1
|
Mohaissen T, Kij A, Bar A, Marczyk B, Wojnar-Lason K, Buczek E, Karas A, Garcia-Redondo AB, Briones AM, Chlopicki S. Chymase-independent vascular Ang-(1-12)/Ang II pathway and TXA 2 generation are involved in endothelial dysfunction in the murine model of heart failure. Eur J Pharmacol 2024; 966:176296. [PMID: 38158114 DOI: 10.1016/j.ejphar.2023.176296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The angiotensin (Ang)-(1-12)/Ang II pathway contributes to cardiac pathology. However, its involvement in the development of peripheral endothelial dysfunction associated with heart failure (HF) remains unknown. Therefore, this study aimed to characterise the effect of exogenous Ang-(1-12) and its conversion to Ang II on endothelial function using the murine model of HF (Tgαq*44 mice), focusing on the role of chymase and vascular-derived thromboxane A2 (TXA2). Ex vivo myographic assessments of isolated aorta showed impaired endothelium-dependent vasodilation in late-stage HF in 12-month-old Tgαq*44 mice. However, endothelium-dependent vasodilation was fully preserved in the early stage of HF in 4-month-old Tgαq*44 mice and 4- and 12-month-old FVB control mice. Ang-(1-12) impaired endothelium-dependent vasodilation in 4- and 12-month-old Tgαq*44 mice, that was associated with increased Ang II production. The chymase inhibitor chymostatin did not inhibit this response. Interestingly, TXA2 production reflected by TXB2 measurement was upregulated in response to Ang-(1-12) and Ang II in aortic rings isolated from 12-month-old Tgαq*44 mice but not from 4-month-old Tgαq*44 mice or age-matched FVB mice. Furthermore, in vivo magnetic resonance imaging showed that Ang-(1-12) impaired endothelium-dependent vasodilation in the aorta of Tgαq*44 mice and FVB mice. However, this response was inhibited by angiotensin I converting enzyme (ACE) inhibitor; perindopril, angiotensin II receptor type 1 (AT1) antagonist; losartan and TXA2 receptor (TP) antagonist-picotamide in 12-month-old-Tgαq*44 mice only. In conclusion, the chymase-independent vascular Ang-(1-12)/Ang II pathway and subsequent TXA2 overactivity contribute to systemic endothelial dysfunction in the late stage of HF in Tgαq*44 mice. Therefore, the vascular TXA2 receptor represents a pharmacotherapeutic target to improve peripheral endothelial dysfunction in chronic HF.
Collapse
Affiliation(s)
- Tasnim Mohaissen
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Anna Bar
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland
| | - Elzbieta Buczek
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Agnieszka Karas
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Ana B Garcia-Redondo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain; CIBER Cardiovascular, Madrid, Spain
| | - Ana M Briones
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain; CIBER Cardiovascular, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland.
| |
Collapse
|
2
|
Batista JPT, de Faria AOV, Ribeiro TFS, Simões e Silva AC. The Role of Renin-Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review. Life (Basel) 2023; 13:1598. [PMID: 37511973 PMCID: PMC10381689 DOI: 10.3390/life13071598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic cardiomyopathy refers to myocardial dysfunction in type 2 diabetes, but without the traditional cardiovascular risk factors or overt clinical atherosclerosis and valvular disease. The activation of the renin-angiotensin system (RAS), oxidative stress, lipotoxicity, maladaptive immune responses, imbalanced mitochondrial dynamics, impaired myocyte autophagy, increased myocyte apoptosis, and fibrosis contribute to diabetic cardiomyopathy. This review summarizes the studies that address the link between cardiomyopathy and the RAS in humans and presents proposed pathophysiological mechanisms underlying this association. The RAS plays an important role in the development and progression of diabetic cardiomyopathy. The over-activation of the classical RAS axis in diabetes leads to the increased production of angiotensin (Ang) II, angiotensin type 1 receptor activation, and aldosterone release, contributing to increased oxidative stress, fibrosis, and cardiac remodeling. In contrast, Ang-(1-7) suppresses oxidative stress, inhibits tissue fibrosis, and prevents extensive cardiac remodeling. Angiotensin-converting-enzyme (ACE) inhibitors and angiotensin receptor blockers improve heart functioning and reduce the occurrence of diabetic cardiomyopathy. Experimental studies also show beneficial effects for Ang-(1-7) and angiotensin-converting enzyme 2 infusion in improving heart functioning and tissue injury. Further research is necessary to fully understand the pathophysiology of diabetic cardiomyopathy and to translate experimental findings into clinical practice.
Collapse
Affiliation(s)
- João Pedro Thimotheo Batista
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil; (J.P.T.B.); (A.O.V.d.F.); (T.F.S.R.)
| | - André Oliveira Vilela de Faria
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil; (J.P.T.B.); (A.O.V.d.F.); (T.F.S.R.)
| | - Thomas Felipe Silva Ribeiro
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil; (J.P.T.B.); (A.O.V.d.F.); (T.F.S.R.)
| | - Ana Cristina Simões e Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil; (J.P.T.B.); (A.O.V.d.F.); (T.F.S.R.)
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| |
Collapse
|
3
|
Ferrario CM, Ahmad S, Speth R, Dell’Italia LJ. Is chymase 1 a therapeutic target in cardiovascular disease? Expert Opin Ther Targets 2023; 27:645-656. [PMID: 37565266 PMCID: PMC10529260 DOI: 10.1080/14728222.2023.2247561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Non-angiotensin converting enzyme mechanisms of angiotensin II production remain underappreciated in part due to the success of current therapies to ameliorate the impact of primary hypertension and atherosclerotic diseases of the heart and the blood vessels. This review scrutinize the current literature to highlight chymase role as a critical participant in the pathogenesis of cardiovascular disease and heart failure. AREAS COVERED We review the contemporaneous understanding of circulating and tissue biotransformation mechanisms of the angiotensins focusing on the role of chymase as an alternate tissue generating pathway for angiotensin II pathological mechanisms of action. EXPERT OPINION While robust literature documents the singularity of chymase as an angiotensin II-forming enzyme, particularly when angiotensin converting enzyme is inhibited, this knowledge has not been fully recognized to clinical medicine. This review discusses the limitations of clinical trials' that explored the benefits of chymase inhibition in accounting for the failure to duplicate in humans what has been demonstrated in experimental animals.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Laboratory of Translational Hypertension and Vascular Research, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Sarfaraz Ahmad
- Laboratory of Translational Hypertension and Vascular Research, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Robert Speth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, Florida 33314
| | - Louis J Dell’Italia
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham (UAB), Birmingham AL 35294
- Birmingham Department of Veterans Affairs Health Care System, Birmingham AL 35233
| |
Collapse
|
4
|
Mosquera-Sulbaran JA, Pedreañez A, Hernandez-Fonseca JP, Hernandez-Fonseca H. Angiotensin II and dengue. Arch Virol 2023; 168:191. [PMID: 37368044 DOI: 10.1007/s00705-023-05814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Dengue is a disease caused by a flavivirus that is transmitted principally by the bite of an Aedes aegypti mosquito and represents a major public-health problem. Many studies have been carried out to identify soluble factors that are involved in the pathogenesis of this infection. Cytokines, soluble factors, and oxidative stress have been reported to be involved in the development of severe disease. Angiotensin II (Ang II) is a hormone with the ability to induce the production of cytokines and soluble factors related to the inflammatory processes and coagulation disorders observed in dengue. However, a direct involvement of Ang II in this disease has not been demonstrated. This review primarily summarizes the pathophysiology of dengue, the role of Ang II in various diseases, and reports that are highly suggestive of the involvement of this hormone in dengue.
Collapse
Affiliation(s)
- Jesus A Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela.
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela
- Servicio de Microscopia Electronica del Centro Nacional de Biotecnologia (CNB- CSIC) Madrid, Madrid, España
| | - Hugo Hernandez-Fonseca
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, Saint George's University, True Blue, West Indies, Grenada
| |
Collapse
|
5
|
Ahmad S, Wright KN, VonCannon JL, Ferrario CM, Ola MS, Choudhary M, Malek G, Gustafson JR, Sappington RM. Internalization of Angiotensin-(1-12) in Adult Retinal Pigment Epithelial-19 Cells. J Ocul Pharmacol Ther 2023; 39:290-299. [PMID: 36944130 PMCID: PMC10178934 DOI: 10.1089/jop.2022.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/12/2023] [Indexed: 03/23/2023] Open
Abstract
Purpose: Angiotensin-(1-12) [Ang-(1-12)] serves as a primary substrate to generate angiotensin II (Ang II) by angiotensin-converting enzyme and/or chymase suggests it may be an unrecognized source of Ang II-mediated microvascular complication in hypertension-mediated retinopathy. We investigated Ang-(1-12) expression and internalization in adult retinal pigment epithelial-19 (ARPE-19) cultured cells. We performed the internalization of Ang-(1-12) in ARPE-19 cells in the presence of a highly specific monoclonal antibody (mAb) developed against the C-terminal end of the Ang-(1-12) sequence. Methods: All experiments were performed in confluent ARPE-19 cells (passage 28-35). We employed high-performance liquid chromatography to purify radiolabeled, 125I-Ang-(1-12) and immuno-neutralization with Ang-(1-12) mAb to demonstrate Ang-(1-12)'s internalization in ARPE-19 cells. Internalization was also demonstrated by immunofluorescence (IF) method. Results: These procedures revealed internalization of an intact 125I-Ang-(1-12) in ARPE-19 cells. A significant reduction (∼53%, P < 0.0001) in 125I-Ang-(1-12) internalization was detected in APRE-19 cells in the presence of the mAb. IF staining experiments further confirms internalization of Ang-(1-12) into the cells from the extracellular culture medium. No endogenous expression was detected in the ARPE-19 cells. An increased intensity of IF staining was detected in cells exposed to 1.0 μM Ang-(1-12) compared with 0.1 μM. Furthermore, we found hydrolysis of Ang-(1-12) into Ang II by ARPE-19 cells' plasma membranes. Conclusions: Intact Ang-(1-12) peptide is internalized from the extracellular spaces in ARPE-19 cells and metabolized into Ang II. The finding that a selective mAb blocks cellular internalization of Ang-(1-12) suggests alternate therapeutic approaches to prevent/reduce the RPE cells Ang II burden.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Kendra N. Wright
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jessica L. VonCannon
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mohammad S. Ola
- Department of Biochemistry, King Saud University, Riyadh, Saudi Arabia
| | - Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jenna R. Gustafson
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Rebecca M. Sappington
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
6
|
Asante I, Lu A, Mitchell BI, Boisvert WA, Shikuma CM, Chow DC, Louie SG. Alterations in Renin-Angiotensin System (RAS) Peptide Levels in Patients with HIV. Metabolites 2022; 13:61. [PMID: 36676986 PMCID: PMC9860813 DOI: 10.3390/metabo13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic HIV infection has long been associated with an increased risk for cardiovascular diseases. The metabolites of the renin−angiotensin system (RAS) such as angiotensin II (AngII) play an important role in regulating blood pressure and fluid dynamics. Cross-sectional analysis of HIV-positive individuals (n = 71, age > 40 years, stable ART > 3 months with HIV viral load < 50 copies/mL) were compared to a similar HIV seronegative group (n = 72). High-resolution B-mode ultrasound images of the right carotid bifurcation (RBIF) and right common carotid artery (RCCA) were conducted to measure the extent of carotid atherosclerotic vascular disease. Plasma RAS peptide levels were quantified using a liquid chromatography-mass spectrometry-based metabolomics assay. RAS peptide concentrations were compared between persons with HIV and persons without HIV, correlating their association with clinical and cardiac measures. Median precursor peptides (Ang(1-12) and AngI) were significantly higher in the HIV-positive group compared to the HIV-negative. Analyses of the patient subgroup not on antihypertensive medication revealed circulating levels of AngII to be four-fold higher in the HIV-positive subgroup. AngII and TNF-alpha levels were found to have a positive association with RCCA, and AngI/Ang(1-12) ratio and TNF-alpha levels were found to have a positive association with RBIF. In both predictive models, AngIII had a negative association with either RCCA or RBIF, which may be attributed to its ability to bind onto AT2R and thus oppose pro-inflammatory events. These results reveal systemic alterations in RAS as a result of chronic HIV infection, which may lead to the activation of inflammatory pathways associated with carotid thickening. RAS peptide levels and cytokine markers were associated with RCCA and RBIF measurements.
