1
|
Du W, Xu K, Wang S, Gao X, Jiang M, Lv X, Zhou Q, Ma P, Yang X, Wang S, Chen M. Exposure to polystyrene microplastics with different functional groups: Implications for blood pressure and heart. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126009. [PMID: 40057161 DOI: 10.1016/j.envpol.2025.126009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
The association between microplastics (MPs) exposure and cardiovascular disease is largely unknown. It is still unclear what effects MPs exposure have on blood pressure and how it affects the heart. As MPs age, their surfaces undergo modifications that may alter how the MPs interact with cells, which may affect the extent of their toxic effects. Here, we used three different surface functional-group polystyrene microplastics (PS-MPs), and exposed 5-week-old SD rats to them over 42 days. Compared with the control group, the mean blood pressure of the MPs exposed rats increased by 22-40%. Exposure to PS-MPs caused oxidative damage to the heart, and induced cardiomyocyte hypertrophy. More interestingly, MPs modified by functional groups induced enhanced adverse effects than unmodified PS-MPs, with amino-modified PS-MPs exhibiting more significant blood pressure elevation and myocardial hypertrophy. Proteomic analysis of cardiac differential proteins focused on factor XII activation, negative regulation of proteolysis, collectively pointed to the downregulation of kininogen. We demonstrated that MPs exposure induced ERK activation, the down-regulation of bradykinin, and inhibition of the downstream nitric oxide signaling pathway. This study demonstrates the different effects of MPs with different functional groups on blood pressure elevation and myocardial hypertrophy, and sheds light on the mechanisms responsible for microplastic-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Wanting Du
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Ke Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Shuxin Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xiao Gao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mengling Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Xiaojing Lv
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Qi Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China; Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shaohui Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Mingqing Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China.
| |
Collapse
|
2
|
Silva GDC, Ferreira MJ, Araujo AA, Nascimento Filho AVD, Bernardes N, do Amaral JB, Irigoyen MC, De Angelis K. Cardiovascular and neuroimmune adaptations to enalapril and exercise training: A comparative study in male and ovariectomized female spontaneously hypertensive rats. Auton Neurosci 2025; 260:103280. [PMID: 40253895 DOI: 10.1016/j.autneu.2025.103280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
Antihypertensive drug and exercise training are commonly prescribed to treat arterial hypertension. However, there is a considerable gap in understanding how physiological mechanisms of male and female adapt to the combination of these approaches. Therefore, we focused to investigate sexual differences in cardiovascular, autonomic, inflammation and systemic oxidative stress adaptations in male and OVX female ovariectomized spontaneously hypertensive rats (SHR) treated with enalapril associated with moderate-intensity concurrent exercise training. Enalapril (3 mg/kg, diluted in drinking water) and exercise training (3 days/week, moderate intensity) was carried out for 8 weeks. Blood pressure (BP), heart rate (HR) and its variabilities were assessed. Serum and plasma were used for inflammatory and oxidative stress analyses. Enalapril, associated or not with exercise training, induced a reduction in diastolic and mean BP in both sexes; however, only the OVX female groups showed a reduction in systolic BP, as well as resting bradycardia. Both sexes showed improvements in BP and HR variability following the treatments; however, improvement in SD2/SD1 ratio, which indicates how much the heartbeats occur at irregular intervals, and in variance of systolic BP were observed only in trained groups. A higher spontaneous baroreflex sensitivity, as well as reduced IL-6/IL-10 were found only in the trained groups. Increased IL-10 was observed in male trained group (vs. other groups). Finally, combination enalapril and exercise training reduced systemic pro-oxidants such as NADPH oxidase and hydrogen peroxide. The findings of our study showed that OVX female SHR, after ovarian hormone deprivation, presented more pronounced effects on hemodynamics, BP variability, and anti-inflammatory profile than hypertensive males with the combination of treatments. BACKGROUND Researchers are investigating how the body responds differently in males and females. These differences are also evident when examining how pharmacological and non-pharmacological approaches help the body control arterial hypertension. This study aimed to investigate how drug medication combined with exercise affects the heart's ability to self-regulate and how it relates to immune and oxidant defense, with a focus on differences in male and ovariectomized (OVX) female adaptations. METHODS The study was conducted using hypertensive male and OVX female rats, allocated into: a) sedentary, b) enalapril, or c) enalapril plus exercise groups, totaling six groups (3 males and 3 OVX females, respectively). Enalapril (3 mg/kg/day) and exercise (aerobic and resistance exercises) were prescribed for eight weeks. The effects on blood pressure control, serum, and plasma were assessed. RESULTS Although both males and OVX females showed improvements in blood pressure after medication, combined or not with exercise, OVX females had better control of blood pressure and heart rhythm regulation. Furthermore, including an exercise program during medication treatment improved immune defense in OVX females only, as well as the levels of key enzymes involved in the process of organ damage development in both sexes. CONCLUSION OVX female rats benefited more from the combination of medication and exercise compared to male rats. This suggests that OVX females may experience additional health benefits from the combination of antihypertensive approaches, highlighting the importance of understanding how exercise impacts the body differently in males and OVX females, which could contribute to better long-term disease management.
Collapse
Affiliation(s)
- Gabriel do Carmo Silva
- Exercise Physiology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Maycon Junior Ferreira
- Exercise Physiology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Amanda Aparecida Araujo
- Exercise Physiology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Nathalia Bernardes
- Human Movement Laboratory, São Judas Tadeu University (USJT), São Paulo, SP, Brazil
| | - Jônatas Bussador do Amaral
- Otorhinolaryngology Research Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Kátia De Angelis
- Exercise Physiology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Santos DCD, Alves FHF, Veríssimo LF, Raquel HA, Volpini VL, Marques LADC, Martins-Pinge MC, Fernandes KBP, Andrade KC, Michelini LC, Pelosi GG. Enalapril induces muscle epigenetic changes and contributes to prevent a decline in running capacity in spontaneously hypertensive rats. Arch Gerontol Geriatr 2024; 129:105699. [PMID: 39581157 DOI: 10.1016/j.archger.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Drugs such as angiotensin-converting enzyme inhibitors and angiotensin receptor blockers can improve muscle function and exercise capacity, as well as preventing, attenuating or reversing age-related losses in muscle mass, however, the exact mechanisms by which these drugs affect muscle cells, are not yet fully elucidated. Moreover, the potential epigenetic alterations induced in skeletal muscle tissue are also largely unexplored. The aim of this study was to evaluate if enalapril or losartan can change the physical performance and epigenetic profile of skeletal muscle in spontaneously hypertensive rats (SHRs). Male SHRs were treated with water, enalapril (10/mg/kg/day) or losartan (10/mg/kg/day) for 28 consecutive days and submitted to progressive testing on a treadmill. Body weight, perigonadal and retroperitoneal fat, mean arterial pressure, heart rate, running distance and global DNA methylation in the gastrocnemius and soleus muscles were evaluated. Enalapril reduced the rate of weight gain, as well as reducing retroperitoneal fat (p < 0.05) and MAP (p < 0.05) and avoiding the decline in running distance when compared to the other groups (p > 0.05), even 7 days after the end of treatment (p > 0.05). Moreover, enalapril increased global DNA methylation in gastrocnemius muscle cells (p < 0.01). No effects were observed in the losartan-treated group. Our data showed that enalapril prevented the decline in physical function in SHR, as well as reduced the rate of weight gain of the animals. In addition, the results showed, alterations in the global DNA methylation of skeletal muscle cells skeletal structures of the gastrocnemius muscle.
Collapse
Affiliation(s)
- Denis Carlos Dos Santos
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Fernando Henrique Ferrari Alves
- Department of Health Sciences Faculty of Medicine Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil; Institute of Science, Technology and Innovation - Federal University of Lavras, São Sebastião do Paraíso, MG, Brazil.
| | - Luiz Fernando Veríssimo
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Hiviny Ataides Raquel
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Vinicius Lucca Volpini
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Leonardo André da Costa Marques
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Marli Cardoso Martins-Pinge
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Karen Barros Parron Fernandes
- School of Medicine, Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Londrina, Paraná, Brazil
| | - Karoliny Coelho Andrade
- Department of Health Sciences Faculty of Medicine Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Lisete Compagno Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Gislaine Garcia Pelosi
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina (UEL), Londrina, Paraná, Brazil
| |
Collapse
|
4
|
Abiola J, Berg AM, Aiyelaagbe O, Adeyi A, König S. Dabsylated Bradykinin Is Cleaved by Snake Venom Proteases from Echis ocellatus. Biomedicines 2024; 12:1027. [PMID: 38790989 PMCID: PMC11118064 DOI: 10.3390/biomedicines12051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The vasoactive peptide bradykinin (BK) is an important member of the renin-angiotensin system. Its discovery is tightly interwoven with snake venom research, because it was first detected in plasma following the addition of viper venom. While the fact that venoms liberate BK from a serum globulin fraction is well described, its destruction by the venom has largely gone unnoticed. Here, BK was found to be cleaved by snake venom metalloproteinases in the venom of Echis ocellatus, one of the deadliest snakes, which degraded its dabsylated form (DBK) in a few minutes after Pro7 (RPPGFSP↓FR). This is a common cleavage site for several mammalian proteases such as ACE, but is not typical for matrix metalloproteinases. Residual protease activity < 5% after addition of EDTA indicated that DBK is also cleaved by serine proteases to a minor extent. Mass spectrometry-based protein analysis provided spectral proof for several peptides of zinc metalloproteinase-disintegrin-like Eoc1, disintegrin EO4A, and three serine proteases in the venom.
Collapse
Affiliation(s)
- Julius Abiola
- IZKF Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Röntgenstr. 21, 48149 Münster, Germany; (J.A.)
