1
|
Kazi RNA. Silent Effects of High Salt: Risks Beyond Hypertension and Body's Adaptation to High Salt. Biomedicines 2025; 13:746. [PMID: 40149722 PMCID: PMC11940015 DOI: 10.3390/biomedicines13030746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Hypertension is a major contributor to heart disease, renal failure, and stroke. High salt is one of the significant risk factors associated with the onset and persistence of hypertension. Experimental and observational studies have confirmed cardiovascular and non-cardiovascular detrimental effects associated with chronic intake of high salt. Because of convenience and present urban lifestyles, consumption of fast food has led to daily salt intake above the recommended level by the World Health Organization. This study provides an understanding of the body regulatory mechanisms that maintain sodium homeostasis under conditions of high salt intake, without health consequences, and how these mechanisms adapt to chronic high salt load, leading to adverse cardiovascular, renal, and non-cardiovascular outcomes. Recent research has identified several mechanisms through which high sodium intake contributes to hypertension. Of them, heightened renin-angiotensin-aldosterone and sympathetic activity associated with impaired pressure diuresis and natriuresis and decreased renal excretory response are reported. Additionally, there is the possibility of endothelial and nitric oxide dysfunction leading to vascular remodeling. These changes raise cardiac output and peripheral vascular resistance. Knowing how these collective mechanisms adapt to chronic intakes of high salt helps develop effective therapeutic policies to fight salt-induced hypertension.
Collapse
Affiliation(s)
- Raisa Nazir Ahmed Kazi
- Department Respiratory Therapy, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 37912, Saudi Arabia
| |
Collapse
|
2
|
Xia C, Dai W, Carreno J, Rogando A, Wu X, Simmons D, Astraea N, Dalleska NF, Fonteh AN, Vasudevan A, Arakaki X, Kloner RA. Higher sodium in older individuals or after stroke/reperfusion, but not in migraine or Alzheimer's disease - a study in different preclinical models. Sci Rep 2024; 14:21636. [PMID: 39284837 PMCID: PMC11405707 DOI: 10.1038/s41598-024-72280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Sodium serves as one of the primary cations in the central nervous system, playing a crucial role in maintaining normal brain function. In this study, we investigated alterations in sodium concentrations in the brain and/or cerebrospinal fluid across multiple models, including an aging model, a stroke model, a nitroglycerin (NTG)-induced rat migraine model, a familial hemiplegic migraine type 2 (FHM2) mouse model, and a transgenic mouse model of Alzheimer's disease (AD). Our results reveal that older rats exhibited higher sodium concentrations in cerebrospinal fluid (CSF), plasma, and various brain regions compared to their younger counterparts. Additionally, findings from the stroke model demonstrated a significant increase in sodium in the ischemic/reperfused region, accompanied by a decrease in potassium and an elevated sodium/potassium ratio. However, we did not detect significant changes in sodium in the NTG-induced rat migraine model or the FHM2 mouse model. Furthermore, AD transgenic mice showed no significant differences in sodium levels compared to wild-type mice in CSF, plasma, or the hippocampus. These results underscore the nuanced regulation of sodium homeostasis in various neurological conditions and aging, providing valuable insights into potential mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Chenchen Xia
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Wangde Dai
- Cardiovascular Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Juan Carreno
- Cardiovascular Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Andrea Rogando
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Xiaomeng Wu
- Analytical Biochemistry Core, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Darren Simmons
- Analytical Biochemistry Core, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Natalie Astraea
- Analytical Biochemistry Core, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Nathan F Dalleska
- Water and Environment Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Alfred N Fonteh
- Biomarker and Neuro-Disease Mechanism Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA, USA.
| | - Robert A Kloner
- Cardiovascular Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| |
Collapse
|
3
|
Xia M, Wang T, Wang Y, Hu T, Chen D, Wang B. A neural perspective on the treatment of hypertension: the neurological network excitation and inhibition (E/I) imbalance in hypertension. Front Cardiovasc Med 2024; 11:1436059. [PMID: 39323755 PMCID: PMC11422145 DOI: 10.3389/fcvm.2024.1436059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Despite the increasing number of anti-hypertensive drugs have been developed and used in the clinical setting, persistent deficiencies persist, including issues such as lifelong dosage, combination therapy. Notwithstanding receiving the treatment under enduring these deficiencies, approximately 4 in 5 patients still fail to achieve reliable blood pressure (BP) control. The application of neuromodulation in the context of hypertension presents a pioneering strategy for addressing this condition, con-currently implying a potential central nervous mechanism underlying hypertension onset. We hypothesize that neurological networks, an essential component of maintaining appropriate neurological function, are involved in hypertension. Drawing on both peer-reviewed research and our laboratory investigations, we endeavor to investigate the underlying neural mechanisms involved in hypertension by identifying a close relationship between its onset of hypertension and an excitation and inhibition (E/I) imbalance. In addition to the involvement of excitatory glutamatergic and GABAergic inhibitory system, the pathogenesis of hypertension is also associated with Voltage-gated sodium channels (VGSCs, Nav)-mediated E/I balance. The overloading of glutamate or enhancement of glutamate receptors may be attributed to the E/I imbalance, ultimately triggering hypertension. GABA loss and GABA receptor dysfunction have also proven to be involved. Furthermore, we have identified that abnormalities in sodium channel expression and function alter neural excitability, thereby disturbing E/I balance and potentially serving as a mechanism underlying hypertension. These insights are expected to furnish potential strategies for the advancement of innovative anti-hypertensive therapies and a meaningful reference for the exploration of central nervous system (CNS) targets of anti-hypertensives.
Collapse
Affiliation(s)
- Min Xia
- Department of Anesthesiology, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Tianyu Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Yizhu Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Tingting Hu
- Department of Anesthesiology, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Defang Chen
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Stock JM, Romberger NT, McMillan RK, Chung JW, Wenner MM, Stocker SD, Farquhar WB, Burciu RG. Acute hypernatremia increases functional connectivity of NaCl sensing regions in the human brain: An fMRI pilot study. Auton Neurosci 2024; 254:103182. [PMID: 38805791 PMCID: PMC12067945 DOI: 10.1016/j.autneu.2024.103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Rodent studies demonstrated specialized sodium chloride (NaCl) sensing neurons in the circumventricular organs, which mediate changes in sympathetic nerve activity, arginine vasopressin, thirst, and blood pressure. However, the neural pathways involved in NaCl sensing in the human brain are incompletely understood. The purpose of this pilot study was to determine if acute hypernatremia alters the functional connectivity of NaCl-sensing regions of the brain in healthy young adults. Resting-state fMRI scans were acquired in 13 participants at baseline and during a 30 min hypertonic saline infusion (HSI). We used a seed-based approach to analyze the data, focusing on the subfornical organ (SFO) and the organum vasculosum of the lamina terminalis (OVLT) as regions of interest (ROIs). Blood chemistry and perceived thirst were assessed pre- and post-infusion. As expected, serum sodium increased from pre- to post-infusion in the HSI group. The primary finding of this pilot study was that the functional connectivity between the SFO and a cluster within the OVLT increased from baseline to the late-phase of the HSI. Bidirectional connectivity changes were found with cortical regions, with some regions showing increased connectivity with sodium-sensing regions while others showed decreased connectivity. Furthermore, the functional connectivity between the SFO and the posterior cingulate cortex (a control ROI) did not change from baseline to the late-phase of the HSI. This finding indicates a distinct response within the NaCl sensing network in the human brain specifically related to acute hypernatremia that will need to be replicated in large-scale studies.
Collapse
Affiliation(s)
- Joseph M Stock
- University of Delaware, Newark, DE, United States of America
| | | | | | - Jae Woo Chung
- University of Minnesota, Minneapolis, MN, United States of America
| | - Megan M Wenner
- University of Delaware, Newark, DE, United States of America
| | - Sean D Stocker
- University of Pittsburgh, Pittsburgh, PA, United States of America
| | | | - Roxana G Burciu
- University of Delaware, Newark, DE, United States of America.
| |
Collapse
|
5
|
Stocker SD, Kinsman BJ, Farquhar WB, Gyarmati G, Peti-Peterdi J, Sved AF. Physiological Mechanisms of Dietary Salt Sensing in the Brain, Kidney, and Gastrointestinal Tract. Hypertension 2024; 81:447-455. [PMID: 37671571 PMCID: PMC10915107 DOI: 10.1161/hypertensionaha.123.19488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Excess dietary salt (NaCl) intake is strongly correlated with cardiovascular disease and is a major contributing factor to the pathogenesis of hypertension. NaCl-sensitive hypertension is a multisystem disorder that involves renal dysfunction, vascular abnormalities, and neurogenically-mediated increases in peripheral resistance. Despite a major research focus on organ systems and these effector mechanisms causing NaCl-induced increases in arterial blood pressure, relatively less research has been directed at elucidating how NaCl is sensed by various tissues to elicit these downstream effects. The purpose of this review is to discuss how the brain, kidney, and gastrointestinal tract sense NaCl including key cell types, the role of NaCl versus osmolality, and the underlying molecular and electrochemical mechanisms.
Collapse
Affiliation(s)
- Sean D. Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine
| | - Brian J Kinsman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital
| | | | - Georgina Gyarmati
- Department of Physiology and Neuroscience and Medicine, Zilkha Neurogenetic Institute, University of Southern California
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience and Medicine, Zilkha Neurogenetic Institute, University of Southern California
| | - Alan F. Sved
- Department of Neuroscience, University of Pittsburgh
| |
Collapse
|
6
|
Stocker SD. Altered Neuronal Discharge in the Organum Vasculosum of the Lamina Terminalis Contributes to Dahl Salt-Sensitive Hypertension. Hypertension 2023; 80:872-881. [PMID: 36752103 PMCID: PMC10023399 DOI: 10.1161/hypertensionaha.122.20798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Salt-sensitive hypertension in humans and experimental models is associated with higher plasma and cerebrospinal fluid sodium chloride (NaCl) concentrations. Changes in extracellular NaCl concentrations are sensed by specialized neurons in the organum vasculosum of the lamina terminalis (OVLT). Stimulation of OVLT neurons increases sympathetic nerve activity (SNA) and arterial blood pressure (ABP), whereas chronic activation produces hypertension. Therefore, the present study tested whether OVLT neuronal activity was elevated and contributed to SNA and ABP in salt-sensitive hypertension. METHODS Male Dahl salt-sensitive (Dahl S) and Dahl salt-resistant (Dahl R) rats were fed 0.1% or 4.0% NaCl diets for 3 to 4 weeks and used for single-unit recordings of OVLT neurons or simultaneous recording of multiple sympathetic nerves during pharmacological inhibition of the OVLT. RESULTS Plasma and cerebrospinal fluid Na+ and Cl- concentrations were higher in Dahl S rats fed 4% versus 0.1% or Dahl R rats fed either diet. In vivo single-unit recordings revealed a significantly higher discharge of NaCl-responsive OVLT neurons in Dahl S rats fed 4% versus 0.1% or Dahl R rats. Interestingly, intracarotid infusion of hypertonic NaCl evoked greater increases in OVLT neuronal discharge of Dahl S versus Dahl R rats regardless of NaCl diet. The activity of non-NaCl-responsive OVLT neurons was not different across strain or diets. Finally, inhibition of OVLT neurons by local injection of the gamma-aminobutyric acid agonist muscimol produced a greater decrease in renal SNA, splanchnic SNA, and ABP of Dahl S rats fed 4% versus 0.1% or Dahl R rats. CONCLUSIONS A high salt diet activates NaCl-responsive OVLT neurons to increase SNA and ABP in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
7
|
Amraei R, Moreira JD, Wainford RD. Central Gαi 2 Protein Mediated Neuro-Hormonal Control of Blood Pressure and Salt Sensitivity. Front Endocrinol (Lausanne) 2022; 13:895466. [PMID: 35837296 PMCID: PMC9275552 DOI: 10.3389/fendo.2022.895466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertension, a major public health issue, is estimated to contribute to 10% of all deaths worldwide. Further, the salt sensitivity of blood pressure is a critical risk factor for the development of hypertension. The hypothalamic paraventricular nucleus (PVN) coordinates neuro-hormonal responses to alterations in plasma sodium and osmolality and multiple G Protein-Coupled Receptors (GPCRs) are involved in fluid and electrolyte homeostasis. In acute animal studies, our laboratory has shown that central Gαi/o subunit protein signal transduction mediates hypotensive and bradycardic responses and that Gz/q, proteins mediate the release of arginine vasopressin (AVP) and subsequent aquaretic responses to acute pharmacological stimuli. Extending these studies, our laboratory has shown that central Gαi2 proteins selectively mediate the hypotensive, sympathoinhibitory and natriuretic responses to acute pharmacological activation of GPCRs and in response to acute physiological challenges to fluid and electrolyte balance. In addition, following chronically elevated dietary sodium intake, salt resistant rats demonstrate site-specific and subunit-specific upregulation of Gαi2 proteins in the PVN, resulting in sympathoinhibition and normotension. In contrast, chronic dietary sodium intake in salt sensitive animals, which fail to upregulate PVN Gαi2 proteins, results in the absence of dietary sodium-evoked sympathoinhibition and salt sensitive hypertension. Using in situ hybridization, we observed that Gαi2 expressing neurons in parvocellular division of the PVN strongly (85%) colocalize with GABAergic neurons. Our data suggest that central Gαi2 protein-dependent responses to an acute isotonic volume expansion (VE) and elevated dietary sodium intake are mediated by the peripheral sensory afferent renal nerves and do not depend on the anteroventral third ventricle (AV3V) sodium sensitive region or the actions of central angiotensin II type 1 receptors. Our translational human genomic studies have identified three G protein subunit alpha I2 (GNAI2) single nucleotide polymorphisms (SNPs) as potential biomarkers in individuals with salt sensitivity and essential hypertension. Collectively, PVN Gαi2 proteins-gated pathways appear to be highly conserved in salt resistance to counter the effects of acute and chronic challenges to fluid and electrolyte homeostasis on blood pressure via a renal sympathetic nerve-dependent mechanism.
