receptor blockade using 90-min Schering 23390 (SCH) infusion were examined in anaesthetized rats on 7 days' high salt diet (HS), early uninephrectomized rats on 14 days' HS diet, drinking 1% saline (HS/UNX), and in spontaneously hypertensive rats (SHR). In the HS group (baseline BP ~133 mm Hg) renal intracortical SCH promptly decreased sodium, water and total solute excretion (UNa V, V, Uosm V), with significant difference from the solvent-infused group. BP and renal artery blood flow (RBF, Transonic probe) did not change. In HS/UNX model (baseline BP ~150 mm Hg), characterized by hypertrophy of the remaining kidney, the excretion parameters only tended to decrease whereas SCH induced an ~20% fall in RBF. In SHR (BP ~180 mm Hg), UNa V and V tended to increase in solvent-infused rats; this increasing tendency was abolished by SCH infusion. During experiments the renal vascular resistance increased significantly in SCH- and solvent-infused SHR. Despite some contradictory findings regarding the genuine tonic control of renal excretion by intrarenal dopamine, our results clearly support such role in rats on HS diet and in SHR, the model resembling human essential hypertension. The observations strengthen the experimental basis and the rationale for targeting the intrarenal dopamine system in attempts to combat arterial hypertension.
Collapse
Affiliation(s)
- Bożena Bądzyńska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Hu MC, Bobulescu IA, Quiñones H, Gisler SM, Moe OW. Dopamine reduces cell surface Na +/H + exchanger-3 protein by decreasing NHE3 exocytosis and cell membrane recycling. Am J Physiol Renal Physiol 2017; 313:F1018-F1025. [PMID: 28768665 DOI: 10.1152/ajprenal.00251.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 01/06/2023] Open
Abstract
The intrarenal autocrine-paracrine dopamine (DA) system mediates a significant fraction of the natriuresis in response to a salt load. DA inhibits a number of Na+ transporters to effect sodium excretion, including the proximal tubule Na+/H+ exchanger-3 (NHE3). DA represent a single hormone that regulates NHE3 at multiple levels, including translation, degradation, endocytosis, and protein phosphorylation. Because cell surface NHE3 protein is determined by the balance between exocytotic insertion and endocytotic retrieval, we examined whether DA acutely affects the rate of NHE3 exocytosis in a cell culture model. DA inhibited NHE3 exocytosis at a dose-dependent manner with a half maximal around 10-6 M. The DA effect on NHE3 exocytosis was blocked by inhibition of protein kinase A and by brefeldin A, which inhibits endoplasmic reticulum-to-Golgi transport. NHE3 directly interacts with the ε-subunit of coatomer protein based on yeast-two-hybrid and coimmunoprecipitation. Because NHE3 has been shown to be recycled back to the cell membrane after endocytosis, we measured NHE3 recycling using a biochemical reinsertion assay and showed that reinsertion of NHE3 back to the membrane is also inhibited by DA. In conclusion, among the many mechanisms by which DA reduces apical membrane NHE3 and induces proximal tubule natriuresis, one additional mechanism is inhibition of exocytotic insertion and reinsertion of NHE3 in the apical cell surface.
Collapse
Affiliation(s)
- Ming Chang Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; .,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - I Alexandru Bobulescu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Henry Quiñones
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Serge M Gisler
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas; and.,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Zain M, Awan FR, Amir S, Baig SM. A case control association study of COMT gene polymorphism (I/D) with type 2 diabetes and its related factors in Pakistani Punjabi population. J Diabetes Metab Disord 2015; 14:40. [PMID: 25969822 PMCID: PMC4428245 DOI: 10.1186/s40200-015-0166-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND The Catechol-O-Methyl Transferase (COMT) gene polymorphism (I/D of C nucleotide at base position 900) has been previously implicated in the development of type 2 diabetes (T2D) and kidney disease. So, aim of this study was to find association of I/D polymorphism with T2D, and its associated factors like family history and nephropathy (End Stage Renal Disease, ESRD) patients in a cohort of Pakistani Punjabis. METHODS Genomic DNA was extracted from human subjects divided as four study groups: controls (n = 46), diabetics (n = 46), diabetics with nephropathy/ESRD (n = 53), and non-diabetics without nephropathy/ESRD (n = 43). The 900 I/D C polymorphism in the COMT gene was tested by PCR-RFLP method. Genotype and allele frequencies as well as Odds Ratios were calculated for these groups. Groups were compared statistically for the analysis of genotypes, alleles, biochemical parameters as well as disease status. RESULTS In comparison with control group (non-diabetic, non-nephropathy), there was no significant difference in rest of the three groups for allele or genotype frequencies of COMT gene. However, Chi square (χ(2)) analysis identified a significant (p = 0.02) correlation of the 900 I/D C polymorphism with family history of diabetes, as it was found that greater number (74%) of patients having I allele had a positive family history of T2D. CONCLUSIONS A significant correlation of the COMT polymorphism (900 I/D C) with the family history of T2D has been observed, which has not been previously reported in Pakistani Punjabi population, however, this preliminary finding requires further validation studies.
Collapse
Affiliation(s)
- Maryam Zain
- Diabetes and Cardio-Metabolic Disorder (D&C-MD) Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box.577, Faisalabad, Pakistan ; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Fazli Rabbi Awan
- Diabetes and Cardio-Metabolic Disorder (D&C-MD) Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box.577, Faisalabad, Pakistan ; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sidra Amir
- Diabetes and Cardio-Metabolic Disorder (D&C-MD) Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box.577, Faisalabad, Pakistan ; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Shahid Mahmood Baig
- Diabetes and Cardio-Metabolic Disorder (D&C-MD) Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box.577, Faisalabad, Pakistan ; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
5
|
Ali MA, Kazzam E, Amir N, Nyberg F, Adem A. Effects of dehydration and blockade of angiotensin II AT1 receptor on stress hormones and anti-oxidants in the one-humped camel. BMC Vet Res 2013; 9:232. [PMID: 24252635 PMCID: PMC4225509 DOI: 10.1186/1746-6148-9-232] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/08/2013] [Indexed: 01/18/2023] Open
Abstract
Background The objective of this study was to provide for the first time data on plasma catecholamines, cortisol, glutathione and malondialdehyde after long term dehydration (20 days) in the presence and absence of angiotensin II (Ang II) AT1 receptor blocker (losartan) versus levels in time-matched, non-dehydrated control camels and to record the responses of glutathione and malondialdehyde activity in liver and kidney homogenates in control, dehydrated-losartan treated and dehydrated camels. Eighteen male camels were studied, six hydrated (control group), six dehydrated and treated with losartan (treated group) and six dehydrated not treated (dehydrated). Results Plasma levels of norepinephrine and dopamine were significantly increased (P < 0.01) in both treated and dehydrated groups compared to time matched control, whereas Plasma epinephrine level showed significant decrease (P < 0.05) in both treated and dehydrated groups compared to control. Plasma cortisol also showed significant increase (P < 0.01) in both treated and dehydrated groups compared to control. Glutathione levels in plasma, liver and kidney homogenates for both treated and dehydrated groups reveled significant increase (P < 0.05) Likewise, malondialdehyde levels in plasma, liver and kidney homogenates were substantially and significantly increased in both treated and dehydrated groups. Conclusion In conclusion, the results of this study demonstrated that dehydration substantially increased the circulating levels of norepinephrine, dopamine and cortisol but decreased plasma epinephrine. Similarly, losartan showed similar effects to that of dehydration. In addition, this investigation showed dehydration alone or in combination with losartan induced significant increments in glutathione and malondialdehyde activities in plasma, liver and kidney homogenates, presumably in order to counteract the potentially damaging effects of free radicals. Blockade of angiotensin II AT1 receptors did not alter significantly the response of dehydration in any of these indices.