Collapse
Affiliation(s)
- Isaac Asante
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Angela Lu
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Brooks I. Mitchell
- John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI 96813, USA
| | - William A. Boisvert
- John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI 96813, USA
| | - Cecilia M. Shikuma
- John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI 96813, USA
| | - Dominic C. Chow
- John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI 96813, USA
| | - Stan G. Louie
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Ferrario CM, Saha A, VonCannon JL, Meredith WJ, Ahmad S. Does the Naked Emperor Parable Apply to Current Perceptions of the Contribution of Renin Angiotensin System Inhibition in Hypertension? Curr Hypertens Rep 2022; 24:709-721. [PMID: 36272015 DOI: 10.1007/s11906-022-01229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW To address contemporary hypertension challenges, a critical reexamination of therapeutic accomplishments using angiotensin converting enzyme inhibitors and angiotensin II receptor blockers, and a greater appreciation of evidence-based shortcomings from randomized clinical trials are fundamental in accelerating future progress. RECENT FINDINGS Medications targeting angiotensin II mechanism of action are essential for managing primary hypertension, type 2 diabetes, heart failure, and chronic kidney disease. While the ability of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers to control blood pressure is undisputed, practitioners, hypertension specialists, and researchers hold low awareness of these drugs' limitations in preventing or reducing the risk of cardiovascular events. Biases in interpreting gained knowledge from data obtained in randomized clinical trials include a pervasive emphasis on using relative risk reduction over absolute risk reduction. Furthermore, recommendations for clinical practice in international hypertension guidelines fail to address the significance of a residual risk several orders of magnitude greater than the benefits. We analyze the limitations of the clinical trials that have led to current recommended treatment guidelines. We define and quantify the magnitude of the residual risk in published hypertension trials and explore how activation of alternate compensatory bioprocessing components within the renin angiotensin system bypass the ability of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers to achieve a significant reduction in total and cardiovascular deaths. We complete this presentation by outlining the current incipient but promising potential of immunotherapy to block angiotensin II pathology alone or possibly in combination with other antihypertensive drugs. A full appreciation of the magnitude of the residual risk associated with current renin angiotensin system-based therapies constitutes a vital underpinning for seeking new molecular approaches to halt or even reverse the cardiovascular complications of primary hypertension and encourage investigating a new generation of ACE inhibitors and ARBs with increased capacity to reach the intracellular compartments at which Ang II can be generated.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA.
| | - Amit Saha
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Jessica L VonCannon
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Wayne J Meredith
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| | - Sarfaraz Ahmad
- Laboratory of Translational Hypertension and Vascular Research, Department of General Surgery, Wake Forest School of Medicine, Medical Center Blvd, Atrium Health Wake Forest Baptist, Winston Salem, NC, 27157, USA
| |
Collapse
|
8
|
O'Connor AT, Haspula D, Alanazi AZ, Clark MA. Roles of Angiotensin III in the brain and periphery. Peptides 2022; 153:170802. [PMID: 35489649 DOI: 10.1016/j.peptides.2022.170802] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Angiotensin (Ang) III, a biologically active peptide of the renin angiotensin system (RAS) is predominantly known for its central effects on blood pressure. Our understanding of the RAS has evolved from the simplified, classical RAS, a hormonal system regulating blood pressure to a complex system affecting numerous biological processes. Ang II, the main RAS peptide has been widely studied, and its deleterious effects when overexpressed is well-documented. However, other components of the RAS such as Ang III are not well studied. This review examines the molecular and biological actions of Ang III and provides insight into Ang III's potential role in metabolic diseases.
Collapse
Affiliation(s)
- Ann Tenneil O'Connor
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD NIH-20892, USA
| | - Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
9
|
Ferrario CM, Groban L, Wang H, Sun X, VonCannon JL, Wright KN, Ahmad S. The renin–angiotensin system biomolecular cascade: a 2022 update of newer insights and concepts. Kidney Int Suppl (2011) 2022; 12:36-47. [DOI: 10.1016/j.kisu.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
|
10
|
Lumbers ER, Head R, Smith GR, Delforce SJ, Jarrott B, H. Martin J, Pringle KG. The interacting physiology of COVID-19 and the renin-angiotensin-aldosterone system: Key agents for treatment. Pharmacol Res Perspect 2022; 10:e00917. [PMID: 35106954 PMCID: PMC8929333 DOI: 10.1002/prp2.917] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 interacting with its receptor, angiotensin-converting enzyme 2 (ACE2), turns the host response to viral infection into a dysregulated uncontrolled inflammatory response. This is because ACE2 limits the production of the peptide angiotensin II (Ang II) and SARS-CoV-2, through the destruction of ACE2, allows the uncontrolled production of Ang II. Recovery from trauma requires activation of both a tissue response to injury and activation of a whole-body response to maintain tissue perfusion. Tissue and circulating renin-angiotensin systems (RASs) play an essential role in the host response to infection and injury because of the actions of Ang II, mediated via its AT1 receptor. Both tissue and circulating arms of the renin angiotensin aldosterone system's (RAAS) response to injury need to be regulated. The effects of Ang II and the steroid hormone, aldosterone, on fluid and electrolyte homeostasis and on the circulation are controlled by elaborate feedback networks that respond to alterations in the composition and volume of fluids within the circulatory system. The role of Ang II in the tissue response to injury is however, controlled mainly by its metabolism and conversion to Ang-(1-7) by the enzyme ACE2. Ang-(1-7) has effects that are contrary to Ang II-AT1 R mediated effects. Thus, destruction of ACE2 by SARS-CoV-2 results in loss of control of the pro-inflammatory actions of Ang II and tissue destruction. Therefore, it is the response of the host to SARS-CoV-2 that is responsible for the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Eugenie R. Lumbers
- School of Biomedical Sciences & PharmacyUniversity of NewcastleNewcastleNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Richard Head
- University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Gary R. Smith
- VP System PracticeInternational Society for the System SciencesPontypoolUK
| | - Sarah J. Delforce
- School of Biomedical Sciences & PharmacyUniversity of NewcastleNewcastleNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Bevyn Jarrott
- Florey Institute of Neuroscience & Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Jennifer H. Martin
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Centre for Drug Repurposing and Medicines ResearchClinical PharmacologyUniversity of NewcastleNewcastleNew South WalesAustralia
| | - Kirsty G. Pringle
- School of Biomedical Sciences & PharmacyUniversity of NewcastleNewcastleNew South WalesAustralia
- Hunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
11
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
12
|
Roszkowska-Chojecka MM, Baranowska I, Gawrys O, Sadowski J, Walkowska A, Kalisz M, Litwiniuk A, Kompanowska-Jezierska E. Role of chymase in blood pressure control, plasma and tissue angiotensin II, renal Haemodynamics, and excretion in spontaneously hypertensive rats. Clin Exp Hypertens 2021; 43:392-401. [PMID: 33687310 DOI: 10.1080/10641963.2021.1890762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/05/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023]
Abstract
Background: Chymase generates angiotensin II (ANG II) independently of angiotensin-converting enzyme in tissues and it contributes to vascular remodeling and development of hypertension, however the exact mechanism of its action is unclear. Methods: Hence, the effects of chymase inhibition were examined in anesthetized spontaneously hypertensive rats (SHR) in two stages of the disease development, ie. pre-hypertensive (SHR7) and with established hypertension (SHR16). Chymostatin, a commercial chymase inhibitor, was infused intravenously alone or in subsequent groups co-infused with captopril. Results: Mean blood pressure (MBP), total renal blood flow (RBF) and ANG II content (plasma and tissues) were measured. In SHR16 chymase blockade significantly decreased MBP (-6%) and plasma (-38%), kidney (-71%) and heart (-52%) ANG II levels. In SHR7 chymostatin did not influence MBP or RBF, but significantly decreased heart ANG II level. Conclusion: Jointly, functional studies and ANG II determinations support the evidence that in SHR chymase can raise plasma ANG II and contribute to blood pressure elevation. We propose that addition of chymase blockade to ACE inhibition could be a promising approach in the treatment of hypertensive patients resistant to therapy with ACE-inhibitors alone.