Collapse
Affiliation(s)
- Razie Amraei
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Jesse D. Moreira
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Richard D. Wainford
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Stock JM, Chelimsky G, Edwards DG, Farquhar WB. Dietary sodium and health: How much is too much for those with orthostatic disorders? Auton Neurosci 2022; 238:102947. [PMID: 35131651 PMCID: PMC9296699 DOI: 10.1016/j.autneu.2022.102947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/09/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
High dietary salt (NaCl) increases blood pressure (BP) and can adversely impact multiple target organs including the vasculature, heart, kidneys, brain, autonomic nervous system, skin, eyes, and bone. However, patients with orthostatic disorders are told to increase their NaCl intake to help alleviate symptoms. While there is evidence to support the short-term benefits of increasing NaCl intake in these patients, there are few studies assessing the benefits and side effects of long-term high dietary NaCl. The evidence reviewed suggests that high NaCl can adversely impact multiple target organs, often independent of BP. However, few of these studies have been performed in patients with orthostatic disorders. We conclude that the recommendation to increase dietary NaCl in patients with orthostatic disorders should be done with care, keeping in mind the adverse impact on dietary NaCl in people without orthostatic disorders. Modest, rather than robust, increases in NaCl intake may be sufficient to alleviate symptoms but also minimize any long-term negative effects.
Collapse
Affiliation(s)
- Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Gisela Chelimsky
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America.
| |
Collapse
|
9
|
Frame AA, Nist KM, Kim K, Kuwabara JT, Wainford RD. Natriuresis During an Acute Intravenous Sodium Chloride Infusion in Conscious Sprague Dawley Rats Is Mediated by a Blood Pressure-Independent α1-Adrenoceptor-Mediated Mechanism. Front Physiol 2022; 12:784957. [PMID: 35111076 PMCID: PMC8802910 DOI: 10.3389/fphys.2021.784957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that sense alterations in total body sodium content to facilitate sodium homeostasis in response to an acute sodium challenge that does not increase blood pressure have not been fully elucidated. We hypothesized that the renal sympathetic nerves are critical to mediate natriuresis via α1- or β-adrenoceptors signal transduction pathways to maintain sodium balance in the face of acute increases in total body sodium content that do not activate the pressure-natriuresis mechanism. To address this hypothesis, we used acute bilateral renal denervation (RDNX), an anteroventral third ventricle (AV3V) lesion and α1- or β-antagonism during an acute 1M NaCl sodium challenge in conscious male Sprague Dawley rats. An acute 1M NaCl infusion did not alter blood pressure and evoked profound natriuresis and sympathoinhibition. Acute bilateral RDNX attenuated the natriuretic and sympathoinhibitory responses evoked by a 1M NaCl infusion [peak natriuresis (μeq/min) sham 14.5 ± 1.3 vs. acute RDNX: 9.2 ± 1.4, p < 0.05; plasma NE (nmol/L) sham control: 44 ± 4 vs. sham 1M NaCl infusion 11 ± 2, p < 0.05; acute RDNX control: 42 ± 6 vs. acute RDNX 1M NaCl infusion 25 ± 3, p < 0.05]. In contrast, an AV3V lesion did not impact the cardiovascular, renal excretory or sympathoinhibitory responses to an acute 1M NaCl infusion. Acute i.v. α1-adrenoceptor antagonism with terazosin evoked a significant drop in baseline blood pressure and significantly attenuated the natriuretic response to a 1M NaCl load [peak natriuresis (μeq/min) saline 17.2 ± 1.4 vs. i.v. terazosin 7.8 ± 2.5, p < 0.05]. In contrast, acute β-adrenoceptor antagonism with i.v. propranolol infusion did not impact the cardiovascular or renal excretory responses to an acute 1M NaCl infusion. Critically, the natriuretic response to an acute 1M NaCl infusion was significantly blunted in rats receiving a s.c. infusion of the α1-adrenoceptor antagonist terazosin at a dose that did not lower baseline blood pressure [peak natriuresis (μeq/min) sc saline: 18 ± 1 vs. sc terazosin 7 ± 2, p < 0.05]. Additionally, a s.c. infusion of the α1-adrenoceptor antagonist terazosin further attenuated the natriuretic response to a 1M NaCl infusion in acutely RDNX animals. Collectively these data indicate a specific role of a blood pressure-independent renal sympathetic nerve-dependent α1-adrenoceptor-mediated pathway in the natriuretic and sympathoinhibitory responses evoked by acute increases in total body sodium.
Collapse
Affiliation(s)
- Alissa A. Frame
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Kayla M. Nist
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Kiyoung Kim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Jill T. Kuwabara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Richard D. Wainford
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Richard D. Wainford,
| |
Collapse
|
10
|
NODA M, MATSUDA T. Central regulation of body fluid homeostasis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:283-324. [PMID: 35908954 PMCID: PMC9363595 DOI: 10.2183/pjab.98.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
Collapse
Affiliation(s)
- Masaharu NODA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Correspondence should be addressed to: Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan (e-mail: )
| | - Takashi MATSUDA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
11
|
Mariano VS, Boer PA, Gontijo JAR. Fetal Undernutrition Programming, Sympathetic Nerve Activity, and Arterial Hypertension Development. Front Physiol 2021; 12:704819. [PMID: 34867434 PMCID: PMC8635863 DOI: 10.3389/fphys.2021.704819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
A wealth of evidence showed that low birth weight is associated with environmental disruption during gestation, triggering embryotic or fetal adaptations and increasing the susceptibility of progeny to non-communicable diseases, including metabolic and cardiovascular diseases, obesity, and arterial hypertension. In addition, dietary disturbance during pregnancy in animal models has highlighted mechanisms that involve the genesis of arterial hypertension, particularly severe maternal low-protein intake (LP). Functional studies demonstrated that maternal low-protein intake leads to the renal decrease of sodium excretion and the dysfunction of the renin-angiotensin-aldosterone system signaling of LP offspring. The antinatriuretic effect is accentuated by a reduced number of nephron units and glomerulosclerosis, which are critical in establishing arterial hypertension phenotype. Also, in this way, studies have shown that the overactivity of the central and peripheral sympathetic nervous system occurs due to reduced sensory (afferent) renal nerve activity. As a result of this reciprocal and abnormal renorenal reflex, there is an enhanced tubule sodium proximal sodium reabsorption, which, at least in part, contributes directly to arterial hypertension development in some of the programmed models. A recent study has observed that significant changes in adrenal medulla secretion could be involved in the pathophysiological process of increasing blood pressure. Thus, this review aims to compile studies that link the central and peripheral sympathetic system activity mechanisms on water and salt handle and blood pressure control in the maternal protein-restricted offspring. Besides, these pathophysiological mechanisms mainly may involve the modulation of neurokinins and catecholamines pathways.
Collapse
Affiliation(s)
- Vinícius Schiavinatto Mariano
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Moreira JD, Nist KM, Carmichael CY, Kuwabara JT, Wainford RD. Sensory Afferent Renal Nerve Activated Gαi 2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges. Front Physiol 2021; 12:771167. [PMID: 34916958 PMCID: PMC8669768 DOI: 10.3389/fphys.2021.771167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/09/2021] [Indexed: 11/15/2022] Open
Abstract
We have previously reported that brain Gαi2 subunit proteins are required to maintain sodium homeostasis and are endogenously upregulated in the hypothalamic paraventricular nucleus (PVN) in response to increased dietary salt intake to maintain a salt resistant phenotype in rats. However, the origin of the signal that drives the endogenous activation and up-regulation of PVN Gαi2 subunit protein signal transduction pathways is unknown. By central oligodeoxynucleotide (ODN) administration we show that the pressor responses to central acute administration and central infusion of sodium chloride occur independently of brain Gαi2 protein pathways. In response to an acute volume expansion, we demonstrate, via the use of selective afferent renal denervation (ADNX) and anteroventral third ventricle (AV3V) lesions, that the sensory afferent renal nerves, but not the sodium sensitive AV3V region, are mechanistically involved in Gαi2 protein mediated natriuresis to an acute volume expansion [peak natriuresis (μeq/min) sham AV3V: 43 ± 4 vs. AV3V 45 ± 4 vs. AV3V + Gαi2 ODN 25 ± 4, p < 0.05; sham ADNX: 43 ± 4 vs. ADNX 23 ± 6, AV3V + Gαi2 ODN 25 ± 3, p < 0.05]. Furthermore, in response to chronically elevated dietary sodium intake, endogenous up-regulation of PVN specific Gαi2 proteins does not involve the AV3V region and is mediated by the sensory afferent renal nerves to counter the development of the salt sensitivity of blood pressure (MAP [mmHg] 4% NaCl; Sham ADNX 124 ± 4 vs. ADNX 145 ± 4, p < 0.05; Sham AV3V 125 ± 4 vs. AV3V 121 ± 5). Additionally, the development of the salt sensitivity of blood pressure following central ODN-mediated Gαi2 protein down-regulation occurs independently of the actions of the brain angiotensin II type 1 receptor. Collectively, our data suggest that in response to alterations in whole body sodium the peripheral sensory afferent renal nerves, but not the central AV3V sodium sensitive region, evoke the up-regulation and activation of PVN Gαi2 protein gated pathways to maintain a salt resistant phenotype. As such, both the sensory afferent renal nerves and PVN Gαi2 protein gated pathways, represent potential targets for the treatment of the salt sensitivity of blood pressure.