Collapse
Affiliation(s)
- Mahmoud Alhaj Ali
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, United Arab Emirates University, P,O, Box 17666, Al Ain, United Arab Emirates.
| | | | | | | | | |
Collapse
|
6
|
Zhang LN, Li JX, Hao L, Sun YJ, Xie YH, Wu SM, Liu L, Chen XL, Gao ZB. Crosstalk between dopamine receptors and the Na⁺/K⁺-ATPase (review). Mol Med Rep 2013; 8:1291-9. [PMID: 24065247 DOI: 10.3892/mmr.2013.1697] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/05/2013] [Indexed: 11/06/2022] Open
Abstract
Dopamine (DA) receptors, which belong to the G protein-coupled receptor family, are the target of ~50% of all modern medicinal drugs and constitute a large and diverse class of proteins whose primary function is to transduce extracellular stimuli into intracellular signals. Na+/K+-ATPase (NKA) is ubiquitous and crucial for the maintenance of intracellular ion homeostasis and excitability. Furthermore, it plays a critical role in diverse effects, including clinical cardiotonic and cardioprotective effects, ischemic preconditioning in the brain, natriuresis, lung edema clearance and other processes. NKA regulation is of physiological and pharmacological importance and has species- and tissue-specific variations. The activation of DA receptors regulates NKA expression/activity and trafficking in various tissues and cells, for example in the kidney, lung, intestine, brain, non-pigmented ciliary epithelium and the vascular bed. DA receptor-mediated regulation of NKA mediates a diverse range of cellular responses and includes endocytosis/exocytosis, phosphorylation/dephosphorylation of the α subunit of NKA and multiple signaling pathways, including phosphatidylinositol (PI)-phospholipase C/protein kinase (PK) C, cAMP/PKA, PI3K, adaptor protein 2, tyrosine phosphatase and mitogen-activated protein kinase/extracellular signal-regulated protein kinase. Furthermore, in brain and HEK293T cells, D1 and D2 receptors exist in a complex with NKA. Among D1 and D2 receptors and NKA, regulations are reciprocal, which leads to crosstalk between DA receptors and NKA. In the present study, the current understanding of signaling mechanisms responsible for the crosstalk between DA receptors and NKA, as well as with specific consequent functions, is reviewed.
Collapse
Affiliation(s)
- Li-Nan Zhang
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hu MC, Di Sole F, Zhang J, McLeroy P, Moe OW. Chronic regulation of the renal Na(+)/H(+) exchanger NHE3 by dopamine: translational and posttranslational mechanisms. Am J Physiol Renal Physiol 2013; 304:F1169-80. [PMID: 23427139 DOI: 10.1152/ajprenal.00630.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The intrarenal autocrine/paracrine dopamine (DA) system contributes to natriuresis in response to both acute and chronic Na(+) loads. While the acute DA effect is well described, how DA induces natriuresis chronically is not known. We used an animal and a cell culture model to study the chronic effect of DA on a principal renal Na(+) transporter, Na(+)/H(+) exchanger-3 (NHE3). Intraperitoneal injection of Gludopa in rats for 2 days elevated DA excretion and decreased total renal cortical and apical brush-border NHE3 antigen. Chronic treatment of an opossum renal proximal cell line with DA decreased NHE3 activity, cell surface and total cellular NHE3 antigen, but not NHE3 transcript. The decrease in NHE3 antigen was dose and time dependent with maximal inhibition at 16-24 h and half maximal effect at 3 × 10(-7) M. This is in contradistinction to the acute effect of DA on NHE3 (half maximal at 2 × 10(-6) M), which was not associated with changes in total cellular NHE3 protein. The DA-induced decrease in total NHE3 protein was associated with decrease in NHE3 translation and mediated by cis-sequences in the NHE3 5'-untranslated region. DA also decreased cell surface and total cellular NHE3 protein half-life. The DA-induced decrease in total cellular NHE3 was partially blocked by proteasome inhibition but not by lysosome inhibition, and DA increased ubiquitylation of total and surface NHE3. In summary, chronic DA inhibits NHE3 with mechanisms distinct from its acute action and involves decreased NHE3 translation and increased NHE3 degradation, which are novel mechanisms for NHE3 regulation.
Collapse
Affiliation(s)
- Ming Chang Hu
- Dept. of Internal Medicine, Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8885, USA
| | | | | | | | | |
Collapse
|
8
|
Aperia A. 2011 Homer Smith Award: To serve and protect: classic and novel roles for Na+, K+ -adenosine triphosphatase. J Am Soc Nephrol 2012; 23:1283-90. [PMID: 22745476 DOI: 10.1681/asn.2012010102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ability of cells to maintain sharp ion gradients across their membranes is the foundation for the molecular transport and electrical excitability. Across animal species and cell types, Na(+),K(+)-adenosine triphosphatase (ATPase) is arguably the most powerful contributor to this phenomenon. By producing a steep concentration difference of sodium and potassium between the intracellular and extracellular milieu, Na(+),K(+)-ATPase in the tubules provides the driving force for renal sodium reabsorption. Pump activity is downregulated by natriuretic hormones, such as dopamine, and is upregulated by antinatriuretic hormones, such as angiotensin. In the past decade, studies have revealed a novel and surprising role: that Na(+),K(+)-ATPase is a transducer of signals from extracellular to intracellular compartments. The signaling function of Na(+),K(+)-ATPase is activated by ouabain, a mammalian steroid hormone, at far lower concentrations than those that inhibit pump activity. By promoting growth and inhibiting apoptosis, activation of Na(+),K(+)-ATPase exerts tissue-protective effects. Ouabain-stimulated Na(+),K(+)-ATPase signaling has recently shown clinical promise by protecting the malnourished embryonic kidney from adverse developmental programming. A deeper understanding of the tissue-protective role of Na(+),K(+)-ATPase signaling and the regulation of Na(+),K(+)-ATPase pumping activity is of fundamental importance for the understanding and treatment of kidney diseases and kidney-related hypertension.
Collapse
Affiliation(s)
- Anita Aperia
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Q2-09 SE-171 76 Stockholm, Sweden.
| |
Collapse
|
9
|
Weinman EJ, Lederer ED. NHERF-1 and the regulation of renal phosphate reabsoption: a tale of three hormones. Am J Physiol Renal Physiol 2012; 303:F321-7. [PMID: 22535796 DOI: 10.1152/ajprenal.00093.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The renal excretion of inorganic phosphate is regulated in large measure by three hormones, namely, parathyroid hormone, dopamine, and fibroblast growth factor-23. Recent experiments have indicated that the major sodium-dependent phosphate transporter in the renal proximal tubule, Npt2a, binds to the adaptor protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) and in the absence of NHERF-1, the inhibitory effect of these three hormones is absent. From these observations, a new model for the hormonal regulation of renal phosphate transport was developed. The downstream signaling pathways of these hormones results in the phosphorylation of the PDZ 1 domain of NHERF-1 and the dissociation of Npt2a/NHERF-1 complexes. In turn, this dissociation facilitates the endocytosis of Npt2a with a subsequent decrease in the apical membrane abundance of the transporter and a decrease in phosphate reabsorption. The current review outlines the experimental observations supporting the operation of this unique regulatory system.
