1
|
Arron HE, Marsh BD, Kell DB, Khan MA, Jaeger BR, Pretorius E. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the biology of a neglected disease. Front Immunol 2024; 15:1386607. [PMID: 38887284 PMCID: PMC11180809 DOI: 10.3389/fimmu.2024.1386607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating disease characterised by a wide range of symptoms that severely impact all aspects of life. Despite its significant prevalence, ME/CFS remains one of the most understudied and misunderstood conditions in modern medicine. ME/CFS lacks standardised diagnostic criteria owing to variations in both inclusion and exclusion criteria across different diagnostic guidelines, and furthermore, there are currently no effective treatments available. Moving beyond the traditional fragmented perspectives that have limited our understanding and management of the disease, our analysis of current information on ME/CFS represents a significant paradigm shift by synthesising the disease's multifactorial origins into a cohesive model. We discuss how ME/CFS emerges from an intricate web of genetic vulnerabilities and environmental triggers, notably viral infections, leading to a complex series of pathological responses including immune dysregulation, chronic inflammation, gut dysbiosis, and metabolic disturbances. This comprehensive model not only advances our understanding of ME/CFS's pathophysiology but also opens new avenues for research and potential therapeutic strategies. By integrating these disparate elements, our work emphasises the necessity of a holistic approach to diagnosing, researching, and treating ME/CFS, urging the scientific community to reconsider the disease's complexity and the multifaceted approach required for its study and management.
Collapse
Affiliation(s)
- Hayley E. Arron
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Benjamin D. Marsh
- MRCPCH Consultant Paediatric Neurodisability, Exeter, Devon, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - M. Asad Khan
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | - Beate R. Jaeger
- Long COVID department, Clinic St Georg, Bad Aibling, Germany
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Vojdani A, Almulla AF, Zhou B, Al-Hakeim HK, Maes M. Reactivation of herpesvirus type 6 and IgA/IgM-mediated responses to activin-A underpin long COVID, including affective symptoms and chronic fatigue syndrome. Acta Neuropsychiatr 2024; 36:172-184. [PMID: 38571295 DOI: 10.1017/neu.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Persistent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), reactivation of dormant viruses, and immune-oxidative responses are involved in long COVID. OBJECTIVES To investigate whether long COVID and depressive, anxiety, and chronic fatigue syndrome (CFS) symptoms are associated with IgA/IgM/IgG to SARS-CoV-2, human herpesvirus type 6 (HHV-6), Epstein-Barr Virus (EBV), and immune-oxidative biomarkers. METHODS We examined 90 long COVID patients and ninety healthy controls. We measured serum IgA/IgM/IgG against HHV-6 and EBV and their deoxyuridine 5′-triphosphate nucleotidohydrolase (duTPase), SARS-CoV-2, and activin-A, C-reactive protein (CRP), advanced oxidation protein products (AOPP), and insulin resistance (HOMA2-IR). RESULTS Long COVID patients showed significant elevations in IgG/IgM-SARS-CoV-2, IgG/IgM-HHV-6, and HHV-6-duTPase, IgA/IgM-activin-A, CRP, AOPP, and HOMA2-IR. Neural network analysis yielded a highly significant predictive accuracy of 80.6% for the long COVID diagnosis (sensitivity: 78.9%, specificity: 81.8%, area under the ROC curve = 0.876); the topmost predictors were as follows: IGA-activin-A, IgG-HHV-6, IgM-HHV-6-duTPase, IgG-SARS-CoV-2, and IgM-HHV-6 (all positively) and a factor extracted from all IgA levels to all viral antigens (inversely). The top 5 predictors of affective symptoms due to long COVID were IgM-HHV-6-duTPase, IgG-HHV-6, CRP, education, IgA-activin-A (predictive accuracy of r = 0.636). The top 5 predictors of CFS due to long COVID were in descending order: CRP, IgG-HHV-6-duTPase, IgM-activin-A, IgM-SARS-CoV-2, and IgA-activin-A (predictive accuracy: r = 0.709). CONCLUSION Reactivation of HHV-6, SARS-CoV-2 persistence, and autoimmune reactions to activin-A combined with activated immune-oxidative pathways play a major role in the pathophysiology of long COVID as well as the severity of its affective symptoms and CFS.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA90035, USA
- Cyrex Laboratories, LLC, Phoenix, AZ85034, USA
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu610072, China
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu610072, China
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Center, Medical University of Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul02447, Korea
| |
Collapse
|
3
|
Pietrangelo T, Cagnin S, Bondi D, Santangelo C, Marramiero L, Purcaro C, Bonadio RS, Di Filippo ES, Mancinelli R, Fulle S, Verratti V, Cheng X. Myalgic encephalomyelitis/chronic fatigue syndrome from current evidence to new diagnostic perspectives through skeletal muscle and metabolic disturbances. Acta Physiol (Oxf) 2024; 240:e14122. [PMID: 38483046 DOI: 10.1111/apha.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a demanding medical condition for patients and society. It has raised much more public awareness after the COVID-19 pandemic since ME/CFS and long-COVID patients share many clinical symptoms such as debilitating chronic fatigue. However, unlike long COVID, the etiopathology of ME/CFS remains a mystery despite several decades' research. This review moves from pathophysiology of ME/CFS through the compelling evidence and most interesting hypotheses. It focuses on the pathophysiology of skeletal muscle by proposing the hypothesis that skeletal muscle tissue offers novel opportunities for diagnosis and treatment of this syndrome and that new evidence can help resolve the long-standing debate on terminology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padova, Italy
- CIR-Myo Myology Center, University of Padua, Padova, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Cristina Purcaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
4
|
Mohan S, Alhazmi HA, Hassani R, Khuwaja G, Maheshkumar VP, Aldahish A, Chidambaram K. Role of ferroptosis pathways in neuroinflammation and neurological disorders: From pathogenesis to treatment. Heliyon 2024; 10:e24786. [PMID: 38314277 PMCID: PMC10837572 DOI: 10.1016/j.heliyon.2024.e24786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Ferroptosis is a newly discovered non-apoptotic and iron-dependent type of cell death. Ferroptosis mainly takes place owing to the imbalance of anti-oxidation and oxidation in the body. It is regulated via a number of factors and pathways both inside and outside the cell. Ferroptosis is closely linked with brain and various neurological disorders (NDs). In the human body, the brain contains the highest levels of polyunsaturated fatty acids, which are known as lipid peroxide precursors. In addition, there is also a connection of glutathione depletion and lipid peroxidation with NDs. There is growing evidence regarding the possible link between neuroinflammation and multiple NDs, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and stroke. Recent studies have demonstrated that disruptions of lipid reactive oxygen species (ROS), glutamate excitatory toxicity, iron homeostasis, and various other manifestations linked with ferroptosis can be identified in various neuroinflammation-mediated NDs. It has also been reported that damage-associated molecular pattern molecules including ROS are generated during the events of ferroptosis and can cause glial activation via activating neuroimmune pathways, which subsequently leads to the generation of various inflammatory factors that play a role in various NDs. This review summarizes the regulation pathways of ferroptosis, the link between ferroptosis as well as inflammation in NDs, and the potential of a range of therapeutic agents that can be used to target ferroptosis and inflammation in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - V P Maheshkumar
- Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India
| | - Afaf Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
5
|
Ferguson CA, Santangelo C, Marramiero L, Farina M, Pietrangelo T, Cheng X. Broadband Electrical Spectroscopy to Distinguish Single-Cell Ca 2+ Changes Due to Ionomycin Treatment in a Skeletal Muscle Cell Line. SENSORS (BASEL, SWITZERLAND) 2023; 23:4358. [PMID: 37177559 PMCID: PMC10181519 DOI: 10.3390/s23094358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Many skeletal muscle diseases such as muscular dystrophy, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and sarcopenia share the dysregulation of calcium (Ca2+) as a key mechanism of disease at a cellular level. Cytosolic concentrations of Ca2+ can signal dysregulation in organelles including the mitochondria, nucleus, and sarcoplasmic reticulum in skeletal muscle. In this work, a treatment is applied to mimic the Ca2+ increase associated with these atrophy-related disease states, and broadband impedance measurements are taken for single cells with and without this treatment using a microfluidic device. The resulting impedance measurements are fitted using a single-shell circuit simulation to show calculated electrical dielectric property contributions based on these Ca2+ changes. From this, similar distributions were seen in the Ca2+ from fluorescence measurements and the distribution of the S-parameter at a single frequency, identifying Ca2+ as the main contributor to the electrical differences being identified. Extracted dielectric parameters also showed different distribution patterns between the untreated and ionomycin-treated groups; however, the overall electrical parameters suggest the impact of Ca2+-induced changes at a wider range of frequencies.