Collapse
Affiliation(s)
- Jesse D. Moreira
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Medicine, School of Medicine, Boston University, Boston, MA, United States
| | - Kayla M. Nist
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Anatomy & Neurobiology, School of Medicine, Boston University, Boston, MA, United States
| | - Casey Y. Carmichael
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| | - Jill T. Kuwabara
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| | - Richard D. Wainford
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| |
Collapse
|
13
|
Deng Y, Deng G, Grobe JL, Cui H. Hypothalamic GPCR Signaling Pathways in Cardiometabolic Control. Front Physiol 2021; 12:691226. [PMID: 34262481 PMCID: PMC8274634 DOI: 10.3389/fphys.2021.691226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is commonly associated with sympathetic overdrive, which is one of the major risk factors for the development of cardiovascular diseases, such as hypertension and heart failure. Over the past few decades, there has been a growing understanding of molecular mechanisms underlying obesity development with central origin; however, the relative contribution of these molecular changes to the regulation of cardiovascular function remains vague. A variety of G-protein coupled receptors (GPCRs) and their downstream signaling pathways activated in distinct hypothalamic neurons by different metabolic hormones, neuropeptides and monoamine neurotransmitters are crucial not only for the regulation of appetite and metabolic homeostasis but also for the sympathetic control of cardiovascular function. In this review, we will highlight the main GPCRs and associated hypothalamic nuclei that are important for both metabolic homeostasis and cardiovascular function. The potential downstream molecular mediators of these GPCRs will also be discussed.
Collapse
Affiliation(s)
- Yue Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Justin L. Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Huxing Cui
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- FOE Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
14
|
Ruggeri Barbaro N, Van Beusecum J, Xiao L, do Carmo L, Pitzer A, Loperena R, Foss JD, Elijovich F, Laffer CL, Montaniel KR, Galindo CL, Chen W, Ao M, Mernaugh RL, Alsouqi A, Ikizler TA, Fogo AB, Moreno H, Zhao S, Davies SS, Harrison DG, Kirabo A. Sodium activates human monocytes via the NADPH oxidase and isolevuglandin formation. Cardiovasc Res 2021; 117:1358-1371. [PMID: 33038226 PMCID: PMC8064439 DOI: 10.1093/cvr/cvaa207] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Prior studies have focused on the role of the kidney and vasculature in salt-induced modulation of blood pressure; however, recent data indicate that sodium accumulates in tissues and can activate immune cells. We sought to examine mechanisms by which salt causes activation of human monocytes both in vivo and in vitro. METHODS AND RESULTS To study the effect of salt in human monocytes, monocytes were isolated from volunteers to perform several in vitro experiments. Exposure of human monocytes to elevated Na+ex vivo caused a co-ordinated response involving isolevuglandin (IsoLG)-adduct formation, acquisition of a dendritic cell (DC)-like morphology, expression of activation markers CD83 and CD16, and increased production of pro-inflammatory cytokines tumour necrosis factor-α, interleukin (IL)-6, and IL-1β. High salt also caused a marked change in monocyte gene expression as detected by RNA sequencing and enhanced monocyte migration to the chemokine CC motif chemokine ligand 5. NADPH-oxidase inhibition attenuated monocyte activation and IsoLG-adduct formation. The increase in IsoLG-adducts correlated with risk factors including body mass index, pulse pressure. Monocytes exposed to high salt stimulated IL-17A production from autologous CD4+ and CD8+ T cells. In addition, to evaluate the effect of salt in vivo, monocytes and T cells isolated from humans were adoptively transferred to immunodeficient NSG mice. Salt feeding of humanized mice caused monocyte-dependent activation of human T cells reflected by proliferation and accumulation of T cells in the bone marrow. Moreover, we performed a cross-sectional study in 70 prehypertensive subjects. Blood was collected for flow cytometric analysis and 23Na magnetic resonance imaging was performed for tissue sodium measurements. Monocytes from humans with high skin Na+ exhibited increased IsoLG-adduct accumulation and CD83 expression. CONCLUSION Human monocytes exhibit co-ordinated increases in parameters of activation, conversion to a DC-like phenotype and ability to activate T cells upon both in vitro and in vivo sodium exposure. The ability of monocytes to be activated by sodium is related to in vivo cardiovascular disease risk factors. We therefore propose that in addition to the kidney and vasculature, immune cells like monocytes convey salt-induced cardiovascular risk in humans.
Collapse
Affiliation(s)
- Natalia Ruggeri Barbaro
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Justin Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Liang Xiao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Luciana do Carmo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Ashley Pitzer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Roxana Loperena
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jason D Foss
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Kim R Montaniel
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Cristi L Galindo
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Mingfang Ao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | | | - Aseel Alsouqi
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Talat A Ikizler
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes B Fogo
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heitor Moreno
- Department of Intern Medicine, Faculty of Medical Sciences, Cardiovascular Pharmacology Laboratory, University of Campinas, Campinas, Brazil
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sean S Davies
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
15
|
Tiyasatkulkovit W, Aksornthong S, Adulyaritthikul P, Upanan P, Wongdee K, Aeimlapa R, Teerapornpuntakit J, Rojviriya C, Panupinthu N, Charoenphandhu N. Excessive salt consumption causes systemic calcium mishandling and worsens microarchitecture and strength of long bones in rats. Sci Rep 2021; 11:1850. [PMID: 33473159 PMCID: PMC7817681 DOI: 10.1038/s41598-021-81413-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive salt intake has been associated with the development of non-communicable diseases, including hypertension with several cardiovascular consequences. Although the detrimental effects of high salt on the skeleton have been reported, longitudinal assessment of calcium balance together with changes in bone microarchitecture and strength under salt loading has not been fully demonstrated. To address these unanswered issues, male Sprague-Dawley rats were fed normal salt diet (NSD; 0.8% NaCl) or high salt diet (HSD; 8% NaCl) for 5 months. Elevation of blood pressure, cardiac hypertrophy and glomerular deterioration were observed in HSD, thus validating the model. The balance studies were performed to monitor calcium input and output upon HSD challenge. The HSD-induced increase in calcium losses in urine and feces together with reduced fractional calcium absorption led to a decrease in calcium retention. With these calcium imbalances, we therefore examined microstructural changes of long bones of the hind limbs. Using the synchrotron radiation x-ray tomographic microscopy, we showed that trabecular structure of tibia and femur of HSD displayed a marked increase in porosity. Consistently, the volumetric micro-computed tomography also demonstrated a significant decrease in trabecular bone mineral density with expansion of endosteal perimeter in the tibia. Interestingly, bone histomorphometric analyses indicated that salt loading caused an increase in osteoclast number together with decreases in osteoblast number and osteoid volume. This uncoupling process of bone remodeling in HSD might underlie an accelerated bone loss and bone structural changes. In conclusion, long-term excessive salt consumption leads to impairment of skeletal mass and integrity possibly through negative calcium balance.
Collapse
Affiliation(s)
- Wacharaporn Tiyasatkulkovit
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.7922.e0000 0001 0244 7875Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sirion Aksornthong
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
| | - Punyanuch Adulyaritthikul
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
| | - Pornpailin Upanan
- grid.411825.b0000 0000 9482 780XFaculty of Allied Health Sciences, Burapha University, Chonburi, 20131 Thailand
| | - Kannikar Wongdee
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.411825.b0000 0000 9482 780XFaculty of Allied Health Sciences, Burapha University, Chonburi, 20131 Thailand
| | - Ratchaneevan Aeimlapa
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
| | - Jarinthorn Teerapornpuntakit
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.412029.c0000 0000 9211 2704Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000 Thailand
| | - Catleya Rojviriya
- grid.472685.aSynchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000 Thailand
| | - Nattapon Panupinthu
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand
| | - Narattaphol Charoenphandhu
- grid.10223.320000 0004 1937 0490Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400 Thailand ,grid.10223.320000 0004 1937 0490Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300 Thailand
| |
Collapse
|
16
|
Salt sensitivity and hypertension. J Hum Hypertens 2020; 35:184-192. [PMID: 32862203 DOI: 10.1038/s41371-020-00407-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Salt sensitivity refers to the physiological trait present in mammals, including humans, by which the blood pressure (BP) of some members of the population exhibits changes parallel to changes in salt intake. It is commoner in elderly, females, Afro-Americans, patients with chronic kidney disease (CKD) and insulin resistance. Increased salt intake promotes an expansion of extracellular fluid volume and increases cardiac output. Salt-sensitive individuals present an abnormal kidney reaction to salt intake; the kidneys retain most of the salt due to an abnormal over-reactivity of sympathetic nervous system and a blunted suppression of renin-angiotensin axis. Moreover, instead of peripheral vascular resistance falling, salt-sensitive subjects present increased vascular resistance due mainly to impaired nitric oxide synthesis in endothelium. Recent studies have shown that part of the dietary salt loading accumulates in skin. Hypertensive and patients with CKD seem to have more sodium in skin comparing to healthy ones. However, we still have not fully explained the link between skin sodium, BP and salt sensitivity. Finally, although salt sensitivity plays a meaningful role in BP pathophysiology, it cannot be used by the physician in everyday patient's care, mainly due to lack of a simple and practical diagnostic test.
Collapse
|
17
|
Fan H, Yang JW, Wang LQ, Huang J, Lin LL, Wang Y, Zhang N, Liu CZ. The Hypotensive Role of Acupuncture in Hypertension: Clinical Study and Mechanistic Study. Front Aging Neurosci 2020; 12:138. [PMID: 32523527 PMCID: PMC7261879 DOI: 10.3389/fnagi.2020.00138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/23/2020] [Indexed: 01/03/2023] Open
Abstract
As a component of traditional Chinese medicine (TCM), acupuncture has the potential to lower blood pressure (BP) in patients with hypertension. Emerging evidence indicates that the acupuncture-induced inhibition of high BP occurs through the activation of the pathway in the afferent, central, and efferent pathways. An increasing number of studies have demonstrated that acupuncture not only activates distinct brain regions under conditions of hypertension caused by an imbalance between the sympathetic and parasympathetic systems but also modulates neurotransmitters in related brain regions to alleviate the autonomic response. The activity of these pathways can be assessed by injecting agonists or inhibitors or by performing neurotomy. This review focuses on the clinical and mechanistic studies of acupuncture in modulating BP, which might provide a neurobiological foundation for the effects of acupuncture. Although many mechanisms underlying the effects of acupuncture on cardiovascular function have been identified, further investigation is warranted.
Collapse
Affiliation(s)
- Hao Fan
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Jing-Wen Yang
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Qiong Wang
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jin Huang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Lu-Lu Lin
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Na Zhang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun-Zhi Liu
- Acupuncture Research Center, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
DeLalio LJ, Sved AF, Stocker SD. Sympathetic Nervous System Contributions to Hypertension: Updates and Therapeutic Relevance. Can J Cardiol 2020; 36:712-720. [PMID: 32389344 DOI: 10.1016/j.cjca.2020.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The sympathetic nervous system plays a pivotal role in the long-term regulation of arterial blood pressure through the ability of the central nervous system to integrate neurohumoral signals and differentially regulate sympathetic neural input to specific end organs. Part 1 of this review will discuss neural mechanisms of salt-sensitive hypertension, obesity-induced hypertension, and the ability of prior experiences to sensitize autonomic networks. Part 2 of this review focuses on new therapeutic advances to treat resistant hypertension including renal denervation and carotid baroactivation. Both advances lower arterial blood pressure by reducing sympathetic outflow. We discuss potential mechanisms and areas of future investigation to target the sympathetic nervous system.