Collapse
Affiliation(s)
- Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|
10
|
Chugh G, Lokhandwala MF, Asghar M. Altered functioning of both renal dopamine D1 and angiotensin II type 1 receptors causes hypertension in old rats. Hypertension 2012; 59:1029-36. [PMID: 22411927 DOI: 10.1161/hypertensionaha.112.192302] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of renal dopamine D1 (D1R) and angiotensin II type 1 receptors (AT(1)Rs) influences the activity of proximal tubular sodium transporter Na,K-ATPase and maintains sodium homeostasis and blood pressure. We reported recently that diminished D1R and exaggerated AT(1)R functions are associated with hypertension in old Fischer 344 × Brown Norway F1 (FBN) rats, and oxidative stress plays a central role in this phenomenon. Here we studied the mechanisms of age-associated increase in oxidative stress on diminished D1R and exaggerated AT(1)R functions in the renal proximal tubules of control and antioxidant Tempol-treated adult and old FBN rats. Although D1R numbers and D1R agonist SKF38393-mediated stimulation of [(35)S]-GTPγS binding (index of D1R activation) were lower, G protein-coupled receptor kinase 4 (kinase that uncouples D1R) levels were higher in old FBN rats. Tempol treatment restored D1R numbers and G protein coupling and reduced G protein-coupled receptor kinase 4 levels in old FBN rats. Angiotensin II-mediated stimulation of [(35)S]-GTPγS binding and Na,K-ATPase activity were higher in old FBN rats, which were also restored with Tempol treatment. We also measured renal AT(1)R function in adult and old Fischer 344 (F344) rats, which, despite exhibiting an age-related increase in oxidative stress and diminished renal D1R function, are normotensive. We found that diuretic and natriuretic responses to candesartan (indices of AT(1)R function) were similar in F344 rats, a likely explanation for the absence of age-associated hypertension in these rats. Perhaps, alterations in both D1R (diminished) and AT(1)R (exaggerated) functions are necessary for the development of age-associated hypertension, as seen in old FBN rats.
Collapse
Affiliation(s)
- Gaurav Chugh
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|
11
|
Choi MR, Citarella MR, Lee BM, Lucano F, Fernández BE. Urodilatin increases renal dopamine uptake: intracellular network involved. J Physiol Biochem 2011; 67:243-247. [PMID: 21210317 DOI: 10.1007/s13105-010-0069-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 12/14/2010] [Indexed: 01/11/2023]
Abstract
Dopamine and urodilatin promote natriuresis and diuresis through a common pathway that involves reversible deactivation of renal Na+, K+-ATPase. We have reported that urodilatin enhances dopamine uptake in outer renal cortex through the natriuretic peptide type A receptor. Moreover, urodilatin enhances dopamine-induced inhibition of Na+, K+-ATPase activity. The objective of the present work was to investigate the intracellular signals involved in urodilatin effects on dopamine uptake in renal cortex of kidney rats. We show that urodilatin-elicited increase in ³H-dopamine was blunted by methylene blue (10 μM), a non-specific guanylate cyclase inhibitor, and by phorbol-12-myristate-13-acetate (1 μM), a particulate guanylate cyclase inhibitor, but not by 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (10 μM), a specific soluble guanylate cyclase inhibitor; therefore the involvement of particulate guanylate cyclase on urodilatin mediated dopamine uptake was confirmed. Cyclic guanosine monophosphate and proteinkinase G were also implicated in the signaling pathway, since urodilatin effects were mimicked by the analog 125 μM 8-Br-cGMP and blocked by the proteinkinase G-specific inhibitor, KT-5823 (1 μM). In conclusion, urodilatin increases dopamine uptake in renal cortex stimulating natriuretic peptide type A receptor, which signals through particulate guanylate cyclase activation, cyclic guanosine monophosphate generation, and proteinkinase G activation. Dopamine and urodilatin may achieve their effects through a common pathway that involves deactivation of renal Na+, K+-ATPase, reinforcing their natriuretic and diuretic properties.
Collapse
Affiliation(s)
- Marcelo R Choi
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, INFIBIOC, CONICET, Junín 956, C 1113AAD, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
12
|
Chugh G, Lokhandwala MF, Asghar M. Oxidative stress alters renal D1 and AT1 receptor functions and increases blood pressure in old rats. Am J Physiol Renal Physiol 2010; 300:F133-8. [PMID: 20943769 DOI: 10.1152/ajprenal.00465.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aging is associated with an increase in oxidative stress and blood pressure (BP). Renal dopamine D1 (D1R) and angiotensin II AT1 (AT1R) receptors maintain sodium homeostasis and BP. We hypothesized that age-associated increase in oxidative stress causes altered D1R and AT1R functions and high BP in aging. To test this, adult (3 mo) and old (21 mo) Fischer 344 × Brown Norway F1 rats were supplemented without/with antioxidant tempol followed by determining oxidative stress markers (urinary antioxidant capacity, proximal tubular NADPH-gp91phox, and plasma 8-isoprostane), D1R and AT1R functions, and BP. The D1R and AT1R functions were determined by measuring diuretic and natriuretic responses to D1R agonist (SKF-38393; 1 μg·kg(-1)·min(-1) iv) and AT1R antagonist (candesartan; 10 μg/kg iv), respectively. We found that the total urinary antioxidant capacity was lower in old rats, which increased with tempol treatment. In addition, tempol decreased the elevated NADPH-gp91phox and 8-isoprostane levels in old rats. Systolic, diastolic, and mean arterial BPs were higher in old rats and were reduced by tempol. Although SKF-38393 produced diuresis in both adult and old rats, urinary sodium excretion (UNaV) increased only in adult rats. While candesartan increased diuresis and UNaV in adult and old rats, the magnitude of response was greater in old rats. Tempol treatment in old rats reduced candesartan-induced increase in diuresis and UNaV. Our results demonstrate that diminished renal D1R and exaggerated AT1R functions are associated with high BP in old rats. Furthermore, oxidative stress may cause altered renal D1R and AT1R functions and high BP in old rats.
Collapse
Affiliation(s)
- Gaurav Chugh
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|
13
|
Cavallotti C, Mancone M, Bruzzone P, Sabbatini M, Mignini F. Dopamine receptor subtypes in the native human heart. Heart Vessels 2010; 25:432-7. [DOI: 10.1007/s00380-009-1224-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Zhang YR, Yuan ZY. Dopamine-mediated inhibition of renal Na+/K+-ATPase in HK-2 cells is reduced by ouabain. Clin Exp Pharmacol Physiol 2010; 37:613-8. [PMID: 20132239 DOI: 10.1111/j.1440-1681.2010.05364.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. Abnormal renal sodium handling is considered a major contributing factor in hypertension associated with chronic ouabain treatment. However, the molecular mechanisms involved in abnormal renal sodium handling have not been elucidated. Therefore, we investigated whether chronic ouabain treatment perturbs dopamine D(1) receptor function. 2. The expression and phosphorylation levels of the D(1) receptor in cells of the human proximal tubule cell line (HK-2) were determined using western blot analysis and reverse transcription polymerase chain reaction. The activity of the renal sodium/potassium pump (Na(+)/K(+)-ATPase) was measured using a colourimetric assay, and cyclic adenosine monophosphate accumulation was determined by performing a radioimmunoassay. 3. We showed that chronic ouabain treatment decreased the protein and mRNA expression levels of the D(1) receptor and increased the basal phosphorylation of the D(1) receptor in HK-2 cells. We also showed that in the presence of ouabain, HK-2 cells did not reveal the cyclic adenosine monophosphate accumulation and Na(+)/K(+)-ATPase inhibition induced by the D(1) receptor agonist fenoldopam. 4. We hypothesize that the ouabain-induced decrease in renal D(1) receptor function is responsible for the increase in renal sodium reabsorption, which eventually leads to ouabain-induced hypertension.