Collapse
Affiliation(s)
- Caroline A. Ferguson
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Farina
- Department of Engineering of Information, University Politecnica delle Marche, 60131 Ancona, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Sciences, Lehigh University, Bethlehem, PA 18015, USA
- Department of Materials Science and Engineering, P.C. Rossin College of Engineering and Applied Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
6
|
Tschopp R, König RS, Rejmer P, Paris DH. Health system support among patients with ME/CFS in Switzerland. J Taibah Univ Med Sci 2023; 18:876-885. [PMID: 36852237 PMCID: PMC9957780 DOI: 10.1016/j.jtumed.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/23/2022] [Accepted: 12/25/2022] [Indexed: 01/05/2023] Open
Abstract
Objectives Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic and debilitating multifactorial disease. Adequate patient care is challenged by poor knowledge among health care professionals and the historical misconception that the disease is psychological in nature. This study assessed the health-related challenges faced by patients with ME/CFS in Switzerland and examined whether they receive adequate health care. Methods Quantitative and qualitative data were collected through a self-administered questionnaire between June and September of 2021, among 169 patients with ME/CFS in Switzerland. Results The mean age at diagnosis was 38.8 years. Only one-third of ME/CFS affected children and youth were correctly diagnosed before their 18th birthday. The mean time from disease onset to diagnosis was 6.7 years, and patients had an average of 11.1 different appointments and 2.6 misdiagnoses. A poor diagnosis rate and insufficient disease knowledge among health professionals in Switzerland led 13.5% of the patients to travel abroad to seek a diagnosis. Most patients (90.5%) were told at least once that their symptoms were psychosomatic. Swiss patients expressed high dissatisfaction with the health system and indicated that physicians lacked knowledge regarding ME/CFS. Therapies prescribed by physicians or tried by patients, as well as their perceived efficacy, were described. Graded Exercise Therapy (GET) was perceived as harmful by patients, whereas pacing, complementary/alternative medicine, and dietary supplements and medications to alleviate symptoms were reported to be helpful to varying degrees. Conclusion This study highlights that poor disease knowledge among health care providers in Switzerland has led to high patient dissatisfaction, and delays in ME/CFS diagnoses and prescription of inappropriate therapies, thus adding to patient distress and disease burden.
Collapse
Affiliation(s)
- Rea Tschopp
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland,University of Basel, Switzerland,Armauer Hansen Research Institute, Addis Ababa, Ethiopia,Corresponding address: Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
| | - Rahel S. König
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | | | - Daniel H. Paris
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland,University of Basel, Switzerland
| |
Collapse
|
7
|
Kasimir F, Toomey D, Liu Z, Kaiping AC, Ariza ME, Prusty BK. Tissue specific signature of HHV-6 infection in ME/CFS. Front Mol Biosci 2022; 9:1044964. [PMID: 36589231 PMCID: PMC9795011 DOI: 10.3389/fmolb.2022.1044964] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
First exposure to various human herpesviruses (HHVs) including HHV-6, HCMV and EBV does not cause a life-threatening disease. In fact, most individuals are frequently unaware of their first exposure to such pathogens. These herpesviruses acquire lifelong latency in the human body where they show minimal genomic activity required for their survival. We hypothesized that it is not the latency itself but a timely, regionally restricted viral reactivation in a sub-set of host cells that plays a key role in disease development. HHV-6 (HHV-6A and HHV-6B) and HHV-7 are unique HHVs that acquire latency by integration of the viral genome into sub-telomeric region of human chromosomes. HHV-6 reactivation has been linked to Alzheimer's Disease, Chronic Fatigue Syndrome, and many other diseases. However, lack of viral activity in commonly tested biological materials including blood or serum strongly suggests tissue specific localization of active HHV-6 genome. Here in this paper, we attempted to analyze active HHV-6 transcripts in postmortem tissue biopsies from a small cohort of ME/CFS patients and matched controls by fluorescence in situ hybridization using a probe against HHV-6 microRNA (miRNA), miR-aU14. Our results show abundant viral miRNA in various regions of the human brain and associated neuronal tissues including the spinal cord that is only detected in ME/CFS patients and not in controls. Our findings provide evidence of tissue-specific active HHV-6 and EBV infection in ME/CFS, which along with recent work demonstrating a possible relationship between herpesvirus infection and ME/CFS, provide grounds for renewed discussion on the role of herpesviruses in ME/CFS.
Collapse
Affiliation(s)
- Francesca Kasimir
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Danny Toomey
- HHV-6 Foundation, Santa Barbara, CA, United States
| | - Zheng Liu
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Agnes C. Kaiping
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Maria Eugenia Ariza
- Department of Cancer Biology and Genetics (CBG), Institute for Behavioral Medicine Research (IBMR), The Ohio State University, Columbus, OH, United States
| | - Bhupesh K. Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Sukocheva OA, Maksoud R, Beeraka NM, Madhunapantula SV, Sinelnikov M, Nikolenko VN, Neganova ME, Klochkov SG, Amjad Kamal M, Staines DR, Marshall-Gradisnik S. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res 2022; 40:179-196. [PMID: 36100326 PMCID: PMC8619886 DOI: 10.1016/j.jare.2021.11.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease (COVID-19) triggers the development of numerous pathologies and infection-linked complications and exacerbates existing pathologies in nearly all body systems. Aside from the primarily targeted respiratory organs, adverse SARS-CoV-2 effects were observed in nervous, cardiovascular, gastrointestinal/metabolic, immune, and other systems in COVID-19 survivors. Long-term effects of this viral infection have been recently observed and represent distressing sequelae recognised by the World Health Organisation (WHO) as a distinct clinical entity defined as post-COVID-19 condition. Considering the pandemic is still ongoing, more time is required to confirm post COVID-19 condition diagnosis in the COVID-19 infected cohorts, although many reported post COVID-19 symptoms overlap with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). AIMS OF REVIEW In this study, COVID-19 clinical presentation and associated post-infection sequelae (post-COVID-19 condition) were reviewed and compared with ME/CFS symptomatology. KEY SCIENTIFIC CONCEPTS OF REVIEW The onset, progression, and symptom profile of post COVID-19 condition patients have considerable overlap with ME/CFS. Considering the large scope and range of pro-inflammatory effects of this virus, it is reasonable to expect development of post COVID-19 clinical complications in a proportion of the affected population. There are reports of a later debilitating syndrome onset three months post COVID-19 infection (often described as long-COVID-19), marked by the presence of fatigue, headache, cognitive dysfunction, post-exertional malaise, orthostatic intolerance, and dyspnoea. Acute inflammation, oxidative stress, and increased levels of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα), have been reported in SARS-CoV-2 infected patients. Longitudinal monitoring of post COVID-19 patients is warranted to understand the long-term effects of SARS-CoV-2 infection and the pathomechanism of post COVID-19 condition.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park 5042, SA, Australia; The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Rebekah Maksoud
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Narasimha M Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - SabbaRao V Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India; Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Mikhail Sinelnikov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Mohovaya 11c10, Moscow, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Donald R Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| | - Sonya Marshall-Gradisnik
- The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Consortium Health International for Myalgic Encephalomyelitis, National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
9
|
Leong KH, Yip HT, Kuo CF, Tsai SY. Treatments of chronic fatigue syndrome and its debilitating comorbidities: a 12-year population-based study. J Transl Med 2022; 20:268. [PMID: 35690765 PMCID: PMC9187893 DOI: 10.1186/s12967-022-03461-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background This study aims to provide 12-year nationwide epidemiology data to investigate the epidemiology and comorbidities of and therapeutic options for chronic fatigue syndrome (CFS) by analyzing the National Health Insurance Research Database. Methods 6306 patients identified as having CFS during the 2000–2012 period and 6306 controls (with similar distributions of age and sex) were analyzed. Result The patients with CFS were predominantly female and aged 35–64 years in Taiwan and presented a higher proportion of depression, anxiety disorder, insomnia, Crohn’s disease, ulcerative colitis, renal disease, type 2 diabetes, gout, dyslipidemia, rheumatoid arthritis, Sjogren syndrome, and herpes zoster. The use of selective serotonin receptor inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), Serotonin antagonist and reuptake inhibitors (SARIs), Tricyclic antidepressants (TCAs), benzodiazepine (BZD), Norepinephrine-dopamine reuptake inhibitors (NDRIs), muscle relaxants, analgesic drugs, psychotherapies, and exercise therapies was prescribed significantly more frequently in the CFS cohort than in the control group. Conclusion This large national study shared the mainstream therapies of CFS in Taiwan, we noticed these treatments reported effective to relieve symptoms in previous studies. Furthermore, our findings indicate that clinicians should have a heightened awareness of the comorbidities of CFS, especially in psychiatric problems.
Collapse
Affiliation(s)
- Kam-Hang Leong
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Hei-Tung Yip
- Management Office for Health Data, China Medical University Hospital, Taichung City, 404, Taiwan
| | - Chien-Feng Kuo
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.,Institute of Infectious Disease, Mackay Memorial Hospital, Taipei City, 104, Taiwan.,Department of Nursing, Nursing and Management, MacKay Junior College of Medicine, New Taipei City, 25245, Taiwan
| | - Shin-Yi Tsai
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan. .,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA. .,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, 252, Taiwan. .,Institute of Long-Term Care, Mackay Medical College, New Taipei City, 252, Taiwan. .,Department of Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei, 104, Taiwan.
| |
Collapse
|
10
|
Redondo-Rodriguez R, Mena-Vázquez N, Cabezas-Lucena AM, Manrique-Arija S, Mucientes A, Fernández-Nebro A. Systematic Review and Metaanalysis of Worldwide Incidence and Prevalence of Antineutrophil Cytoplasmic Antibody (ANCA) Associated Vasculitis. J Clin Med 2022; 11:jcm11092573. [PMID: 35566698 PMCID: PMC9106044 DOI: 10.3390/jcm11092573] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
Objective: In this study, we aimed to evaluate the worldwide incidence and prevalence of ANCA-associated vasculitis (AAV). Methods: A systematic search of Medline and Embase was conducted until June 2020 for studies that analyzed the incidence and prevalence of patients aged >16 years diagnosed with AAV in different geographical areas. A meta-analysis was undertaken to estimate the pooled incidence per million person-years and prevalence per million persons in AAV overall and for each subtype of AAV: granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA). The 95% confidence interval (CI) and I2 for heterogeneity were calculated. Results: The meta-analysis included 25 studies that met the inclusion criteria and covered a total of 4547 patients with AAV. Frequency increased over time. The global pooled incidence (95% CI) was 17.2 per million person-years (13.3−21.6) and the global pooled prevalence (95% CI) was 198.0 per million persons (187.0−210.0). The pooled incidence per million person-years for each AAV subtype varied from highest to lowest, as follows: GPA, 9.0; MPA, 5.9; and EGPA, 1.7. The individual pooled prevalence per million persons was, as follows: GPA, 96.8; MPA, 39.2; and EGPA, 15.6. AAV was more predominant in the northern hemisphere. By continent, a higher incidence in America and pooled prevalence of AAV was observed in America and Europe. Conclusion: The pooled incidence and prevalence of AAV seem to be increasing over time and are higher in the case of GPA. AAV was generally more frequent (incidence and prevalence) in the northern hemisphere.