Collapse
Affiliation(s)
- Leon J DeLalio
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan F Sved
- Department of Neuroscience, University of Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
19
|
Lane-Cordova AD, Schneider LR, Tucker WC, Cook JW, Wilcox S, Liu J. Dietary sodium, potassium, and blood pressure in normotensive pregnant women: the National Health and Nutrition Examination Survey. Appl Physiol Nutr Metab 2020; 45:155-160. [PMID: 31251883 PMCID: PMC7456746 DOI: 10.1139/apnm-2019-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dietary sodium, potassium, and sodium-to-potassium ratio are linearly associated with blood pressure in nonpregnant adults. Earlier investigations suggested null or inverse associations of blood pressure and sodium during normotensive pregnancy; findings have not been confirmed in race/ethnically diverse women or while accounting for potassium. Our purpose was to evaluate associations of blood pressure with sodium and potassium and sodium-to-potassium ratio in race/ethnically diverse normotensive pregnant women. We used cross-sectional blood pressure and dietary data from 984 women in multiple cycles of the National Health and Nutrition Examination Survey (mean age = 27.6 ± 0.2 years). We tested for differences in blood pressure across quartiles of sodium intake using Kruskal-Wallis tests and linear regression to evaluate associations of sodium, potassium, and the sodium-to-potassium ratio with systolic (SBP) and diastolic (DBP) blood pressures. We adjusted for potential confounding variables: age, race/ethnicity, education, marital status, body mass index, smoking, and month of pregnancy. SBP and DBP were similar across quartiles of sodium intake: quartile 1 (lowest sodium intake): 107/59; quartile 2: 106/59; quartile 3: 108/60; quartile 4 (highest sodium intake): 108/58 mm Hg, p > 0.60 for all. Sodium (β = 0.16, 95% confidence interval (CI): -0.20 to 0.52) and potassium (β = 0.18, 95% CI: -0.24 to 0.60) and the sodium-to-potassium ratio (β = -0.54, 95% CI: -1.55 to 0.47) were not associated with SBP or DBP. Results were similar in stratified analyses. Novelty Blood pressure was similar among quartiles of sodium or potassium intake, even in analyses stratified by race/ethnicity and trimester of pregnancy. There was no association of sodium or potassium with blood pressure. Blood pressure may be insensitive to dietary sodium and potassium during normotensive pregnancy.
Collapse
Affiliation(s)
- Abbi D Lane-Cordova
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29201, USA
| | - Lara R Schneider
- Department of Epidemiology, Arnold School of Public Health, University of South Carolina, Columbia, SC 29201, USA
| | - William C Tucker
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29201, USA
| | - James W Cook
- Department of Obstetrics and Gynecology, School of Medicine, University of South Carolina, Columbia, SC 29201, USA
| | - Sara Wilcox
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29201, USA
| | - Jihong Liu
- Department of Epidemiology, Arnold School of Public Health, University of South Carolina, Columbia, SC 29201, USA
| |
Collapse
|
20
|
Frame AA, Puleo F, Kim K, Walsh KR, Faudoa E, Hoover RS, Wainford RD. Sympathetic regulation of NCC in norepinephrine-evoked salt-sensitive hypertension in Sprague-Dawley rats. Am J Physiol Renal Physiol 2019; 317:F1623-F1636. [PMID: 31608673 DOI: 10.1152/ajprenal.00264.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Salt sensitivity of blood pressure is characterized by inappropriate sympathoexcitation and renal Na+ reabsorption during high salt intake. In salt-resistant animal models, exogenous norepinephrine (NE) infusion promotes salt-sensitive hypertension and prevents dietary Na+-evoked suppression of the Na+-Cl- cotransporter (NCC). Studies of the adrenergic signaling pathways that modulate NCC activity during NE infusion have yielded conflicting results implicating α1- and/or β-adrenoceptors and a downstream kinase network that phosphorylates and activates NCC, including with no lysine kinases (WNKs), STE20/SPS1-related proline-alanine-rich kinase (SPAK), and oxidative stress response 1 (OxSR1). In the present study, we used selective adrenoceptor antagonism in NE-infused male Sprague-Dawley rats to investigate the differential roles of α1- and β-adrenoceptors in sympathetically mediated NCC regulation. NE infusion evoked salt-sensitive hypertension and prevented dietary Na+-evoked suppression of NCC mRNA, protein expression, phosphorylation, and in vivo activity. Impaired NCC suppression during high salt intake in NE-infused rats was paralleled by impaired suppression of WNK1 and OxSR1 expression and SPAK/OxSR1 phosphorylation and a failure to increase WNK4 expression. Antagonism of α1-adrenoceptors before high salt intake or after the establishment of salt-sensitive hypertension restored dietary Na+-evoked suppression of NCC, resulted in downregulation of WNK4, SPAK, and OxSR1, and abolished the salt-sensitive component of hypertension. In contrast, β-adrenoceptor antagonism attenuated NE-evoked hypertension independently of dietary Na+ intake and did not restore high salt-evoked suppression of NCC. These findings suggest that a selective, reversible, α1-adenoceptor-gated WNK/SPAK/OxSR1 NE-activated signaling pathway prevents dietary Na+-evoked NCC suppression, promoting the development and maintenance of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Franco Puleo
- Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Kiyoung Kim
- Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Kathryn R Walsh
- Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Elizabeth Faudoa
- College of Arts and Sciences, Boston University, Boston, Massachusetts
| | - Robert S Hoover
- Research Service, Atlanta Veterans Affairs Medical Center, Decatur, Georgia.,Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia
| | - Richard D Wainford
- Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
21
|
Frame AA, Carmichael CY, Kuwabara JT, Cunningham JT, Wainford RD. Role of the afferent renal nerves in sodium homeostasis and blood pressure regulation in rats. Exp Physiol 2019; 104:1306-1323. [PMID: 31074108 PMCID: PMC6675646 DOI: 10.1113/ep087700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
New Findings What is the central question of this study? What are the differential roles of the mechanosensitive and chemosensitive afferent renal nerves in the reno‐renal reflex that promotes natriuresis, sympathoinhibition and normotension during acute and chronic challenges to sodium homeostasis? What is the main finding and its importance? The mechanosensitive afferent renal nerves contribute to an acute natriuretic sympathoinhibitory reno‐renal reflex that may be integrated within the paraventricular nucleus of the hypothalamus. Critically, the afferent renal nerves are required for the maintenance of salt resistance in Sprague–Dawley and Dahl salt‐resistant rats and attenuate the development of Dahl salt‐sensitive hypertension.
Abstract These studies tested the hypothesis that in normotensive salt‐resistant rat phenotypes the mechanosensitive afferent renal nerve (ARN) reno‐renal reflex promotes natriuresis, sympathoinhibition and normotension during acute and chronic challenges to fluid and electrolyte homeostasis. Selective ARN ablation was conducted prior to (1) an acute isotonic volume expansion (VE) or 1 m NaCl infusion in Sprague–Dawley (SD) rats and (2) chronic high salt intake in SD, Dahl salt‐resistant (DSR), and Dahl salt‐sensitive (DSS) rats. ARN responsiveness following high salt intake was assessed ex vivo in response to noradrenaline and sodium concentration (SD, DSR and DSS) and via in vivo manipulation of renal pelvic pressure and sodium concentration (SD and DSS). ARN ablation attenuated the natriuretic and sympathoinhibitory responses to an acute VE [peak natriuresis (µeq min−1) sham 52 ± 5 vs. ARN ablation 28 ± 3, P < 0.05], but not a hypertonic saline infusion in SD rats. High salt (HS) intake enhanced ARN reno‐renal reflex‐mediated natriuresis in response to direct increases in renal pelvic pressure (mechanoreceptor stimulus) in vivo and ARN responsiveness to noradrenaline ex vivo in SD, but not DSS, rats. In vivo and ex vivo ARN responsiveness to increased renal pelvic sodium concentration (chemoreceptor stimulus) was unaltered during HS intake. ARN ablation evoked sympathetically mediated salt‐sensitive hypertension in SD rats [MAP (mmHg): sham normal salt 102 ± 2 vs. sham HS 104 ± 2 vs. ARN ablation normal salt 103 ± 2 vs. ARN ablation HS 121 ± 2, P < 0.05] and DSR rats and exacerbated DSS hypertension. The mechanosensitive ARNs mediate an acute sympathoinhibitory natriuretic reflex and counter the development of salt‐sensitive hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Casey Y Carmichael
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Jill T Kuwabara
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
22
|
Basting T, Xu J, Mukerjee S, Epling J, Fuchs R, Sriramula S, Lazartigues E. Glutamatergic neurons of the paraventricular nucleus are critical contributors to the development of neurogenic hypertension. J Physiol 2018; 596:6235-6248. [PMID: 30151830 PMCID: PMC6292814 DOI: 10.1113/jp276229] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Recurrent periods of over-excitation in the paraventricular nucleus (PVN) of the hypothalamus could contribute to chronic over-activation of this nucleus and thus enhanced sympathetic drive. Stimulation of the PVN glutamatergic population utilizing channelrhodopsin-2 leads to an immediate frequency-dependent increase in baseline blood pressure. Partial lesions of glutamatergic neurons of the PVN (39.3%) result in an attenuated rise in blood pressure following Deoxycorticosterone acetate (DOCA)-salt treatment and reduced index of sympathetic activity. These data suggest that stimulation of PVN glutamatergic neurons is sufficient to cause autonomic dysfunction and drive the increase in blood pressure during hypertension. ABSTRACT Neuro-cardiovascular dysregulation leads to increased sympathetic activity and neurogenic hypertension. The paraventricular nucleus (PVN) of the hypothalamus is a key hub for blood pressure (BP) control, producing or relaying the increased sympathetic tone in hypertension. We hypothesize that increased central sympathetic drive is caused by chronic over-excitation of glutamatergic PVN neurons. We tested how stimulation or lesioning of excitatory PVN neurons in conscious mice affects BP, baroreflex and sympathetic activity. Glutamatergic PVN neurons were unilaterally transduced with channelrhodopsin-2 using an adeno-associated virus (CamKII-ChR2-eYFP-AAV2) in wildtype mice (n = 7) to assess the impact of acute stimulation of excitatory PVN neurons selectively on resting BP in conscious mice. Stimulation of the PVN glutamatergic population resulted in an immediate frequency-dependent (2, 10 and 20 Hz) increase in BP from baseline by ∼9 mmHg at 20 Hz stimulation (P < 0.001). Additionally, in vGlut2-cre mice glutamatergic neurons of the PVN were bilaterally lesioned utilizing a cre-dependent caspase (AAV2-flex-taCASP3-TEVp). Resting BP and urinary noradrenaline (norepinephrine) levels were then recorded in conscious mice before and after DOCA-salt hypertension. Partial lesions of glutamatergic neurons of the PVN (39.3%, P < 0.05) resulted in an attenuated rise in BP following DOCA-salt treatment (P < 0.05 at 7 day time point, n = 8). Noradrenaline levels as an index of sympathetic activity between the lesion and wildtype groups showed a significant reduction after DOCA-salt treatment in the lesioned animals (P < 0.05). These experiments suggest that stimulation of PVN glutamatergic neurons is sufficient to cause autonomic dysfunction and drive the increase in BP.
Collapse
Affiliation(s)
- Tyler Basting
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Jiaxi Xu
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Snigdha Mukerjee
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Joel Epling
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Robert Fuchs
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Srinivas Sriramula
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
- Department of Pharmacology and Toxicology, Brody School of MedicineEast Carolina UniversityGreenvilleNC27834USA
| | - Eric Lazartigues
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLA70112USA
- Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA70112USA
- Neuroscience Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLA70112USA
- Southeast Louisiana Veterans Health Care SystemNew OrleansLAUSA
| |
Collapse
|
23
|
Nomura K, Hiyama TY, Sakuta H, Matsuda T, Lin CH, Kobayashi K, Kobayashi K, Kuwaki T, Takahashi K, Matsui S, Noda M. [Na +] Increases in Body Fluids Sensed by Central Na x Induce Sympathetically Mediated Blood Pressure Elevations via H +-Dependent Activation of ASIC1a. Neuron 2018; 101:60-75.e6. [PMID: 30503172 DOI: 10.1016/j.neuron.2018.11.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/08/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Increases in sodium concentrations ([Na+]) in body fluids elevate blood pressure (BP) by enhancing sympathetic nerve activity (SNA). However, the mechanisms by which information on increased [Na+] is translated to SNA have not yet been elucidated. We herein reveal that sympathetic activation leading to BP increases is not induced by mandatory high salt intakes or the intraperitoneal/intracerebroventricular infusions of hypertonic NaCl solutions in Nax-knockout mice in contrast to wild-type mice. We identify Nax channels expressed in specific glial cells in the organum vasculosum lamina terminalis (OVLT) as the sensors detecting increases in [Na+] in body fluids and show that OVLT neurons projecting to the paraventricular nucleus (PVN) are activated via acid-sensing ion channel 1a (ASIC1a) by H+ ions exported from Nax-positive glial cells. The present results provide an insight into the neurogenic mechanisms responsible for salt-induced BP elevations.