- Organic Unit, Department of Chemistry, University of Ibadan, Ibadan 200005, Nigeria
| | - Anna Maria Berg
- IZKF Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Röntgenstr. 21, 48149 Münster, Germany; (J.A.)
| | - Olapeju Aiyelaagbe
- Organic Unit, Department of Chemistry, University of Ibadan, Ibadan 200005, Nigeria
| | - Akindele Adeyi
- Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan 200005, Nigeria
| | - Simone König
- IZKF Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Röntgenstr. 21, 48149 Münster, Germany; (J.A.)
| |
Collapse
|
5
|
Ohnaka Y, Tsukamoto S, Iwai Y, Hamada-Kanazawa M, Kariya R, Takano M. Bradykinin deficiency causes high blood pressure in mice. Biochem Biophys Res Commun 2023; 681:73-79. [PMID: 37757669 DOI: 10.1016/j.bbrc.2023.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Bradykinin has a wide variety of physiological functions, including vasodilation and blood pressure reduction. However, the physiological roles of bradykinin are not fully understood. We used the CRISPR/Cas9 method to generate BKdelK1 and BKdelK2 mutant mice, targeting the BK portion of mouse kininogen1 and kininogen2 genes, respectively. The BKdelK1 and BKdelK2 mutant mice had about 50% reductions in plasma low molecular weight kininogen and trypsin-released BK, compared to wild mice. Both BKdelK1 and BKdelK2 mice had significantly elevated systolic blood pressure compared to WT mice. These results suggest that plasma LKNG is a source of KNG in the vascular kallikrein-kinin system and contributes to maintaining lower systolic blood pressure.
Collapse
Affiliation(s)
- Yusuke Ohnaka
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yuna Iwai
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Michiko Hamada-Kanazawa
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Ryusho Kariya
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Masaoki Takano
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
6
|
Cai X, Xue Z, Zeng FF, Tang J, Yue L, Wang B, Ge W, Xie Y, Miao Z, Gou W, Fu Y, Li S, Gao J, Shuai M, Zhang K, Xu F, Tian Y, Xiang N, Zhou Y, Shan PF, Zhu Y, Chen YM, Zheng JS, Guo T. Population serum proteomics uncovers a prognostic protein classifier for metabolic syndrome. Cell Rep Med 2023; 4:101172. [PMID: 37652016 PMCID: PMC10518601 DOI: 10.1016/j.xcrm.2023.101172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Metabolic syndrome (MetS) is a complex metabolic disorder with a global prevalence of 20%-25%. Early identification and intervention would help minimize the global burden on healthcare systems. Here, we measured over 400 proteins from ∼20,000 proteomes using data-independent acquisition mass spectrometry for 7,890 serum samples from a longitudinal cohort of 3,840 participants with two follow-up time points over 10 years. We then built a machine-learning model for predicting the risk of developing MetS within 10 years. Our model, composed of 11 proteins and the age of the individuals, achieved an area under the curve of 0.774 in the validation cohort (n = 242). Using linear mixed models, we found that apolipoproteins, immune-related proteins, and coagulation-related proteins best correlated with MetS development. This population-scale proteomics study broadens our understanding of MetS and may guide the development of prevention and targeted therapies for MetS.
Collapse
Affiliation(s)
- Xue Cai
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Zhangzhi Xue
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Fang-Fang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China
| | - Jun Tang
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Liang Yue
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Bo Wang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., No. 1 Yunmeng Road, Cloud Town, Xihu District, Hangzhou, Zhejiang 310024, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., No. 1 Yunmeng Road, Cloud Town, Xihu District, Hangzhou, Zhejiang 310024, China
| | - Yuting Xie
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Zelei Miao
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Wanglong Gou
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuanqing Fu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Sainan Li
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jinlong Gao
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Menglei Shuai
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Ke Zhang
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Fengzhe Xu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yunyi Tian
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Nan Xiang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., No. 1 Yunmeng Road, Cloud Town, Xihu District, Hangzhou, Zhejiang 310024, China
| | - Yan Zhou
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Peng-Fei Shan
- Department of Endocrinology, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Yi Zhu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ju-Sheng Zheng
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Tiannan Guo
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
7
|
Yu Y, Wu XQ, Su FF, Yue CF, Zhou XM, Xu C. Maximakinin reduced intracellular Ca 2+ level in vascular smooth muscle cells through AMPK/ERK1/2 signaling pathways. Hypertens Res 2023; 46:1949-1960. [PMID: 37258626 DOI: 10.1038/s41440-023-01330-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023]
Abstract
We detect the antihypertensive effects of maximakinin (MK) on renal hypertensive rats (RHRs) and further research the influence of MK on vascular smooth muscle cells (VSMCs) to explore its hypotensive mechanism. The effects of MK on arterial blood pressure were observed in RHRs. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to detect the effect of MK on VSMC viability. Western blot and flow cytometry were used to investigate the influence of MK on intracellular Ca2+ levels and protein expression changes in VSMCs. In addition, specific protein inhibitors were applied to confirm the involvement of Ca2+-related signaling pathways induced by MK in VSMCs. MK showed a more significant antihypertensive effect than bradykinin in RHRs. MK significantly decreased intracellular Ca2+ concentrations. Furthermore, MK significantly induced the phosphorylation of signaling molecules, including extracellular signal-regulated kinase 1/2 (ERK1/2), P38, AMP-activated protein kinase (AMPK) and Akt in VSMCs. Moreover, only ERK1/2 inhibitor U0126 and AMPK inhibitor Compound C completely restored the decreased intracellular Ca2+ level induced by MK, and further research demonstrated that AMPK functioned upstream of ERK1/2 following exposure to MK. Finally, HOE-140, an inhibitor of the bradykinin B2 receptors (B2Rs), was applied to investigate the potential targets of MK in VSMCs. HOE-140 significantly blocked the AMPK/ERK1/2 pathway induced by MK, suggesting that the B2Rs might play an important role in MK-induced AMPK and ERK1/2 activation. MK significantly reduces blood pressure in RHRs. MK exerts its antihypertensive effect by activating the B2Rs and downstream AMPK/ERK1/2 pathways, leading to significantly reduced Ca2+ levels in VSMCs.
Collapse
Affiliation(s)
- Yang Yu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, Liaoning, 110016, China
| | - Xue-Qian Wu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, Liaoning, 110016, China
| | - Fan-Fan Su
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, Liaoning, 110016, China
| | - Cai-Feng Yue
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, Liaoning, 110016, China
| | - Xiao-Mian Zhou
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, Liaoning, 110016, China
| | - Cheng Xu
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
8
|
Spahic JM, Mattisson IY, Hamrefors V, Johansson M, Ricci F, Nilsson J, Melander O, Sutton R, Fedorowski A. Evidence for Impaired Renin Activity in Postural Orthostatic Tachycardia Syndrome. J Clin Med 2023; 12:4660. [PMID: 37510775 PMCID: PMC10380257 DOI: 10.3390/jcm12144660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Postural orthostatic tachycardia syndrome (POTS) is a heterogeneous condition predominantly affecting autonomic control of the cardiovascular system. Its extensive symptom diversity implies multi-organ involvement that interacts in ways still requiring full exploration. Current understanding of POTS pathophysiology suggests alterations in the renin-angiotensin-aldosterone system as a possible contributing factor. Therefore, we investigated the relationship between the activity of the renin-angiotensin-aldosterone system and hemodynamic parameters in a cohort of POTS patients and controls recruited at a tertiary referral center. METHODS The case-control study included 46 patients with POTS (27 ± 9 years), and 48 healthy controls (30 ± 9 years) without orthostatic intolerance. Plasma renin activity, expressed as angiotensin I generation, and plasma aldosterone were measured by enzyme-linked immunosorbent assay and were correlated with hemodynamic parameters obtained during active standing tests. RESULTS Renin activity was significantly downregulated in POTS patients compared to healthy individuals (median, 3406 ng/mL vs. 9949 ng/mL, p < 0.001), whereas aldosterone concentration did not differ between POTS and healthy controls (median, 218 pmol/L vs. 218 pmol/L, p = 0.26). A significant inverse correlation between renin activity and supine and orthostatic blood pressure levels was observed in healthy individuals (p < 0.05 for all), but not in POTS patients. CONCLUSIONS Renin activity, but not aldosterone concentration, is downregulated in patients with POTS. Moreover, renin activity in POTS is dissociated from supine and standing blood pressure levels in contrast to healthy individuals. These findings suggest impaired renin function in POTS, which may direct future therapeutic approaches.
Collapse
Affiliation(s)
| | - Ingrid Yao Mattisson
- Department of Internal Medicine, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Viktor Hamrefors
- Department of Cardiology, Skåne University Hospital, 214 28 Malmö, Sweden
| | | | - Fabrizio Ricci
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
- Department of Neuroscience, Imaging and Clinical Sciences, "G.d'Annunzio" University of Chieti-Pescara, Via dei Vestini 33, 66100 Chieti, Italy
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant'Angelo, Italy
| | - Jan Nilsson
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
| | - Richard Sutton
- National Heart and Lung Institute, Imperial College, Hammersmith Hospital Campus Du Cane Road, London W12 0HS, UK
| | - Artur Fedorowski
- Department of Clinical Sciences, Lund University, 214 28 Malmö, Sweden
- Department of Cardiology, Karolinska University Hospital, Department of Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
9
|
Ballonová L, Souček P, Slanina P, Réblová K, Zapletal O, Vlková M, Hakl R, Bíly V, Grombiříková H, Svobodová E, Kulíšková P, Štíchová J, Sobotková M, Zachová R, Hanzlíková J, Vachová M, Králíčková P, Krčmová I, Jeseňák M, Freiberger T. Myeloid lineage cells evince distinct steady-state level of certain gene groups in dependence on hereditary angioedema severity. Front Genet 2023; 14:1123914. [PMID: 37470035 PMCID: PMC10352584 DOI: 10.3389/fgene.2023.1123914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/23/2023] [Indexed: 07/21/2023] Open
Abstract
Hereditary angioedema (HAE) is a rare genetic disorder with variable expressivity even in carriers of the same underlying genetic defect, suggesting other genetic and epigenetic factors participate in modifying HAE severity. Recent knowledge indicates the role of immune cells in several aspects of HAE pathogenesis, which makes monocytes and macrophages candidates to mediate these effects. Here we combined a search for HAE phenotype modifying gene variants with the characterization of selected genes' mRNA levels in monocyte and macrophages in a symptom-free period. While no such gene variant was found to be associated with a more severe or milder disease, patients revealed a higher number of dysregulated genes and their expression profile was significantly altered, which was typically manifested by changes in individual gene expression or by strengthened or weakened relations in mutually co-expressed gene groups, depending on HAE severity. SERPING1 showed decreased expression in HAE-C1INH patients, but this effect was significant only in patients carrying mutations supposedly activating nonsense-mediated decay. Pro-inflammatory CXC chemokine superfamily members CXCL8, 10 and 11 were downregulated, while other genes such as FCGR1A, or long non-coding RNA NEAT1 were upregulated in patients. Co-expression within some gene groups (such as an NF-kappaB function related group) was strengthened in patients with a severe and/or mild course compared to controls. All these findings show that transcript levels in myeloid cells achieve different activation or depression levels in HAE-C1INH patients than in healthy controls and/or based on disease severity and could participate in determining the HAE phenotype.