Collapse
Affiliation(s)
- Yu-Rong Zhang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | | |
Collapse
|
15
|
George L, Lokhandwala MF, Asghar M. Exercise activates redox-sensitive transcription factors and restores renal D1 receptor function in old rats. Am J Physiol Renal Physiol 2009; 297:F1174-80. [PMID: 19759268 PMCID: PMC2781333 DOI: 10.1152/ajprenal.00397.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 09/15/2009] [Indexed: 02/06/2023] Open
Abstract
We have previously reported that age-associated oxidative stress via protein kinase C (PKC) increases D1 receptor (D1R) phosphorylation and causes D1R-G protein uncoupling in renal proximal tubules (RPTs) of old Fischer 344 rats. This results in reduced ability of D1R agonist SKF-38393 to inhibit Na+-K+-ATPase in RPTs of old rats. Here, we studied the effect of treadmill exercise on markers of oxidative stress, PKC, D1R phosphorylation, D1R-G protein coupling, and Na+-K+-ATPase activity in RPTs of adult and old rats. We found increased levels of malondialdehyde, a marker of oxidative stress, in RPTs of old rats, which decreased during exercise. Nuclear levels of nuclear erythroid-related factor (Nrf)-2 and nuclear factor (NF)-kappaB in RPTs, transcription factors involved in antioxidant enzyme gene transcription, increased in exercised old rats. This was accompanied by an increase in the activity and expression of antioxidant enzymes, superoxide dismutase and heme oxygenase-1. Age-related decrease in the levels of D1R mRNAs and proteins was attenuated during exercise. Furthermore, exercise in old rats decreased PKC activity and D1R phosphorylation and increased SKF-38393-mediated [35S]guanosine 5'-O-(3-thiotriphosphate) binding (an index of D1R-G protein coupling). SKF-38393 also caused inhibition of Na+-K+-ATPase in these animals. Also, exercise caused a decrease in proteinuria and increase in phosphaturia in old rats. These results suggest beneficial effects of exercise in terms of increasing antioxidant defenses, decreasing oxidative stress, and improving kidney function in general and D1R function in particular in aging. Both Nrf-2 and NF-kappaB seem to play key role in this phenomenon.
Collapse
MESH Headings
- Animals
- Male
- Rats
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Aging/physiology
- Dopamine Agonists/pharmacology
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Heme Oxygenase-1/metabolism
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/metabolism
- Malondialdehyde/metabolism
- NF-kappa B/metabolism
- Oxidation-Reduction
- Phosphates/urine
- Physical Conditioning, Animal/physiology
- Protein Kinase C/metabolism
- Proteinuria/metabolism
- Rats, Inbred F344
- Receptors, Dopamine D1/physiology
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Superoxide Dismutase/metabolism
- Transcription Factors/metabolism
- NF-E2-Related Factor 2/metabolism
Collapse
Affiliation(s)
- Liza George
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|
16
|
Effects of long-term ouabain treatment on blood pressure, sodium excretion, and renal dopamine D1 receptor levels in rats. J Comp Physiol B 2009; 180:117-24. [DOI: 10.1007/s00360-009-0391-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 01/11/2023]
|
17
|
Banday AA, Lokhandwala MF. Inhibition of natriuretic factors increases blood pressure in rats. Am J Physiol Renal Physiol 2009; 297:F397-402. [PMID: 19474184 DOI: 10.1152/ajprenal.90729.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renal dopamine and nitric oxide contribute to natriuresis during high-salt intake which maintains sodium and blood pressure homeostasis. We wanted to determine whether concurrent inhibition of these natriuretic factors increases blood pressure during high-sodium intake. Male Sprague-Dawley rats were divided into the following groups: 1) vehicle (V)-tap water, 2) NaCl-1% NaCl drinking water, 3) 30 mM l-buthionine sulfoximine (BSO), an oxidant, 4) BSO plus NaCl, and 5) BSO plus NaCl with 1 mM tempol (antioxidant). Compared with V, NaCl intake for 10 days doubled sodium intake and increased urinary dopamine level but reduced urinary nitric oxide content. NaCl intake also reduced basal renal proximal tubular Na-K-ATPase activity with no effect on blood pressure. However, NaCl intake in BSO-treated rats failed to reduce basal Na-K-ATPase activity despite higher urinary dopamine levels. Also, dopamine failed to inhibit proximal tubular Na-K-ATPase activity and these rats exhibited reduced urinary nitric oxide levels and high blood pressure. Tempol supplementation in NaCl plus BSO-treated rats reduced blood pressure. BSO treatment alone did not affect the urinary nitric oxide and dopamine levels or blood pressure. However, dopamine failed to inhibit proximal tubular Na-K-ATPase activity in BSO-treated rats. BSO treatment also increased basal protein kinase C activity, D1 receptor serine phosphorylation, and oxidative markers like malondialdehyde and 8-isoprostane. We suggest that NaCl-mediated reduction in nitric oxide does not increase blood pressure due to activation of D1 receptor signaling. Conversely, oxidative stress-provoked inhibition of D1 receptor signaling fails to elevate blood pressure due to presence of normal nitric oxide. However, simultaneously decreasing nitric oxide levels with NaCl and inhibiting D1 receptor signaling with BSO elevated blood pressure.
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, Univ. of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | | |
Collapse
|
18
|
Abstract
Dopamine plays an important role in regulating renal function and blood pressure. Dopamine synthesis and dopamine receptor subtypes have been shown in the kidney. Dopamine acts via cell surface receptors coupled to G proteins; the receptors are classified via pharmacologic and molecular cloning studies into two families, D1-like and D2-like. Two D1-like receptors cloned in mammals, the D1 and D5 receptors (D1A and D1B in rodents), are linked to adenylyl cyclase stimulation. Three D2-like receptors (D2, D3, and D4) have been cloned and are linked mainly to adenylyl cyclase inhibition. Activation of D1-like receptors on the proximal tubules inhibits tubular sodium reabsorption by inhibiting Na/H-exchanger and Na/K-adenosine triphosphatase activity. Reports exist of defective renal dopamine production and/or dopamine receptor function in human primary hypertension and in genetic models of animal hypertension. In humans with essential hypertension, renal dopamine production in response to sodium loading is often impaired and may contribute to hypertension. A primary defect in D1-like receptors and an altered signaling system in proximal tubules may reduce dopamine-mediated effects on renal sodium excretion. The molecular basis for dopamine receptor dysfunction in hypertension is being investigated, and may involve an abnormal posttranslational modification of the dopamine receptor.