Collapse
Affiliation(s)
- Kengo Nomura
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Takeshi Y Hiyama
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan; School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Hiraki Sakuta
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan; School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Takashi Matsuda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Chia-Hao Lin
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kunihiko Takahashi
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shigeyuki Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masaharu Noda
- Division of Molecular Neurobiology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan; School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan; Research Center for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
24
|
Tudorancea I, Lohmeier TE, Alexander BT, Pieptu D, Serban DN, Iliescu R. Reduced Renal Mass, Salt-Sensitive Hypertension Is Resistant to Renal Denervation. Front Physiol 2018; 9:455. [PMID: 29760664 PMCID: PMC5936777 DOI: 10.3389/fphys.2018.00455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/13/2018] [Indexed: 11/18/2022] Open
Abstract
Aim: Activation of the sympathetic nervous system is common in resistant hypertension (RHT) and also in chronic kidney disease (CKD), a prevalent condition among resistant hypertensives. However, renal nerve ablation lowers blood pressure (BP) only in some patients with RHT. The influence of loss of nephrons per se on the antihypertensive response to renal denervation (RDNx) is unclear and was the focus of this study. Methods: Systemic hemodynamics and sympathetically mediated low frequency oscillations of systolic BP were determined continuously from telemetrically acquired BP recordings in rats before and after surgical excision of ∼80% of renal mass and subsequent RDNx. Results: After reduction of renal mass, rats fed a high salt (HS) diet showed sustained increases in mean arterial pressure (108 ± 3 mmHg to 128 ± 2 mmHg) and suppression of estimated sympathetic activity (∼15%), responses that did not occur with HS before renal ablation. After denervation of the remnant kidney, arterial pressure fell (to 104 ± 4 mmHg), estimated sympathetic activity and heart rate (HR) increased concomitantly, but these changes gradually returned to pre-denervation levels over 2 weeks of follow up. Subsequently, sympathoinhibition with clonidine did not alter arterial pressure while significantly suppressing estimated sympathetic activity and HR. Conclusion: These results indicate that RDNx does not chronically lower arterial pressure in this model of salt-sensitive hypertension associated with substantial nephron loss, but without ischemia and increased sympathetic activity, thus providing further insight into conditions likely to impact the antihypertensive response to renal-specific sympathoinhibition in subjects with CKD.
Collapse
Affiliation(s)
- Ionut Tudorancea
- Cardiology Division Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania.,Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania.,CHRONEX-RD Biomedical Research Center, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania
| | - Thomas E Lohmeier
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara T Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
| | - Dragos Pieptu
- Department of Plastic and Reconstructive Surgery, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania
| | - Dragomir N Serban
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania
| | - Radu Iliescu
- CHRONEX-RD Biomedical Research Center, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania.,Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Pharmacology, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania.,Regional Institute of Oncology, TRANSCEND Research Center, Iași, Romania
| |
Collapse
|
25
|
Maternal high-salt diet alters redox state and mitochondrial function in newborn rat offspring's brain. Br J Nutr 2018; 119:1003-1011. [PMID: 29502538 DOI: 10.1017/s0007114518000235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Excessive salt intake is a common feature of Western dietary patterns, and has been associated with important metabolic changes including cerebral redox state imbalance. Considering that little is known about the effect on progeny of excessive salt intake during pregnancy, the present study investigated the effect of a high-salt diet during pregnancy and lactation on mitochondrial parameters and the redox state of the brains of resulting offspring. Adult female Wistar rats were divided into two dietary groups (n 20 rats/group): control standard chow (0·675 % NaCl) or high-salt chow (7·2 % NaCl), received throughout pregnancy and for 7 d after delivery. On postnatal day 7, the pups were euthanised and their cerebellum, hypothalamus, hippocampus, prefrontal and parietal cortices were dissected. Maternal high-salt diet reduced cerebellar mitochondrial mass and membrane potential, promoted an increase in reactive oxygen species allied to superoxide dismutase activation and decreased offspring cerebellar nitric oxide levels. A significant increase in hypothalamic nitric oxide levels and mitochondrial superoxide in the hippocampus and prefrontal cortex was observed in the maternal high-salt group. Antioxidant enzymes were differentially modulated by oxidant increases in each brain area studied. Taken together, our results suggest that a maternal high-salt diet during pregnancy and lactation programmes the brain metabolism of offspring, favouring impaired mitochondrial function and promoting an oxidative environment; this highlights the adverse effect of high-salt intake in the health state of the offspring.
Collapse
|
26
|
Peng H, Jensen DD, Li W, Sullivan MN, Buller SA, Worker CJ, Cooper SG, Zheng S, Earley S, Sigmund CD, Feng Y. Overexpression of the neuronal human (pro)renin receptor mediates angiotensin II-independent blood pressure regulation in the central nervous system. Am J Physiol Heart Circ Physiol 2018; 314:H580-H592. [PMID: 29350998 PMCID: PMC5899258 DOI: 10.1152/ajpheart.00310.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 11/22/2022]
Abstract
Despite advances in antihypertensive therapeutics, at least 15-20% of hypertensive patients have resistant hypertension through mechanisms that remain poorly understood. In this study, we provide a new mechanism for the regulation of blood pressure (BP) in the central nervous system (CNS) by the (pro)renin receptor (PRR), a recently identified component of the renin-angiotensin system that mediates ANG II formation in the CNS. Although PRR also mediates ANG II-independent signaling, the importance of these pathways in BP regulation is unknown. Here, we developed a unique transgenic mouse model overexpressing human PRR (hPRR) specifically in neurons (Syn-hPRR). Intracerebroventricular infusion of human prorenin caused increased BP in Syn-hPRR mice. This BP response was attenuated by a NADPH oxidase (NOX) inhibitor but not by antihypertensive agents that target the renin-angiotensin system. Using a brain-targeted genetic knockdown approach, we found that NOX4 was the key isoform responsible for the prorenin-induced elevation of BP in Syn-hPRR mice. Moreover, inhibition of ERK significantly attenuated the increase in NOX activity and BP induced by human prorenin. Collectively, our findings indicate that an ANG II-independent, PRR-mediated signaling pathway regulates BP in the CNS by a PRR-ERK-NOX4 mechanism. NEW & NOTEWORTHY This study characterizes a new transgenic mouse model with overexpression of the human (pro)renin receptor in neurons and demonstrated a novel angiotensin II-independent mechanism mediated by human prorenin and the (pro)renin receptor in the central regulation of blood pressure.
Collapse
Affiliation(s)
- Hua Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huangzhong University of Sciences and Technology , Wuhan, Hubei , China
| | - Dane D Jensen
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Michelle N Sullivan
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Sophie A Buller
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Caleb J Worker
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Silvana G Cooper
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Shiqi Zheng
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University , Beijing , China
| | - Scott Earley
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| | - Curt D Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Yumei Feng
- Department of Physiology & Cell Biology, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Center for Cardiovascular Research, University of Nevada, Reno, School of Medicine , Reno, Nevada
- Department of Pharmacology, University of Nevada, Reno, School of Medicine , Reno, Nevada
| |
Collapse
|
27
|
Hospital-Associated Hypernatremia Spectrum and Clinical Outcomes in an Unselected Cohort. Am J Med 2018; 131:72-82.e1. [PMID: 28860033 DOI: 10.1016/j.amjmed.2017.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/14/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although hypernatremia is associated with adverse outcomes, most studies examined selected populations. METHODS Discharge data of 19,072 unselected hospitalized adults were analyzed. The crude relationship between serum sodium [Na+] and mortality defined hypernatremia as serum [Na+] >142 mEq/L. Patients with community-acquired hypernatremia or hospital-acquired hypernatremia were compared with normonatremic patients (admission [Na+] 138-142 mEq/L) regarding in-hospital mortality, length of stay, and discharge disposition. Patients with community-acquired hypernatremia whose hypernatremia worsened during hospitalization were compared with those without aggravation. RESULTS Community-acquired hypernatremia occurred in 21% of hospitalized patients and was associated with an adjusted odds ratio (OR) of 1.67 (95% confidence interval [CI], 1.38-2.01) for in-hospital mortality and 1.44 (95% CI, 1.32-1.56) for discharge to a short-/long-term care facility and an adjusted 10% (95% CI, 7-13) increase in length of stay. Hospital-acquired hypernatremia developed in 25.9% of hospitalized patients and was associated with an adjusted OR of 3.17 (95% CI, 2.45-4.09) for in-hospital mortality and 1.45 (95% CI, 1.32-1.59) for discharge to a facility, and an adjusted 49% (95% CI, 44-53) increase in length of stay. Hospital-aggravated hypernatremia developed in 11.7% of patients with community-acquired hypernatremia and was associated with greater risk of in-hospital mortality (adjusted OR, 1.84; 95% CI, 1.32-2.56) and discharge to a facility (adjusted OR, 2.14; 95% CI, 1.71-2.69), and an adjusted 16% (95% CI, 7-27) increase in length of stay. CONCLUSIONS The hypernatremia spectrum in unselected hospitalized patients is independently associated with increased in-hospital mortality and heightened resource consumption.
Collapse
|
28
|
Cooper SG, Trivedi DP, Yamamoto R, Worker CJ, Feng CY, Sorensen JT, Yang W, Xiong Z, Feng Y. Increased (pro)renin receptor expression in the subfornical organ of hypertensive humans. Am J Physiol Heart Circ Physiol 2017; 314:H796-H804. [PMID: 29351470 DOI: 10.1152/ajpheart.00616.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The central nervous system plays an important role in essential hypertension in humans and in animal models of hypertension through modulation of sympathetic activity and Na+ and body fluid homeostasis. Data from animal models of hypertension suggest that the renin-angiotensin system in the subfornical organ (SFO) of the brain is critical for hypertension development. We recently reported that the brain (pro)renin receptor (PRR) is a novel component of the brain renin-angiotensin system and could be a key initiator of the pathogenesis of hypertension. Here, we examined the expression level and cellular distribution of PRR in the SFO of postmortem human brains to assess its association with the pathogenesis of human hypertension. Postmortem SFO tissues were collected from hypertensive and normotensive human subjects. Immunolabeling for the PRR and a retrospective analysis of clinical data were performed. We found that human PRR was prominently expressed in most neurons and microglia, but not in astrocytes, in the SFO. Importantly, PRR levels in the SFO were elevated in hypertensive subjects. Moreover, PRR immunoreactivity was significantly correlated with systolic blood pressure but not body weight, age, or diastolic blood pressure. Interestingly, this correlation was independent of antihypertensive drug therapy. Our data indicate that PRR in the SFO may be a key molecular player in the pathogenesis of human hypertension and, as such, could be an important focus of efforts to understand the neurogenic origin of hypertension. NEW & NOTEWORTHY This study provides evidence that, in the subfornical organ of the human brain, the (pro)renin receptor is expressed in neurons and microglia cells but not in astrocytes. More importantly, (pro)renin receptor immunoreactivity in the subfornical organ is increased in hypertensive humans and is significantly correlated with systolic blood pressure.