Collapse
Affiliation(s)
- Lucie Ballonová
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Přemysl Souček
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Peter Slanina
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Kamila Réblová
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Ondřej Zapletal
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Roman Hakl
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Allergology and Clinical Immunology, St. Anne’s University Hospital in Brno, Brno, Czechia
| | - Viktor Bíly
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
| | - Hana Grombiříková
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
| | - Eliška Svobodová
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kulíšková
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Julie Štíchová
- Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Allergology and Clinical Immunology, St. Anne’s University Hospital in Brno, Brno, Czechia
| | - Marta Sobotková
- Department of Immunology, Second Medical School Charles University and University Hospital Motol, Brno, Czechia
| | - Radana Zachová
- Department of Immunology, Second Medical School Charles University and University Hospital Motol, Brno, Czechia
| | - Jana Hanzlíková
- Department of Immunology and Allergology, University Hospital Pilsen, Pilsen, Czechia
| | - Martina Vachová
- Department of Immunology and Allergology, University Hospital Pilsen, Pilsen, Czechia
- Department of Immunology and Allergology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Pavlína Králíčková
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czechia
| | - Irena Krčmová
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czechia
| | - Miloš Jeseňák
- National Centre for Hereditary Angioedema, Department of Pediatrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
- Depatment of Clinical Immunology and Allergology, Comenius University in Bratislava, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovakia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
10
|
Angeli F, Zappa M, Reboldi G, Gentile G, Trapasso M, Spanevello A, Verdecchia P. The spike effect of acute respiratory syndrome coronavirus 2 and coronavirus disease 2019 vaccines on blood pressure. Eur J Intern Med 2023; 109:12-21. [PMID: 36528504 PMCID: PMC9744686 DOI: 10.1016/j.ejim.2022.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Among the various comorbidities potentially worsening the clinical outcome in patients hospitalized for the acute respiratory syndrome coronavirus-2 (SARS-CoV-2), hypertension is one of the most prevalent. However, the basic mechanisms underlying the development of severe forms of coronavirus disease 2019 (COVID-19) among hypertensive patients remain undefined and the direct association of hypertension with outcome in COVID-19 is still a field of debate. Experimental and clinical data suggest that SARS-CoV-2 infection promotes a rise in blood pressure (BP) during the acute phase of infection. Acute increase in BP and high in-hospital BP variability may be tied with acute organ damage and a worse outcome in patients hospitalized for COVID-19. In this context, the failure of the counter-regulatory renin-angiotensin-system (RAS) axis is a potentially relevant mechanism involved in the raise in BP. It is well recognized that the efficient binding of the Spike (S) protein to angiotensin converting enzyme 2 (ACE2) receptors mediates the virus entry into cells. Internalization of ACE2, downregulation and malfunction predominantly due to viral occupation, dysregulates the protective RAS axis with increased generation and activity of angiotensin (Ang) II and reduced formation of Ang1,7. Thus, the imbalance between Ang II and Ang1-7 can directly contribute to excessively rise BP in the acute phase of SARS-CoV-2 infection. A similar mechanism has been postulated to explain the raise in BP following COVID-19 vaccination ("Spike Effect" similar to that observed during the infection of SARS-CoV-2). S proteins produced upon vaccination have the native-like mimicry of SARS-CoV-2 S protein's receptor binding functionality and prefusion structure and free-floating S proteins released by the destroyed cells previously targeted by vaccines may interact with ACE2 of other cells, thereby promoting ACE2 internalization and degradation, and loss of ACE2 activities.
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, 21100, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, 21049, Italy.
| | - Martina Zappa
- Department of Medicine and Surgery, University of Insubria, Varese, 21100, Italy
| | - Gianpaolo Reboldi
- Department of Medicine, and Centro di Ricerca Clinica e Traslazionale (CERICLET), University of Perugia, Perugia, 06100, Italy
| | - Giorgio Gentile
- College of Medicine and Health. University of Exeter, Exeter, United Kingdom and Department of Nephrology, Royal Cornwall Hospitals NHS Trust, Truro, United Kingdom
| | - Monica Trapasso
- Dipartimento di Igiene e Prevenzione Sanitaria, PSAL, Sede Territoriale di Varese, ATS Insubria, Varese, 21100, Italy
| | - Antonio Spanevello
- Department of Medicine and Surgery, University of Insubria, Varese, 21100, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS Tradate, 21049, Italy
| | - Paolo Verdecchia
- Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, and Fondazione Umbra Cuore e Ipertensione-ONLUS, Perugia, 06100, Italy
| |
Collapse
|
11
|
Angeli F, Reboldi G, Trapasso M, Zappa M, Spanevello A, Verdecchia P. COVID-19, vaccines and deficiency of ACE 2 and other angiotensinases. Closing the loop on the "Spike effect". Eur J Intern Med 2022; 103:23-28. [PMID: 35753869 PMCID: PMC9217159 DOI: 10.1016/j.ejim.2022.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The role of a dysregulated renin-angiotensin system (RAS) in the pathogenesis of COVID-19 is well recognized. The imbalance between angiotensin II (Ang II) and Angiotensin1-7 (Ang1,7) caused by the interaction between SARS-CoV-2 and the angiotensin converting enzyme 2 (ACE2) receptors exerts a pivotal role on the clinical picture and outcome of COVID-19. ACE2 receptors are not the exclusive angiotensinases in nature. Other angiotensinases (PRCP, and POP) have the potential to limit the detrimental effects of the interactions between ACE2 and the Spike proteins. In the cardiovascular disease continuum, ACE2 activity tends to decrease, and POP/PRCP activity to increase, from the health status to advanced deterioration of the cardiovascular system. The failure of the counter-regulatory RAS axis during the acute phase of COVID-19 is characterized by a decrease of ACE2 expression coupled to unchanged activity of other angiotensinases, therefore failing to limit the accumulation of Ang II. COVID-19 vaccines increase the endogenous synthesis of SARS-CoV-2 spike proteins. Once synthetized, the free-floating spike proteins circulate in the blood, interact with ACE2 receptors and resemble the pathological features of SARS-CoV-2 ("Spike effect" of COVID-19 vaccines). It has been noted that an increased catalytic activity of POP/PRCP is typical in elderly individuals with comorbidities or previous cardiovascular events, but not in younger people. Thus, the adverse reactions to COVID-19 vaccination associated with Ang II accumulation are generally more common in younger and healthy subjects. Understanding the relationships between different mechanisms of Ang II cleavage and accumulation offers the opportunity to close the pathophysiological loop between the risk of progression to severe forms of COVID-19 and the potential adverse events of vaccination.
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy.
| | - Gianpaolo Reboldi
- Department of Medicine, and Centro di Ricerca Clinica e Traslazionale (CERICLET), University of Perugia, Perugia, Italy
| | - Monica Trapasso
- Dipartimento di Igiene e Prevenzione Sanitaria, ATS Insubria, PSAL, Sede Territoriale di Varese, Varese, Italy
| | - Martina Zappa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Antonio Spanevello
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institute, IRCCS, Tradate, Italy
| | - Paolo Verdecchia
- Division of Cardiology, Hospital S. Maria Della Misericordia, Perugia, Italy; Fondazione Umbra Cuore e Ipertensione-ONLUS, Perugia, Italy
| |
Collapse
|
12
|
Lin SR, Lin QM, Lin YJ, Qian X, Wang XP, Gong Z, Chen F, Song B. Bradykinin postconditioning protects rat hippocampal neurons after restoration of spontaneous circulation following cardiac arrest via activation of the AMPK/mTOR signaling pathway. Neural Regen Res 2022; 17:2232-2237. [PMID: 35259843 PMCID: PMC9083139 DOI: 10.4103/1673-5374.337049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Bradykinin (BK) is an active component of the kallikrein-kinin system that has been shown to have cardioprotective and neuroprotective effects. We previously showed that BK postconditioning strongly protects rat hippocampal neurons upon restoration of spontaneous circulation (ROSC) after cardiac arrest. However, the precise mechanism underlying this process remains poorly understood. In this study, we treated a rat model of ROSC after cardiac arrest (induced by asphyxiation) with 150 μg/kg BK via intraperitoneal injection 48 hours after ROSC following cardiac arrest. We found that BK postconditioning effectively promoted the recovery of rat neurological function after ROSC following cardiac arrest, increased the amount of autophagosomes in the hippocampal tissue, inhibited neuronal cell apoptosis, up-regulated the expression of autophagy-related proteins LC3 and NBR1 and down-regulated p62, inhibited the expression of the brain injury marker S100β and apoptosis-related protein caspase-3, and affected the expression of adenosine monophosphate-activated protein kinase/mechanistic target of rapamycin pathway-related proteins. Adenosine monophosphate-activated protein kinase inhibitor compound C clearly inhibited BK-mediated activation of autophagy in rats after ROSC following cardiac arrest, which aggravated the injury caused by ROSC. The mechanistic target of rapamycin inhibitor rapamycin enhanced the protective effects of BK by stimulating autophagy. Our findings suggest that BK postconditioning protects against injury caused by ROSC through activating the adenosine monophosphate-activated protein kinase/mechanistic target of the rapamycin pathway.