Collapse
Affiliation(s)
- Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | | |
Collapse
|
19
|
Asghar M, Chillar A, Lokhandwala MF. Renal proximal tubules from old Fischer 344 rats grow into epithelial cells in cultures and exhibit increased oxidative stress and reduced D1 receptor function. Am J Physiol Cell Physiol 2008; 295:C1326-31. [PMID: 18799649 DOI: 10.1152/ajpcell.00367.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Earlier we reported defects in D1 receptor function in renal proximal tubules (RPTs) of aged Fischer 344 (F344) and obese Zucker rats. However, the defects in the receptor function in RPTs of obese Zucker rats do not pass onto primary cultures of RPTs from these animals. Here, we determined whether the defects in D1 receptor function in RPTs of aged F344 rats pass onto the primary cultures. RPTs from aged (24-mo) and adult (6-mo) F344 rats were grown into primary cultures. The microscopic studies showed that cells in cultures from adult and old rats were healthy as determined by the shape and size of the cells and nuclei. D1 receptor agonist SKF-38393 produced inhibition of (86)Rb (rubidium) uptake, index of Na-K-ATPase activity, in cells from adult rats, but this was reduced in old rats. Also, SKF-38393 increased the [(35)S]GTPgammaS binding, index of receptor activation, in the membranes of cells from adult rats but to a lesser extent from old rats. Furthermore, there was a downward trend in the levels of D1 receptor numbers and in the receptor proteins in old rats. Interestingly, gp(91phox) subunit of NADPH oxidase and cellular protein carbonyl levels (oxidative stress marker) were higher in cultures from old rats. These results show that RPTs from adult and old F344 rats grow into epithelial cells in cultures. Furthermore, cells in cultures from old rats are at a higher level of oxidative stress, which may be contributing to the reduced D1 receptor function in the cells from old compared with adult rats.
Collapse
Affiliation(s)
- Mohammad Asghar
- Heart and Kidney Institute, College of Pharmacy, Univ. of Houston, Houston, TX 77204, USA.
| | | | | |
Collapse
|
20
|
Prasad P, Kumar KMP, Ammini AC, Gupta A, Gupta R, Thelma BK. Association of dopaminergic pathway gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes. BMC Genet 2008; 9:26. [PMID: 18366720 PMCID: PMC2287188 DOI: 10.1186/1471-2156-9-26] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 03/22/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic markers conferring susceptibility to diabetes specific renal disease remains to be identified for early prediction and development of effective drugs and therapies. Inconsistent results obtained from analysis of genes from classical pathways generate need for examination of unconventional genetic markers having role in regulation of renal function. Experimental and clinical evidences suggest that dopamine is an important natriuretic hormone. Therefore, various genes involved in regulation of dopamine bioavailability could play a role in diabetic chronic renal insufficiency (CRI). We investigated the contribution of 12 polymorphisms from five Dopaminergic pathway genes to CRI among type-2 diabetic Asian Indian subjects. METHODS Genetic association of 12 polymorphisms (SNPs) from five genes namely-dopamine receptor-1 (DRD1), DRD2, DRD3, DRD4, andcatechol-O-methyltransferase (COMT) with diabetic CRI was investigated using a case-control approach. Logistic regression analysis was carried out to correlate various clinical parameters with genotypes, and to study pair wise interactions between SNPs of different genes. RESULTS SNPs -141 ins/del C and G>A (1 kb upstream from exon 2) in DRD2 gene showed significant allelic and genotypic association. Allele -141 insC and genotype -141 insC/insC of -141 ins/del C polymorphism, and allele A of G>A SNP were found to be predisposing to CRI. Our result of allelic and genotypic association of -141 insC/delC SNP was also reflected in the haplotypic association. Heterozygous genotype of polymorphism 900 ins/del C in COMT gene was predisposing towards CRI. CONCLUSION Some polymorphisms in DRD2 and COMT genes are significantly associated with susceptibility to CRI in the Asian Indian population which, if confirmed would be consistent with a suggested role of dopamine metabolism in disease occurrence.
Collapse
Affiliation(s)
- Pushplata Prasad
- Department of Genetics, University of Delhi South Campus, New Delhi, India.
| | | | | | | | | | | |
Collapse
|
21
|
Banday AA, Lau YS, Lokhandwala MF. Oxidative Stress Causes Renal Dopamine D1 Receptor Dysfunction and Salt-Sensitive Hypertension in Sprague-Dawley Rats. Hypertension 2008; 51:367-75. [DOI: 10.1161/hypertensionaha.107.102111] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Renal dopamine plays an important role in maintaining sodium homeostasis and blood pressure (BP) during increased sodium intake. The present study was carried out to determine whether renal dopamine D1 receptor (D1R) dysfunction contributes to increase in salt sensitivity during oxidative stress. Male Sprague-Dawley rats, divided into various groups, received tap water (vehicle); 1% NaCl (high salt [HS]);
l
-buthionine sulfoximine (BSO), an oxidant; and HS plus BSO with or without Tempol, an antioxidant, for 12 days. Compared with vehicle, HS intake increased urinary dopamine production and decreased basal renal Na/K-ATPase activity but did not affect BP. BSO-treated rats exhibited oxidative stress and a mild increase in BP. In these rats, D1R expression and G protein coupling were reduced, and SKF38393, a D1R agonist, failed to inhibit Na/K-ATPase activity and promote sodium excretion. Concomitant administration of BSO and HS caused oxidative stress, D1R dysfunction, and a marked increase in BP. Although renal dopamine production was increased, it failed to reduce the basal Na/K-ATPase activity in these animals. Treatment of BSO plus HS rats with Tempol decreased oxidative stress and restored endogenous, as well as exogenous, D1R agonist-mediated Na/K-ATPase inhibition and normalized BP. In conclusion, during HS intake, the increased dopamine production via Na/K-ATPase inhibition prevents an increase in BP. During oxidative stress, D1R function is defective, and there is mild hypertension. However, in the presence of oxidative stress, HS intake causes marked elevation in BP, which results from a defective renal D1R function leading to the failure of dopamine to inhibit Na/K-ATPase and promote sodium excretion.
Collapse
Affiliation(s)
- Anees A. Banday
- From the Heart and Kidney Institute, College of Pharmacy, University of Houston, Tex
| | - Yuen-Sum Lau
- From the Heart and Kidney Institute, College of Pharmacy, University of Houston, Tex
| | | |
Collapse
|
22
|
Asghar M, George L, Lokhandwala MF. Exercise decreases oxidative stress and inflammation and restores renal dopamine D1 receptor function in old rats. Am J Physiol Renal Physiol 2007; 293:F914-9. [PMID: 17634393 DOI: 10.1152/ajprenal.00272.2007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recently, we reported that oxidative stress decreases D1 receptor numbers and G protein activation in renal proximal tubules (RPT), resulting in diminished natriuretic response to dopamine in old rats. We tested the hypothesis that exercise in old rats will decrease oxidative stress and restore natriuretic response to D1 receptor agonist, SKF 38393. Old (23 mo) rats were subjected to rest (sedentary) or to treadmill exercise followed by measurement of oxidative stress [malondialdehyde (MDA)], inflammation [C-reactive protein (CRP)], anti-inflammation (IL-10), antioxidant enzyme [superoxide dismutase (SOD)], and natriuretic response to SKF 38393. We found that MDA levels decreased and total SOD activity and Cu/ZnSOD protein increased in RPT of exercised rats. Exercise increased the nuclear levels of Nrf2 transcription factor (which binds to anti-oxidant response elements) in RPT. The levels of CRP decreased and IL-10 increased in RPT of exercised rats. Furthermore, exercise increased the basal bindings of [3H]SCH 23390 and [35S]GTPγS (indexes of D1 receptor number and G protein activation, respectively) together with D1 receptor and Gαq proteins in RPT membranes. Moreover, SKF 38393 increased sodium excretion in exercised rats. Also, exercise decreased the levels of proteins in the urine of old rats. These results demonstrate that exercise decreases oxidative stress, inflammation, and proteinuria and increases anti-oxidant defense and D1 receptor function in old rats. Therefore, exercise may prove beneficial in preventing age-associated increases in oxidative stress, inflammation, and preserving kidney function, in general, and renal D1 receptor responsiveness, in particular.