Collapse
Affiliation(s)
- Malwina M Roszkowska-Chojecka
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona Baranowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Gawrys
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Walkowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Kalisz
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Litwiniuk
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Cavalcante GL, Brognara F, Oliveira LVDC, Lataro RM, Durand MDT, Oliveira AP, Nóbrega ACL, Salgado HC, Sabino JPJ. Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol (Oxf) 2021; 232:e13663. [PMID: 33884761 DOI: 10.1111/apha.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Systemic arterial hypertension and heart failure are cardiovascular diseases that affect millions of individuals worldwide. They are characterized by a change in the autonomic nervous system balance, highlighted by an increase in sympathetic activity associated with a decrease in parasympathetic activity. Most therapeutic approaches seek to treat these diseases by medications that attenuate sympathetic activity. However, there is a growing number of studies demonstrating that the improvement of parasympathetic function, by means of pharmacological or electrical stimulation, can be an effective tool for the treatment of these cardiovascular diseases. Therefore, this review aims to describe the advances reported by experimental and clinical studies that addressed the potential of cholinergic stimulation to prevent autonomic and cardiovascular imbalance in hypertension and heart failure. Overall, the published data reviewed demonstrate that the use of central or peripheral acetylcholinesterase inhibitors is efficient to improve the autonomic imbalance and hemodynamic changes observed in heart failure and hypertension. Of note, the baroreflex and the vagus nerve activation have been shown to be safe and effective approaches to be used as an alternative treatment for these cardiovascular diseases. In conclusion, pharmacological and electrical stimulation of the parasympathetic nervous system has the potential to be used as a therapeutic tool for the treatment of hypertension and heart failure, deserving to be more explored in the clinical setting.
Collapse
Affiliation(s)
- Gisele L. Cavalcante
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
- Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Fernanda Brognara
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Lucas Vaz de C. Oliveira
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | - Renata M. Lataro
- Department of Physiological Sciences Center of Biological Sciences Federal University of Santa Catarina Florianópolis SP Brazil
| | | | - Aldeidia P. Oliveira
- Graduate Program in Pharmacology Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | | | - Helio C. Salgado
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - João Paulo J. Sabino
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| |
Collapse
|
14
|
Ferrario CM, Groban L, Wang H, Cheng CP, VonCannon JL, Wright KN, Sun X, Ahmad S. The Angiotensin-(1-12)/Chymase axis as an alternate component of the tissue renin angiotensin system. Mol Cell Endocrinol 2021; 529:111119. [PMID: 33309638 PMCID: PMC8127338 DOI: 10.1016/j.mce.2020.111119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 02/08/2023]
Abstract
The identification of an alternate extended form of angiotensin I composed of the first twelve amino acids at the N-terminal of angiotensinogen has generated new knowledge of the importance of noncanonical mechanisms for renin independent generation of angiotensins. The human sequence of the dodecapeptide angiotensin-(1-12) [N-Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8-His9-Leu10-Val1-Ile12-COOH] is an endogenous substrate that in the rat has been documented to be present in multiple organs including the heart, brain, kidney, gut, adrenal gland, and the bone marrow. Newer studies have confirmed the existence of Ang-(1-12) as an Ang II-forming substrate in the blood and heart of normal and diseased patients. Studies to-date document that angiotensin II generation from angiotensin-(1-12) does not require renin participation while chymase rather than angiotensin converting enzyme shows high catalytic activity in converting this tissue substrate into angiotensin II directly.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA.
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Che Ping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Jessica L VonCannon
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Kendra N Wright
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Sarfaraz Ahmad
- Department of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, USA
| |
Collapse
|
15
|
Simões E Silva AC, Lanza K, Palmeira VA, Costa LB, Flynn JT. 2020 update on the renin-angiotensin-aldosterone system in pediatric kidney disease and its interactions with coronavirus. Pediatr Nephrol 2021; 36:1407-1426. [PMID: 32995920 PMCID: PMC7524035 DOI: 10.1007/s00467-020-04759-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
The last decade was crucial for our understanding of the renin-angiotensin-aldosterone system (RAAS) as a two-axis, counter-regulatory system, divided into the classical axis, formed by angiotensin-converting enzyme (ACE), angiotensin II (Ang II), and the angiotensin type 1 receptor (AT1R), and the alternative axis comprising angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7) (Ang-(1-7)), and the Mas receptor. Breakthrough discoveries also took place, with other RAAS endopeptides being described, including alamandine and angiotensin A. In this review, we characterize the two RAAS axes and the role of their components in pediatric kidney diseases, including childhood hypertension (HTN), pediatric glomerular diseases, congenital abnormalities of the kidney and urinary tract (CAKUT), and chronic kidney disease (CKD). We also present recent findings on potential interactions between the novel coronavirus, SARS-CoV-2, and components of the RAAS, as well as potential implications of coronavirus disease 2019 (COVID-19) for pediatric kidney diseases.
Collapse
Affiliation(s)
- Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG, 30130-100, Brazil.
- Pediatric Nephrology Unit, Department of Pediatrics, Faculty of Medicine, UFMG, Belo Horizonte, Brazil.
| | - Katharina Lanza
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG, 30130-100, Brazil
| | - Vitória Andrade Palmeira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG, 30130-100, Brazil
| | - Larissa Braga Costa
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG, 30130-100, Brazil
| | - Joseph T Flynn
- Pediatric Nephrology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, 98105, USA
| |
Collapse
|
16
|
Mascolo A, Scavone C, Rafaniello C, De Angelis A, Urbanek K, di Mauro G, Cappetta D, Berrino L, Rossi F, Capuano A. The Role of Renin-Angiotensin-Aldosterone System in the Heart and Lung: Focus on COVID-19. Front Pharmacol 2021; 12:667254. [PMID: 33959029 PMCID: PMC8093861 DOI: 10.3389/fphar.2021.667254] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) firstly considered as a cardiovascular circulating hormonal system, it is now accepted as a local tissue system that works synergistically or independently with the circulating one. Evidence states that tissue RAAS locally generates mediators with regulatory homeostatic functions, thus contributing, at some extent, to organ dysfunction or disease. Specifically, RAAS can be divided into the traditional RAAS pathway (or classic RAAS) mediated by angiotensin II (AII), and the non-classic RAAS pathway mediated by angiotensin 1–7. Both pathways operate in the heart and lung. In the heart, the classic RAAS plays a role in both hemodynamics and tissue remodeling associated with cardiomyocyte and endothelial dysfunction, leading to progressive functional impairment. Moreover, the local classic RAAS may predispose the onset of atrial fibrillation through different biological mechanisms involving inflammation, accumulation of epicardial adipose tissue, and electrical cardiac remodeling. In the lung, the classic RAAS regulates cell proliferation, immune-inflammatory response, hypoxia, and angiogenesis, contributing to lung injury and different pulmonary diseases (including COVID-19). Instead, the local non-classic RAAS counteracts the classic RAAS effects exerting a protective action on both heart and lung. Moreover, the non-classic RAAS, through the angiotensin-converting enzyme 2 (ACE2), mediates the entry of the etiological agent of COVID-19 (SARS-CoV-2) into cells. This may cause a reduction in ACE2 and an imbalance between angiotensins in favor of AII that may be responsible for the lung and heart damage. Drugs blocking the classic RAAS (angiotensin-converting enzyme inhibitors and angiotensin receptor blockers) are well known to exert a cardiovascular benefit. They are recently under evaluation for COVID-19 for their ability to block AII-induced lung injury altogether with drugs stimulating the non-classic RAAS. Herein, we discuss the available evidence on the role of RAAS in the heart and lung, summarizing all clinical data related to the use of drugs acting either by blocking the classic RAAS or stimulating the non-classic RAAS.
Collapse
Affiliation(s)
- Annamaria Mascolo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy.,Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cristina Scavone
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy.,Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy.,Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Catanzaro, Italy
| | - Gabriella di Mauro
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy.,Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Rossi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy.,Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy.,Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
17
|
Mascolo A, Urbanek K, De Angelis A, Sessa M, Scavone C, Berrino L, Rosano GMC, Capuano A, Rossi F. Angiotensin II and angiotensin 1-7: which is their role in atrial fibrillation? Heart Fail Rev 2021; 25:367-380. [PMID: 31375968 DOI: 10.1007/s10741-019-09837-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atrial fibrillation (AF) is a significant cause of morbidity and mortality as well as a public health burden considering the high costs of AF-related hospitalizations. Pre-clinical and clinical evidence showed a potential role of the renin angiotensin system (RAS) in the etiopathogenesis of AF. Among RAS mediators, angiotensin II (AII) and angiotensin 1-7 (A1-7) have been mostly investigated in AF. Specifically, the stimulation of the pathway mediated by AII or the inhibition of the pathway mediated by A1-7 may participate in inducing and sustaining AF. In this review, we summarize the evidence showing that both RAS pathways may balance the onset of AF through different biological mechanisms involving inflammation, epicardial adipose tissue (EAT) accumulation, and electrical cardiac remodeling. EAT is a predictor for AF as it may induce its onset through direct (infiltration of epicardial adipocytes into the underlying atrial myocardium) and indirect (release of inflammatory adipokines, the stimulation of oxidative stress, macrophage phenotype switching, and AF triggers) mechanisms. Classic RAS blockers such as angiotensin converting enzyme inhibitors (ACE-I) and angiotensin receptor blockers (ARB) may prevent AF by affecting the accumulation of the EAT, representing a useful therapeutic strategy for preventing AF especially in patients with heart failure and known left ventricular dysfunction. Further studies are necessary to prove this benefit in patients with other cardiovascular diseases. Finally, the possibility of using the A1-7 or ACE2 analogues, to enlarge current therapeutic options for AF, may represent an important field of research.
Collapse
Affiliation(s)
- Annamaria Mascolo
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy.
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Maurizio Sessa
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Giuseppe Massimo Claudio Rosano
- IRCCS San Raffaele Pisana, Rome, Italy.,Cardiovascular and Cell Sciences Research Institute, St. George's, University of London, London, UK
| | - Annalisa Capuano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "Luigi Vanvitelli", Via Santa Maria di Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
18
|
Cure E, Ilcol TB, Cumhur Cure M. Angiotensin II, III, and IV may be important in the progression of COVID-19. JOURNAL OF THE RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM : JRAAS 2020. [PMID: 33169633 DOI: 10.1177/1470320320972019.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Erkan Cure
- Department of Internal Medicine, Ota & Jinemed Hospital, Istanbul, Turkey
| | | | | |
Collapse
|
19
|
Ferrario CM, Ahmad S, Groban L. Twenty years of progress in angiotensin converting enzyme 2 and its link to SARS-CoV-2 disease. Clin Sci (Lond) 2020; 134:2645-2664. [PMID: 33063823 PMCID: PMC9055624 DOI: 10.1042/cs20200901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
The virulence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the aggressive nature of the disease has transformed the universal pace of research in the desperate attempt to seek effective therapies to halt the morbidity and mortality of this pandemic. The rapid sequencing of the SARS-CoV-2 virus facilitated identification of the receptor for angiotensin converting enzyme 2 (ACE2) as the high affinity binding site that allows virus endocytosis. Parallel evidence that coronavirus disease 2019 (COVID-19) disease evolution shows greater lethality in patients with antecedent cardiovascular disease, diabetes, or even obesity questioned the potential unfavorable contribution of angiotensin converting enzyme (ACE) inhibitors or angiotensin II (Ang II) receptor blockers as facilitators of adverse outcomes due to the ability of these therapies to augment the transcription of Ace2 with consequent increase in protein formation and enzymatic activity. We review, here, the specific studies that support a role of these agents in altering the expression and activity of ACE2 and underscore that the robustness of the experimental data is associated with weak clinical long-term studies of the existence of a similar regulation of tissue or plasma ACE2 in human subjects.