Collapse
Affiliation(s)
- Silvana G Cooper
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| | - Darshan P Trivedi
- Department of Pathology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Rieko Yamamoto
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada.,Tokyo Medical and Dental University, Faculty of Medicine , Tokyo , Japan
| | - Caleb J Worker
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| | - Cheng-Yuan Feng
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| | - Jacob T Sorensen
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| | - Wei Yang
- School of Community Health Sciences, University of Nevada , Reno, Nevada
| | - Zhenggang Xiong
- Department of Pathology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Yumei Feng
- Departments of Pharmacology, Physiology, and Cell Biology; Center for Cardiovascular Research, School of Medicine, University of Nevada , Reno, Nevada
| |
Collapse
|
29
|
Brian MS, Matthews EL, Watso JC, Babcock MC, Wenner MM, Rose WC, Stocker SD, Farquhar WB. The influence of acute elevations in plasma osmolality and serum sodium on sympathetic outflow and blood pressure responses to exercise. J Neurophysiol 2017; 119:1257-1265. [PMID: 29357474 DOI: 10.1152/jn.00559.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Elevated plasma osmolality (pOsm) has been shown to increase resting sympathetic nerve activity in animals and humans. The present study tested the hypothesis that increases in pOsm and serum sodium (sNa+) concentration would exaggerate muscle sympathetic nerve activity (MSNA) and blood pressure (BP) responses to handgrip (HG) exercise and postexercise ischemia (PEI). BP and MSNA were measured during HG followed by PEI before and after a 23-min hypertonic saline infusion (HSI-3% NaCl). Eighteen participants (age 23 ± 1 yr; BMI 24 ± 1 kg/m2) completed the protocol; pOsm and sNa+ increased from pre- to post-HSI (285 ± 1 to 291 ± 1 mosmol/kg H2O; 138.2 ± 0.3 to 141.3 ± 0.4 mM; P < 0.05 for both). Resting mean BP (90 ± 2 vs. 92 ± 1 mmHg) and MSNA (11 ± 2 vs. 15 ± 2 bursts/min) were increased pre- to post-HSI ( P < 0.05 for both). Mean BP responses to HG (106 ± 2 vs. 111 ± 2 mmHg, P < 0.05) and PEI (102 ± 2 vs. 107 ± 2 mmHg, P < 0.05) were higher post-HSI. Similarly, MSNA during HG (20 ± 2 vs. 29 ± 2 bursts/min, P < 0.05) and PEI (19 ± 2 vs. 24 ± 3 bursts/min, P < 0.05) were greater post-HSI. In addition, the change in MSNA was greater post-HSI during HG (Δ9 ± 2 vs. Δ13 ± 3 bursts/min, P < 0.05). A second set of participants ( n = 13, age 23 ± 1 yr; BMI 24 ± 1 kg/m2) completed a time control (TC) protocol consisting of quiet rest instead of an infusion. The TC condition yielded no change in resting sNa+, pOsm, mean BP, or MSNA (all P > 0.05); responses to HG and PEI were not different pre- to post-quiet rest ( P > 0.05). In summary, acutely increasing pOsm and sNa+ exaggerates BP and MSNA responses during HG exercise and PEI. NEW & NOTEWORTHY Elevated plasma osmolality has been shown to increase resting sympathetic activity and blood pressure. This study provides evidence that acute elevations in plasma osmolality and serum sodium exaggerated muscle sympathetic nerve activity and blood pressure responses during exercise pressor reflex activation in healthy young adults.
Collapse
Affiliation(s)
- Michael S Brian
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware.,Department of Health and Human Performance, Plymouth State University , Plymouth, New Hampshire
| | - Evan L Matthews
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware.,Department of Exercise Science and Physical Education, Montclair State University , Montclair, New Jersey
| | - Joseph C Watso
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Matthew C Babcock
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - William C Rose
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Sean D Stocker
- Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| |
Collapse
|
30
|
Prager-Khoutorsky M, Choe KY, Levi DI, Bourque CW. Role of Vasopressin in Rat Models of Salt-Dependent Hypertension. Curr Hypertens Rep 2017; 19:42. [PMID: 28451854 DOI: 10.1007/s11906-017-0741-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Dietary salt intake increases both plasma sodium and osmolality and therefore increases vasopressin (VP) release from the neurohypophysis. Although this effect could increase blood pressure by inducing fluid reabsorption and vasoconstriction, acute activation of arterial baroreceptors inhibits VP neurons via GABAA receptors to oppose high blood pressure. Here we review recent findings demonstrating that this protective mechanism fails during chronic high salt intake in rats. RECENT FINDINGS Two recent studies showed that chronic high sodium intake causes an increase in intracellular chloride concentration in VP neurons. This effect causes GABAA receptors to become excitatory and leads to the emergence of VP-dependent hypertension. One study showed that the increase in intracellular chloride was provoked by a decrease in the expression of the chloride exporter KCC2 mediated by local secretion of brain-derived neurotrophic factor and activation of TrkB receptors. Prolonged high dietary salt intake can cause pathological plasticity in a central homeostatic circuit that controls VP secretion and thereby contribute to peripheral vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Masha Prager-Khoutorsky
- Department of Physiology, McGill University, McIntyre Medical Sciences Bldg., 3655 Promenade Sir-William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Katrina Y Choe
- 2309 Gonda Neuroscience and Genetics Research Center, UCLA Department of Neurology, 695 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - David I Levi
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
31
|
The Renal Sodium Bicarbonate Cotransporter NBCe2: Is It a Major Contributor to Sodium and pH Homeostasis? Curr Hypertens Rep 2017; 18:71. [PMID: 27628629 DOI: 10.1007/s11906-016-0679-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The sodium bicarbonate cotransporter (NBCe2, aka NBC4) was originally isolated from the human testis and heart (Pushkin et al. IUBMB Life 50:13-19, 2000). Subsequently, NBCe2 was found in diverse locations where it plays a role in regulating sodium and bicarbonate transport, influencing intracellular, extracellular, interstitial, and ultimately plasma pH (Boron et al. J Exp Biol. 212:1697-1706, 2009; Parker and Boron, Physiol Rev. 93:803-959, 2013; Romero et al. Mol Asp Med. 34:159-182, 2013). NBCe2 is located in human and rodent renal-collecting duct and proximal tubule. While much is known about the two electrogenic sodium bicarbonate cotransporters, NBCe1 and NBCe2, in the regulation of sodium homeostasis and pH balance in the rodent kidney, little is known about their roles in human renal physiology. NBCe2 is located in the proximal tubule Golgi apparatus under basal conditions and then disperses throughout the cell, but particularly into the apical membrane microvilli, during various maneuvers that increase intracellular sodium. This review will summarize our current understanding of the distribution and function of NBCe2 in the human kidney and how genetic variants of its gene, SLC4A5, contribute to salt sensitivity of blood pressure.
Collapse
|
32
|
Stocker SD, Kinsman BJ, Sved AF. Recent Advances in Neurogenic Hypertension: Dietary Salt, Obesity, and Inflammation. Hypertension 2017; 70:HYPERTENSIONAHA.117.08936. [PMID: 28739972 PMCID: PMC5783795 DOI: 10.1161/hypertensionaha.117.08936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurally-mediated hypertension results from a dysregulation of sympathetic and/or neuroendocrine mechanisms to increase ABP. Multiple factors may exert multiple central effects to alter neural circuits and produce unique sympathetic signatures and elevate ABP. In this brief review, we have discussed novel observations regarding three contributing factors: dietary salt intake, obesity, and inflammation. However, the interaction among these and other factors is likely much more complex; recent studies suggest a prior exposure to one stimulus may sensitize the response to a subsequent hypertensive stimulus. Insight into the central mechanisms by which these factors selectively alter SNA or cooperatively interact to impact hypertension may represent a platform for novel therapeutic treatment strategies.
Collapse
Affiliation(s)
- Sean D Stocker
- From the Department of Medicine, Renal-Electrolyte Division (S.D.S., B.J.K.), Department of Neuroscience (A.F.S.), and University of Pittsburgh Hypertension Center (S.D.S.), University of Pittsburgh, PA.
| | - Brian J Kinsman
- From the Department of Medicine, Renal-Electrolyte Division (S.D.S., B.J.K.), Department of Neuroscience (A.F.S.), and University of Pittsburgh Hypertension Center (S.D.S.), University of Pittsburgh, PA
| | - Alan F Sved
- From the Department of Medicine, Renal-Electrolyte Division (S.D.S., B.J.K.), Department of Neuroscience (A.F.S.), and University of Pittsburgh Hypertension Center (S.D.S.), University of Pittsburgh, PA
| |
Collapse
|
33
|
Becker BK, Feagans AC, Chen D, Kasztan M, Jin C, Speed JS, Pollock JS, Pollock DM. Renal denervation attenuates hypertension but not salt sensitivity in ET B receptor-deficient rats. Am J Physiol Regul Integr Comp Physiol 2017; 313:R425-R437. [PMID: 28701323 DOI: 10.1152/ajpregu.00174.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/16/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
Hypertension is a prevalent pathology that increases risk for numerous cardiovascular diseases. Because the etiology of hypertension varies across patients, specific and effective therapeutic approaches are needed. The role of renal sympathetic nerves is established in numerous forms of hypertension, but their contribution to salt sensitivity and interaction with factors such as endothelin-1 are poorly understood. Rats deficient of functional ETB receptors (ETB-def) on all tissues except sympathetic nerves are hypertensive and exhibit salt-sensitive increases in blood pressure. We hypothesized that renal sympathetic nerves contribute to hypertension and salt sensitivity in ETB-def rats. The hypothesis was tested through bilateral renal sympathetic nerve denervation and measuring blood pressure during normal salt (0.49% NaCl) and high-salt (4.0% NaCl) diets. Denervation reduced mean arterial pressure in ETB-def rats compared with sham-operated controls by 12 ± 3 (SE) mmHg; however, denervation did not affect the increase in blood pressure after 2 wk of high-salt diet (+19 ± 3 vs. +16 ± 3 mmHg relative to normal salt diet; denervated vs. sham, respectively). Denervation reduced cardiac sympathetic-to-parasympathetic tone [low frequency-high frequency (LF/HF)] during normal salt diet and vasomotor LF/HF tone during high-salt diet in ETB-def rats. We conclude that the renal sympathetic nerves contribute to the hypertension but not to salt sensitivity of ETB-def rats.
Collapse
Affiliation(s)
- Bryan K Becker
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amanda C Feagans
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daian Chen
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata Kasztan
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chunhua Jin
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua S Speed
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
34
|
Salt and essential hypertension: pathophysiology and implications for treatment. ACTA ACUST UNITED AC 2017; 11:385-391. [DOI: 10.1016/j.jash.2017.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/13/2017] [Accepted: 04/05/2017] [Indexed: 12/24/2022]
|
35
|
Dos Santos Moreira MC, Naves LM, Marques SM, Silva EF, Rebelo AC, Colombari E, Pedrino GR. Neuronal circuits involved in osmotic challenges. Physiol Res 2017; 66:411-423. [PMID: 28248529 DOI: 10.33549/physiolres.933373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The maintenance of plasma sodium concentration within a narrow limit is crucial to life. When it differs from normal physiological patterns, several mechanisms are activated in order to restore body fluid homeostasis. Such mechanisms may be vegetative and/or behavioral, and several regions of the central nervous system (CNS) are involved in their triggering. Some of these are responsible for sensory pathways that perceive a disturbance of the body fluid homeostasis and transmit information to other regions. These regions, in turn, initiate adequate adjustments in order to restore homeostasis. The main cardiovascular and autonomic responses to a change in plasma sodium concentration are: i) changes in arterial blood pressure and heart rate; ii) changes in sympathetic activity to the renal system in order to ensure adequate renal sodium excretion/absorption, and iii) the secretion of compounds involved in sodium ion homeostasis (ANP, Ang-II, and ADH, for example). Due to their cardiovascular effects, hypertonic saline solutions have been used to promote resuscitation in hemorrhagic patients, thereby increasing survival rates following trauma. In the present review, we expose and discuss the role of several CNS regions involved in body fluid homeostasis and the effects of acute and chronic hyperosmotic challenges.