Collapse
Affiliation(s)
- Mohammad Asghar
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| | | | | |
Collapse
|
23
|
Han JY, Heo JS, Lee YJ, Lee JH, Taub M, Han HJ. Dopamine stimulates 45Ca2+ uptake through cAMP, PLC/PKC, and MAPKs in renal proximal tubule cells. J Cell Physiol 2007; 211:486-94. [PMID: 17167784 DOI: 10.1002/jcp.20956] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have examined the effect of dopamine on Ca(2+) uptake and its related signaling pathways in primary renal proximal tubule cells (PTCs). Dopamine increased Ca(2+) uptake in a concentration (>10(-10) M) and time- (>8 h) dependent manner. Dopamine-induced increase in Ca(2+) uptake was prevented by SCH 23390 (a DA(1) antagonist) rather than spiperone (a DA(2) antagonist). SKF 38393 (a DA(1) agonist) increased Ca(2+) uptake unlike the case with quinpirole (a DA(2) agonist). Dopamine-induced increase in Ca(2+) uptake was blocked by nifedipine and methoxyverapamil (L-type Ca(2+) channel blockers). Moreover, dopamine-induced increase in Ca(2+) uptake was blocked by pertussis toxin (a G(i) protein inhibitor), protein kinase A (PKA) inhibitor amide 14/22 (a PKA inhibitor), and SQ 22536 (an adenylate cyclase inhibitor). Subsequently, dopamine increased cAMP level. The PLC inhibitors (U 73122 and neomycin), the PKC inhibitors (staurosporine and bisindolylmaleimide I) suppressed the dopamine-induced increase of Ca(2+) uptake. SB 203580 (a p38 MAPK inhibitor) and PD 98059 (a MAPKK inhibitor) also inhibited the dopamine-induced increase of Ca(2+) uptake. Dopamine-induced p38 and p42/44 MAPK phosphorylation was blocked by SQ 22536, neomycin, and staurosporine. The stimulatory effect of dopamine on Ca(2+) uptake was significantly inhibited by the NF-kappaB inhibitors SN50, TLCK, and Bay 11-7082. In addition, dopamine significantly increased the level of NF-kappaB p65, which was prevented by either SQ 22536, neomycin, staurosporine, PD 98059, or SB 203580. Thus, dopamine stimulates Ca(2+) uptake in PTCs, initially through by G(s) coupled dopamine receptors, PLC/PKC, followed by MAPK, and ultimately by NF-kappaB activation.
Collapse
Affiliation(s)
- Ji Yeon Han
- Department of Veterinary Physiology, Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Fraga S, Luo Y, Jose P, Zandi-Nejad K, Mount DB, Soares-da-Silva P. Dopamine D1-like receptor-mediated inhibition of Cl/HCO3- exchanger activity in rat intestinal epithelial IEC-6 cells is regulated by G protein-coupled receptor kinase 6 (GRK 6). Cell Physiol Biochem 2007; 18:347-60. [PMID: 17170521 DOI: 10.1159/000097612] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2006] [Indexed: 01/11/2023] Open
Abstract
The present study investigated the effect of dopamine D1-like receptor stimulation on the Cl-/HCO3- exchange activity in rat intestinal epithelial IEC-6 cells. The Cl-/HCO3- exchange activity was found to be a chloride-dependent, DIDS-sensitive and niflumate-insensitive process. The presence of the SLC26A6 anion exchanger was detected by both RT-PCR and immunoblotting analysis in IEC-6 cells, in which three different small interfering RNAs (siRNAs) targeting SLC26A6 markedly inhibited Cl-/HCO3- exchange. Activation of dopamine D1-like receptors with SKF 38393 inhibited Cl-/HCO3- exchanger activity, this being antagonized by the D1 selective antagonist SKF 83566. However, effects of SKF 38393 were maximal at 5 min of exposure to the agonist and rapidly diminished with no effect at 15 min, suggestive of agonist-induced desensitization of D1-like receptors. Pretreatment of cells with heparin, a non-selective inhibitor of G protein-coupled receptor kinases (GRKs), prevented the observed attenuation of SKF 38393-induced inhibition of Cl-/HCO3- exchange. Overnight pretreatment with anti-GRK6A and anti-GRK6B, but not with anti-GRK4 antibodies, prevented the loss of SKF 38393-mediated effects. Both PKA and PKC signaling pathways participate in SKF 38393-mediated inhibition of Cl-/HCO3- exchange. These findings suggest that SLC26A6 is at least one of the anion exchanger's family members responsible for Cl-/HCO3- exchange in IEC-6 cells. Dopamine D1 receptors in IEC-6 rapidly desensitize to D1-like agonist stimulation and GRK 6, but not GRK 4, appear to be involved in agonist-mediated responsiveness and desensitization.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Cells, Cultured
- Chloride-Bicarbonate Antiporters/antagonists & inhibitors
- Chloride-Bicarbonate Antiporters/genetics
- Chloride-Bicarbonate Antiporters/metabolism
- Chloride-Bicarbonate Antiporters/physiology
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- G-Protein-Coupled Receptor Kinase 4
- G-Protein-Coupled Receptor Kinases
- Gene Expression
- Heparin/pharmacology
- Heparin Antagonists/pharmacology
- Immunohistochemistry
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/enzymology
- Intestinal Mucosa/metabolism
- Intestines/chemistry
- Intestines/cytology
- Protein Serine-Threonine Kinases/analysis
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/analysis
- Rats
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
Collapse
Affiliation(s)
- Sónia Fraga
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
25
|
Fernández BE, Correa AH, Choi MR. Atrial natriuretic factor stimulates renal dopamine uptake mediated by natriuretic peptide-type A receptor. REGULATORY PEPTIDES 2005; 124:137-144. [PMID: 15544851 DOI: 10.1016/j.regpep.2004.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 07/02/2004] [Indexed: 11/17/2022]
Abstract
To determine the effects of atrial natriuretic factor (ANF) on renal dopamine (DA) metabolism, 3H-DA and 3H-L-DOPA uptake by renal tubular cells was measured in experiments carried out in vitro in Sprague-Dawley rats. The receptor type involved was also analyzed. The results indicate that ANF increased at 30 min, DA uptake in a concentration-response fashion having 10 pM ANF as the threshold concentration. Conversely, the uptake of the precursor L-DOPA was not modified by the peptide. ANF effects were observed in tissues from external and juxtamedullar cortex and inner medulla. On this basis, 100 nM ANF was used to continue the studies in external cortex tissues. DA uptake was characterized as extraneuronal uptake, since 100 microM hydrocortisone blocked ANF-induced increase of DA uptake. Renal DA uptake was decreased at 0 degrees C and in sodium-free medium. The effects of ANF in these conditions were not present, confirming that renal DA uptake is mediated by temperature- and sodium-dependent transporters and that the peptide requires the presence of the ion to exhibit its actions on DA uptake. The biological natriuretic peptide type A receptor (NPR-A) mediates ANF effects, since 100 nM anantin, a specific blocker, reversed ANF-dependent increase of DA uptake. The natriuretic peptide type C receptor (NPR-C) is not involved, since the specific analogous 100 nM 4-23 ANF amide has no effect on renal DA uptake and does not alter the effects of 100 nM ANF. In conclusion, ANF stimulates DA uptake by kidney tubular cells. ANF effects are mediated by NPR-A receptors coupled to guanylate cyclase and cGMP as second messenger. The process involved was characterized as a typical extraneuronal uptake, and characterized as temperature- and sodium-dependent. This mechanism could be related to DA effects on sodium reabsorption and linked to ANF enhanced natriuresis in the kidney. The increment of endogenous DA into tubular cells, as a consequence of increased DA uptake, would permit D1 receptor recruitment and Na+,K+-ATPase activity inhibition, which results in decreased sodium reabsorption and increased natriuresis.