Collapse
Affiliation(s)
- Carlos M. Ferrario
- Departments of Surgery and Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
20
|
Cure E, Ilcol TB, Cumhur Cure M. Angiotensin II, III, and IV may be important in the progression of COVID-19. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320972019. [PMID: 33169633 PMCID: PMC7658520 DOI: 10.1177/1470320320972019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Erkan Cure
- Department of Internal Medicine, Ota & Jinemed Hospital, Istanbul, Turkey
| | | | | |
Collapse
|
21
|
Abstract
Purpose of Review Angiotensin-converting enzyme 2 (ACE2), a specific high-affinity angiotensin II-hydrolytic enzyme, is the vector that facilitates cellular entry of SARS-CoV-1 and the novel SARS-CoV-2 coronavirus. SARS-CoV-2, which crossed species barriers to infect humans, is highly contagious and associated with high lethality due to multi-organ failure, mostly in older patients with other co-morbidities. Recent Findings Accumulating clinical evidence demonstrates that the intensity of the infection and its complications are more prominent in men. It has been postulated that potential functional modulation of ACE2 by estrogen may explain the sex difference in morbidity and mortality. Summary We review here the evidence regarding the role of estrogenic hormones in ACE2 expression and regulation, with the intent of bringing to the forefront potential mechanisms that may explain sex differences in SARS-CoV-2 infection and COVID-19 outcomes, assist in management of COVID-19, and uncover new therapeutic strategies.
Collapse
|
22
|
Holappa M, Vapaatalo H, Vaajanen A. Local ocular renin-angiotensin-aldosterone system: any connection with intraocular pressure? A comprehensive review. Ann Med 2020; 52:191-206. [PMID: 32308046 PMCID: PMC7877937 DOI: 10.1080/07853890.2020.1758341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
The renin-angiotensin system (RAS) is one of the oldest and most extensively studied human peptide cascades, well-known for its role in regulating blood pressure. When aldosterone is included, RAAS is involved also in fluid and electrolyte homeostasis. There are two main axes of RAAS: (1) Angiotensin (1-7), angiotensin converting enzyme 2 and Mas receptor (ACE2-Ang(1-7)-MasR), (2) Angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor (ACE1-AngII-AT1R). In its entirety, RAAS comprises dozens of angiotensin peptides, peptidases and seven receptors. The first mentioned axis is known to counterbalance the deleterious effects of the latter axis. In addition to the systemic RAAS, tissue-specific regulatory systems have been described in various organs, evidence that RAAS is both an endocrine and an autocrine system. These local regulatory systems, such as the one present in the vascular endothelium, are responsible for long-term regional changes. A local RAAS and its components have been detected in many structures of the human eye. This review focuses on the local ocular RAAS in the anterior part of the eye, its possible role in aqueous humour dynamics and intraocular pressure as well as RAAS as a potential target for anti-glaucomatous drugs.KEY MESSAGESComponents of renin-angiotensin-aldosterone system have been detected in different structures of the human eye, introducing the concept of a local intraocular renin-angiotensin-aldosterone system (RAAS).Evidence is accumulating that the local ocular RAAS is involved in aqueous humour dynamics, regulation of intraocular pressure, neuroprotection and ocular pathology making components of RAAS attractive candidates when developing new effective ways to treat glaucoma.
Collapse
Affiliation(s)
- Mervi Holappa
- Medical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Heikki Vapaatalo
- Medical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Anu Vaajanen
- Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
23
|
Zolfaghari Emameh R, Falak R, Bahreini E. Application of System Biology to Explore the Association of Neprilysin, Angiotensin-Converting Enzyme 2 (ACE2), and Carbonic Anhydrase (CA) in Pathogenesis of SARS-CoV-2. Biol Proced Online 2020; 22:11. [PMID: 32572334 PMCID: PMC7302923 DOI: 10.1186/s12575-020-00124-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears with common symptoms including fever, dry cough, and fatigue, as well as some less common sysmptoms such as loss of taste and smell, diarrhea, skin rashes and discoloration of fingers. COVID-19 patients may also suffer from serious symptoms including shortness of breathing, chest pressure and pain, as well as loss of daily routine habits, pointing out to a sever reduction in the quality of life. COVID-19 has afftected almost all countries, however, the United States contains the highest number of infection (> 1,595,000 cases) and deaths cases (> 95,000 deaths) in the world until May 21, 2020. Finding an influential treatment strategy against COVID-19 can be facilitated through better understanding of the virus pathogenesis and consequently interrupting the biochemical pathways that the virus may play role in human body as the current reservoir of the virus. RESULTS In this study, we combined system biology and bioinformatic approaches to define the role of coexpression of angiotensin-converting enzyme 2 (ACE2), neprilysin or membrane metallo-endopeptidase (MME), and carbonic anhydrases (CAs) and their association in the pathogenesis of SARS-CoV-2. The results revealed that ACE2 as the cellular attachment site of SARS-CoV-2, neprilysin, and CAs have a great contribution together in the renin angiotensin system (RAS) and consequently in pathogenesis of SARS-CoV-2 in the vital organs such as respiratory, renal, and blood circulation systems. Any disorder in neprilysin, ACE2, and CAs can lead to increase of CO2 concentration in blood and respiratory acidosis, induction of pulmonary edema and heart and renal failures. CONCLUSIONS Due to the presence of ACE2-Neprilysin-CA complex in most of vital organs and as a receptor of COVID-19, it is expected that most organs are affected by SARS-CoV-2 such as inflammation and fibrosis of lungs, which may conversely affect their vital functions, temporary or permanently, sometimes leading to death. Therefore, ACE2-Neprilysin-CA complex could be the key factor of pathogenesis of SARS-CoV-2 and may provide us useful information to find better provocative and therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
The Vasoactive Mas Receptor in Essential Hypertension. J Clin Med 2020; 9:jcm9010267. [PMID: 31963731 PMCID: PMC7019597 DOI: 10.3390/jcm9010267] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022] Open
Abstract
The renin–angiotensin–aldosterone system (RAAS) has been studied extensively, and with the inclusion of novel components, it has become evident that the system is much more complex than originally anticipated. According to current knowledge, there are two main axes of the RAAS, which counteract each other in terms of vascular control: The classical vasoconstrictive axis, renin/angiotensin-converting enzyme/angiotensin II/angiotensin II receptor type 1 (AT1R), and the opposing vasorelaxant axis, angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor (MasR). An abnormal activity within the system constitutes a hallmark in hypertension, which is a global health problem that predisposes cardiovascular and renal morbidities. In particular, essential hypertension predominates in the hypertensive population of more than 1.3 billion humans worldwide, and yet, the pathophysiology behind this multifactorial condition needs clarification. While commonly applied pharmacological strategies target the classical axis of the RAAS, discovery of the vasoprotective effects of the opposing, vasorelaxant axis has presented encouraging experimental evidence for a new potential direction in RAAS-targeted therapy based on the G protein-coupled MasR. In addition, the endogenous MasR agonist angiotensin-(1-7), peptide analogues, and related molecules have become the subject of recent studies within this field. Nevertheless, the clinical potential of MasR remains unclear due to indications of physiological-biased activities of the RAAS and interacting signaling pathways.
Collapse
|
25
|
Zhou D, Chen Y, Wu J, Shen J, Shang Y, Zheng L, Xie X. Association between chymase gene polymorphisms and atrial fibrillation in Chinese Han population. BMC Cardiovasc Disord 2019; 19:321. [PMID: 31888494 PMCID: PMC6936049 DOI: 10.1186/s12872-019-01300-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Background Chymase is the major angiotensin II (Ang II)-forming enzyme in cardiovascular tissue, with an important role in atrial remodeling. This study aimed to examine the association between chymase 1 gene (CMA1) polymorphisms and atrial fibrillation (AF) in a Chinese Han population. Methods This case-control study enrolled 126 patients with lone AF and 120 age- and sex-matched healthy controls, all from a Chinese Han population. Five CMA1 polymorphisms were genotyped. Results The CMA1 polymorphism rs1800875 (G-1903A) was associated with AF. The frequency of the GG genotype was significantly higher in AF patients compared with controls (p = 0.009). Haplotype analysis further demonstrated an increased risk of AF associated with the rs1800875-G haplotype (Hap8 TGTTG, odds ratio (OR) = 1.668, 95% CI 1.132–2.458, p = 0.009), and a decreased risk for the rs1800875-A haplotype (Hap5 TATTG, OR = 0.178, 95% CI 0.042–0.749, p = 0.008). Conclusions CMA1 polymorphisms may be associated with AF, and the rs1800875 GG genotype might be a susceptibility factor for AF in the Chinese Han population.
Collapse
Affiliation(s)
- Dongchen Zhou
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuewei Chen
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaxin Wu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiabo Shen
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yushan Shang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liangrong Zheng
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xudong Xie
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Activation of the Protective Arm of the Renin Angiotensin System in Demyelinating Disease. J Neuroimmune Pharmacol 2019; 15:249-263. [PMID: 31828731 DOI: 10.1007/s11481-019-09894-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/12/2019] [Indexed: 01/26/2023]
Abstract
The renin angiotensin system (RAS), which is classically known for blood pressure regulation, has functions beyond this. There are two axes of RAS that work to counterbalance each other and are active throughout the body, including the CNS. The pathological axis, consisting of angiotensin II (A1-8), angiotensin converting enzyme (ACE) and the angiotensin II type 1 receptor (AT1R), is upregulated in many CNS diseases, including multiple sclerosis (MS). MS is an autoimmune and neurodegenerative disease of the CNS characterized by inflammation, demyelination and axonal degeneration. Published research has described increased expression of AT1R and ACE in tissues from MS patients and in animal models of MS such as experimental autoimmune encephalomyelitis (EAE). In contrast to the pathological axis, little is known about the protective axes of RAS in MS and EAE. In other neurological conditions the protective axis, which includes A1-7, ACE2, angiotensin II type 2 receptor and Mas receptor, has been shown to have anti-inflammatory, regenerative and neuroprotective effects. Here we show, for the first time, changes in the protective arm of RAS in both EAE and MS CNS tissue. We observed a significant increase in expression of the protective arm during stages of disease stabilization in EAE, and in MS tissue showing evidence of remyelination. These data provide evidence that the protective arm of RAS, through both ligand and receptor expression, is associated with reductions in the pathological processes that occur in the earlier stages of MS and EAE, possibly slowing the neurodegenerative process and enhancing neural repair. Graphical Abstract.