Collapse
Affiliation(s)
- M C Dos Santos Moreira
- Department of Physiological Science, Federal University of Goiás, Goiânia - GO - Brazil. or
| | | | | | | | | | | | | |
Collapse
|
36
|
Foss JD, Kirabo A, Harrison DG. Do high-salt microenvironments drive hypertensive inflammation? Am J Physiol Regul Integr Comp Physiol 2017; 312:R1-R4. [PMID: 27903514 PMCID: PMC5283943 DOI: 10.1152/ajpregu.00414.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 01/11/2023]
Abstract
Hypertension is a global epidemic affecting over one billion people worldwide. Despite this, the etiology of most cases of human hypertension remains obscure, and treatment remains suboptimal. Excessive dietary salt and inflammation are known contributors to the pathogenesis of this disease. Recently, it has been recognized that salt can accumulate in the skin and skeletal muscle, producing concentrations of sodium greater than the plasma in hypertensive animals and humans. Such elevated levels of sodium have been shown to alter immune cell function. Here, we propose a model in which tissue salt accumulation causes an immune response leading to renal and vascular inflammation and hypertension.
Collapse
Affiliation(s)
- Jason D Foss
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
37
|
Kinsman BJ, Simmonds SS, Browning KN, Stocker SD. Organum Vasculosum of the Lamina Terminalis Detects NaCl to Elevate Sympathetic Nerve Activity and Blood Pressure. Hypertension 2016; 69:163-170. [PMID: 27895193 DOI: 10.1161/hypertensionaha.116.08372] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 02/05/2023]
Abstract
High-salt diet elevates NaCl concentrations in the cerebrospinal fluid to increase sympathetic nerve activity (SNA) in salt-sensitive hypertension. The organum vasculosum of the lamina terminalis (OVLT) resides along the rostral wall of the third ventricle, lacks a complete blood-brain barrier, and plays a pivotal role in body fluid homeostasis. Therefore, the present study used a multifaceted approach to examine whether OVLT neurons of Sprague-Dawley rats are intrinsically sensitive to changes in extracellular NaCl concentrations and mediate the sympathoexcitatory responses to central NaCl loading. Using in vitro whole-cell recordings, step-wise increases in extracellular NaCl concentrations (2.5-10 mmol/L) produced concentration-dependent excitation of OVLT neurons. Additionally, these excitatory responses were intrinsic to OVLT neurons because hypertonic NaCl evoked inward currents, despite pharmacological synaptic blockade. In vivo single-unit recordings demonstrate that the majority of OVLT neurons (72%, 13/19) display concentration-dependent increases in neuronal discharge to intracarotid (50 μL/15 s) or intracerebroventricular infusion (5 μL/10 minutes) of hypertonic NaCl. Microinjection of hypertonic NaCl (30 nL/60 s) into the OVLT, but not adjacent areas, increased lumbar SNA, adrenal SNA, and arterial blood pressure in a concentration-dependent manner. Renal SNA decreased and splanchnic SNA remained unaffected. Finally, local inhibition of OVLT neurons with the GABAA receptor agonist muscimol (24 nL/10 s) significantly attenuated the sympathoexcitatory and pressor responses to intracerebroventricular infusion of 0.5 mol/L or 1.0 mol/L NaCl. Collectively, these findings indicate that OVLT neurons detect changes in extracellular NaCl concentrations to selectively alter SNA and raise arterial blood pressure.
Collapse
Affiliation(s)
- Brian J Kinsman
- From the Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, PA (B.J.K., S.D.S.); and Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA (B.J.K., S.S.S., K.N.B.)
| | - Sarah S Simmonds
- From the Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, PA (B.J.K., S.D.S.); and Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA (B.J.K., S.S.S., K.N.B.)
| | - Kirsteen N Browning
- From the Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, PA (B.J.K., S.D.S.); and Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA (B.J.K., S.S.S., K.N.B.)
| | - Sean D Stocker
- From the Department of Medicine, Division of Renal-Electrolyte, University of Pittsburgh School of Medicine, PA (B.J.K., S.D.S.); and Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA (B.J.K., S.S.S., K.N.B.).
| |
Collapse
|
38
|
Abstract
Hypertension affects over 25 % of the population with the incidence continuing to rise, due in part to the growing obesity epidemic. Chronic elevations in sympathetic nerve activity (SNA) are a hallmark of the disease and contribute to elevations in blood pressure through influences on the vasculature, kidney, and heart (i.e., neurogenic hypertension). In this regard, a number of central nervous system mechanisms and neural pathways have emerged as crucial in chronically elevating SNA. However, it is important to consider that "sympathetic signatures" are present, with differential increases in SNA to regional organs that are dependent upon the disease progression. Here, we discuss recent findings on the central nervous system mechanisms and autonomic regulatory networks involved in neurogenic hypertension, in both non-obesity- and obesity-associated hypertension, with an emphasis on angiotensin-II, salt, oxidative and endoplasmic reticulum stress, inflammation, and the adipokine leptin.
Collapse
|
39
|
Tucker AB, Stocker SD. Hypernatremia-induced vasopressin secretion is not altered in TRPV1-/- rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R451-6. [PMID: 27335281 DOI: 10.1152/ajpregu.00483.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/17/2016] [Indexed: 11/22/2022]
Abstract
Changes in osmolality or extracellular NaCl concentrations are detected by specialized neurons in the hypothalamus to increase vasopressin (VP) and stimulate thirst. Recent in vitro evidence suggests this process is mediated by an NH2-terminal variant of the transient receptor potential vanilloid type 1 (TRPV1) channel expressed by osmosensitive neurons of the lamina terminalis and vasopressinergic neurons of the supraoptic nucleus. The present study tested this hypothesis in vivo by analysis of plasma VP levels during acute hypernatremia in awake control and TRPV1(-/-) rats. TRPV1(-/-) rats were produced by a Zinc-finger-nuclease 2-bp deletion in exon 13. Intravenous injection of the TRPV1 agonist capsaicin produced hypotension and bradycardia in control rats, but this response was absent in TRPV1(-/-) rats. Infusion of 2 M NaCl (1 ml/h iv) increased plasma osmolality, electrolytes, and VP levels in both control and TRPV1(-/-) rats. However, plasma VP levels did not differ between strains at any time. Furthermore, a linear regression between plasma VP versus osmolality revealed a significant correlation in both control and TRPV1(-/-) rats, but the slope of the regression lines was not attenuated in TRPV1(-/-) versus control rats. Hypotension produced by intravenous injection of minoxidil decreased blood pressure and increased plasma VP levels similarly in both groups. Finally, both treatments stimulated thirst; however, cumulative water intakes in response to hypernatremia or hypotension were not different between control and TRPV1(-/-) rats. These findings suggest that TRPV1 channels are not necessary for VP secretion and thirst stimulated by hypernatremia.
Collapse
Affiliation(s)
- Andrew Blake Tucker
- Department of Neural & Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Sean D Stocker
- Department of Neural & Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
40
|
Farquhar WB, Edwards DG, Jurkovitz CT, Weintraub WS. Dietary sodium and health: more than just blood pressure. J Am Coll Cardiol 2016; 65:1042-50. [PMID: 25766952 DOI: 10.1016/j.jacc.2014.12.039] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022]
Abstract
Sodium is essential for cellular homeostasis and physiological function. Excess dietary sodium has been linked to elevations in blood pressure (BP). Salt sensitivity of BP varies widely, but certain subgroups tend to be more salt sensitive. The mechanisms underlying sodium-induced increases in BP are not completely understood but may involve alterations in renal function, fluid volume, fluid-regulatory hormones, the vasculature, cardiac function, and the autonomic nervous system. Recent pre-clinical and clinical data support that even in the absence of an increase in BP, excess dietary sodium can adversely affect target organs, including the blood vessels, heart, kidneys, and brain. In this review, the investigators review these issues and the epidemiological research relating dietary sodium to BP and cardiovascular health outcomes, addressing recent controversies. They also provide information and strategies for reducing dietary sodium.
Collapse
Affiliation(s)
- William B Farquhar
- Department of Kinesiology & Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - David G Edwards
- Department of Kinesiology & Applied Physiology, College of Health Sciences, University of Delaware, Newark, Delaware
| | - Claudine T Jurkovitz
- Department of Medicine, Section of Cardiology, Christiana Care Outcomes Research Center, Christiana Care Health System, Newark, Delaware
| | - William S Weintraub
- Department of Medicine, Section of Cardiology, Christiana Care Outcomes Research Center, Christiana Care Health System, Newark, Delaware.
| |
Collapse
|
41
|
Carmichael CY, Carmichael ACT, Kuwabara JT, Cunningham JT, Wainford RD. Impaired sodium-evoked paraventricular nucleus neuronal activation and blood pressure regulation in conscious Sprague-Dawley rats lacking central Gαi2 proteins. Acta Physiol (Oxf) 2016; 216:314-29. [PMID: 26412230 PMCID: PMC4764872 DOI: 10.1111/apha.12610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/08/2015] [Accepted: 09/20/2015] [Indexed: 01/21/2023]
Abstract
AIM We determined the role of brain Gαi2 proteins in mediating the neural and humoral responses of conscious male Sprague-Dawley rats to acute peripheral sodium challenge. METHODS Rats pre-treated (24-h) intracerebroventricularly with a targeted oligodeoxynucleotide (ODN) (25 μg per 5 μL) to downregulate brain Gαi2 protein expression or a scrambled (SCR) control ODN were challenged with an acute sodium load (intravenous bolus 3 m NaCl; 0.14 mL per 100 g), and cardiovascular parameters were monitored for 120 min. In additional groups, hypothalamic paraventricular nucleus (PVN) Fos immunoreactivity was examined at baseline, 40, and 100 min post-sodium challenge. RESULTS In response to intravenous hypertonic saline (HS), no difference was observed in peak change in mean arterial pressure between groups. In SCR ODN pre-treated rats, arterial pressure returned to baseline by 100 min, while it remained elevated in Gαi2 ODN pre-treated rats (P < 0.05). No difference between groups was observed in sodium-evoked increases in Fos-positive magnocellular neurons or vasopressin release. V1a receptor antagonism failed to block the prolonged elevation of arterial pressure in Gαi2 ODN pre-treated rats. A significantly greater number of Fos-positive ventrolateral parvocellular, lateral parvocellular, and medial parvocellular neurons were observed in SCR vs. Gαi2 ODN pre-treated rats at 40 and 100 min post-HS challenge (P < 0.05). In SCR, but not Gαi2 ODN pre-treated rats, HS evoked suppression of plasma norepinephrine (P < 0.05). CONCLUSION This highlights Gαi2 protein signal transduction as a novel central mechanism acting to differentially influence PVN parvocellular neuronal activation, sympathetic outflow, and arterial pressure in response to acute HS, independently of actions on magnocellular neurons and vasopressin release.