Collapse
Affiliation(s)
- Rocío Redondo-Rodriguez
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC de Reumatología, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain; (R.R.-R.); (A.M.C.-L.); (S.M.-A.); (A.M.); (A.F.-N.)
| | - Natalia Mena-Vázquez
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC de Reumatología, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain; (R.R.-R.); (A.M.C.-L.); (S.M.-A.); (A.M.); (A.F.-N.)
- Correspondence:
| | - Alba María Cabezas-Lucena
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC de Reumatología, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain; (R.R.-R.); (A.M.C.-L.); (S.M.-A.); (A.M.); (A.F.-N.)
| | - Sara Manrique-Arija
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC de Reumatología, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain; (R.R.-R.); (A.M.C.-L.); (S.M.-A.); (A.M.); (A.F.-N.)
- Departamento de Medicina, Universidad de Málaga, 29016 Malaga, Spain
| | - Arkaitz Mucientes
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC de Reumatología, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain; (R.R.-R.); (A.M.C.-L.); (S.M.-A.); (A.M.); (A.F.-N.)
| | - Antonio Fernández-Nebro
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC de Reumatología, Hospital Regional Universitario de Málaga, 29010 Malaga, Spain; (R.R.-R.); (A.M.C.-L.); (S.M.-A.); (A.M.); (A.F.-N.)
- Departamento de Medicina, Universidad de Málaga, 29016 Malaga, Spain
| |
Collapse
|
11
|
Rass V, Ianosi BA, Zamarian L, Beer R, Sahanic S, Lindner A, Kofler M, Schiefecker AJ, Mahlknecht P, Heim B, Limmert V, Sonnweber T, Pizzini A, Tymoszuk P, Scherfler C, Djamshidian A, Kiechl S, Tancevski I, Seppi K, Pfausler B, Loeffler-Ragg J, Helbok R. Factors associated with impaired quality of life three months after being diagnosed with COVID-19. Qual Life Res 2022; 31:1401-1414. [PMID: 34580823 PMCID: PMC8476326 DOI: 10.1007/s11136-021-02998-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE To assess patient characteristics associated with health-related quality of life (HR-QoL) and its mental and physical subcategories 3 months after diagnosis with COVID-19. METHODS In this prospective multicentre cohort study, HR-QoL was assessed in 90 patients using the SF-36 questionnaire (36-item Short Form Health Survey), which consists of 8 health domains that can be divided into a mental and physical health component. Mental health symptoms including anxiety, depression, and post-traumatic stress disorders were evaluated using the Hospital Anxiety and Depression Scale (HADS) and Post-traumatic Stress Disorder Checklist-5 (PCL-5) 3 months after COVID-19. Using descriptive statistics and multivariable regression analysis, we identified factors associated with impaired HR-QoL 3 months after COVID-19 diagnosis. RESULTS Patients were 55 years of age (IQR, 49-63; 39% women) and were classified as severe (23%), moderate (57%), or mild (20%) according to acute disease severity. HR-QoL was impaired in 28/90 patients (31%). Younger age [per year, adjOR (95%CI) 0.94 (0.88-1.00), p = 0.049], longer hospitalization [per day, adjOR (95%CI) 1.07 (1.01-1.13), p = 0.015], impaired sleep [adjOR (95%CI) 5.54 (1.2-25.61), p = 0.028], and anxiety [adjOR (95%CI) 15.67 (3.03-80.99), p = 0.001) were independently associated with impaired HR-QoL. Twenty-nine percent (n = 26) scored below the normal range on the mental health component of the SF-36 and independent associations emerged for anxiety, depression, and self-reported numbness. Impairments in the physical health component of the SF-36 were reported by 12 (13%) patients and linked to hypogeusia and fatigue. CONCLUSION Every third patient reported a reduction in HR-QoL 3 months after COVID-19 diagnosis and impairments were more prominent in mental than physical well-being.
Collapse
Affiliation(s)
- Verena Rass
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Bogdan-Andrei Ianosi
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Laura Zamarian
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Ronny Beer
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Anna Lindner
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Mario Kofler
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Alois Josef Schiefecker
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Philipp Mahlknecht
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Victoria Limmert
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Alex Pizzini
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Christoph Scherfler
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Atbin Djamshidian
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Bettina Pfausler
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Judith Loeffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Raimund Helbok
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Pifarré F, Rosselló L, Hileno R, Palmi J, Bañeres L, Planas A, Prat JA. The use of oxygen as a possible screening biomarker for the diagnosis of chronic fatigue El aprovechamiento de oxígeno como posible biomarcador de cribaje para el diagnóstico de la fatiga crónica. APUNTS SPORTS MEDICINE 2022. [DOI: 10.1016/j.apunsm.2022.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Al-Jabr H, Windle K, Thompson DR, Jenkins ZM, Castle DJ, Ski CF. Long COVID Optimal Health Programme (LC-OHP) to enhance psychological and physical health: a feasibility randomised controlled trial protocol (Preprint). JMIR Res Protoc 2022; 11:e36673. [PMID: 35468586 PMCID: PMC9106280 DOI: 10.2196/36673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background Long COVID is a collection of symptoms that develop during or following a confirmed or suspected case of COVID-19, which continue for more than 12 weeks. Despite the negative impact of long COVID on people’s lives and functioning, there is no validated treatment or even rehabilitation guidance. What has been recommended thus far is the adoption of holistic management approaches. The Optimal Health Program (OHP) is a brief 5-session, plus booster, psychosocial program designed to support mental and physical well-being that has been used effectively for a range of chronic conditions. Objective This study examines the feasibility and acceptability of employing an especially customized version of OHP (long COVID OHP [LC-OHP]) to improve psychological and physical health of people with long COVID. Methods This is a feasibility randomized controlled trial that will be running from November 2021 to February 2023. Eligible participants aged 18 years or older who are experiencing symptoms of long COVID will be identified through their secondary practitioners with recruitment to be undertaken by the research team. A total of 60 participants will be randomized into a control (usual care) or an intervention (LC-OHP) group. Outcomes will be feasibility and acceptability of the program (primary); and efficacy of the LC-OHP in improving anxiety, depression, fatigue, self-efficacy, and quality of life (secondary). Up to 20 participants will be interviewed at the end of the trial to explore their experience with the program. Quantitative data will be analyzed using SPSS, and differences between groups will be compared using inferential tests where appropriate. Qualitative data will be transcribed and thematically analyzed to identify common emerging themes. Results This is an ongoing study, which began in November 2021. Conclusions Long COVID has a significant impact on an individual’s mental and physical functioning. The LC-OHP has a potential to provide people living with long COVID with additional support and to improve self-efficacy. The findings of this study would identify the feasibility of delivering this program to this population and will provide an indication for the program’s effectiveness. Trial Registration ISRCTN Registry ISRCTN38746119; https://www.isrctn.com/ISRCTN38746119 International Registered Report Identifier (IRRID) DERR1-10.2196/36673
Collapse
Affiliation(s)
- Hiyam Al-Jabr
- Integrated Care Academy, University of Suffolk, Ipswich, United Kingdom
| | - Karen Windle
- Integrated Care Academy, University of Suffolk, Ipswich, United Kingdom
| | - David R Thompson
- School of Nursing and Midwifery, Queen's University Belfast, Belfast, United Kingdom
| | - Zoe M Jenkins
- Mental Health Service, St Vincent's Hospital, Melbourne, Australia
| | - David J Castle
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Chantal F Ski
- Integrated Care Academy, University of Suffolk, Ipswich, United Kingdom
| |
Collapse
|
14
|
Al-Jassas HK, Al-Hakeim HK, Maes M. Intersections between pneumonia, lowered oxygen saturation percentage and immune activation mediate depression, anxiety, and chronic fatigue syndrome-like symptoms due to COVID-19: A nomothetic network approach. J Affect Disord 2022; 297:233-245. [PMID: 34699853 PMCID: PMC8541833 DOI: 10.1016/j.jad.2021.10.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND COVID-19 is associated with neuropsychiatric symptoms including increased depressive, anxiety and chronic fatigue-syndrome (CFS)-like and physiosomatic symptoms. AIMS To delineate the associations between affective and CFS-like symptoms in COVID-19 and chest computed tomography scan anomalies (CCTAs), oxygen saturation (SpO2), interleukin (IL)-6, IL-10, C-Reactive Protein (CRP), albumin, calcium, magnesium, soluble angiotensin converting enzyme (ACE2) and soluble advanced glycation products (sRAGEs). METHOD The above biomarkers were assessed in 60 COVID-19 patients and 30 healthy controls who had measurements of the Hamilton Depression (HDRS) and Anxiety (HAM-A) and the Fibromyalgia and Chronic Fatigue (FF) Rating Scales. RESULTS Partial Least Squares-SEM analysis showed that reliable latent vectors could be extracted from a) key depressive and anxiety and physiosomatic symptoms (the physio-affective or PA-core), b) IL-6, IL-10, CRP, albumin, calcium, and sRAGEs (the immune response core); and c) different CCTAs (including ground glass opacities, consolidation, and crazy paving) and lowered SpO2% (lung lesions). PLS showed that 70.0% of the variance in the PA-core was explained by the regression on the immune response and lung lesions latent vectors. One common "infection-immune-inflammatory (III) core" underpins pneumonia-associated CCTAs, lowered SpO2 and immune activation, and this III core explains 70% of the variance in the PA core, and a relevant part of the variance in melancholia, insomnia, and neurocognitive symptoms. DISCUSSION Acute SARS-CoV-2 infection is accompanied by lung lesions and lowered SpO2 which may cause activated immune-inflammatory pathways, which mediate the effects of the former on the PA-core and other neuropsychiatric symptoms due to SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Michael Maes
- School of Medicine, IMPACT-the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, Australia; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
15
|
Stanculescu D, Sepúlveda N, Lim CL, Bergquist J. Lessons From Heat Stroke for Understanding Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Neurol 2021; 12:789784. [PMID: 34966354 PMCID: PMC8710546 DOI: 10.3389/fneur.2021.789784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023] Open
Abstract
We here provide an overview of the pathophysiological mechanisms during heat stroke and describe similar mechanisms found in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Both conditions are characterized by disturbed homeostasis in which inflammatory pathways play a central role. Splanchnic vasoconstriction, increased gut permeability, gut-related endotoxemia, systemic inflammatory response, central nervous system dysfunction, blood coagulation disorder, endothelial-cell injury, and mitochondrial dysfunction underlie heat stroke. These mechanisms have also been documented in ME/CFS. Moreover, initial transcriptomic studies suggest that similar gene expressions are altered in both heat stroke and ME/CFS. Finally, some predisposing factors for heat stroke, such as pre-existing inflammation or infection, overlap with those for ME/CFS. Notwithstanding important differences - and despite heat stroke being an acute condition - the overlaps between heat stroke and ME/CFS suggest common pathways in the physiological responses to very different forms of stressors, which are manifested in different clinical outcomes. The human studies and animal models of heat stroke provide an explanation for the self-perpetuation of homeostatic imbalance centered around intestinal wall injury, which could also inform the understanding of ME/CFS. Moreover, the studies of novel therapeutics for heat stroke might provide new avenues for the treatment of ME/CFS. Future research should be conducted to investigate the similarities between heat stroke and ME/CFS to help identify the potential treatments for ME/CFS.