Collapse
Affiliation(s)
- Shi-Rong Lin
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital South Branch; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Qing-Ming Lin
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yu-Jia Lin
- Provincial College of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xin Qian
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Xiao-Ping Wang
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Zheng Gong
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Feng Chen
- Provincial College of Clinical Medicine, Fujian Medical University; Department of Emergency, Fujian Provincial Hospital; Fujian Emergency Medical Center; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Bin Song
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University; Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province; Laboratory of Clinical Applied Anatomy, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
13
|
Cristina Mendes Ferreira R, Cristina de Sousa Fonseca F, Lamounier de Almeida D, Cristina Nogueira Freitas A, Peigneur S, Roberto Lima Romero T, Almeida Amaral F, Dimitri Gama Duarte I. Bradykinin induces peripheral antinociception in PGE 2-induced hyperalgesia in mice. Biochem Pharmacol 2022; 198:114965. [PMID: 35182520 DOI: 10.1016/j.bcp.2022.114965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Bradykinin (BK) is an endogenous peptide involved in vascular permeability and inflammation. It has opposite effects (inducing hyperalgesia or antinociception) when administered directly in the central nervous system. The aim of this study was to evaluate whether BK may also present this dual effect when injected peripherally in a PGE2-induced nociceptive pain model, as well as to investigate the possible mechanisms of action involved in this event in mice. METHODS Male Swiss and C57BL/6 knockout mice for B1 or B2 bradykinin receptors were submitted to a mechanical paw pressure test and hyperalgesia was induced by intraplantar prostaglandin E2 (2 µg/paw) injection. RESULTS Bradykinin (20, 40 and 80 ng/paw) produced dose-dependent peripheral antinociception against PGE2-induced hyperalgesia. This effect was antagonized by bradyzide (8, 16 and 32 μg/paw), naloxone (12.5, 25 and 50 μg/paw), nor-binaltorphimine (50, 100 and 200 μg/paw) and AM251 (20, 40 and 80 μg/paw). Bestatin (400 µg/paw), MAFP (0.5 µg/paw) and VDM11 (2.5 µg/paw) potentiated the antinociception of a lower 20 ng BK dose. The knockout of B1 or B2 bradykinin receptors partially abolished the antinociceptive action of BK (80 ng/paw), bremazocine (1 μg/paw) and anandamide (40 ng/paw) when compared with wild-type animals, which show complete antinociception with the same dose of each drug. CONCLUSION The present study is the first to demonstrate BK-induced antinociception in peripheral tissues against PGE2-induced nociception in mice and the involvement of κ-opioid and CB1 cannabinoid receptors in this effect.
Collapse
Affiliation(s)
| | | | - Douglas Lamounier de Almeida
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina Nogueira Freitas
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Steve Peigneur
- Department of Toxicology and Pharmacology, KU Leuven, Leuven, Belgium
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Almeida Amaral
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
14
|
Sharma K, Singh P, Amjad Beg M, Dohare R, Athar F, Ali Syed M. Revealing new therapeutic opportunities in hypertension through network-driven integrative genetic analysis and drug target prediction approach. Gene 2021; 801:145856. [PMID: 34293449 DOI: 10.1016/j.gene.2021.145856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/17/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have established that untreated hypertension (HTN) is a major independent risk factor for developing cardiovascular diseases (CVD), stroke, renal failure, and other conditions. Several important studies have been published to prevent and manage HTN; however, antihypertensive agents' optimal choice remains controversial. Therefore, the present study is undertaken to update our knowledge in the primary treatment of HTN, specifically in the setting of other three important diseases. MicroRNAs (miRNAs) are remarkably stable short endogenous conserved non-coding RNAs that bind to the mRNA at its (3' UTR) to regulate its gene expression by causing translational repression or mRNA degradation. Through their coordinated activities on different pathways and networks, individual miRNAs control normal and pathological cellular processes. Therefore, to identify the critical miRNA-mRNA-TF interactions, we performed systematic bioinformatics analysis. We have also employed the molecular modelling and docking approach to identify the therapeutic target that delivers novel empathies into Food and Drug Administration approved and herbal drug response physiology. Gene Expression Omnibus (GEO) was employed to identify the differentially expressed genes (DEGs) and hub genes- KNG1, HLA-DPB1, CXCL8, IL1B, and BCL2. The HTN associated feed-forward loop (FFL) network included miR-9-5p, KNG1 and AR. We employed high throughput screening to get the best interacting compounds, telmisartan and limonin, that provided a significant docking score (-13.3 and -12.0 kcal/mol) and a potential protective effect that may help to combat the impact of HTN. The present study provides novel insight into HTN etiology through the identification of mRNAs and miRNAs and associated pathways.
Collapse
Affiliation(s)
- Kavita Sharma
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Amjad Beg
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
15
|
Isaeva MK, Belova VA, Korostin DO, Degtyareva AV. Genetic aspects of biliary atresia etiology. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biliary atresia (BA) is a cholestatic disorder of infancy that is fatal if untreated. Despite years of study the etiology of BA remains unknown. Three etiopathogenic mechanisms may be involved, such as immune dysregulation, environmental factors and genetic susceptibility. Genetic predisposition is being actively studied. Candidate genes associated with BA in certain populations, genes affecting the cholangiocyte cilia function, as well as genes involved in stress responses have been identified. However, the long-term follow-up of twins with BA suggests that genotype is not of paramount importance for the disease development. Both epigenetic patterns and postzygotic somatic mutations may contribute to etiology of the disease. Recently, some evidence is being accumulated on the possible genetic predisposition to certain outcome of Kasai portoenterostomy performed in patients with BA. However, the presence of a number of factors contributing to the development of the disease makes it difficult to identify the genetic markers.
Collapse
Affiliation(s)
- MKh Isaeva
- Academician V. I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - VA Belova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - DO Korostin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - AV Degtyareva
- Academician V. I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia; I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
16
|
Hao P, Liu Y, Guo H, Zhang Z, Chen Q, Hao G, Zhang C, Zhang Y. Prolylcarboxypeptidase Mitigates Myocardial Ischemia/Reperfusion Injury by Stabilizing Mitophagy. Front Cell Dev Biol 2020; 8:584933. [PMID: 33195231 PMCID: PMC7642202 DOI: 10.3389/fcell.2020.584933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
The role of prolylcarboxypeptidase (PRCP) in myocardial ischemia/reperfusion (I/R) injury is unclear. Herein, we aimed to evaluate the protective effect of the PRCP-angiotensin-(1-7) [Ang-(1-7)]/bradykinin-(1-9) [BK-(1-9)] axis on myocardial I/R injury and identify the mechanisms involved. Plasma PRCP level and activity, as well as Ang-(1-7) and BK-(1-9) levels, were compared in healthy subjects, patients with unstable angina, and those with ST-segment-elevated acute myocardial infarction (AMI). Thereafter, the effects of PRCP overexpression and knockdown on left ventricular function, mitophagy, and levels of Ang-(1-7) and BK-(1-9) were examined in rats during myocardial I/R. Finally, the effects of Ang-(1-7) and BK-(1-9) on I/R-induced mitophagy and the signaling pathways involved were investigated in vitro in rat cardiomyocytes. AMI patients showed increased plasma level and activity of PRCP and levels of Ang-(1-7) and BK-(1-9) as compared with healthy subjects and those with unstable angina. PRCP protected against myocardial I/R injury in rats by paradoxical regulation of cardiomyocyte mitophagy during the ischemia and reperfusion phases, which was mediated by downstream Ang-(1-7) and BK-(1-9). We further depicted a possible role of activation of AMPK in mitophagy induction during ischemia and activation of Akt in mitophagy inhibition during reperfusion in the beneficial effects of Ang-(1-7) and BK-(1-9). Thus, the PRCP-Ang-(1-7)/BK-(1-9) axis may protect against myocardial I/R injury by paradoxical regulation of cardiomyocyte mitophagy during ischemia and reperfusion phases.
Collapse
Affiliation(s)
- Panpan Hao
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanping Liu
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shenzhen Research Institute of Shandong University, Shenzhen, China
| | - Haipeng Guo
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Shandong University, Jinan, China
| | - Qingjie Chen
- First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Guoxiang Hao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Cheng Zhang
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Zhang
- Department of Cardiology, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
17
|
Santos MC, Toson NSB, Pimentel MCB, Bordignon SAL, Mendez ASL, Henriques AT. Polyphenols composition from leaves of Cuphea spp. and inhibitor potential, in vitro, of angiotensin I-converting enzyme (ACE). JOURNAL OF ETHNOPHARMACOLOGY 2020; 255:112781. [PMID: 32209389 DOI: 10.1016/j.jep.2020.112781] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cuphea is the largest genus of the Lythraceae family. It is popularly known as "sete-sangrias" in Brazil used in folk medicine as a diuretic, antipyretic, anti-inflammatory, laxative and antihypertensive agent. The raw material of Cuphea has shown promising results in the production of fitotherapics, which are chemically characterized by quercetin core flavonoids. AIMS OF THE STUDY Present work aims to investigate the chemical composition of Cuphea calophylla, Cuphea carthagenensis, Cuphea glutinosa and Cuphea racemosa by UHPLC-MS using ESI-Q-TOF, and also to investigate the inhibition of angiotensin-converting enzyme (ACE) in vitro. MATERIALS AND METHODS Leaves extraction was conducted by an ultrasound-assisted system under the following conditions: 40% ethanol, particle size ≤180 μm, plant:solvent ratio 1:20 (w/v) for 30 min. The leaf extracts were analyzed by UHPLC-MS positive mode ionization. For the inhibition of ACE, the leaf extracts used were obtained from different Cuphea species collected from several regions of Rio Grande do Sul (Brazil). RESULTS In total 26 polyphenolic compounds were proposed, which were mostly derived from quercetin, myricetin, and kaempferol. Of these compounds, ten are described in the genus for the first time. The ACE-inhibiting activities are presented in descending order: miquelianin (32.41%), C. glutinosa 1 (31.66%), C. glutinosa 5 (26.32%) and C. carthagenensis 1 (26.12%). CONCLUSION The obtained results suggest that the ACE-inhibiting potential may be increased by the interactions among the different phytoconstituents present in the crude extract. These results corroborate with the popular usage of Cuphea genus as diuretic and antihypertensive agents in folk medicine.