Collapse
Affiliation(s)
- Belisario E Fernández
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Junín 956 piso 5, 1113 Buenos Aires, Argentina.
| | | | | |
Collapse
|
26
|
Nürnberger A, Räbiger M, Mack A, Diaz J, Sokoloff P, Mühlbauer B, Luippold G. Subapical localization of the dopamine D3 receptor in proximal tubules of the rat kidney. J Histochem Cytochem 2004; 52:1647-55. [PMID: 15557219 DOI: 10.1369/jhc.4a6359.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dopamine D3 receptor (D3R), intensively studied in neuroscience, also plays an important role in the regulation of renal and cardiovascular function. In contrast to functional findings, less information is available on its localization in the kidney. Neither RT-PCR studies nor radioligand binding assays are suitable to selectively determine the distribution of renal D3R at the level of cellular or even subcellular structures. We studied the renal D3R distribution in Sprague-Dawley rats by a polyclonal antiserum directed against an epitope in the third intracytoplasmic loop. D3R immunoreactivity was detected by indirect immunofluorescence and confocal laser scanning microscopy. D3R staining was confined to the renal cortex and occurred in proximal convoluted tubules near or in direct connection with the urinary pole of the glomeruli. The fluorescent spots were restricted to the subapical portion of the proximal tubular cells. Double staining with the F-actin marker phalloidin revealed a localization of the D3R below the brush border region. However, staining by anti-beta1/beta2-adaptins, recognizing clathrin-coated compartments, did not correspond to the distribution of the D3R signal. This is the first description of a D3R accumulation in a cytoplasmic pool in the kidney, probably corresponding to a recycling mechanism or storage compartment.
Collapse
Affiliation(s)
- Asja Nürnberger
- Dept. of Pharmacology and Toxicology, Faculty of Medicine, University of Tübingen, Wilhelmstr. 56, D-72074 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Iodinated contrast media are a frequent cause of acute renal failure, especially in patients whose renal function is already impaired. In addition to hydration, which remains the most commonly acknowledged means of protection, numerous pharmacological approaches for the prophylaxis of contrast nephropathy have been tested so far. They include diuretics, calcium channel blockers, adenosine receptor antagonists, N-acetylcysteine, low-dose dopamine and the dopamine D1 receptor agonist fenoldopam, endothelin receptor antagonists, and even captopril. The present review of the literature critically discusses the drugs used to prevent contrast nephropathy from a pharmacological point of view.
Collapse
Affiliation(s)
- Jean-Marc Idé
- Research Division, Guerbet, Aulnay-sous-Bois, France.
| | | | | | | |
Collapse
|
28
|
Marwaha A, Banday AA, Lokhandwala MF. Reduced renal dopamine D1 receptor function in streptozotocin-induced diabetic rats. Am J Physiol Renal Physiol 2003; 286:F451-7. [PMID: 14612382 DOI: 10.1152/ajprenal.00227.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dopamine, via activation of renal D(1) receptors, inhibits the activities of Na-K-ATPase and Na/H exchanger and subsequently increases sodium excretion. Decreased renal dopamine production and sodium excretion are associated with type I diabetes. However, it is not known whether the response to D(1) receptor activation is altered in type I diabetes. The present study was designed to examine the effect of streptozotocin-induced type I diabetes on renal D(1) receptor expression and function. Streptozotocin treatment of Sprague-Dawley rats caused a fourfold increase in plasma levels of glucose along with a significant decrease in insulin levels compared with control rats. Intravenous administration of SKF-38393, a D(1) receptor agonist, caused a threefold increase in sodium excretion in control rats. However, SKF-38393 failed to produce natriuresis in diabetic rats. SKF-38393 caused a concentration-dependent inhibition of Na-K-ATPase activity in renal proximal tubules of control rats. However, the ability of SKF-38393 to inhibit Na-K-ATPase activity was markedly diminished in diabetic rats. D(1) receptor numbers and protein abundance as determined by [(3)H]SCH-23390 ligand binding and Western blot analysis were markedly reduced in diabetic rats compared with control rats. Moreover, SKF-38393 failed to stimulate GTP gamma S binding in proximal tubular membranes from diabetic rats compared with control rats. We conclude that the natriuretic response to D(1) receptor activation is reduced in type I diabetes as a result of a decrease in D(1) receptor expression and defective receptor G protein coupling. These abnormalities may contribute to the sodium retention associated with type I diabetes.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Diabetes Mellitus, Experimental/diagnosis
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Dopamine Agonists/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Kidney Tubules, Proximal/chemistry
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Male
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/analysis
- Receptors, Dopamine D1/metabolism
- Sodium-Potassium-Exchanging ATPase/metabolism
Collapse
Affiliation(s)
- Aditi Marwaha
- Heart and Kidney Institute, College of Pharmacy, University of Houston, Houston, TX 77204-5041, USA
| | | | | |
Collapse
|
29
|
Pinho MJ, Gomes P, Serrão MP, Bonifácio MJ, Soares-da-Silva P. Organ-specific overexpression of renal LAT2 and enhanced tubular L-DOPA uptake precede the onset of hypertension. Hypertension 2003; 42:613-8. [PMID: 12975385 DOI: 10.1161/01.hyp.0000091822.00166.b1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spontaneously hypertensive rats (SHR) might have increased renal production of dopamine. L-3,4-Dihydroxyphenylalanine (L-DOPA) uptake in renal epithelial cells is promoted through the type 2 L-type amino acid transporter (LAT2), and this might rate-limit the synthesis of renal dopamine. The present study evaluated L-DOPA uptake in isolated renal proximal tubules of SHR and normotensive controls (Wistar-Kyoto rats [WKY]). Expression of LAT1 and LAT2 in the renal cortex and intestinal mucosa was also evaluated. Tubular uptake of L-DOPA in WKY and SHR was a saturable process, being greater in the latter than the former at both 4 and 12 weeks of age. cDNA fragments (LAT1, 688 bp; LAT2, 729 bp) labeled with 32P were used as probes for Northern blot analysis. Expression of LAT2 in SHR kidneys was higher than in WKY kidneys. This increase was more marked at 4 than at 12 weeks of age. Intestinal LAT2 expression, however, was identical in SHR and WKY at both 4 and 12 week of age. By Northern blot analysis, the LAT1 transcript was not identified in either the kidney or intestine. Kidney total RNA was then reverse-transcribed and amplified by polymerase chain reaction with specific primers for LAT1. The presence of a fragment of the expected size for LAT1 led to the conclusion that LAT1 mRNA is a rare message in kidney. We conclude that overexpression of LAT2 in the SHR kidney might contribute to the enhanced L-DOPA uptake, which is organ specific and precedes the onset of hypertension.