Collapse
|
27
|
Ahmad S, Wright KN, Sun X, Groban L, Ferrario CM. Mast cell peptidases (carboxypeptidase A and chymase)-mediated hydrolysis of human angiotensin-(1-12) substrate. Biochem Biophys Res Commun 2019; 518:651-656. [PMID: 31466718 PMCID: PMC6763271 DOI: 10.1016/j.bbrc.2019.08.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
Angiotensin processing peptidases (carboxypeptidase A (CPA) and chymase) are stored in cardiac mast cell (MC) secretory granules in large quantity and are co-released into the extracellular environment after activation/degranulation. In the human heart, chymase is primarily responsible for angiotensin II (Ang II) generation from the alternate substrate angiotensin-(1-12) (Ang-(1-12)). We investigated the individual and combined hydrolytic specificity of CPA and chymase enzymes (1:1 and 1:⅓ ratio) in the processing of the human Ang-(1-12) (hAng-(1-12)) substrate. To determine the Km and Vmax, the CPA and recombinant human chymase (rhChymase) enzymes were incubated with increasing concentrations of hAng-(1-12) substrate (0-300 μM). We found that CPA alone sequentially metabolized hAng-(1-12) substrate into angiotensin-(1-9) (Ang-(1-9), 53%), Ang II (22%) and angiotensin-(1-7) (Ang-(1-7), 11%) during a 15 min incubation. In the presence of rhChymase alone, 125I-hAng-(1-12) was directly metabolized into Ang II (89%) and no further hydrolysis of Ang II was detected. In the presence of both CPA + rhChymase enzymes (1:1 or 1:⅓ ratio), the amount of Ang II formation from 125I-hAng-(1-12) within a 5 min incubation period were 68% or 65%, respectively. In the presence of both (CPA + rhChymase), small amounts of Ang-(1-9) and Ang-(1-7) were generated from 125I-hAng-(1-12). The Km and Vmax values were 150 ± 5 μM and 384 ± 23 nM/min/mg of CPA and 40 ± 9 μM and 116 ± 20 nM/min/mg of rhChymase. The catalytic efficiency (Vmax/Km ratio) was higher for rhChymase/hAng-(1-12) compared to CPA/hAng-(1-12). Compared to CPA, chymase has a much higher affinity to hydrolyze the hAng-(1-12) substrate directly into Ang II. In addition, Ang II and Ang-(1-7) are the end products of chymase and CPA, respectively. Overall, our findings suggest that the Ang II generation from hAng-(1-12) is primarily mediated by chymase rather than CPA.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Kendra N Wright
- General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Xuming Sun
- Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Leanne Groban
- Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA; Internal Medicine/Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Carlos M Ferrario
- General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
28
|
Varney VA, Nicholas A, Warner A, Sumar N. IgE-Mediated Systemic Anaphylaxis And Its Association With Gene Polymorphisms Of ACE, Angiotensinogen And Chymase. J Asthma Allergy 2019; 12:343-361. [PMID: 31632094 PMCID: PMC6790349 DOI: 10.2147/jaa.s213016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The renin-angiotensin system (RAS) protects the circulation against sudden falls in systemic blood pressure via generation of angiotensin II (AII). Previously, we demonstrated that patients with anaphylaxis involving airway angioedema and cardiovascular collapse (AACVS) had significantly increased "I" gene polymorphisms of the angiotensin-converting-enzymes (ACE). This is associated with lower serum ACE and AII levels and was not seen in anaphylaxis without collapse nor atopics and healthy controls. OBJECTIVES To examine the angiotensinogen (AGT-M235T) and chymase gene (CMA-1 A1903G) polymorphisms in these original subjects. METHOD 122 patients with IgE-mediated anaphylaxis, 119 healthy controls and 52 atopics had polymorphisms of the AGT gene and chymase gene examined by polymerase chain reactions and gel electrophoresis. Their previous ACE genotypes were included for the analysis. RESULTS AGT-MM genes (associated with low AGT levels) were significantly increased in anaphylaxis (Terr's classification). When combined with ACE, anaphylaxis showed increased MM/II gene pairing (p<0.0013) consistent with lower RAS activity. For chymase, there was increased pairing of MM/AG (p<0.005) and AG/II and AG/ID (p<0.0073) for anaphylaxis consistent with lower RAS activity. A tri-allelic ensemble of the 6 commonest gene combinations for the healthy controls and anaphylaxis confirmed this difference (p=0.0001); for anaphylaxis, genes were predominately MM/AG/II or ID, while healthy controls were DD/MT/AG or GG patterns. CONCLUSION Our gene polymorphisms show lower RAS activity for anaphylaxis especially AACVS. Animal models of anaphylaxis are focused on endothelial nitric oxide (eNO) which is shown to be the mediator of fatal shock and prevented by eNO-blockade. The interaction of AII and eNO controls the microcirculation in man. High serum AII levels reduce eNO activity, so higher RAS-activity could protect against shock. Our data shows low RAS activity in anaphylaxis especially AACVS, suggesting the influence of these genes on shock are via AII levels and its effects on eNO.
Collapse
Affiliation(s)
- VA Varney
- Department of Medicine, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
- Department of Allergy and Immunology, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
| | - A Nicholas
- Department of Allergy and Immunology, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
| | - A Warner
- Department of Allergy and Immunology, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
| | - N Sumar
- Department of Allergy and Immunology, St Helier Hospital, Carshalton, SurreySM5 1AA, UK
| |
Collapse
|
29
|
Li T, Zhang Z, Zhang X, Chen Z, Cheng HJ, Ahmad S, Ferrario CM, Cheng CP. Reversal of angiotensin-(1-12)-caused positive modulation on left ventricular contractile performance in heart failure: Assessment by pressure-volume analysis. Int J Cardiol 2019; 301:135-141. [PMID: 31521437 DOI: 10.1016/j.ijcard.2019.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Angiotensin-(1-12) [Ang-(1-12)] is a renin-independent precursor for direct angiotensin-II production by chymase. Substantial evidence suggests that heart failure (HF) may alter cardiac Ang-(1-12) expression and activity; this novel Ang-(1-12)/chymase axis may be the main source for angiotensin-II deleterious actions in HF. We hypothesized that HF alters cardiac response to Ang-(1-12). Its stimulation may produce cardiac negative modulation and exacerbate left ventricle (LV) systolic and diastolic dysfunction. METHODS AND RESULTS We assessed the effects of Ang-(1-12) (2 nmol/kg/min, iv, 10 min) on LV contractility, LV diastolic filling, and LV-arterial coupling (AVC) in 16 SD male rats with HF-induced by isoproterenol (3 mo after 170 mg/kg sq. for 2 consecutive days) and 10 age-matched male controls. In normal controls, versus baseline, Ang-(1-12) increased LV end-systolic pressure, without altering heart rate, arterial elastance (EA), LV end-diastolic pressure (PED), the time constant of LV relaxation (τ) and ejection fraction (EF). Ang-(1-12) significantly increased the slopes (EES) of LV end-systolic pressure (P)-volume (V) relations and the slopes (MSW) of LV stroke wok-end-diastolic V relations, indicating increased LV contractility. AVC (quantified as EES/EA) improved. In contrast, in HF, versus HF baseline, Ang-(1-12) produced a similar increase in PES, but significantly increased τ, EA, and PED. The early diastolic portion of LV PV loop was shifted upward with reduced in EF. Moreover, Ang-(1-12) significantly decreased EES and MSW, demonstrating decreased LV contractility. AVC was decreased by 43%. CONCLUSIONS In both normal and HF rats, Ang-(1-12) causes similar vasoconstriction. In normal, Ang-(1-12) increases LV contractile function. In HF, Ang-(1-12) has adverse effects and depresses LV systolic and diastolic functional performance.
Collapse
Affiliation(s)
- Tiankai Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America
| | - Zhi Zhang
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America; Department of cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, China
| | - Xiaowei Zhang
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America; Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zhe Chen
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America; Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Heng-Jie Cheng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Che Ping Cheng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States of America.
| |
Collapse
|
30
|
Intrarenal Renin-Angiotensin-System Dysregulation after Kidney Transplantation. Sci Rep 2019; 9:9762. [PMID: 31278281 PMCID: PMC6611786 DOI: 10.1038/s41598-019-46114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023] Open
Abstract
Angiotensin-converting enzyme inhibitors (ACEis) are beneficial in patients with chronic kidney disease (CKD). Yet, their clinical effects after kidney transplantation (KTx) remain ambiguous and local renin-angiotensin system (RAS) regulation including the ‘classical’ and ‘alternative’ RAS has not been studied so far. Here, we investigated both systemic and kidney allograft-specific intrarenal RAS using tandem mass-spectrometry in KTx recipients with or without established ACEi therapy (n = 48). Transplant patients were grouped into early (<2 years), intermediate (2–12 years) or late periods after KTx (>12 years). Patients on ACEi displayed lower angiotensin (Ang) II plasma levels (P < 0.01) and higher levels of Ang I (P < 0.05) and Ang-(1–7) (P < 0.05) compared to those without ACEi independent of graft vintage. Substantial intrarenal Ang II synthesis was observed regardless of ACEi therapy. Further, we detected maximal allograft Ang II synthesis in the late transplant vintage group (P < 0.005) likely as a consequence of increased allograft chymase activity (P < 0.005). Finally, we could identify neprilysin (NEP) as the central enzyme of ‘alternative RAS’ metabolism in kidney allografts. In summary, a progressive increase of chymase-dependent Ang II synthesis reveals a transplant-specific distortion of RAS regulation after KTx with considerable pathogenic and therapeutic implications.