Collapse
Affiliation(s)
- Marí C Santos
- Pharmacognosy Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Natally S B Toson
- Pharmacognosy Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil
| | - Maria C B Pimentel
- Keizo-Asami Immunopathology Laboratory, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Sérgio A L Bordignon
- Department of Environmental Impact Assessment, Unilasalle, Canoas, Rio Grande do Sul, Brazil
| | - Andreas S L Mendez
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Amélia T Henriques
- Pharmacognosy Laboratory, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
18
|
DeLalio LJ, Hahn S, Katayama PL, Wenner MM, Farquhar WB, Straub AC, Stocker SD. Excessive dietary salt promotes aortic stiffness in murine renovascular hypertension. Am J Physiol Heart Circ Physiol 2020; 318:H1346-H1355. [PMID: 32302491 PMCID: PMC7346535 DOI: 10.1152/ajpheart.00601.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/18/2020] [Accepted: 04/12/2020] [Indexed: 12/22/2022]
Abstract
Renovascular hypertension is characterized by activation of the renin-angiotensin-aldosterone system, blunted natriuretic responses, and elevated sympathetic nerve activity. Excess dietary salt intake exaggerates arterial blood pressure (ABP) in multiple models of experimental hypertension. The present study tested whether a high-salt diet exaggerated ABP and vascular dysfunction in a 2-kidney, 1-clip (2K1C) murine model. Male C57BL/6J mice (8-12 wk) were randomly assigned, and fed a 0.1% or 4.0% NaCl diet, and instrumented with telemetry units to measure ABP. Then, the 2K1C model was produced by placing a cuff around the right renal artery. Systolic, diastolic, and mean ABP were significantly higher in mice fed 4.0% vs. 0.1% NaCl at 1 wk but not after 3 wk. Interestingly, 2K1C hypertension progressively increased arterial pulse pressure in both groups; however, the magnitude was significantly greater in mice fed 4.0% vs. 0.1% NaCl at 3 wk. Moreover, pulse wave velocity was significantly greater in 2K1C mice fed 4.0% vs. 0.1% NaCl diet or sham-operated mice fed either diet. Histological assessment of aortas indicated no structural differences among groups. Finally, endothelium-dependent vasodilation was significantly and selectively attenuated in the aorta but not mesenteric arteries of 2K1C mice fed 4.0% NaCl vs. 0.1% NaCl or sham-operated control mice. The findings suggest that dietary salt loading transiently exaggerates 2K1C renovascular hypertension but promotes chronic aortic stiffness and selective aortic vascular dysfunction.NEW & NOTEWORTHY High dietary salt exaggerates hypertension in multiple experimental models. Here we demonstrate that a high-salt diet produces a greater increase in arterial blood pressure at 1 wk after induction of 2-kidney, 1-clip (2K1C) hypertension but not at 3 wk. Interestingly, 2K1C mice fed a high-salt diet displayed an exaggerated pulse pressure, elevated pulse wave velocity, and reduced endothelium-dependent vasodilation of the aorta but not mesenteric arteries. These findings suggest that dietary salt may interact with underlying cardiovascular disease to promote selective vascular dysfunction and aortic stiffness.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott Hahn
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pedro L Katayama
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Pittsburgh, Pennsylvania
| | - Sean D Stocker
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Ashok Kumar P, Paulraj S, Udekwu A. Hemodynamic Collapse Following Therapeutic Plasma Exchange in a Patient Receiving an Angiotensin Receptor Blocker. Cureus 2020; 12:e7028. [PMID: 32211262 PMCID: PMC7081960 DOI: 10.7759/cureus.7028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Therapeutic plasma exchange (TPE) is a procedure for removal of plasma and its components while leaving behind cellular elements via an apheresis device. It is used in multiple conditions one among which is systemic lupus erythematosus (SLE). Adverse reactions from TPE range from mild hypotension and fever to life-threatening cardiovascular compromise. We report the case of sudden hemodynamic collapse following TPE for a neuropsychiatric lupus flare in a patient on losartan. A 62-year-old Caucasian female with a history of drug-induced lupus presented to the hospital with symptoms of a neuropsychiatric lupus flare. She was initiated on TPE with 5% albumin based on recommendations by her rheumatologist. Shortly after TPE, she became hypotensive with poor response to fluid boluses, requiring pressor support and intubation. These symptoms resolved within 24 hours on supportive measures. This was believed to be due to losartan use on the day of TPE. The medication was discontinued and she had further sessions of TPE with no complications. Angiotensin-converting enzyme (ACE) inhibitors have previously been associated with flushing and hypotension in patients undergoing TPE. Patients undergoing TPE have an activation of the prekallikrein and bradykinin system on contact with the extracorporeal membranes. ACE inhibitors potentiate this reaction by inhibiting bradykinin catabolism. Angiotensin receptor blockers (ARBs) have also been postulated to cause elevated bradykinin levels although data pertaining to the use of ARBs in TPE is limited. We hope to highlight this rare interaction in our case and emphasize the need for further data with regard to the same.
Collapse
Affiliation(s)
| | - Shweta Paulraj
- Internal Medicine, Upstate Medical University, Syracuse, USA
| | | |
Collapse
|
20
|
Dalmasso C, Leachman JR, Ensor CM, Yiannikouris FB, Giani JF, Cassis LA, Loria AS. Female Mice Exposed to Postnatal Neglect Display Angiotensin II-Dependent Obesity-Induced Hypertension. J Am Heart Assoc 2019; 8:e012309. [PMID: 31752639 PMCID: PMC6912962 DOI: 10.1161/jaha.119.012309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
Abstract
Background We have previously reported that female mice exposed to maternal separation and early weaning (MSEW), a model of early life stress, show exacerbated diet-induced obesity associated with hypertension. The goal of this study was to test whether MSEW promotes angiotensin II-dependent hypertension via activation of the renin-angiotensin system in adipose tissue. Methods and Results MSEW was achieved by daily separations from the dam and weaning at postnatal day 17, while normally reared controls were weaned at postnatal day 21. Female controls and MSEW weanlings were placed on a low-fat diet (LF, 10% kcal from fat) or high-fat diet (HF, 60% kcal from fat) for 20 weeks. MSEW did not change mean arterial pressure in LF-fed mice but increased it in HF-fed mice compared with controls (P<0.05). In MSEW mice fed a HF, angiotensin II concentration in plasma and adipose tissue was elevated compared with controls (P<0.05). In addition, angiotensinogen concentration was increased solely in adipose tissue from MSEW mice (P<0.05), while angiotensin-converting enzyme protein expression and activity were similar between groups. Chronic enalapril treatment (2.5 mg/kg per day, drinking water, 7 days) reduced mean arterial pressure in both groups of mice fed a HF (P<0.05) and abolished the differences due to MSEW. Acute angiotensin II-induced increases in mean arterial pressure (10 μg/kg SC) were attenuated in untreated MSEW HF-fed mice compared to controls (P<0.05); however, this response was similar between groups in enalapril-treated mice. Conclusions The upregulation of angiotensinogen and angiotensin II in adipose tissue could be an important mechanism by which female MSEW mice fed a HF develop hypertension.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKY
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| | - Jacqueline R. Leachman
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKY
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| | - Charles M. Ensor
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKY
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| | - Frederique B. Yiannikouris
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKY
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| | - Jorge F. Giani
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKY
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| | - Analia S. Loria
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKY
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCA
| |
Collapse
|
21
|
Combined Antihypertensive Therapies That Increase Expression of Cardioprotective Biomarkers Associated With the Renin-Angiotensin and Kallikrein-Kinin Systems. J Cardiovasc Pharmacol 2019; 72:291-295. [PMID: 30422889 DOI: 10.1097/fjc.0000000000000629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Antihypertensive pharmacological treatments focus on the use of angiotensin-converting enzyme (ACE) inhibitors, AT1 receptor antagonists, and beta-blockers as single and combined treatments. The effect of single treatments on the mRNA expression of some components of the renin-angiotensin system has been studied, but not the effect of combined treatments. This study determined the expression of the AT1, AT2, B1, and B2 receptors and of the enzymes ACE and ACE2 in hypertensive rats treated with captopril-propranolol or losartan-propranolol. Methods: The mRNA expression of the receptors and enzymes was determined by reverse transcription-quantitative polymerase chain reaction in the aorta of spontaneously hypertensive rats under different treatments. Results: Rats under combined treatments showed a decrease in the expression of AT1 and ACE, and an increase in the expression of the B1 receptor (captopril + propranolol group: 0.43 ± 0.046, 2.243 ± 0.269, 3.356 ± 0.418; Group: losartan + propranolol: 0.727 ± 0.071, 0.852 ± 0.102, 1.277 ± 0.131 compared to the spontaneously hypertensive group: 1 ± 0.212, 1 ± 0.192, 1 ± 0.214). This decrease in the expression of ACE and AT1 suggests a reduction in the expression of Ang II that could be related to a lower response to this vasoconstrictor. An increase in the expression of B1 would improve vasodilation, which would be a beneficial effect of combined therapies for hypertension.