Collapse
Affiliation(s)
| | - Nuno Sepúlveda
- CEAUL—Centro de Estatística e Aplicações da Universidade de Lisboa, Lisbon, Portugal
- Department of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Chin Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry—BMC, Uppsala University, Uppsala, Sweden
- The ME/CFS Collaborative Research Center at Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Nikitina AJ, Levin OS. [Chronic fatigue syndrome against the background of the COVID-19 pandemic]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:92-98. [PMID: 34870921 DOI: 10.17116/jnevro202112110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The more we learn about the new coronavirus infection, the more we understand that we will feel the echoes of the pandemic for many years, and those who have successfully endured the acute phase of COVID-19 may face the consequences of the infection. One of the most frequent manifestations will be the development of chronic fatigue syndrome (CFS) after COVID-19. This article discusses the possible causes of the development of CFS, as well as possible ways of its treatment and prevention.
Collapse
Affiliation(s)
- A J Nikitina
- Russian Medical Academy of continuous Professional Education, Moscow, Russia
| | - O S Levin
- Russian Medical Academy of continuous Professional Education, Moscow, Russia
| |
Collapse
|
17
|
Trautmann A. [Mechanisms underlying chronic fatigue, a symptom too often overlooked]. Med Sci (Paris) 2021; 37:910-919. [PMID: 34647880 DOI: 10.1051/medsci/2021143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute fatigue after exertion, like acute inflammation after injury, is useful for our body. On the contrary, both chronic fatigue and chronic inflammation are deleterious, and they are associated in many diseases. In this first part, we will analyze different immune phenomena (bystander activation, memory of the innate immune system, link with the intestinal microbiota) involved in triggering chronic inflammation. This review aims at looking for links between different signs and symptoms associated with chronic fatigue, as well as between different diseases in which severe chronic fatigue can manifest. Possible underlying mechanisms for these phenomena are discussed. This is a proposal made by a researcher, with no clinical experience, to doctors confronted with an entity that is still largely mysterious. The link between chronic inflammation, neuroinflammation and fatigue will be examined in a second part.
Collapse
Affiliation(s)
- Alain Trautmann
- UMR CNRS 8104, Inserm 1016, université Paris Descartes, Institut Cochin, rue Méchain, 75014 Paris, France
| |
Collapse
|
18
|
Du Preez S, Cabanas H, Staines D, Marshall-Gradisnik S. Potential Implications of Mammalian Transient Receptor Potential Melastatin 7 in the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10708. [PMID: 34682454 PMCID: PMC8535478 DOI: 10.3390/ijerph182010708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022]
Abstract
The transient receptor potential (TRP) superfamily of ion channels is involved in the molecular mechanisms that mediate neuroimmune interactions and activities. Recent advancements in neuroimmunology have identified a role for TRP cation channels in several neuroimmune disorders including amyotropic lateral sclerosis, multiple sclerosis, and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating disorder with an obscure aetiology, hence considerable examination of its pathobiology is warranted. Dysregulation of TRP melastatin (TRPM) subfamily members and calcium signalling processes are implicated in the neurological, immunological, cardiovascular, and metabolic impairments inherent in ME/CFS. In this review, we present TRPM7 as a potential candidate in the pathomechanism of ME/CFS, as TRPM7 is increasingly recognized as a key mediator of physiological and pathophysiological mechanisms affecting neurological, immunological, cardiovascular, and metabolic processes. A focused examination of the biochemistry of TRPM7, the role of this protein in the aforementioned systems, and the potential of TRPM7 as a molecular mechanism in the pathophysiology of ME/CFS will be discussed in this review. TRPM7 is a compelling candidate to examine in the pathobiology of ME/CFS as TRPM7 fulfils several key roles in multiple organ systems, and there is a paucity of literature reporting on its role in ME/CFS.
Collapse
Affiliation(s)
- Stanley Du Preez
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast 4215, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
| | - Helene Cabanas
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- Institut de Recherche Saint Louis, Université de Paris, INSERM U944 and CNRS UMR 7212, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| |
Collapse
|
19
|
Rathi A, Jadhav SB, Shah N. A Randomized Controlled Trial of the Efficacy of Systemic Enzymes and Probiotics in the Resolution of Post-COVID Fatigue. MEDICINES (BASEL, SWITZERLAND) 2021; 8:47. [PMID: 34564089 PMCID: PMC8472462 DOI: 10.3390/medicines8090047] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Muscle fatigue and cognitive disturbances persist in patients after recovery from acute COVID-19 disease. However, there are no specific treatments for post-COVID fatigue. Objective: To evaluate the efficacy and safety of the health supplements ImmunoSEB (systemic enzyme complex) and ProbioSEB CSC3 (probiotic complex) in patients suffering from COVID-19 induced fatigue. A randomized, multicentric, double blind, placebo-controlled trial was conducted in 200 patients with a complaint of post-COVID fatigue. The test arm (n = 100) received the oral supplements for 14 days and the control arm (n = 100) received a placebo. Treatment efficacy was compared using the Chalder Fatigue scale (CFQ-11), at various time points from days 1 to 14. The supplemental treatment resulted in resolution of fatigue in a greater percentage of subjects in the test vs. the control arm (91% vs. 15%) on day 14. Subjects in the test arm showed a significantly greater reduction in total as well as physical and mental fatigue scores at all time points vs. the control arm. The supplements were well tolerated with no adverse events reported. This study demonstrates that a 14 days supplementation of ImmunoSEB + ProbioSEB CSC3 resolves post-COVID-19 fatigue and can improve patients' functional status and quality of life.
Collapse
Affiliation(s)
- Abhijit Rathi
- Food Application and Development Laboratory, Advanced Enzymes Technologies Ltd., Louiswadi, Thane 400604, India;
| | - Swati B. Jadhav
- Food Application and Development Laboratory, Advanced Enzymes Technologies Ltd., Louiswadi, Thane 400604, India;
| | - Neha Shah
- Pulmonary Fibrosis Now, Chino, CA 91710, USA;
| |
Collapse
|
20
|
Ferguson C, Pini N, Du X, Farina M, Hwang JMC, Pietrangelo T, Cheng X. Broadband electrical impedance as a novel characterization of oxidative stress in single L6 skeletal muscle cells. Anal Chim Acta 2021; 1173:338678. [PMID: 34172152 DOI: 10.1016/j.aca.2021.338678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022]
Abstract
Oxidative stress (OS) is one of the leading causes of cytotoxicity and is linked to many human physio-pathological conditions. In particular, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) induced by OS is debilitating to quality of life, while no clear biological markers have been identified for diagnostic measures. Recently, impedance measurements of peripheral blood cells of ME/CFS patients have been shown as a promising approach to diagnose the disease. Inspired by this study and aiming to interrogate muscle cells directly, we investigated if broadband measurements of single muscle cells could differentiate normal and oxidatively stressed cell populations. We first optimized a protocol through H2O2 treatment to introduce oxidative stress to cultured rat L6 skeletal muscle cells. The treated cells were further characterized through broadband impedance spectroscopy of single cells using a microfluidic lab-on-a-chip system. The resulting dielectric properties of cytoplasm permittivity and conductivity are electrically distinct from normally cultured cells. The reflection and transmission coefficients, ΔS11 and ΔS21, of the normal cells are tightly clustered and closely resemble those of the cell-free solution across the frequency range of 9 kHz to 9 GHz. On the other hand, dielectric properties of the oxidized cells have a wide distribution in the GHz range, deviating both in the positive and negative directions from the normally cultured cells. Simulation results guide our hypothesis that the dielectric differences could be linked to ion alterations, while calcium imaging directly supports the contribution of calcium flux to the observed deviation of S parameters. The unique electrical profile associated with oxidized cells in the GHz frequencies provide a framework for future development of technologies to diagnose oxidative-stress related diseases such as ME/CFS.