Collapse
|
31
|
Savira F, Magaye R, Hua Y, Liew D, Kaye D, Marwick T, Wang BH. Molecular mechanisms of protein-bound uremic toxin-mediated cardiac, renal and vascular effects: underpinning intracellular targets for cardiorenal syndrome therapy. Toxicol Lett 2019; 308:34-49. [PMID: 30872129 DOI: 10.1016/j.toxlet.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Cardiorenal syndrome (CRS) remains a global health burden with a lack of definitive and effective treatment. Protein-bound uremic toxin (PBUT) overload has been identified as a non-traditional risk factor for cardiac, renal and vascular dysfunction due to significant albumin-binding properties, rendering these solutes non-dialyzable upon the state of irreversible kidney dysfunction. Although limited, experimental studies have investigated possible mechanisms in PBUT-mediated cardiac, renal and vascular effects. The ultimate aim is to identify relevant and efficacious targets that may translate beneficial outcomes in disease models and eventually in the clinic. This review will expand on detailed knowledge on mechanisms involved in detrimental effects of PBUT, specifically affecting the heart, kidney and vasculature, and explore potential effective intracellular targets to abolish their effects in CRS initiation and/or progression.
Collapse
Affiliation(s)
- Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ruth Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - David Kaye
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Tom Marwick
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Bing Hui Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
32
|
Groban L, Tran QK, Ferrario CM, Sun X, Cheng CP, Kitzman DW, Wang H, Lindsey SH. Female Heart Health: Is GPER the Missing Link? Front Endocrinol (Lausanne) 2019; 10:919. [PMID: 31993020 PMCID: PMC6970950 DOI: 10.3389/fendo.2019.00919] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
The G Protein-Coupled Estrogen Receptor (GPER) is a novel membrane-bound receptor that mediates non-genomic actions of the primary female sex hormone 17β-estradiol. Studies over the past two decades have elucidated the beneficial actions of this receptor in a number of cardiometabolic diseases. This review will focus specifically on the cardiac actions of GPER, since this receptor is expressed in cardiomyocytes as well as other cells within the heart and most likely contributes to estrogen-induced cardioprotection. Studies outlining the impact of GPER on diastolic function, mitochondrial function, left ventricular stiffness, calcium dynamics, cardiac inflammation, and aortic distensibility are discussed. In addition, recent data using genetic mouse models with global or cardiomyocyte-specific GPER gene deletion are highlighted. Since estrogen loss due to menopause in combination with chronological aging contributes to unique aspects of cardiac dysfunction in women, this receptor may provide novel therapeutic effects. While clinical studies are still required to fully understand the potential for pharmacological targeting of this receptor in postmenopausal women, this review will summarize the evidence gathered thus far on its likely beneficial effects.
Collapse
Affiliation(s)
- Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
- *Correspondence: Leanne Groban
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, United States
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Che Ping Cheng
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Dalane W. Kitzman
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
33
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 720] [Impact Index Per Article: 102.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
34
|
Ahmad S, Ferrario CM. Chymase inhibitors for the treatment of cardiac diseases: a patent review (2010-2018). Expert Opin Ther Pat 2018; 28:755-764. [PMID: 30278800 DOI: 10.1080/13543776.2018.1531848] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chymase is primarily found in mast cells (MCs), fibroblasts, and vascular endothelial cells. MC chymase is released into the extracellular interstitium in response to inflammatory signals, tissue injury, and cellular stress. Among many functions, chymase is a major extravascular source for angiotensin II (Ang II) generation. Several recent pre-clinical and a few clinical studies point to the relatively unrecognized fact that chymase inhibition may have significant therapeutic advantages over other treatments in halting progression of cardiac and vascular disease. AREAS COVERED The present review covers patent literature on chymase inhibitors for the treatment of cardiac diseases registered between 2010 and 2018. EXPERT OPINION Increase in cardiac MC number in various cardiac diseases has been found in pathological tissues of human and experimental animals. Meta-analysis data from large clinical trials employing angiotensin-converting enzyme (ACE) inhibitors show a relatively small risk reduction of clinical cardiovascular endpoints. The disconnect between the expected benefit associated with Ang II blockade of synthesis or activity underscores a greater participation of chymase compared to ACE in forming Ang II in humans. Emerging literature and a reconsideration of previous studies provide lucid arguments to reconsider chymase as a primary Ang II forming enzyme in human heart and vasculature.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- a Department of Surgery , Wake Forest School of Medicine , Winston Salem , NC , USA
| | - Carlos M Ferrario
- a Department of Surgery , Wake Forest School of Medicine , Winston Salem , NC , USA.,b Department of Physiology-Pharmacology , Wake Forest School of Medicine , Winston Salem , NC , USA.,c Department of Social Sciences, Division of Public Health , Wake Forest School of Medicine , Winston Salem , NC , USA
| |
Collapse
|
35
|
da Silva JS, Gabriel-Costa D, Wang H, Ahmad S, Sun X, Varagic J, Sudo RT, Ferrario CM, Dell Italia LJ, Sudo GZ, Groban L. Blunting of cardioprotective actions of estrogen in female rodent heart linked to altered expression of cardiac tissue chymase and ACE2. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317722270. [PMID: 28748720 PMCID: PMC5805468 DOI: 10.1177/1470320317722270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Diastolic dysfunction develops in response to hypertension and estrogen (E2) loss and is a forerunner to heart failure (HF) in women. The cardiac renin–angiotensin system (RAS) contributes to diastolic dysfunction, but its role with respect to E2 and blood pressure remain unclear. Methods: We compared the effects of ovariectomy (OVX) or sham surgery on the cardiac RAS, left ventricular (LV) structure/function, and systemic/intracardiac pressures of spontaneously hypertensive rats (SHRs: n = 6 intact and 6 OVX) and age-matched Wistar-Kyoto (WKY: n = 5 intact and 4 OVX) controls. Results: WKY rats were more sensitive to OVX than SHRs with respect to worsening of diastolic function, as reflected by increases in Doppler-derived filling pressures (E/e′) and reductions in myocardial relaxation (e′). This pathobiologic response in WKY rats was directly linked to increases in cardiac gene expression and enzymatic activity of chymase and modest reductions in ACE2 activity. No overt changes in cardiac RAS genes or activities were observed in SHRs, but diastolic function was inversely related to ACE2 activity. Conclusion: Endogenous estrogens exert a more significant regulatory role upon biochemical components of the cardiac RAS of WKY versus SHRs, modulating the lusitropic and structural components of its normotensive phenotype.
Collapse
Affiliation(s)
- Jacqueline S da Silva
- 1 Research Program Development of Drugs, Institute of Biomedical Sciences Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniele Gabriel-Costa
- 1 Research Program Development of Drugs, Institute of Biomedical Sciences Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hao Wang
- 2 The Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA.,3 The Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Sarfaraz Ahmad
- 4 The Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Xuming Sun
- 2 The Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Jasmina Varagic
- 4 The Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Roberto T Sudo
- 1 Research Program Development of Drugs, Institute of Biomedical Sciences Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos M Ferrario
- 4 The Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina, USA.,5 The Department of Internal Medicine-Nephrology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Louis J Dell Italia
- 6 Division of Cardiovascular Disease, University of Alabama at Birmingham and Department of Veterans Affairs, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Gisele-Zapata Sudo
- 1 Research Program Development of Drugs, Institute of Biomedical Sciences Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leanne Groban
- 2 The Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA.,3 The Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
36
|
Li T, Zhang X, Cheng HJ, Zhang Z, Ahmad S, Varagic J, Li W, Cheng CP, Ferrario CM. Critical role of the chymase/angiotensin-(1-12) axis in modulating cardiomyocyte contractility. Int J Cardiol 2018; 264:137-144. [PMID: 29685688 DOI: 10.1016/j.ijcard.2018.03.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/23/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Angiotensin-(1-12) [Ang-(1-12)] is a chymase-dependent source for angiotensin II (Ang II) cardiac activity. The direct contractile effects of Ang-(1-12) in normal and heart failure (HF) remain to be demonstrated. We assessed the hypothesis that Ang-(1-12) may modulate [Ca2+]i regulation and alter cardiomyocyte contractility in normal and HF rats. METHODS AND RESULTS We compared left ventricle (LV) myocyte contractile and calcium transient ([Ca2+]iT) responses to angiotensin peptides in 16 SD rats with isoproterenol-induced HF and 16 age-matched controls. In normal myocytes, versus baseline, Ang II (10-6 M) superfusion significantly increased myocyte contractility (dL/dtmax: 40%) and [Ca2+]iT (29%). Ang-(1-12) (4 × 10-6 M) caused similar increases in dL/dtmax (34%) and [Ca2+]iT (25%). Compared with normal myocytes, superfusion of Ang II and Ang-(1-12) in myocytes obtained from rats with isoproterenol-induced HF caused similar but significantly attenuated positive inotropic actions with about 42% to 50% less increases in dL/dtmax and [Ca2+]iT. Chymostatin abolished Ang-(1-12)-mediated effects in normal and HF myocytes. The presence of an inhibitory cAMP analog, Rp-cAMPS prevented Ang-(1-12)-induced inotropic effects in both normal and HF myocytes. Incubation of HF myocytes with pertussis toxin (PTX) further augmented Ang II-mediated contractility. CONCLUSIONS Ang-(1-12) stimulates cardiomyocyte contractile function and [Ca2+]iT in both normal and HF rats through a chymase mediated action. Altered inotropic responses to Ang-(1-12) and Ang II in HF myocytes are mediated through a cAMP-dependent mechanism that is coupled to both stimulatory G and inhibitory PTX-sensitive G proteins.
Collapse
Affiliation(s)
- Tiankai Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xiaowei Zhang
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States; Department of Cardiology, the Second Affiliated Hospital of Nantong University, Nantong, China
| | - Heng-Jie Cheng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Zhi Zhang
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States; Cardiovascular Department, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Sarfaraz Ahmad
- Departments of Surgery, Internal Medicine-Nephrology, and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jasmina Varagic
- Departments of Surgery, Internal Medicine-Nephrology, and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Weimin Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Che Ping Cheng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States.
| | - Carlos M Ferrario
- Departments of Surgery, Internal Medicine-Nephrology, and Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
37
|
|
38
|
Hussain M, Awan FR. Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease. Clin Exp Hypertens 2017; 40:344-352. [PMID: 29190205 DOI: 10.1080/10641963.2017.1377218] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Renin angiotensin system (RAS) is an endogenous hormone system involved in the control of blood pressure and fluid volume. Dysregulation of RAS has a pathological role in causing cardiovascular diseases through hypertension. Among several key components of RAS, angiotensin peptides, varying in amino acid length and biological function, have important roles in preventing or promoting hypertension, cardiovascular diseases, stroke, vascular remodeling etc. These peptides are generated by the metabolism of inactive angiotensinogen or its derived peptides by hydrolyzing action of certain enzymes. Angiotensin II, angiotensin (1-12), angiotensin A and angiotensin III bind primarily to angiotensin II type 1 receptor and cause vasoconstriction, accumulation of inflammatory markers to sub-endothelial region of blood vessels and activate smooth muscle cell proliferation. Moreover, when bound to angiotensin II type 2 receptor, angiotensin II works as cardio-protective peptide and halt pathological cell signals. Other peptides like angiotensin (1-9), angiotensin (1-7), alamandine and angiotensin IV also help in protecting from cardiovascular diseases by binding to their respective receptors.