Collapse
|
22
|
Salvador GL, Marmentini VM, Cosmo WR, Junior EL. Angiotensin-converting enzyme inhibitors reduce mortality compared to angiotensin receptor blockers: Systematic review and meta-analysis. Eur J Prev Cardiol 2017; 24:1914-1924. [PMID: 28862020 DOI: 10.1177/2047487317728766] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background There are few reviews comparing the long-term outcomes of the use of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers in a hypertensive population because both are effective in reducing blood pressure. None of them compared angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers with a placebo group in patients with essential hypertension, because few studies exist with this design. Methods A systematic search of PUBMED, LILACS, SCIELO, ICTRP, Cochrane, EMBASE and ClinicalTrials.gov from 1 January 2000 until 31 December 2015 selected prospective studies that reported an association between the use of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers in the following cardiovascular outcomes: heart failure/hospitalisation, stroke, acute myocardial infarction, total cardiovascular deaths, total deaths and total outcomes. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were combined by using a fixed-effects model. Results Seventeen studies ( n = 73,761) were included of which 12 studies were randomly assigned to angiotensin II receptor blocker therapy ( n = 24,697) and five to angiotensin-converting enzyme inhibitors ( n = 12,170). Angiotensin-converting enzyme inhibitors proved to be significant in reducing total deaths (OR 0.85, 95% CI 0.78-0.93) and cardiovascular deaths (OR 0.77, 95% CI 0.69-0.87). Angiotensin II receptor blocker therapy did not show a reduction in total deaths (OR 1.02, 95% CI 0.96-1.09) or cardiovascular deaths (OR 0.95, 95% CI 0.86-1.06). For acute myocardial infarction, stroke and heart failure/hospitalisation, the reductions were significant for both classes. Conclusion Angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker use is similar in preventing major cardiovascular outcomes regarding acute myocardial infarction, stroke and heart failure/hospitalisation. However, the use of angiotensin-converting enzyme inhibitors is more effective in reducing total deaths and cardiovascular deaths than angiotensin II receptor blockers.
Collapse
Affiliation(s)
| | | | - Willian R Cosmo
- Internal Medicine Department, Federal University of Parana, Brazil
| | - Emilton L Junior
- Internal Medicine Department, Federal University of Parana, Brazil
| |
Collapse
|
23
|
Abstract
Historically, the first described effect of an angiotensin converting enzyme (ACE) inhibitor was an increased activity of bradykinin, one of the substrates of ACE. However, in the subsequent years, molecular models describing the mechanism of action of ACE inhibitors in decreasing blood pressure and cardiovascular risk have focused mostly on the renin-angiotensin system. Nonetheless, over the last 20 years, the importance of bradykinin in regulating vasodilation, natriuresis, oxidative stress, fibrinolysis, inflammation, and apoptosis has become clearer. The affinity of ACE appears to be higher for bradykinin than for angiotensin I, thereby suggesting that ACE inhibitors may be more effective inhibitors of bradykinin degradation than of angiotensin II production. Data describing the effect of ACE inhibition on bradykinin signaling support the hypothesis that the most cardioprotective benefits attributed to ACE inhibition may be due to increased bradykinin signaling rather than to decreased angiotensin II signaling, especially when high dosages of ACE inhibitors are considered. In particular, modulation of bradykinin in the endothelium appears to be a major target of ACE inhibition. These new mechanistic concepts may lead to further development of strategies enhancing the bradykinin signaling.
Collapse
Affiliation(s)
- Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| | - L Bortolotto
- Heart Institute-Hypertension Unit, Medical School University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Beltrán-Debón R, Rodríguez-Gallego E, Fernández-Arroyo S, Senan-Campos O, Massucci FA, Hernández-Aguilera A, Sales-Pardo M, Guimerà R, Camps J, Menendez JA, Joven J. The acute impact of polyphenols from Hibiscus sabdariffa in metabolic homeostasis: an approach combining metabolomics and gene-expression analyses. Food Funct 2016; 6:2957-66. [PMID: 26234931 DOI: 10.1039/c5fo00696a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We explored the acute multifunctional effects of polyphenols from Hibiscus sabdariffa in humans to assess possible consequences on the host's health. The expected dynamic response was studied using a combination of transcriptomics and metabolomics to integrate specific functional pathways through network-based methods and to generate hypotheses established by acute metabolic effects and/or modifications in the expression of relevant genes. Data were obtained from healthy male volunteers after 3 hours of ingestion of an aqueous Hibiscus sabdariffa extract. The data were compared with data obtained prior to the ingestion, and the overall findings suggest that these particular polyphenols had a simultaneous role in mitochondrial function, energy homeostasis and protection of the cardiovascular system. These findings suggest beneficial actions in inflammation, endothelial dysfunction, and oxidation, which are interrelated mechanisms. Among other effects, the activation of the heme oxygenase-biliverdin reductase axis, the systemic inhibition of the renin-angiotensin system, the inhibition of the angiotensin-converting enzyme, and several actions mirroring those of the peroxisome proliferator-activated receptor agonists further support this notion. We also found concordant findings in the serum of the participants, which include a decrease in cortisol levels and a significant increase in the active vasodilator metabolite of bradykinin (des-Arg(9)-bradykinin). Therefore, our data support the view that polyphenols from Hibiscus sabdariffa play a regulatory role in metabolic health and in the maintenance of blood pressure, thus implying a multi-faceted impact in metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Raúl Beltrán-Debón
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Campus of International excellence Southern Catalonia, Carrer Sant Llorenç 21, 43201-Reus, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Au A, Cheng KK, Wei LK. Metabolomics, Lipidomics and Pharmacometabolomics of Human Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:599-613. [PMID: 27722964 DOI: 10.1007/5584_2016_79] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension is a common but complex human disease, which can lead to a heart attack, stroke, kidney disease or other complications. Since the pathogenesis of hypertension is heterogeneous and multifactorial, it is crucial to establish a comprehensive metabolomic approach to elucidate the molecular mechanism of hypertension. Although there have been limited metabolomic, lipidomic and pharmacometabolomic studies investigating this disease to date, metabolomic studies on hypertension have provided greater insights into the identification of disease-specific biomarkers, predicting treatment outcome and monitor drug safety and efficacy. Therefore, we discuss recent updates on the applications of metabolomics technology in human hypertension with a focus on metabolic biomarker discovery.
Collapse
Affiliation(s)
- Anthony Au
- Institute of Bioproduct Development and Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300, Johor, Malaysia.
| | - Kian-Kai Cheng
- Institute of Bioproduct Development and Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300, Johor, Malaysia.,Innovation Centre in Agritechnology, Universiti Teknologi Malaysia, 81300, Johor, Malaysia
| | - Loo Keat Wei
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, Bandar Barat, 31900, Kampar, Perak, Malaysia.,Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900, Kampar, Perak, Malaysia
| |
Collapse
|
26
|
Yarovaya GA, Neshkova EA. [Kallikrein-Kinin System. Long History and Present. (To 90th Anniversary of Discovery of the System)]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:275-91. [PMID: 26502604 DOI: 10.1134/s1068162015030115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The kallikrein-kinin system (KKS) is the key proteolytic system participating in control of a wide spectrum of physiological functions and the development of many pathological conditions. This explains great interest in structures, functions and molecular biology of separate components of the system, molecular mechanisms of their interaction and relationship with other regulatory systems. The information in this field for the last two decades clarifies the role of KKS in morphogenesis of cells, regulation of smooth muscular contractility of some organs, decrease of blood pressure, increase of vascular permeability, the development of inflammation, transformation of cells and the other functions of both physiological and pathological processes. Essential progress in understanding of functions KKS was made by the discovery and study of bradykinin receptors, cloning of kininogen and kallikrein encoding genes, revealing of domain structure of kininogen, prekallikrein and some kininases and decoding of mechanisms of contact phase of proteolytic system activation in blood plasma.
Collapse
|
27
|
Jacox L, Sindelka R, Chen J, Rothman A, Dickinson A, Sive H. The extreme anterior domain is an essential craniofacial organizer acting through Kinin-Kallikrein signaling. Cell Rep 2014; 8:596-609. [PMID: 25043181 PMCID: PMC4135435 DOI: 10.1016/j.celrep.2014.06.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/24/2014] [Accepted: 06/17/2014] [Indexed: 12/29/2022] Open
Abstract
The extreme anterior domain (EAD) is a conserved embryonic region that includes the presumptive mouth. We show that the Kinin-Kallikrein pathway is active in the EAD and necessary for craniofacial development in Xenopus and zebrafish. The mouth failed to form and neural crest (NC) development and migration was abnormal after loss of function (LOF) in the pathway genes kng, encoding Bradykinin (xBdk), carboxypeptidase-N (cpn), which cleaves Bradykinin, and neuronal nitric oxide synthase (nNOS). Consistent with a role for nitric oxide (NO) in face formation, endogenous NO levels declined after LOF in pathway genes, but these were restored and a normal face formed after medial implantation of xBdk-beads into LOF embryos. Facial transplants demonstrated that Cpn function from within the EAD is necessary for the migration of first arch cranial NC into the face and for promoting mouth opening. The study identifies the EAD as an essential craniofacial organizer acting through Kinin-Kallikrein signaling.
Collapse
Affiliation(s)
- Laura Jacox
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA; Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA; Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Harvard Graduate School of Arts and Sciences, 1350 Massachusetts Avenue, Holyoke Center, 50, Cambridge, MA 02138, USA
| | - Radek Sindelka
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Justin Chen
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Alyssa Rothman
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Amanda Dickinson
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Metabolomics approach reveals effects of antihypertensives and lipid-lowering drugs on the human metabolism. Eur J Epidemiol 2014; 29:325-36. [PMID: 24816436 PMCID: PMC4050296 DOI: 10.1007/s10654-014-9910-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 04/28/2014] [Indexed: 01/17/2023]
Abstract
The mechanism of antihypertensive and lipid-lowering drugs on the human organism is still not fully understood. New insights on the drugs’ action can be provided by a metabolomics-driven approach, which offers a detailed view of the physiological state of an organism. Here, we report a metabolome-wide association study with 295 metabolites in human serum from 1,762 participants of the KORA F4 (Cooperative Health Research in the Region of Augsburg) study population. Our intent was to find variations of metabolite concentrations related to the intake of various drug classes and—based on the associations found—to generate new hypotheses about on-target as well as off-target effects of these drugs. In total, we found 41 significant associations for the drug classes investigated: For beta-blockers (11 associations), angiotensin-converting enzyme (ACE) inhibitors (four assoc.), diuretics (seven assoc.), statins (ten assoc.), and fibrates (nine assoc.) the top hits were pyroglutamine, phenylalanylphenylalanine, pseudouridine, 1-arachidonoylglycerophosphocholine, and 2-hydroxyisobutyrate, respectively. For beta-blockers we observed significant associations with metabolite concentrations that are indicative of drug side-effects, such as increased serotonin and decreased free fatty acid levels. Intake of ACE inhibitors and statins associated with metabolites that provide insight into the action of the drug itself on its target, such as an association of ACE inhibitors with des-Arg(9)-bradykinin and aspartylphenylalanine, a substrate and a product of the drug-inhibited ACE. The intake of statins which reduce blood cholesterol levels, resulted in changes in the concentration of metabolites of the biosynthesis as well as of the degradation of cholesterol. Fibrates showed the strongest association with 2-hydroxyisobutyrate which might be a breakdown product of fenofibrate and, thus, a possible marker for the degradation of this drug in the human organism. The analysis of diuretics showed a heterogeneous picture that is difficult to interpret. Taken together, our results provide a basis for a deeper functional understanding of the action and side-effects of antihypertensive and lipid-lowering drugs in the general population.