Collapse
Affiliation(s)
| | - Niccolo Pini
- Department of Neuroscience, Imaging, and Clinical Science, University G. D'Annuzio, Chieti-Pescara, Italy
| | - Xiaotian Du
- Department of Electrical Engineering, Lehigh University, Bethlehem, PA, USA
| | - Marco Farina
- Department of Engineering of Information, University Politecnica delle Marche, Marche, Italy
| | - James M C Hwang
- Department of Electrical Engineering, Lehigh University, Bethlehem, PA, USA
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging, and Clinical Science, University G. D'Annuzio, Chieti-Pescara, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA; Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
21
|
Fang N, Zhang C, Lv J. Effects of Vertical Lifting Distance on Upper-Body Muscle Fatigue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105468. [PMID: 34065333 PMCID: PMC8160884 DOI: 10.3390/ijerph18105468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
Manual material handling (MMH) is commonly demanded in the manufacturing industry. Occupational muscle fatigue of the arm, shoulder, and back, which arise from MMH tasks, can cause work absences and low efficiency. The available literature presents the lack of the fatigue comparison between targeted muscles, on the same part or on different parts. The main aim of the present study was to evaluate and compare the fatigue of upper-body muscles during repetitive bending tasks, an experiment involving 12 male subjects has been conducted to simulate material handling during furniture board drilling. The vertical lifting distance was chosen to be the single independent variable, and the three levels were 0, 250, and 500 mm. Surface electromyography (sEMG) was used to measure the muscle fatigue of the biceps brachii, upper trapezius, and multifidus, while the sEMG parameters, including the normalized electromyographic amplitude (Normalized EA) and mean power frequency (MPF), of the target muscles were analyzed. The experimental results reveal that during the manual handling tasks, the biceps brachii was the most relaxed muscle, contributing the least muscle tension, while the multifidus was the most easily fatigued muscle. Furthermore, the EMG MPF fatigue threshold (MPFFT) of multifidus muscle tension was tested to estimate its maximum workload in the long-term muscle contraction. In conclusion, bending angle should be maintained to a small range or bending should even be avoided during material-handling tasks.
Collapse
Affiliation(s)
- Nianli Fang
- Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China;
| | - Chang Zhang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Correspondence: (C.Z.); (J.L.)
| | - Jian Lv
- Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China;
- Correspondence: (C.Z.); (J.L.)
| |
Collapse
|
22
|
Eccles JA, Thompson B, Themelis K, Amato ML, Stocks R, Pound A, Jones AM, Cipinova Z, Shah-Goodwin L, Timeyin J, Thompson CR, Batty T, Harrison NA, Critchley HD, Davies KA. Beyond bones: The relevance of variants of connective tissue (hypermobility) to fibromyalgia, ME/CFS and controversies surrounding diagnostic classification: an observational study. Clin Med (Lond) 2021; 21:53-58. [PMID: 33479068 DOI: 10.7861/clinmed.2020-0743] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibromyalgia and myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) are poorly understood conditions with overlapping symptoms, fuelling debate as to whether they are manifestations of the same spectrum or separate entities. Both are associated with hypermobility, but this remains significantly undiagnosed, despite impact on quality of life. OBJECTIVE We planned to understand the relevance of hypermobility to symptoms in fibromyalgia and ME/CFS. METHOD Sixty-three patient participants presented with a confirmed diagnosis of fibromyalgia and/or ME/CFS; 24 participants were healthy controls. Patients were assessed for symptomatic hypermobility. RESULTS Evaluations showed exceptional overlap in patients between fibromyalgia and ME/CFS, plus 81% met Brighton criteria for hypermobility syndrome (odds ratio 7.08) and 18% met 2017 hypermobile Ehlers-Danlos syndrome (hEDS) criteria. Hypermobility scores significantly predicted symptom levels. CONCLUSION Symptomatic hypermobility is particularly relevant to fibromyalgia and ME/CFS, and our findings highlight high rates of mis-/underdiagnosis. These poorly understood conditions have a considerable impact on quality of life and our observations have implications for diagnosis and treatment targets.
Collapse
Affiliation(s)
- Jessica A Eccles
- Brighton and Sussex Medical School, Falmer, UK, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK and Sussex Partnership Foundation NHS Trust, Brighton, UK
| | | | | | | | | | - Amy Pound
- Brighton and Sussex Medical School, Falmer, UK and Sussex Partnership Foundation NHS Trust, Brighton, UK
| | | | - Zdenka Cipinova
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | | | - Jean Timeyin
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Charlotte R Thompson
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK and Brighton and Sussex Medical School, Falmer, UK
| | - Thomas Batty
- Brighton and Sussex Medical School, Falmer, UK and Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Neil A Harrison
- Brighton and Sussex Medical School, Falmer, UK and Cardiff University Brain Research Imaging Centre, Cardiff, UK
| | - Hugo D Critchley
- Brighton and Sussex Medical School, Falmer, UK, University of Sussex, Falmer and Sussex Partnership Foundation NHS Trust, Brighton, UK
| | - Kevin A Davies
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK and Brighton and Sussex Medical School, Falmer, UK
| |
Collapse
|
23
|
Jarai BM, Stillman Z, Bomb K, Kloxin AM, Fromen CA. Biomaterials-Based Opportunities to Engineer the Pulmonary Host Immune Response in COVID-19. ACS Biomater Sci Eng 2021; 7:1742-1764. [PMID: 33356134 PMCID: PMC7784663 DOI: 10.1021/acsbiomaterials.0c01287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
The COVID-19 pandemic caused by the global spread of the SARS-CoV-2 virus has led to a staggering number of deaths worldwide and significantly increased burden on healthcare as nations scramble to find mitigation strategies. While significant progress has been made in COVID-19 diagnostics and therapeutics, effective prevention and treatment options remain scarce. Because of the potential for the SARS-CoV-2 infections to cause systemic inflammation and multiple organ failure, it is imperative for the scientific community to evaluate therapeutic options aimed at modulating the causative host immune responses to prevent subsequent systemic complications. Harnessing decades of expertise in the use of natural and synthetic materials for biomedical applications, the biomaterials community has the potential to play an especially instrumental role in developing new strategies or repurposing existing tools to prevent or treat complications resulting from the COVID-19 pathology. Leveraging microparticle- and nanoparticle-based technology, especially in pulmonary delivery, biomaterials have demonstrated the ability to effectively modulate inflammation and may be well-suited for resolving SARS-CoV-2-induced effects. Here, we provide an overview of the SARS-CoV-2 virus infection and highlight current understanding of the host's pulmonary immune response and its contributions to disease severity and systemic inflammation. Comparing to frontline COVID-19 therapeutic options, we highlight the most significant untapped opportunities in immune engineering of the host response using biomaterials and particle technology, which have the potential to improve outcomes for COVID-19 patients, and identify areas needed for future investigations. We hope that this work will prompt preclinical and clinical investigations of promising biomaterials-based treatments to introduce new options for COVID-19 patients.
Collapse
Affiliation(s)
- Bader M. Jarai
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
24
|
Stanculescu D, Larsson L, Bergquist J. Theory: Treatments for Prolonged ICU Patients May Provide New Therapeutic Avenues for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med (Lausanne) 2021; 8:672370. [PMID: 34026797 PMCID: PMC8137963 DOI: 10.3389/fmed.2021.672370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
We here provide an overview of treatment trials for prolonged intensive care unit (ICU) patients and theorize about their relevance for potential treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Specifically, these treatment trials generally target: (a) the correction of suppressed endocrine axes, notably through a "reactivation" of the pituitary gland's pulsatile secretion of tropic hormones, or (b) the interruption of the "vicious circle" between inflammation, oxidative and nitrosative stress (O&NS), and low thyroid hormone function. There are significant parallels in the treatment trials for prolonged critical illness and ME/CFS; this is consistent with the hypothesis of an overlap in the mechanisms that prevent recovery in both conditions. Early successes in the simultaneous reactivation of pulsatile pituitary secretions in ICU patients-and the resulting positive metabolic effects-could indicate an avenue for treating ME/CFS. The therapeutic effects of thyroid hormones-including in mitigating O&NS and inflammation and in stimulating the adreno-cortical axis-also merit further studies. Collaborative research projects should further investigate the lessons from treatment trials for prolonged critical illness for solving ME/CFS.