Collapse
Affiliation(s)
- Misbah Hussain
- a Diabetes and Cardio-Metabolic disorders Lab, Health Biotechnology Division , National Institute for Biotechnology and Genetic Engineering (NIBGE) , Faisalabad , Pakistan.,b Pakistan Institute of Engineering and Applied Sciences (PIEAS) , Nilore , Islamabad , Pakistan
| | - Fazli Rabbi Awan
- a Diabetes and Cardio-Metabolic disorders Lab, Health Biotechnology Division , National Institute for Biotechnology and Genetic Engineering (NIBGE) , Faisalabad , Pakistan.,b Pakistan Institute of Engineering and Applied Sciences (PIEAS) , Nilore , Islamabad , Pakistan
| |
Collapse
|
39
|
Ferrario CM, Mullick AE. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res 2017; 125:57-71. [PMID: 28571891 PMCID: PMC5648016 DOI: 10.1016/j.phrs.2017.05.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
Abstract
A collective century of discoveries establishes the importance of the renin angiotensin aldosterone system in maintaining blood pressure, fluid volume and electrolyte homeostasis via autocrine, paracrine and endocrine signaling. While research continues to yield new functions of angiotensin II and angiotensin-(1-7), the gap between basic research and clinical application of these new findings is widening. As data accumulates on the efficacy of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers as drugs of fundamental importance in the treatment of cardiovascular and renal disorders, it is becoming apparent that the achieved clinical benefits is suboptimal and surprisingly no different than what can be achieved with other therapeutic interventions. We discuss this issue and summarize new pathways and mechanisms effecting the synthesis and actions of angiotensin II. The presence of renin-independent non-canonical pathways for angiotensin II production are largely unaffected by agents inhibiting renin angiotensin system activity. Hence, new efforts should be directed to develop drugs that can effectively block the synthesis and/or action of intracellular angiotensin II. Improved drug penetration into cardiac or renal sites of disease, inhibiting chymase the primary angiotensin II forming enzyme in the human heart, and/or inhibiting angiotensinogen synthesis would all be more effective strategies to inhibit the system. Additionally, given the role of angiotensin II in the maintenance of renal homeostatic mechanisms, any new inhibitor should possess greater selectivity of targeting pathogenic angiotensin II signaling processes and thereby limit inappropriate inhibition.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery, Wake Forest University Health Science, Medical Center Blvd., Winston Salem, NC 27157, United States.
| | - Adam E Mullick
- Cardiovascular Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, United States
| |
Collapse
|
40
|
Combining Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor Blocker for Clinical Decision-making Lacks Vision. Anesthesiology 2017; 127:720-721. [DOI: 10.1097/aln.0000000000001801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Huber G, Schuster F, Raasch W. Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 2017; 125:72-90. [PMID: 28687340 DOI: 10.1016/j.phrs.2017.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVD) are among the main causes of death globally and in this context hypertension represents one of the key risk factors for developing a CVD. It is well established that the peripheral renin-angiotensin system (RAS) plays an important role in regulating blood pressure (BP). All components of the classic RAS can also be found in the brain but, in contrast to the peripheral RAS, how the endogenous RAS is involved in modulating cardiovascular effects in the brain is not fully understood yet. It is a complex system that may work differently in diverse areas of the brain and is linked to the peripheral system by the circumventricular organs (CVO), which do not have a blood brain barrier (BBB). In this review, we focus on the brain angiotensin peptides, their interactions with each other, and the consequences in the central nervous system (CNS) concerning cardiovascular control. Additionally, we present potential drug targets in the brain RAS for the treatment of hypertension.
Collapse
Affiliation(s)
- Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Franziska Schuster
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
42
|
Intracellular angiotensin-(1-12) changes the electrical properties of intact cardiac muscle. Mol Cell Biochem 2016; 422:31-40. [PMID: 27590241 DOI: 10.1007/s11010-016-2801-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
In the present work, the influence of intracellular injection of angiotensin-(1-12) [Ang-(1-12)] on the electrical properties of the intact left ventricle of Wistar Kyoto rats was investigated with electrophysiological methods. Particular attention was given to the role of chymostatin on the effect of the peptide. The results indicated that intracellular administration of the peptide elicited a depolarization of the surface cell membrane and an increase of duration of the action potential followed by the generation of early afterdepolarizations. The increment of action potential duration caused by Ang-(1-12) (100 nM) was due to a decrease of total potassium current recorded from single cardiomyocytes using the whole cell configuration of pCAMP. The decrease of potassium current was related to the activation of protein kinase C (PKC) because the specific inhibitor of kinase C, Bis-1 (10-9 M), abolished Ang-(1-12) effects on the potassium current. The question of whether the effect of Ang-(1-12) was related to the formation of Ang II by chymase was investigated.The results revealed that the intracellular administration of chymostatin, a chymase inhibitor (10-9 M) abolished the effect of intracellular Ang-(1-12) on the potassium current. Moreover, intracellular Ang II (100 nM), by itself, reduced the potassium current, an effect decreased by intracellular valsartan (100 nM). Valsartan (10-9 M) dialyzed into the cell abolished the effect of Ang-(1-12) (100 nM). These observations demonstrate that the effect of Ang-(1-12) on potassium current was related to the formation of Ang II and that the peptide has arrhythmogenic properties.
Collapse
|
43
|
Ferrario CM, Ahmad S, Varagic J, Cheng CP, Groban L, Wang H, Collawn JF, Dell Italia LJ. Intracrine angiotensin II functions originate from noncanonical pathways in the human heart. Am J Physiol Heart Circ Physiol 2016; 311:H404-14. [PMID: 27233763 PMCID: PMC5008653 DOI: 10.1152/ajpheart.00219.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/26/2016] [Indexed: 12/11/2022]
Abstract
Although it is well-known that excess renin angiotensin system (RAS) activity contributes to the pathophysiology of cardiac and vascular disease, tissue-based expression of RAS genes has given rise to the possibility that intracellularly produced angiotensin II (Ang II) may be a critical contributor to disease processes. An extended form of angiotensin I (Ang I), the dodecapeptide angiotensin-(1-12) [Ang-(1-12)], that generates Ang II directly from chymase, particularly in the human heart, reinforces the possibility that an alternative noncanonical renin independent pathway for Ang II formation may be important in explaining the mechanisms by which the hormone contributes to adverse cardiac and vascular remodeling. This review summarizes the work that has been done in evaluating the functional significance of Ang-(1-12) and how this substrate generated from angiotensinogen by a yet to be identified enzyme enhances knowledge about Ang II pathological actions.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Departments of Surgery, Internal Medicine-Nephrology and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston-Salem, North Carolina;
| | - Sarfaraz Ahmad
- Departments of Surgery, Internal Medicine-Nephrology and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Jasmina Varagic
- Departments of Surgery, Internal Medicine-Nephrology and Physiology-Pharmacology, Wake Forest University Health Science Center, Winston-Salem, North Carolina; Hypertension and Vascular Research Center, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Che Ping Cheng
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Leanne Groban
- Hypertension and Vascular Research Center, Wake Forest University Health Science Center, Winston-Salem, North Carolina; Department of Anesthesiology, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - Hao Wang
- Department of Anesthesiology, Wake Forest University Health Science Center, Winston-Salem, North Carolina
| | - James F Collawn
- Departments of Cell Biology, Microbiology, Physiology, University of Alabama Birmingham, Alabama; and
| | - Louis J Dell Italia
- Departments of Cell Biology, Microbiology, Physiology, University of Alabama Birmingham, Alabama; and Division of Cardiovascular Disease, University of Alabama at Birmingham and Department of Veterans Affairs, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
44
|
Alencar AK, da Silva JS, Lin M, Silva AM, Sun X, Ferrario CM, Cheng C, Sudo RT, Zapata-Sudo G, Wang H, Groban L. Effect of Age, Estrogen Status, and Late-Life GPER Activation on Cardiac Structure and Function in the Fischer344×Brown Norway Female Rat. J Gerontol A Biol Sci Med Sci 2016; 72:152-162. [PMID: 27006078 DOI: 10.1093/gerona/glw045] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/25/2016] [Indexed: 01/08/2023] Open
Abstract
Age-associated changes in cardiac structure and function, together with estrogen loss, contribute to the progression of heart failure with preserved ejection fraction in older women. To investigate the effects of aging and estrogen loss on the development of its precursor, asymptomatic left ventricular diastolic dysfunction, echocardiograms were performed in 10 middle-aged (20 months) and 30 old-aged (30 months) female Fischer344×Brown-Norway rats, 4 and 8 weeks after ovariectomy (OVX) and sham procedures (gonads left intact). The cardioprotective potential of administering chronic G1, the selective agonist to the new G-protein-coupled estrogen receptor (GPER), was further evaluated in old rats (Old-OVX+G1) versus age-matched, vehicle-treated OVX and gonadal intact rats. Advanced age and estrogen loss led to decreases in myocardial relaxation and elevations in filling pressure, in part, due to reductions in phosphorylated phospholamban and increases in cardiac collagen deposition. Eight weeks of G-protein-coupled estrogen receptor activation in Old-OVX+G1 rats reversed the adverse effects of age and estrogen loss on myocardial relaxation through increases in sarcoplasmic reticulum Ca2+ ATPase expression and reductions in interstitial fibrosis. These findings may explain the preponderance of heart failure with preserved ejection fraction in older postmenopausal women and provide a promising, late-life therapeutic target to reverse or halt the progression of left ventricular diastolic dysfunction.