Collapse
|
29
|
Ranakinestatin-PPF from the skin secretion of the Fukien gold-striped pond frog, Pelophylax plancyi fukienensis: a prototype of a novel class of bradykinin B2 receptor antagonist peptide from ranid frogs. ScientificWorldJournal 2014; 2014:564839. [PMID: 25161395 PMCID: PMC4000668 DOI: 10.1155/2014/564839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/27/2014] [Indexed: 11/17/2022] Open
Abstract
The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin—a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10−6 M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10−11 M and 10−5 M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin—PPF—thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle.
Collapse
|
30
|
Jiang Y, Xi X, Ge L, Yang N, Hou X, Ma J, Ma C, Wu Y, Guo X, Li R, Zhou M, Wang L, Chen T, Shaw C. Bradykinin-related peptides (BRPs) from skin secretions of three genera of phyllomedusine leaf frogs and their comparative pharmacological effects on mammalian smooth muscles. Peptides 2014; 52:122-33. [PMID: 24394432 DOI: 10.1016/j.peptides.2013.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 11/21/2022]
Abstract
While bradykinin has been identified in the skin secretions from several species of amphibian, bradykinin-related peptides (BRPs) are more common constituents. These peptides display a plethora of primary structural variations from the type peptide which include single or multiple amino acid substitutions, N- and/or C-terminal extensions and post-translational modifications such as proline hydroxylation and tyrosine sulfation. Such modified peptides have been reported in species from many families, including Bombinatoridae, Hylidae and Ranidae. The spectrum of these peptides in a given species is thought to be reflective of its predator profile from different vertebrate taxa. Here we report the isolation of BRPs and parallel molecular cloning of their respective biosynthetic precursor-encoding cDNAs from the skin secretions of the Mexican leaf frog (Pachymedusa dacnicolor), the Central American red-eyed leaf frog (Agalychnis callidryas) and the South American orange-legged leaf frog (Phyllomedusa hypochondrialis). Additionally, the eight different BRPs identified were chemically synthesized and screened for bioactivity using four different mammalian smooth muscle preparations and their effects and rank potencies were found to be radically different in these with some acting preferentially through bradykinin B1-type receptors and others through B(2)-type receptors.
Collapse
Affiliation(s)
- Yingchun Jiang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK; School of Medicine, Shenzhen University, PR China
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Lilin Ge
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Nan Yang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Xiaojuan Hou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Jie Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Yuxin Wu
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK; School of Medicine, Shenzhen University, PR China; Division of Molecular Cardiology, Department of Internal Medicine, College of Medicine, Texas A&M University Health Science Center, Central Texas Veterans Health Care System, Temple, TX 76504, USA
| | - Xiaoxiao Guo
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Renjie Li
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK.
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK.
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
31
|
Zhou Q, Xu W, Zhu L, Yu T, Ma B, Luo Y, Huang K. Preparation of a Monoclonal Antibody against a Kallikrein-Like Enzyme from Agkistrodon halys pallasVenom and Its Application in a Pharmacokinetic Study. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.784914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Abstract
Hereditary angioedema (HAE) is an autosomal dominant, potentially life-threatening condition, manifesting as recurrent and self-limiting episodes of facial, laryngeal, genital, or peripheral swelling with abdominal pain secondary to intra-abdominal edema. The estimated prevalence of HAE in the general population is one individual per 50,000, with reported ranges from 1:10,000 to 1:150,000, without major sex or ethnic differences. Various treatment options for acute attacks and prophylaxis of HAE are authorized and available in the market, including plasma-derived (Berinert®, Cinryze®, and Cetor®) and recombinant (Rhucin® and Ruconest™) C1 inhibitors, kallikrein inhibitor-ecallantide (Kalbitor®), and bradykinin B2 receptor antagonist-icatibant (Firazyr®). Some of these drugs are used only to treat HAE attacks, whereas others are only approved for prophylactic therapies and all of them have improved disease outcomes due to their different mechanisms of action. Bradykinin and its binding to B2 receptor have been demonstrated to be responsible for most of the symptoms of HAE. Thus icatibant (Firazyr®), a bradykinin B2 receptor antagonist, has proven to be an effective and more targeted treatment option and has been approved for the treatment of acute attacks of HAE. Rapid and stable relief from symptoms of cutaneous, abdominal, or laryngeal HAE attacks has been demonstrated by 30 mg of icatibant in Phase III clinical trials. Self-resolving mild to moderate local site reactions after subcutaneous injection of icatibant were observed. Icatibant is a new, safe, and effective treatment for acute attacks of HAE. HAE has been reported to result in enormous humanistic burden to patients, affecting both physical and mental health, with a negative impact on education, career, and work productivity, and with substantial economic burdens. The timely and proper use of disease-specific treatments could improve patients’ quality of life, reduce the disease-specific morbidity and mortality, and, last but not least, reduce costs associated with hospitalizations and emergency room visits. Therefore, the paradigm of HAE treatment has the potential to evolve significantly, thereby exponentially improving a patient’s quality of life.
Collapse
Affiliation(s)
- Aasia Ghazi
- University of Texas Medical Branch, Division of Allergy and Clinical Immunology, Galveston, TX, USA
| | | |
Collapse
|
33
|
Bernstein KE, Ong FS, Blackwell WLB, Shah KH, Giani JF, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Touyz RM. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev 2013; 65:1-46. [PMID: 23257181 PMCID: PMC3565918 DOI: 10.1124/pr.112.006809] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis 2021, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gu D, Zhao Q, Kelly TN, Hixson JE, Rao DC, Cao J, Chen J, Li J, Chen J, Ji X, Hu D, Wang X, Liu DP, He J. The role of the kallikrein-kinin system genes in the salt sensitivity of blood pressure: the GenSalt Study. Am J Epidemiol 2012; 176 Suppl 7:S72-80. [PMID: 23035147 DOI: 10.1093/aje/kws277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The current study comprehensively examined the association between common genetic variants of the kallikrein-kinin system (KKS) and blood pressure salt sensitivity. A 7-day low-sodium followed by a 7-day high-sodium dietary intervention was conducted among 1,906 Han Chinese participants recruited from 2003 to 2005. Blood pressure was measured by using a random-zero sphygmomanometer through the study. A total of 205 single nucleotide polymorphisms (SNPs) covering 11 genes of the KKS were selected for the analyses. Genetic variants of the bradykinin receptor B2 gene (BDKRB2) and the endothelin converting enzyme 1 gene (ECE1) showed significant associations with the salt-sensitivity phenotypes even after adjustment for multiple testing. Compared with the major G allele, the BDKRB2 rs11847625 minor C allele was significantly associated with increased systolic blood pressure responses to low-sodium intervention (P = 0.0001). Furthermore, a haplotype containing allele C was associated with an increased systolic blood pressure response to high-sodium intervention (P = 0.0009). Seven highly correlated ECE1 SNPs were shown to increase the diastolic blood pressure response to low-sodium intervention (P values ranged from 0.0003 to 0.002), with 2 haplotypes containing these 7 SNPs also associated with this same phenotype (P values ranged from 0.0004 to 0.002). In summary, genetic variants of the genes involved in the regulation of KKS may contribute to the salt sensitivity of blood pressure.
Collapse
Affiliation(s)
- Dongfeng Gu
- Department of Evidence Based Medicine, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Beijing 100037, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vallvé JC, Serra N, Zalba G, Fortuño A, Beloqui O, Ferre R, Ribalta J, Masana L. Two variants in the fibulin2 gene are associated with lower systolic blood pressure and decreased risk of hypertension. PLoS One 2012; 7:e43051. [PMID: 22912785 PMCID: PMC3418224 DOI: 10.1371/journal.pone.0043051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 07/16/2012] [Indexed: 02/07/2023] Open
Abstract
Arterial stiffness is an important factor in hypertension. Fibulin 2 is an extracellular matrix scaffold protein involved in arterial stiffness and, hence, the fibulin 2 (FBLN2) gene may be a candidate for hypertension susceptibility. 4 single nucleotide polymorphisms (SNPs) of FBLN2 were evaluated in an association case-control study containing 447 hypertensive patients and 344 normotensive control subjects. The minor allele frequencies of rs3732666 and rs1061376 were significantly lower in hypertensives. The odds ratios (OR) for having the protective G (rs3732666) and T (rs1061376) alleles were 0.75 (95%CI: 0.58 to 0.96) and 0.83 (95%CI: 0.66 to 1.02), respectively. For rs3732666, the OR for hypertension in AG+GG subjects, compared with AA, was 0.71 (95%CI: 0.52 to 0.95). The protective genotype AG+GG was associated with significantly lower systolic blood pressure (SBP) [−3.6 mmHg (P = 0.048)]. There was a significant age interaction with rs3732666; the effect decreasing with increasing age. For rs1061376, TT subjects had an OR for hypertension of 0.53 (95%CI: 0.32 to 0.87) compared with CC subjects, with reduced SBP (−7.91 mmHg; P = 0.008) and diastolic BP (DBP) (−3.69 mmHg; P = 0.015). The presence of a G allele was an independent predictor of intima-media thickness (IMT); G carrier’s having lower mean IMT (−0.037 mm, P = 0.027) compared with AA. Our results provide the first evidence for FBLN2 as a new gene associated with hypertension.