Collapse
Affiliation(s)
| | - Lars Larsson
- Basic and Clinical Muscle Biology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry, Department of Chemistry–Biomedical Center, Uppsala University, Uppsala, Sweden
- The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: An overview. Diabetes Metab Syndr 2021; 15:869-875. [PMID: 33892403 PMCID: PMC8056514 DOI: 10.1016/j.dsx.2021.04.007] [Citation(s) in RCA: 529] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Long COVID is the collective term to denote persistence of symptoms in those who have recovered from SARS-CoV-2 infection. METHODS WE searched the pubmed and scopus databases for original articles and reviews. Based on the search result, in this review article we are analyzing various aspects of Long COVID. RESULTS Fatigue, cough, chest tightness, breathlessness, palpitations, myalgia and difficulty to focus are symptoms reported in long COVID. It could be related to organ damage, post viral syndrome, post-critical care syndrome and others. Clinical evaluation should focus on identifying the pathophysiology, followed by appropriate remedial measures. In people with symptoms suggestive of long COVID but without known history of previous SARS-CoV-2 infection, serology may help confirm the diagnosis. CONCLUSIONS This review will helps the clinicians to manage various aspects of Long COVID.
Collapse
Affiliation(s)
- A V Raveendran
- Govt. Medical College, Manjeri,Kottayam, Kozhikode, Kerala, India; Specialist in Internal Medicine, Badr Al Samaa, Barka, Oman.
| | | | | |
Collapse
|
26
|
Saini G, Aneja R. Cancer as a prospective sequela of long COVID-19. Bioessays 2021; 43:e2000331. [PMID: 33914346 PMCID: PMC8206711 DOI: 10.1002/bies.202000331] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/28/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
As the spread of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) continues to surge worldwide, our knowledge of coronavirus disease 2019 (COVID‐19) is rapidly expanding. Although most COVID‐19 patients recover within weeks of symptom onset, some experience lingering symptoms that last for months (“long COVID‐19”). Early reports of COVID‐19 sequelae, including cardiovascular, pulmonary, and neurological conditions, have raised concerns about the long‐term effects of COVID‐19, especially in hard‐hit communities. It is becoming increasingly evident that cancer patients are more susceptible to SARS‐CoV‐2 infection and are at a higher risk of severe COVID‐19 than the general population. Nevertheless, whether long COVID‐19 increases the risk of cancer in those with no prior malignancies, remains unclear. Given, the disproportionate impact of the disease on the African American community, yet another unanswered question is whether racial disparities are to be expected in COVID‐19 sequelae. Herein, we propose that long COVID‐19 may predispose recovered patients to cancer development and accelerate cancer progression. This hypothesis is based on growing evidence of the ability of SARS‐CoV‐2 to modulate oncogenic pathways, promote chronic low‐grade inflammation, and cause tissue damage. Comprehensive studies are urgently required to elucidate the effects of long COVID‐19 on cancer susceptibility.
Collapse
Affiliation(s)
- Geetanjali Saini
- Department of BiologyCollege of Arts and SciencesGeorgia State UniversityAtlantaGeorgiaUSA
| | - Ritu Aneja
- Department of BiologyCollege of Arts and SciencesGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
27
|
Wormgoor MEA, Rodenburg SC. The evidence base for physiotherapy in myalgic encephalomyelitis/chronic fatigue syndrome when considering post-exertional malaise: a systematic review and narrative synthesis. J Transl Med 2021; 19:1. [PMID: 33397399 PMCID: PMC7780213 DOI: 10.1186/s12967-020-02683-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Due to the inconsistent use of diagnostic criteria in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), it is unsure whether physiotherapeutic management regarded effective in ME/CFS is appropriate for patients diagnosed with criteria that consider post-exertional malaise (PEM) as a hallmark feature. PURPOSE To appraise current evidence of the effects of physiotherapy on symptoms and functioning in ME/CFS patients in view of the significance of PEM in the applied diagnostic criteria for inclusion. METHODS A systematic review of randomized controlled trials published over the last two decades was conducted. Studies evaluating physiotherapeutic interventions for adult ME/CFS patients were included. The diagnostic criteria sets were classified into three groups according to the extent to which the importance of PEM was emphasized: chronic fatigue (CF; PEM not mentioned as a criterion), CFS (PEM included as an optional or minor criterion) or ME (PEM is a required symptom). The main results of included studies were synthesized in relation to the classification of the applied diagnostic criteria. In addition, special attention was given to the tolerability of the interventions. RESULTS Eighteen RCTs were included in the systematic review: three RCTs with CF patients, 14 RCTs with CFS patients and one RCT covering ME patients with PEM. Intervention effects, if any, seemed to disappear with more narrow case definitions, increasing objectivity of the outcome measures and longer follow-up. CONCLUSION Currently, there is no scientific evidence when it comes to effective physiotherapy for ME patients. Applying treatment that seems effective for CF or CFS patients may have adverse consequences for ME patients and should be avoided.
Collapse
Affiliation(s)
- Marjon E A Wormgoor
- Division of Mental Health and Addiction, Vestfold Hospital Trust, Tønsberg, Norway.
- Division Physical Medicine and Rehabilitation, Vestfold Hospital Trust, Stavern, Norway.
| | - Sanne C Rodenburg
- Department of Physiotherapy, Hanze University of Applied Sciences Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
|
29
|
The role of immune and oxidative pathways in menstrual cycle associated depressive, physio-somatic, breast and anxiety symptoms: Modulation by sex hormones. J Psychosom Res 2020; 135:110158. [PMID: 32526539 DOI: 10.1016/j.jpsychores.2020.110158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/16/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To examine whether 1) immune and nitro-oxidative stress (IO&NS) biomarkers are associated with premenstrual syndrome (PMS); and 2) changes in IO&NS biomarkers during the menstrual cycle (MC) are associated with PMS symptoms and plasma estradiol and progesterone. METHODS This longitudinal study examined 41 women who completed the Daily Record of Severity of Problems (DRSP) rating scale during 28 consecutive days and assayed plasma levels of complement C3 and C4, highly sensitive C-reactive protein (hsCRP), haptoglobin (Hp), advanced oxidation protein products (AOPP), lipid hydroperoxides (LOOH), nitric oxide metabolites (NOx), total radical-trapping antioxidant parameter (TRAP), sulfhydryl (-SH) groups and the activity of paraoxonase (PON)1 at days 7 (D7), 14 (D14), 21 (D21) and 28 (D28) of the MC. MC Associated Syndrome (MCAS) was diagnosed when the summed DRSP score during the MC is >0.666 percentile. RESULTS All biomarkers, except hsCRP, showed significant alterations during the MC. Arylesterase (AREase) was lowered at D28, while LOOH increased at D14 and C4 at D21 in MCAS. Total DRSP scores were predicted by the combined effects of C4 (positively) and AREase and malondialdehyde (MDA) (both inversely associated). Progesterone lowered levels of LOOH, AOPP and C3 and estradiol lowered levels of Hp while both sex hormones increased 4-(chloromethyl)phenyl acetate (CMPA)ase and AREase activities and levels of -SH groups. CONCLUSION PMS/MCAS is not accompanied by a peripheral inflammatory response. Lowered MDA and antioxidant defenses and increased C4 may play a role in MC symptoms while sex hormones may have a protective effect against oxidative stress toxicity.
Collapse
|
30
|
The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep 2020; 47:5587-5620. [PMID: 32564227 DOI: 10.1007/s11033-020-05590-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Nitro-oxidative stress and lowered antioxidant defences play a key role in neuropsychiatric disorders such as major depression, bipolar disorder and schizophrenia. The first part of this paper details mitochondrial antioxidant mechanisms and their importance in reactive oxygen species (ROS) detoxification, including details of NO networks, the roles of H2O2 and the thioredoxin/peroxiredoxin system, and the relationship between mitochondrial respiration and NADPH production. The second part highlights and identifies the causes of the multiple pathological sequelae arising from self-amplifying increases in mitochondrial ROS production and bioenergetic failure. Particular attention is paid to NAD+ depletion as a core cause of pathology; detrimental effects of raised ROS and reactive nitrogen species on ATP and NADPH generation; detrimental effects of oxidative and nitrosative stress on the glutathione and thioredoxin systems; and the NAD+-induced signalling cascade, including the roles of SIRT1, SIRT3, PGC-1α, the FOXO family of transcription factors, Nrf1 and Nrf2. The third part discusses proposed therapeutic interventions aimed at mitigating such pathology, including the use of the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside, both of which rapidly elevate levels of NAD+ in the brain and periphery following oral administration; coenzyme Q10 which, when given with the aim of improving mitochondrial function and reducing nitro-oxidative stress in the brain, may be administered via the use of mitoquinone, which is in essence ubiquinone with an attached triphenylphosphonium cation; and N-acetylcysteine, which is associated with improved mitochondrial function in the brain and produces significant decreases in oxidative and nitrosative stress in a dose-dependent manner.
Collapse
|
31
|
Does Motor Cortex Engagement During Movement Preparation Differentially Inhibit Nociceptive Processing in Patients with Chronic Whiplash Associated Disorders, Chronic Fatigue Syndrome and Healthy Controls? An Experimental Study. J Clin Med 2020; 9:jcm9051520. [PMID: 32443565 PMCID: PMC7290436 DOI: 10.3390/jcm9051520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Patients with chronic fatigue syndrome (CFS) and chronic whiplash associated disorders (cWAD) present a reduced ability to activate central descending nociceptive inhibition after exercise, compared to measurements before exercise. It was hypothesised that a dysfunctional motor-induced inhibition of nociception partly explains this dysfunctional exercise-induced hypoalgesia. This study investigates if engagement of the motor system during movement preparation inhibits nociception-evoked brain responses in these patients as compared to healthy controls (HC). METHODS The experiment used laser-evoked potentials (LEPs) during three conditions (no task, mental task, movement preparation) while recording brain activity with a 32-channel electroencephalogram in 21 patients with cWAD, 20 patients with CFS and 18 HC. Two-factor mixed design Analysis of variance were used to evaluate differences in LEP amplitudes and latencies. RESULTS No differences in N1, N2, N2P2, and P2 LEP amplitudes were found between the HC, CFS, and cWAD groups. After nociceptive stimulation, N1, N2 (only at hand location), N2P2, and P2 LEP amplitudes significantly decreased during movement preparation compared to no task (within group differences). CONCLUSION Movement preparation induces a similar attenuation of LEPs in patients with CFS, patients with cWAD and HC. These findings do not support reduced motor-induced nociceptive inhibition in these patients.