Collapse
Affiliation(s)
- Allan K Alencar
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaqueline S da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina Lin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ananssa M Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carlos M Ferrario
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Cheping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Roberto T Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina. .,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,The Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,The Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
45
|
Ferrario CM, VonCannon J, Jiao Y, Ahmad S, Bader M, Dell'Italia LJ, Groban L, Varagic J. Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene. Am J Physiol Heart Circ Physiol 2016; 310:H995-1002. [PMID: 26873967 DOI: 10.1152/ajpheart.00833.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Angiotensin-(1-12) [ANG-(1-12)] is processed into ANG II by chymase in rodent and human heart tissue. Differences in the amino acid sequence of rat and human ANG-(1-12) render the human angiotensinogen (hAGT) protein refractory to cleavage by renin. We used transgenic rats harboring the hAGT gene [TGR(hAGT)L1623] to assess the non-renin-dependent effects of increased hAGT expression on heart function and arterial pressure. Compared with Sprague-Dawley (SD) control rats (n= 11), male homozygous TGR(hAGT)L1623 (n= 9) demonstrated sustained daytime and nighttime hypertension associated with no changes in heart rate but increased heart rate lability. Increased heart weight/tibial length ratio and echocardiographic indexes of cardiac hypertrophy were associated with modest reduction of systolic function in hAGT rats. Robust human ANG-(1-12) immunofluorescence within myocytes of TGR(hAGT)L1623 rats was associated with a fourfold increase in cardiac ANG II content. Chymase enzymatic activity, using the rat or human ANG-(1-12) as a substrate, was not different in the cardiac tissue of SD and hAGT rats. Since both cardiac angiotensin-converting enzyme (ACE) and ACE2 activities were not different among the two strains, the changes in cardiac structure and function, blood pressure, and left ventricular ANG II content might be a product of an increased cardiac expression of ANG II generated through a non-renin-dependent mechanism. The data also underscore the existence in the rat of alternate enzymes capable of acting on hAGT protein. Homozygous transgenic rats expressing the hAGT gene represent a novel tool to investigate the contribution of human relevant renin-independent cardiac ANG II formation and function.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina; Departments of Medicine-Nephrology and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Jessica VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina; Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Yan Jiao
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Sarfaraz Ahmad
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, University of Alabama at Birmingham and Department of Veterans Affairs, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Leanne Groban
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina; and
| | - Jasmina Varagic
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina; Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina; Departments of Medicine-Nephrology and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
46
|
Re RN. Age-Related Macular Degeneration and Intracrine Biology: An Hypothesis. Ochsner J 2016; 16:502-510. [PMID: 27999510 PMCID: PMC5158158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
This laboratory has studied the intracellular actions of angiotensin II and other signaling proteins that can act in the intracellular space-peptides/proteins we have called intracrines. Moreover, we have suggested that general principles of intracrine action exist and can help explain the progression of some chronic degenerative diseases such as diabetic nephropathy and congestive heart failure. Here, a similar analysis is carried out in the case of age-related macular degeneration. We propose that intracrine mechanisms are operative in this disorder. In particular, we hypothesize that intracrine loops involving renin, angiotensin II, transforming growth factor-beta, vascular endothelial growth factor, bone morphogenetic protein-4, and p53, among other factors, are involved. If this analysis is correct, it suggests a commonality of mechanism linking chronic progressive renal diseases, congestive heart failure, and macular degeneration.
Collapse
Affiliation(s)
- Richard N. Re
- Division of Academics–Research, Ochsner Clinic Foundation, New Orleans, LA
| |
Collapse
|
47
|
Saigusa T, Dang Y, Mullick AE, Yeh ST, Zile MR, Baicu CF, Bell PD. Suppressing angiotensinogen synthesis attenuates kidney cyst formation in a Pkd1 mouse model. FASEB J 2015; 30:370-9. [PMID: 26391272 DOI: 10.1096/fj.15-279299] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/08/2015] [Indexed: 01/13/2023]
Abstract
Activation of the intrarenal renin angiotensin system (RAS) is believed to play an important role in the development of hypertension and cystogenesis in autosomal dominant polycystic kidney disease (ADPKD). Results of clinical studies testing RAS inhibitors in slowing the progression of cystic disease in ADPKD are inconclusive, and we hypothesized that current RAS inhibitors do not adequately suppress intrarenal RAS. For this study, we compared a novel Gen 2 antisense oligonucleotide (ASO) that inhibits angiotensinogen (Agt) synthesis to lisinopril in adult conditional Pkd1 systemic-knockout mice, a model of ADPKD. Six weeks after Pkd1 global gene knockout, the mice were treated with Agt-ASO (66 mg/kg/wk), lisinopril (100 mg/kg/d), PBS (control), or scrambled ASO (66 mg/kg/wk) for 10 wk, followed by tissue collection. Agt ASO resulted in significant reduction in plasma, liver, and kidney Agt, and increased kidney renin compared with control treatments. Kidneys from Agt-ASO-treated mice were not as enlarged and showed reduced cystic volume compared with lisinopril or control treatments. Blood pressure was better controlled with lisinopril than with Agt-ASO. Agt-ASO suppressed cell proliferation in both cystic and noncystic cells compared with lisinopril and control treatments. However, Agt-ASO did not reduce cell proliferation in liver, which indicates that Agt-ASO targets cell signaling pathways that specifically suppresses cystogenesis in the kidney. These data suggest that Agt-ASO effectively attenuates intrarenal RAS and therefore can be a novel and effective agent for treating ADPKD.
Collapse
Affiliation(s)
- Takamitsu Saigusa
- *Division of Nephrology and Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA; and Isis Pharmaceuticals, Carlsbad, California, USA
| | - Yujing Dang
- *Division of Nephrology and Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA; and Isis Pharmaceuticals, Carlsbad, California, USA
| | - Adam E Mullick
- *Division of Nephrology and Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA; and Isis Pharmaceuticals, Carlsbad, California, USA
| | - Steve T Yeh
- *Division of Nephrology and Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA; and Isis Pharmaceuticals, Carlsbad, California, USA
| | - Michael R Zile
- *Division of Nephrology and Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA; and Isis Pharmaceuticals, Carlsbad, California, USA
| | - Catalin F Baicu
- *Division of Nephrology and Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA; and Isis Pharmaceuticals, Carlsbad, California, USA
| | - P Darwin Bell
- *Division of Nephrology and Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA; and Isis Pharmaceuticals, Carlsbad, California, USA
| |
Collapse
|
48
|
Wang R, Chen J, Zhang Z, Cen Y. Role of chymase in the local renin-angiotensin system in keloids: inhibition of chymase may be an effective therapeutic approach to treat keloids. Drug Des Devel Ther 2015; 9:4979-88. [PMID: 26357464 PMCID: PMC4560513 DOI: 10.2147/dddt.s87842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Histologically, keloids contain excess fibroblasts and an overabundance of dermal collagen. Recently, it was reported that chymase induced a profibrotic response via transforming growth factor-β1 (TGF-β1)/Smad activation in keloid fibroblasts (KFs). However, the role of chymase in the local renin-angiotensin system (RAS) in keloids has not been elucidated. This study aims to determine whether chymase plays an important role in the local RAS in keloids. Methods We compared the expression and activity of chymase in keloids and normal skin tissues using Western blotting and radioimmunoassay, and studied the expression of TGF-β1, interleukin-1β, collagen I, hydroxyproline, and angiotensin II in KFs after chymase and inhibitors’ treatment. Results The results revealed an increased activity of chymase in keloid tissues, and that chymase enhanced the expression of angiotensin II, collagen I, TGF-β1, and interleukin-1β in KFs. Blockade of the chymase pathway involved in the local RAS lowered the expression of these signaling factors. Conclusion This research suggests that inhibition of chymase might be an effective therapeutic approach to improve the clinical treatment of keloids.
Collapse
Affiliation(s)
- Ru Wang
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
49
|
Olkowicz M, Chlopicki S, Smolenski RT. Perspectives for angiotensin profiling with liquid chromatography/mass spectrometry to evaluate ACE/ACE2 balance in endothelial dysfunction and vascular pathologies. Pharmacol Rep 2015; 67:778-85. [PMID: 26321281 DOI: 10.1016/j.pharep.2015.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 02/07/2023]
Abstract
Vascular injury, characterized by endothelial dysfunction, inflammation, structural remodeling, thrombosis and calcification leads to cardiovascular diseases. Angiotensin (Ang) II (1-8) - synthesized mainly by angiotensin converting enzyme (ACE) is the best characterized mediator of the renin-angiotensin system (RAS). This peptide initially identified by its vasoactive properties was found to play a major role in vascular response to insult. However, recent discovery of angiotensin converting enzyme 2 (ACE2) that produces vasoprotective Ang-(1-7) peptide highlighted complexity of the system and suggested that balance between ACE/Ang II and ACE2/Ang-(1-7) is fundamental in maintaining vascular homeostasis and its disorders are associated with cardiovascular pathology. There is therefore a need to develop methods for comprehensive analysis of biologically active Ang peptides and their metabolites of ACE/Ang II and ACE2/Ang-(1-7) axes. Liquid chromatography/mass spectrometry (LC/MS) is an analytical technique that offers potential for specific, simultaneous analysis of Ang peptides. With sensitivity added by application of preconcentration nanochromatography reaching picomolar concentrations, practically all Ang peptides identified so far could be quantified in biological samples. Ang profiling is important not only for understanding their physiological or pathological role but could also serve as an early diagnostic biomarker of endothelial dysfunction and cardiovascular pathology. It could also be used for monitoring the efficacy of the RAS-targeted therapies. Although, the methodology requires further improvements to adopt it for routine application, Ang peptide profiling with targeted LC/MS analysis might assess functional balance between ACE/Ang II and ACE2/Ang-(1-7) axes, facilitate our understanding of the cardiovascular pathology and enhance biomarker portfolio in cardiovascular diseases.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland; Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland.
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland; Department of Experimental Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|
50
|
A possible mechanism for the progression of chronic renal disease and congestive heart failure. ACTA ACUST UNITED AC 2014; 9:54-63. [PMID: 25539896 DOI: 10.1016/j.jash.2014.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 12/15/2022]
Abstract
Chronic neurologic diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as various forms of chronic renal disease and systolic congestive heart failure, are among the most common progressive degenerative disorders encountered in medicine. Each disease follows a nearly relentless course, albeit at varying rates, driven by progressive cell dysfunction and drop-out. The neurologic diseases are characterized by the progressive spread of disease-causing proteins (prion-like proteins) from cell to cell. Recent evidence indicates that cell autonomous renin angiotensin systems operate in heart and kidney, and it is known that functional intracrine proteins can also spread between cells. This then suggests that certain progressive degenerative cardiovascular disorders such as forms of chronic renal insufficiency and systolic congestive heart failure result from dysfunctional renin angiotensin system intracrine action spreading in kidney or myocardium.
Collapse
|