Collapse
Affiliation(s)
- Maria João Pinho
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, Porto, Portugal
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- John D Baxter
- The Diabetes Center, University of California, San Francisco, California 94122, USA.
| | | | | |
Collapse
|
31
|
Gomes P, Soares-da-Silva P. Dopamine D2-like receptor-mediated opening of K+ channels in opossum kidney cells. Br J Pharmacol 2003; 138:968-76. [PMID: 12642399 PMCID: PMC1573736 DOI: 10.1038/sj.bjp.0705125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
(1) This study examined the effects of dopamine D(1)- and D(2)-like receptor activation upon basolateral K(+) (I(K)) currents and changes in membrane potential in opossum kidney (OK) cells. (2) The addition of amphotericin B (3 micro g ml(-1)) to the apical side resulted in a rapid increase in I(K), this effect being markedly inhibited by the addition of the K(+) channel blockers barium chloride (1 mM) or glibenclamide (10 micro M), but not apamin (1 micro M). The K(+) channel opener pinacidil increased the amphotericin B-induced I(K). The selective D(2)-like receptor agonist quinerolane increased, in a concentration dependent manner (EC(50)=136 nM), I(K) across the basolateral membrane, this effect being abolished by pre-treatment with pertussis toxin (PTX), S-sulpiride (selective D(2)-like receptor antagonist) and glibenclamide. The selective D(1)-like receptor agonist SKF 38393 did not change I(K). Both H-89 (PKA inhibitor) and chelerythrine (PKC inhibitor) failed to prevent the stimulatory effect of quinerolane upon I(K). (3) Quinerolane did not change basal levels of cyclic AMP and also failed to affect the forskolin-induced increase in cyclic AMP levels. (4) The stimulation of D(2)-like receptor was associated with a rapid hyperpolarizing effect, whereas D(1)-like receptor activation was accompanied by increases in cell membrane potential. The hyperpolarizing effect of quinerolane (EC(50)=129 nM) was prevented by pre-treatment with PTX, S-sulpiride and glibenclamide. (5) It is concluded that stimulation of dopamine D(2)-like, but not D(1)-like, receptors coupled to PTX-sensitive G proteins of the G(i/o) class produce membrane hyperpolarization through opening of K(ATP) channels.
Collapse
Affiliation(s)
- Pedro Gomes
- Institute of Pharmacology & Therapeutics, Faculty of Medicine, 4200 Porto, Portugal
| | - Patrício Soares-da-Silva
- Institute of Pharmacology & Therapeutics, Faculty of Medicine, 4200 Porto, Portugal
- Author for correspondence:
| |
Collapse
|
32
|
Pizzinat N, Marchal-Victorion S, Maurel A, Ordener C, Bompart G, Parini A. Substrate-dependent regulation of MAO-A in rat mesangial cells: involvement of dopamine D2-like receptors. Am J Physiol Renal Physiol 2003; 284:F167-74. [PMID: 12388421 DOI: 10.1152/ajprenal.00113.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we investigated the existence of a back-regulation of the catecholamine-degrading enzyme monoamine oxidase (MAO)-A by dopamine in rat renal cells. In proximal tubule cells, MAO-A expression was not modified after dopamine receptor stimulation. In contrast, in mesangial cells, enzyme assay and Western blots showed that MAO activity and protein increased by approximately 80% after 48-h incubation with the D(2)-like receptor agonist bromocriptine and quinpirole but not with the D(1)-like receptor agonist SKF-38393. This effect was prevented by the D(2)-receptor antagonist sulpiride and domperidone. The increase in MAO-A protein was preceded by an augmentation of MAO-A mRNA that was prevented by the transcriptional inhibitor actinomycin D. Bromocriptine effect was mimicked by the PKA inhibitor H89 and inhibited by the PKA activator 8-bromo-cAMP. These results show for the first time the existence of a dopamine-dependent MAO-A regulation involving D(2)-like receptors, inhibition of the cAMP-PKA pathway, and an ex novo enzyme synthesis.
Collapse
Affiliation(s)
- Nathalie Pizzinat
- Institut National de la Santé et de la Recherche Médicale U388, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, 31403 Toulouse Cedex 04, France
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Dopamine synthesized in non-neural tissues, eg, renal proximal tubule, functions in an autocrine or paracrine manner. The effects of dopamine are transduced by two classes of receptors (D1- and D2-like) that belong to the superfamily of G protein-coupled receptors. In genetic hypertension, the D1 receptor, a member of the D1-like receptor family, is uncoupled from its G protein complex, resulting in a decreased ability to regulate renal sodium transport. The impaired D1 receptor/G protein coupling in renal proximal tubules in genetic hypertension is secondary to abnormal phosphorylation and desensitization of the D1 receptor caused by activating single nucleotide polymorphisms of a G protein-coupled receptor kinase, GRK type 4.
Collapse
Affiliation(s)
- Pedro A Jose
- Georgetown University Medical Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA.
| | | | | |
Collapse
|
34
|
Ladines CA, Zeng C, Asico LD, Sun X, Pocchiari F, Semeraro C, Pisegna J, Wank S, Yamaguchi I, Eisner GM, Jose PA. Impaired renal D(1)-like and D(2)-like dopamine receptor interaction in the spontaneously hypertensive rat. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1071-R1078. [PMID: 11557612 DOI: 10.1152/ajpregu.2001.281.4.r1071] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
D(1)-like (D(1), D(5)) and D(2)-like (D(2), D(3), D(4)) dopamine receptors interact in the kidney to produce a natriuresis and a diuresis. Disruption of D(1) or D(3) receptors in mice results in hypertension that is caused, in part, by a decreased ability to excrete an acute saline load. We studied D(1)-like and D(2)-like receptor interaction in anesthetized spontaneously hypertensive rats (SHR) by the intrarenal infusion of Z-1046 (a novel dopamine receptor agonist with rank order potency of D(3)> or =D(4)>D(2)>D(5)>D(1)). Z-1046 increased glomerular filtration rate (GFR), urine flow, and sodium excretion in normotensive Wistar-Kyoto rats but not in SHRs. The lack of responsiveness to Z-1046 in SHRs was not an epiphenomenon, because intrarenal cholecystokinin infusion increased GFR, urine flow, and sodium excretion to a similar extent in the two rat strains. We conclude that renal D(1)-like and D(2)-like receptor interaction is impaired in SHRs. The impaired D(1)-like and D(2)-like receptor interaction in SHRs is not caused by alterations in the coding sequence of the D(3) receptor, the D(2)-like receptor expressed in rat renal tubules that has been shown to be involved in sodium transport. Because the diuretic and natriuretic effects of D(1)-like receptors are, in part, caused by an interaction with D(2)-like receptors, it is possible that the decreased Z-1046 action in SHRs is secondary to the renal D(1)-like receptor dysfunction in this rat strain.
Collapse
MESH Headings
- Animals
- Biological Transport/physiology
- Cholecystokinin/administration & dosage
- Disease Models, Animal
- Diuresis/drug effects
- Dopamine Agonists/administration & dosage
- Glomerular Filtration Rate/drug effects
- Glomerular Filtration Rate/physiology
- Hypertension/metabolism
- Infusions, Intra-Arterial
- Kidney/drug effects
- Kidney/metabolism
- Kidney Function Tests
- Male
- Naphthols/administration & dosage
- Natriuresis/drug effects
- Natriuresis/physiology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/biosynthesis
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
- Sequence Analysis, DNA
- Sodium/metabolism
Collapse
Affiliation(s)
- C A Ladines
- Department of Pediatrics, Georgetown University Medical Center, Washington, District of Columbia 20007, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|