Collapse
|
32
|
Jammes Y, Adjriou N, Kipson N, Criado C, Charpin C, Rebaudet S, Stavris C, Guieu R, Fenouillet E, Retornaz F. Altered muscle membrane potential and redox status differentiates two subgroups of patients with chronic fatigue syndrome. J Transl Med 2020; 18:173. [PMID: 32306967 PMCID: PMC7168976 DOI: 10.1186/s12967-020-02341-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background In myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), altered membrane excitability often occurs in exercising muscles demonstrating muscle dysfunction regardless of any psychiatric disorder. Increased oxidative stress is also present in many ME/CFS patients and could affect the membrane excitability of resting muscles. Methods Seventy-two patients were examined at rest, during an incremental cycling exercise and during a 10-min post-exercise recovery period. All patients had at least four criteria leading to a diagnosis of ME/CFS. To explore muscle membrane excitability, M-waves were recorded during exercise (rectus femoris (RF) muscle) and at rest (flexor digitorum longus (FDL) muscle). Two plasma markers of oxidative stress (thiobarbituric acid reactive substance (TBARS) and oxidation–reduction potential (ORP)) were measured. Plasma potassium (K+) concentration was also measured at rest and at the end of exercise to explore K+ outflow. Results Thirty-nine patients had marked M-wave alterations in both the RF and FDL muscles during and after exercise while the resting values of plasma TBARS and ORP were increased and exercise-induced K+ outflow was decreased. In contrast, 33 other patients with a diagnosis of ME/CFS had no M-wave alterations and had lower baseline levels of TBARS and ORP. M-wave changes were inversely proportional to TBARS and ORP levels. Conclusions Resting muscles of ME/CFS patients have altered muscle membrane excitability. However, our data reveal heterogeneity in some major biomarkers in ME/CFS patients. Measurement of ORP may help to improve the diagnosis of ME/CFS. Trial registration Ethics Committee “Ouest II” of Angers (May 17, 2019) RCB ID: number 2019-A00611-56
Collapse
Affiliation(s)
- Yves Jammes
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France.,Department of Internal Medicine, European Hospital, Marseille, France
| | - Nabil Adjriou
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Nathalie Kipson
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Christine Criado
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Caroline Charpin
- Department of Internal Medicine, European Hospital, Marseille, France
| | | | - Chloé Stavris
- Department of Internal Medicine, European Hospital, Marseille, France
| | - Régis Guieu
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France
| | - Emmanuel Fenouillet
- UMR 1263 C2VN INRA INSERM, Faculty of Medicine, Aix Marseille University, Marseille, France.,Institut National des Sciences Biologiques, CNRS, Paris, France
| | | |
Collapse
|
33
|
Al-Hakeim HK, Al-Issa AAR, Maes M. Serum agrin and talin are increased in major depression while agrin and creatine phosphokinase are associated with chronic fatigue and fibromyalgia symptoms in depression. Metab Brain Dis 2020; 35:225-235. [PMID: 31734845 DOI: 10.1007/s11011-019-00506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/10/2019] [Indexed: 11/30/2022]
Abstract
Chronic fatigue and fibromyalgia symptoms frequently occur in major depressive disorder (MDD). The pathophysiology of these symptoms may in part, be ascribed to activated immune pathways, although it is unclear whether muscular factors play a role in their onset. The aim of the present study is to examine the role of muscle proteins in major depression in association with symptoms of chronic fatigue and fibromyalgia. We measured serum levels of agrin, talin-2, titin, and creatine phosphokinase (CPK) as well as the FibroFatigue (FF), the Hamilton Depression Rating Scale (HAM-D) and the Beck Depression Inventory (BDI-II) scores in 60 MDD patients and 30 healthy controls. The results show a significant increase in agrin and talin-2 in MDD patients as compared with controls. There were highly significant correlations between agrin and HAM-D, BDI-II and FF scores. Agrin, but not talin or titin, was significantly and positively associated with all 12 items of the FF scale. We found that a large part of the variance in HAM-D (47.4%), BDI-II (43.4%) and FF (43.5%) scores was explained by the regression on agrin, smoking, female sex (positively associated) and education (inversely associated). CPK was significantly and inversely associated with the total FF score and with muscle and gastro-intestinal symptoms, fatigue, a flu-like malaise, headache and memory, autonomic and sleep disturbances. These results suggest that aberrations in neuromuscular (NMJs) and myotendinous junctions play a role in MDD and that the aberrations in NMJs coupled with lowered CPK may play a role in chronic fatigue and fibromyalgia symptoms in MDD. Moreover, the increase of agrin in MDD probably functions as part of the compensatory immune-regulatory system (CIRS).
Collapse
Affiliation(s)
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia.
| |
Collapse
|
34
|
Abstract
Muscle failure has been demonstrated in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Neurophysiological tools demonstrate the existence of both central and peripheral fatigue in these patients. Central fatigue is deduced from the reduced amplitude of myopotentials evoked by transcranial magnetic stimulation of the motor cortex as well as by the muscle response to interpolated twitches during sustained fatiguing efforts. An impaired muscle membrane conduction velocity assessed by the reduced amplitude and lengthened duration of myopotentials evoked by direct muscle stimulation is the defining feature of peripheral fatigue. Some patients with ME/CFS show an increased oxidative stress response to exercise. The formation of lipid hydroperoxides in the sarcolemma, which alters ionic fluxes, could explain the reduction of muscle membrane excitability and potassium outflow often measured in these patients. In patients with ME/CFS, the formation of heat shock proteins (HSPs) is also reduced. Because HSPs protect muscle cells against the deleterious effects of reactive oxygen species, the lack of their production could explain the augmented oxidative stress and the consecutive alterations of myopotentials which could open a way for future treatment of ME/CFS.
Collapse
Affiliation(s)
- Yves Jammes
- C2VN Inserm Inra, Faculty of Medicine, Aix Marseille University, Marseille, France, France
| | - Frédérique Retornaz
- Department of Internal Medicine, European Hospital, Marseille, France, France
| |
Collapse
|
35
|
Myalgic encephalomyelitis/chronic fatigue syndrome: From pathophysiological insights to novel therapeutic opportunities. Pharmacol Res 2019; 148:104450. [PMID: 31509764 DOI: 10.1016/j.phrs.2019.104450] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/26/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Myalgic encephalomyelitis (ME) or chronic fatigue syndrome (CFS) is a common and disabling condition with a paucity of effective and evidence-based therapies, reflecting a major unmet need. Cognitive behavioural therapy and graded exercise are of modest benefit for only some ME/CFS patients, and many sufferers report aggravation of symptoms of fatigue with exercise. The presence of a multiplicity of pathophysiological abnormalities in at least the subgroup of people with ME/CFS diagnosed with the current international consensus "Fukuda" criteria, points to numerous potential therapeutic targets. Such abnormalities include extensive data showing that at least a subgroup has a pro-inflammatory state, increased oxidative and nitrosative stress, disruption of gut mucosal barriers and mitochondrial dysfunction together with dysregulated bioenergetics. In this paper, these pathways are summarised, and data regarding promising therapeutic options that target these pathways are highlighted; they include coenzyme Q10, melatonin, curcumin, molecular hydrogen and N-acetylcysteine. These data are promising yet preliminary, suggesting hopeful avenues to address this major unmet burden of illness.
Collapse
|
36
|
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review. Diagnostics (Basel) 2019; 9:diagnostics9030091. [PMID: 31394725 PMCID: PMC6787585 DOI: 10.3390/diagnostics9030091] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating chronic disease of unknown aetiology that is recognized by the World Health Organization (WHO) and the United States Center for Disease Control and Prevention (US CDC) as a disorder of the brain. The disease predominantly affects adults, with a peak age of onset of between 20 and 45 years with a female to male ratio of 3:1. Although the clinical features of the disease have been well established within diagnostic criteria, the diagnosis of ME/CFS is still of exclusion, meaning that other medical conditions must be ruled out. The pathophysiological mechanisms are unclear but the neuro-immuno-endocrinological pattern of CFS patients gleaned from various studies indicates that these three pillars may be the key point to understand the complexity of the disease. At the moment, there are no specific pharmacological therapies to treat the disease, but several studies' aims and therapeutic approaches have been described in order to benefit patients' prognosis, symptomatology relief, and the recovery of pre-existing function. This review presents a pathophysiological approach to understanding the essential concepts of ME/CFS, with an emphasis on the population, clinical, and genetic concepts associated with ME/CFS.