Collapse
Affiliation(s)
- Joan-Carles Vallvé
- Facultat de Medicina, URLA, Universitat Rovira i Virgili, Hospital Sant Joan, IISPV, CIBERDEM, Reus, Catalonia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Katsi V, Katsimichas T, Pittaras A, Grassos C, Katsimichas A, Tousoulis D, Stefanadis C, Kallikazaros I. Hypertension and bradykinin. Cardiovasc Endocrinol 2012; 1:24-30. [DOI: 10.1097/xce.0b013e328357a94c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
Wong CTT, Rowlands DK, Wong CH, Lo TWC, Nguyen GKT, Li HY, Tam JP. Orally Active Peptidic Bradykinin B1 Receptor Antagonists Engineered from a Cyclotide Scaffold for Inflammatory Pain Treatment. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200984] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Wong CTT, Rowlands DK, Wong CH, Lo TWC, Nguyen GKT, Li HY, Tam JP. Orally Active Peptidic Bradykinin B1 Receptor Antagonists Engineered from a Cyclotide Scaffold for Inflammatory Pain Treatment. Angew Chem Int Ed Engl 2012; 51:5620-4. [DOI: 10.1002/anie.201200984] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Indexed: 01/06/2023]
|
39
|
Bhupatiraju C, Patkar S, Pandharpurkar D, Joshi S, Tirunilai P. Association and interaction of -58C>T and ±9 bp polymorphisms of BDKRB2 gene causing susceptibility to essential hypertension. Clin Exp Hypertens 2012; 34:230-5. [PMID: 22468762 DOI: 10.3109/10641963.2011.631653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Bradykinin, a vasodilator by nature has been documented to have a protective role against hypertension and cardiovascular complications. Polymorphisms of bradykinin B2 receptor (BDKRB2) gene are reported to be predisposing factors for hypertension. Evaluation of the association between -58C>T and ±9 bp polymorphisms of BDKRB2 with essential hypertension (EHT) was attempted. METHODS Two hundred and fourteen primary hypertensives and 249 controls were genotyped for the selected markers by polymerase chain reaction, gel electrophoresis (±9 bp), and SSCP (-58C>T). RESULTS While -58C>T polymorphism did not reveal any association with EHT, ±9 bp polymorphism showed a significant association with high risk for heterozygotes (+9/-9) when tested against the pooled frequencies of homozygotes (OR [odds ratio] = 1.63, 95% confidence interval [CI] = 1.12-2.38, P = .02), and this risk was 1.7 folds high in males (OR = 1.74, 95% CI = 1.05-2.86, P = .06) and 1.9 folds high in familial cases (OR = 1.96, 95% CI = 1.09-3.53, P = .04). In contrast, significant protective effect was observed for -9/-9 genotype against EHT when tested under dominant model in general (OR = 0.59, 95% CI = 0.41-0.86, P = .01), in males (OR = 0.49, 95% CI = 0.30-0.82, P = .01), and in familial cases (OR = 0.50, 95% CI = 0.28-0.89, P = .04). Significant risk for +9 bp allele was observed in general (OR = 1.39, 95% CI = 1.05-1.86, P = .04) and in males (OR = 1.65, 95% CI = 1.13-2.41, P = .02). The interaction information analysis revealed a synergistic effect between the two polymorphisms contributing to EHT. +9/+9 genotype of ±9 bp polymorphism when present in combination with CC genotype of -58C>T polymorphism showed 2.2-fold higher risk for developing EHT. CONCLUSIONS The results suggest that allele +9 bp might be a risk factor for EHT in general and specially in males. Markers -58C>T and ±9 bp may act synergistically causing susceptibility to EHT.
Collapse
|
40
|
Sharma JN. Association between the kinin–forming system and cardiovascular pathophysiology. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Kaewkiattiyot S, Honsawek S, Vejchapipat P, Chongsrisawat V, Poovorawan Y. Association of X-prolyl aminopeptidase 1 rs17095355 polymorphism with biliary atresia in Thai children. Hepatol Res 2011; 41:1249-1252. [PMID: 22118303 DOI: 10.1111/j.1872-034x.2011.00870.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM To investigate XPNPEP1 rs17095355 polymorphism in biliary atresia (BA) patients and to determine whether there is an association between XPNPEP1 gene polymorphism and susceptibility to BA in a Thai population. METHODS A total of 124 cases of BA and 114 controls were genotyped for XPNPEP1 rs17095355 polymorphism. The XPNPEP1 rs17095355 C/T genotype was determined by polymerase chain reaction (PCR) and direct sequencing. Allele and genotype frequencies were established by directed counting from the sequences. RESULTS Genotype distributions for the XPNPEP1 rs17095355 polymorphism tested were in Hardy-Weinberg equilibrium for both control and study groups. There were no significant differences in genotype and allele frequencies of the single nucleotide polymorphism between controls and Thai children with BA. Genotype frequencies of rs17095355 of T/T in BA were higher than those of controls (34.68% and 16.67%, P < 0.002). Also, the T allele frequencies of BA were higher than those of controls (56.85% and 42.98%, P < 0.003). CONCLUSION The association between XPNPEP1 rs17095355 polymorphism and BA has been demonstrated, particularly with the T allele. We hypothesize that the XPNPEP1 rs17095355 polymorphism confers increased susceptibility to the disease.
Collapse
Affiliation(s)
- Sarannut Kaewkiattiyot
- Center of Excellence in Clinical Virology Department of Biochemistry, Faculty of Medicine Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
42
|
Chajkowski SM, Mallela J, Watson DE, Wang J, McCurdy CR, Rimoldi JM, Shariat-Madar Z. Highly selective hydrolysis of kinins by recombinant prolylcarboxypeptidase. Biochem Biophys Res Commun 2010; 405:338-43. [PMID: 21167814 DOI: 10.1016/j.bbrc.2010.12.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/07/2010] [Indexed: 11/18/2022]
Abstract
We have previously cloned a cDNA encoding human prolylcarboxypeptidase (PRCP) and expressed the cDNA in the Schneider 2 (S2) drosophila cell line. Here, we further characterized this recombinant enzyme. Investigations were performed to determine whether recombinant PRCP (rPRCP) metabolizes kinins (BK 1-9 and BK 1-8). The metabolites of these kinins were identified by LC/MS. rPRCP metabolized BK 1-8 to BK 1-7, whereas rPRCP was ineffective in metabolizing BK 1-9. The hydrolysis of BK 1-8 by rPRCP was dose- and time-dependent. A homology model of PRCP was developed based upon the sequence of dipeptidyl-peptidase 7 (DPP7, PDB ID: 3JYH), and providentially, the structure of PRCP (PDB ID: 3N2Z) was characterized during the course of our investigation. Docking studies of bradykinin oligopeptides were performed both from the homology model, and from the crystal structure of PRCP. These docking studies may provide a better understanding of the contribution of specific residues involved in substrate selectivity of human PRCP.
Collapse
Affiliation(s)
- S M Chajkowski
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS 38677-1848, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Garcia-Barceló MM, Yeung MY, Miao XP, Tang CSM, Cheng G, So MT, Ngan ESW, Lui VCH, Chen Y, Liu XL, Hui KJWS, Li L, Guo WH, Sun XB, Tou JF, Chan KW, Wu XZ, Song YQ, Chan D, Cheung K, Chung PHY, Wong KKY, Sham PC, Cherny SS, Tam PKH. Genome-wide association study identifies a susceptibility locus for biliary atresia on 10q24.2. Hum Mol Genet 2010; 19:2917-25. [PMID: 20460270 DOI: 10.1093/hmg/ddq196] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Biliary atresia (BA) is characterized by the progressive fibrosclerosing obliteration of the extrahepatic biliary system during the first few weeks of life. Despite early diagnosis and prompt surgical intervention, the disease progresses to cirrhosis in many patients. The current theory for the pathogenesis of BA proposes that during the perinatal period, a still unknown exogenous factor meets the innate immune system of a genetically predisposed individual and induces an uncontrollable and potentially self-limiting immune response, which becomes manifest in liver fibrosis and atresia of the extrahepatic bile ducts. Genetic factors that could account for the disease, let alone for its high incidence in Chinese, are to be investigated. To identify BA susceptibility loci, we carried out a genome-wide association study (GWAS) using the Affymetrix 5.0 and 500 K marker sets. We genotyped nearly 500 000 single-nucleotide polymorphisms (SNPs) in 200 Chinese BA patients and 481 ethnically matched control subjects. The 10 most BA-associated SNPs from the GWAS were genotyped in an independent set of 124 BA and 90 control subjects. The strongest overall association was found for rs17095355 on 10q24, downstream XPNPEP1, a gene involved in the metabolism of inflammatory mediators. Allelic chi-square test P-value for the meta-analysis of the GWAS and replication results was 6.94 x 10(-9). The identification of putative BA susceptibility loci not only opens new fields of investigation into the mechanisms underlying BA but may also provide new clues for the development of preventive and curative strategies.
Collapse
|
44
|
Abstract
The Bradykinin (BK) system has a very significant role in the regulation of blood pressure (BP). Hence, reduced activity of BK receptors mediated via decreased circulating endogenous kinin might explain the cause of high BP. This system also governs the activation of the angiotensin system at various axes in control of the physiological BP. The BK receptor antagonists can block the hypotensive action of angiotensin-converting enzyme inhibitors (ACEIs) in hypertensive and normotensive animals. The hypotensive action of BK is highly increased with ACEIs or kininase II inhibitor treatment. The development of specific BK agonists may provide a new direction to explore the experimental approach for examining the role of BK in hypertension.
Collapse
Affiliation(s)
- J.N. Sharma
- Department of Applied Therapeutics, Faculty of Pharmacy, Health Sciences Centre, Kuwait University, Safat, Kuwait
| |
Collapse
|