Collapse
Affiliation(s)
- C. Y. Carmichael
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMAUSA
| | - A. C. T. Carmichael
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMAUSA
| | - J. T. Kuwabara
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMAUSA
| | - J. T. Cunningham
- Department of Integrative Physiology & AnatomyUniversity of North Texas Health Science CenterFort WorthTXUSA
| | - R. D. Wainford
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMAUSA
| |
Collapse
|
42
|
Stocker SD, Lang SM, Simmonds SS, Wenner MM, Farquhar WB. Cerebrospinal Fluid Hypernatremia Elevates Sympathetic Nerve Activity and Blood Pressure via the Rostral Ventrolateral Medulla. Hypertension 2015; 66:1184-90. [PMID: 26416846 DOI: 10.1161/hypertensionaha.115.05936] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023]
Abstract
Elevated NaCl concentrations of the cerebrospinal fluid increase sympathetic nerve activity (SNA) in salt-sensitive hypertension. Neurons of the rostral ventrolateral medulla (RVLM) play a pivotal role in the regulation of SNA and receive mono- or polysynaptic inputs from several hypothalamic structures responsive to hypernatremia. Therefore, the present study investigated the contribution of RVLM neurons to the SNA and pressor response to cerebrospinal fluid hypernatremia. Lateral ventricle infusion of 0.15 mol/L, 0.6 mol/L, and 1.0 mol/L NaCl (5 µL/10 minutes) produced concentration-dependent increases in lumbar SNA, adrenal SNA, and arterial blood pressure, despite no change in splanchnic SNA and a decrease in renal SNA. Ganglionic blockade with chlorisondamine or acute lesion of the lamina terminalis blocked or significantly attenuated these responses, respectively. RVLM microinjection of the gamma-aminobutyric acid (GABAA) agonist muscimol abolished the sympathoexcitatory response to intracerebroventricular infusion of 1 mol/L NaCl. Furthermore, blockade of ionotropic glutamate, but not angiotensin II type 1, receptors significantly attenuated the increase in lumbar SNA, adrenal SNA, and arterial blood pressure. Finally, single-unit recordings of spinally projecting RVLM neurons revealed 3 distinct populations based on discharge responses to intracerebroventricular infusion of 1 mol/L NaCl: type I excited (46%; 11/24), type II inhibited (37%; 9/24), and type III no change (17%; 4/24). All neurons with slow conduction velocities were type I cells. Collectively, these findings suggest that acute increases in cerebrospinal fluid NaCl concentrations selectively activate a discrete population of RVLM neurons through glutamate receptor activation to increase SNA and arterial blood pressure.
Collapse
Affiliation(s)
- Sean D Stocker
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark.
| | - Susan M Lang
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| | - Sarah S Simmonds
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| | - Megan M Wenner
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| | - William B Farquhar
- From the Departments of Cellular and Molecular Physiology (S.D.S., S.M.L., S.S.S.) and Neural and Behavioral Sciences (S.D.S.), Pennsylvania State University College of Medicine, Hershey; and Department of Kinesiology and Applied Physiology (M.M.W., W.B.F.), University of Delaware, Newark
| |
Collapse
|
43
|
Carmichael CY, Wainford RD. Brain Gαi 2 -subunit proteins and the prevention of salt sensitive hypertension. Front Physiol 2015; 6:233. [PMID: 26347659 PMCID: PMC4541027 DOI: 10.3389/fphys.2015.00233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/03/2015] [Indexed: 12/19/2022] Open
Abstract
To counter the development of salt-sensitive hypertension, multiple brain G-protein-coupled receptor (GPCR) systems are activated to facilitate sympathoinhibition, sodium homeostasis, and normotension. Currently there is a paucity of knowledge regarding the role of down-stream GPCR-activated Gα-subunit proteins in these critically important physiological regulatory responses required for long-term blood pressure regulation. We have determined that brain Gαi2-proteins mediate natriuretic and sympathoinhibitory responses produced by acute pharmacological (exogenous central nociceptin/orphanin FQ receptor (NOP) and α2-adrenoceptor activation) and physiological challenges to sodium homeostasis (intravenous volume expansion and 1 M sodium load) in conscious Sprague–Dawley rats. We have demonstrated that in salt-resistant rat phenotypes, high dietary salt intake evokes site-specific up-regulation of hypothalamic paraventricular nucleus (PVN) Gαi2-proteins. Further, we established that PVN Gαi2 protein up-regulation prevents the development of renal nerve-dependent sympathetically mediated salt-sensitive hypertension in Sprague–Dawley and Dahl salt-resistant rats. Additionally, failure to up-regulate PVN Gαi2 proteins during high salt-intake contributes to the pathophysiology of Dahl salt-sensitive (DSS) hypertension. Collectively, our data demonstrate that brain, and likely PVN specific, Gαi2 protein pathways represent a central molecular pathway mediating sympathoinhibitory renal-nerve dependent responses evoked to maintain sodium homeostasis and a salt-resistant phenotype. Further, impairment of this endogenous “anti-hypertensive” mechanism contributes to the pathophysiology of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Casey Y Carmichael
- The Department of Pharmacology and Experimental Therapeutics, The Whitaker Cardiovascular Institute, Boston University School of Medicine Boston, MA, USA
| | - Richard D Wainford
- The Department of Pharmacology and Experimental Therapeutics, The Whitaker Cardiovascular Institute, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
44
|
Jia Y, Jia G. Role of intestinal Na(+)/H(+) exchanger inhibition in the prevention of cardiovascular and kidney disease. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:91. [PMID: 26015933 DOI: 10.3978/j.issn.2305-5839.2015.02.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/03/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Yan Jia
- 1 Department of Biology, Cornell University, Ithaca, NY 14850, USA ; 2 Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO 65212, USA
| | - Guanghong Jia
- 1 Department of Biology, Cornell University, Ithaca, NY 14850, USA ; 2 Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Cardiovascular Center, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
45
|
Wainford RD, Carmichael CY, Pascale CL, Kuwabara JT. Gαi2-protein-mediated signal transduction: central nervous system molecular mechanism countering the development of sodium-dependent hypertension. Hypertension 2014; 65:178-86. [PMID: 25312437 DOI: 10.1161/hypertensionaha.114.04463] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Excess dietary salt intake is an established cause of hypertension. At present, our understanding of the neuropathophysiology of salt-sensitive hypertension is limited by a lack of identification of the central nervous system mechanisms that modulate sympathetic outflow and blood pressure in response to dietary salt intake. We hypothesized that impairment of brain Gαi2-protein-gated signal transduction pathways would result in increased sympathetically mediated renal sodium retention, thus promoting the development of salt-sensitive hypertension. To test this hypothesis, naive or renal denervated Dahl salt-resistant and Dahl salt-sensitive (DSS) rats were assigned to receive a continuous intracerebroventricular control scrambled or a targeted Gαi2-oligodeoxynucleotide infusion, and naive Brown Norway and 8-congenic DSS rats were fed a 21-day normal or high-salt diet. High salt intake did not alter blood pressure, suppressed plasma norepinephrine, and evoked a site-specific increase in hypothalamic paraventricular nucleus Gαi2-protein levels in naive Brown Norway, Dahl salt-resistant, and scrambled oligodeoxynucleotide-infused Dahl salt-resistant but not DSS rats. In Dahl salt-resistant rats, Gαi2 downregulation evoked rapid renal nerve-dependent hypertension, sodium retention, and sympathoexcitation. In DSS rats, Gαi2 downregulation exacerbated salt-sensitive hypertension via a renal nerve-dependent mechanism. Congenic-8 DSS rats exhibited sodium-evoked paraventricular nucleus-specific Gαi2-protein upregulation and attenuated hypertension, sodium retention, and global sympathoexcitation compared with DSS rats. These data demonstrate that paraventricular nucleus Gαi2-protein-gated pathways represent a conserved central molecular pathway mediating sympathoinhibitory renal nerve-dependent responses evoked to maintain sodium homeostasis and a salt-resistant phenotype. Impairment of this mechanism contributes to the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Richard D Wainford
- From the the Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (R.D.W., C.Y.C., J.T.K.); and Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans (R.D.W., C.L.P.).
| | - Casey Y Carmichael
- From the the Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (R.D.W., C.Y.C., J.T.K.); and Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans (R.D.W., C.L.P.)
| | - Crissey L Pascale
- From the the Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (R.D.W., C.Y.C., J.T.K.); and Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans (R.D.W., C.L.P.)
| | - Jill T Kuwabara
- From the the Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (R.D.W., C.Y.C., J.T.K.); and Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans (R.D.W., C.L.P.)
| |
Collapse
|
46
|
Kinsman B, Cowles J, Lay J, Simmonds SS, Browning KN, Stocker SD. Osmoregulatory thirst in mice lacking the transient receptor potential vanilloid type 1 (TRPV1) and/or type 4 (TRPV4) receptor. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1092-100. [PMID: 25100078 DOI: 10.1152/ajpregu.00102.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies suggest the ability of the central nervous system to detect changes in osmolality is mediated by products of the genes encoding the transient receptor potential vanilloid-1 (TRPV1) or vanilloid-4 (TRPV4) channel. The purpose of the present study was to determine whether deletion of TRPV1 and/or TRPV4 channels altered thirst responses to cellular dehydration in mice. Injection of 0.5 or 1.0 M NaCl produced dose-dependent increases in cumulative water intakes of wild-type (WT), TRPV1-/-, TRPV4-/-, and TRPV1-/-V4-/- mice. However, there were no differences in cumulative water intakes between WT versus any other strain despite similar increases in plasma electrolytes and osmolality. Similar results were observed after injection of hypertonic mannitol. This was a consistent finding regardless of the injection route (intraperitoneal vs. subcutaneous) or timed access to water (delayed vs. immediate). There were also no differences in cumulative intakes across strains after injection of 0.15 M NaCl or during a time-controlled period (no injection). Chronic hypernatremia produced by sole access to 2% NaCl for 48 h also produced similar increases in water intake across strains. In a final set of experiments, subcutaneous injection of 0.5 M NaCl produced similar increases in the number of Fos-positive nuclei within the organum vasculosum of the lamina terminalis and median preoptic nucleus across strains but significantly smaller number in the subfornical organ of WT versus TRPV1-/-V4-/- mice. Collectively, these findings suggest that TRPV1 and/or TRPV4 channels are not the primary mechanism by which the central nervous system responds to cellular dehydration during hypernatremia or hyperosmolality to increase thirst.
Collapse
Affiliation(s)
- Brian Kinsman
- Department of Cellular and Molecular Physiology, and
| | - James Cowles
- Department of Cellular and Molecular Physiology, and
| | - Jennifer Lay
- Department of Cellular and Molecular Physiology, and
| | | | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Sean D Stocker
- Department of Cellular and Molecular Physiology, and Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
47
|
Leenen FHH. Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension. Am J Hypertens 2014; 27:1024-32. [PMID: 24742639 DOI: 10.1093/ajh/hpu066] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the past 1-2 decades, it has become apparent that the brain renin-angiotensin-aldosterone system (RAAS) plays a crucial role in the regulation of blood pressure (BP) by the circulating RAAS. In the brain, angiotensinergic sympatho-excitatory pathways do not contribute to acute, second-to-second regulation but play a major role in the more chronic regulation of the setpoint for sympathetic tone and BP. Increases in plasma angiotensin II (Ang II) or aldosterone and in cerebrospinal fluid [Na(+)] can directly activate these pathways and chronically further activate/maintain enhanced activity by a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels, and endogenous ouabain. Blockade of any step in this slow pathway prevents Ang II-, aldosterone-, or salt and renal injury-induced forms of hypertension. It appears that the renal and arterial actions of circulating aldosterone and Ang II act as amplifiers but are not sufficient to cause chronic hypertension if their central actions are prevented, except perhaps at high concentrations. From a clinical perspective, oral treatment with an angiotensin type 1 (AT1)-receptor blocker at high doses can cause central AT1-receptor blockade and, in humans, lower sympathetic nerve activity. Low doses of the MR blocker spironolactone appear sufficient to cause central MR blockade and a decrease in sympathetic nerve activity. Integrating the brain actions of the circulating RAAS with its direct renal and arterial actions provides a better framework to understand the role of the circulating RAAS in the pathophysiology of hypertension and heart failure and to direct therapeutic strategies.
Collapse
Affiliation(s)
- Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|