Collapse
|
37
|
Esfandyarpour R, Kashi A, Nemat-Gorgani M, Wilhelmy J, Davis RW. A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Proc Natl Acad Sci U S A 2019; 116:10250-10257. [PMID: 31036648 PMCID: PMC6535016 DOI: 10.1073/pnas.1901274116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is not currently a well-established, if any, biological test to diagnose myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The molecular aberrations observed in numerous studies of ME/CFS blood cells offer the opportunity to develop a diagnostic assay from blood samples. Here we developed a nanoelectronics assay designed as an ultrasensitive assay capable of directly measuring biomolecular interactions in real time, at low cost, and in a multiplex format. To pursue the goal of developing a reliable biomarker for ME/CFS and to demonstrate the utility of our platform for point-of-care diagnostics, we validated the array by testing patients with moderate to severe ME/CFS patients and healthy controls. The ME/CFS samples' response to the hyperosmotic stressor observed as a unique characteristic of the impedance pattern and dramatically different from the response observed among the control samples. We believe the observed robust impedance modulation difference of the samples in response to hyperosmotic stress can potentially provide us with a unique indicator of ME/CFS. Moreover, using supervised machine learning algorithms, we developed a classifier for ME/CFS patients capable of identifying new patients, required for a robust diagnostic tool.
Collapse
Affiliation(s)
- R Esfandyarpour
- Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697;
| | - A Kashi
- Stanford Genome Technology Center, Stanford University, Stanford, CA 94304
| | - M Nemat-Gorgani
- Stanford Genome Technology Center, Stanford University, Stanford, CA 94304
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA 94304
| | - J Wilhelmy
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA 94304
| | - R W Davis
- Stanford Genome Technology Center, Stanford University, Stanford, CA 94304;
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA 94304
| |
Collapse
|
38
|
Raijmakers RPH, Jansen AFM, Keijmel SP, Ter Horst R, Roerink ME, Novakovic B, Joosten LAB, van der Meer JWM, Netea MG, Bleeker-Rovers CP. A possible role for mitochondrial-derived peptides humanin and MOTS-c in patients with Q fever fatigue syndrome and chronic fatigue syndrome. J Transl Med 2019; 17:157. [PMID: 31088495 PMCID: PMC6518812 DOI: 10.1186/s12967-019-1906-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022] Open
Abstract
Background Q fever fatigue syndrome (QFS) is a well-documented state of prolonged fatigue following around 20% of acute Q fever infections. It has been hypothesized that low grade inflammation plays a role in its aetiology. In this study, we aimed to identify transcriptome profiles that could aid to better understand the pathophysiology of QFS. Methods RNA of monocytes was collected from QFS patients (n = 10), chronic fatigue syndrome patients (CFS, n = 10), Q fever seropositive controls (n = 10), and healthy controls (n = 10) who were age- (± 5 years) and sex-matched. Transcriptome analysis was performed using RNA sequencing. Results Mitochondrial-derived peptide (MDP)-coding genes MT-RNR2 (humanin) and MT-RNR1 (MOTS-c) were differentially expressed when comparing QFS (− 4.8 log2-fold-change P = 2.19 × 10−9 and − 4.9 log2-fold-change P = 4.69 × 10−8), CFS (− 5.2 log2-fold-change, P = 3.49 × 10−11 − 4.4 log2-fold-change, P = 2.71 × 10−9), and Q fever seropositive control (− 3.7 log2-fold-change P = 1.78 × 10−6 and − 3.2 log2-fold-change P = 1.12 × 10−5) groups with healthy controls, resulting in a decreased median production of humanin in QFS patients (371 pg/mL; Interquartile range, IQR, 325–384), CFS patients (364 pg/mL; IQR 316–387), and asymptomatic Q fever seropositive controls (354 pg/mL; 292–393). Conclusions Expression of MDP-coding genes MT-RNR1 (MOTS-c) and MT-RNR2 (humanin) is decreased in CFS, QFS, and, to a lesser extent, in Q fever seropositive controls, resulting in a decreased production of humanin. These novel peptides might indeed be important in the pathophysiology of both QFS and CFS. Electronic supplementary material The online version of this article (10.1186/s12967-019-1906-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruud P H Raijmakers
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands. .,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Anne F M Jansen
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Stephan P Keijmel
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Rob Ter Horst
- Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Megan E Roerink
- Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Leo A B Joosten
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jos W M van der Meer
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mihai G Netea
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Chantal P Bleeker-Rovers
- Radboud Expertise Center for Q Fever, Department of Internal Medicine, Division of Infectious Diseases 463, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Saha AK, Schmidt BR, Wilhelmy J, Nguyen V, Abugherir A, Do JK, Nemat-Gorgani M, Davis RW, Ramasubramanian AK. Red blood cell deformability is diminished in patients with Chronic Fatigue Syndrome. Clin Hemorheol Microcirc 2019; 71:113-116. [PMID: 30594919 PMCID: PMC6398549 DOI: 10.3233/ch-180469] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND: Myalgic encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a poorly understood disease. Amongst others symptoms, the disease is associated with profound fatigue, cognitive dysfunction, sleep abnormalities, and other symptoms that are made worse by physical or mental exertion. While the etiology of the disease is still debated, evidence suggests oxidative damage to immune and hematological systems as one of the pathophysiological mechanisms of the disease. Since red blood cells (RBCs) are well-known scavengers of oxidative stress, and are critical in microvascular perfusion and tissue oxygenation, we hypothesized that RBC deformability is adversely affected in ME/CFS. METHODS: We used a custom microfluidic platform and high-speed microscopy to assess the difference in deformability of RBCs obtained from ME/CFS patients and age-matched healthy controls. RESULTS AND CONCLUSION: We observed from various measures of deformability that the RBCs isolated from ME/CFS patients were significantly stiffer than those from healthy controls. Our observations suggest that RBC transport through microcapillaries may explain, at least in part, the ME/CFS phenotype, and promises to be a novel first-pass diagnostic test.
Collapse
Affiliation(s)
- Amit K Saha
- Department of Chemical and Materials Engineering, San José State University, San José, CA, USA.,Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Brendan R Schmidt
- Department of Chemical and Materials Engineering, San José State University, San José, CA, USA
| | - Julie Wilhelmy
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Vy Nguyen
- Department of Chemical and Materials Engineering, San José State University, San José, CA, USA
| | - Abed Abugherir
- Department of Chemical and Materials Engineering, San José State University, San José, CA, USA
| | - Justin K Do
- Department of Chemical and Materials Engineering, San José State University, San José, CA, USA
| | - Mohsen Nemat-Gorgani
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Anand K Ramasubramanian
- Department of Chemical and Materials Engineering, San José State University, San José, CA, USA
| |
Collapse
|
40
|
Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? Metab Brain Dis 2019; 34:385-415. [PMID: 30758706 PMCID: PMC6428797 DOI: 10.1007/s11011-019-0388-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
A model of the development and progression of chronic fatigue syndrome (myalgic encephalomyelitis), the aetiology of which is currently unknown, is put forward, starting with a consideration of the post-infection role of damage-associated molecular patterns and the development of chronic inflammatory, oxidative and nitrosative stress in genetically predisposed individuals. The consequences are detailed, including the role of increased intestinal permeability and the translocation of commensal antigens into the circulation, and the development of dysautonomia, neuroinflammation, and neurocognitive and neuroimaging abnormalities. Increasing levels of such stress and the switch to immune and metabolic downregulation are detailed next in relation to the advent of hypernitrosylation, impaired mitochondrial performance, immune suppression, cellular hibernation, endotoxin tolerance and sirtuin 1 activation. The role of chronic stress and the development of endotoxin tolerance via indoleamine 2,3-dioxygenase upregulation and the characteristics of neutrophils, monocytes, macrophages and T cells, including regulatory T cells, in endotoxin tolerance are detailed next. Finally, it is shown how the immune and metabolic abnormalities of chronic fatigue syndrome can be explained by endotoxin tolerance, thus completing the model.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| |
Collapse
|
41
|
Eyskens JB, Illegems J, De Nil L, Nijs J, Kampen JK, Moorkens G. Assessing chronic fatigue syndrome: Self-reported physical functioning and correlations with physical testing. J Bodyw Mov Ther 2019; 23:598-603. [PMID: 31563377 DOI: 10.1016/j.jbmt.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
The pathophysiology of chronic fatigue syndrome (CFS) remains unclear; no biomarkers have thus far been identified or physical tests designed to underpin its diagnosis. Assessment mainly uses Fukuda's criteria and is based on the exclusion of symptoms related to other diseases/syndromes, subjective self-reporting, and outcomes of self-report questionnaires. In order to improve the baseline assessment and progress evaluation of individuals suspected of CFS and using an association-oriented research strategy and a cross-correlational design, this study investigates possible associations between the performance on two physical tests, i.e. 'Timed Loaded Standing' (TLS), assessing trunk-arm endurance, and the 'Stops Walking with Eyes Closed while performing a secondary Cognitive Task' (SWECCT), measuring impaired automaticity of gait, and the results of two self-report questionnaires, the Checklist Individual Strength (CIS, total score and fatigue subscale score) and the physical functioning and vitality subscales of the Short Form Health Survey (SF-36) to gauge the participants' subjective feelings of fatigue and beliefs regarding their abilities to perform daily-life activities. Comparisons of the outcomes obtained in 27 female patients with a confirmed diagnosis of CFS revealed that trunk-arm endurance as measured with the TLS correlated with the SF-36 physical functioning subscale only (raw p value: 0.004). None of the other correlations were statistically significant. It is concluded that the TLS may have potential as an objective assessment tool to support the diagnosis and monitoring of treatment effects in CFS.
Collapse
Affiliation(s)
- Jan B Eyskens
- Department of Internal Medicine, Antwerp University Hospital, Rijsenbergstraat 31, 9000, Belgium.
| | - Jela Illegems
- Behaviour Therapy Division for Fatigue and Functional Symptoms, Department of Internal Medicine, Antwerp University Hospital, Belgium
| | - Luc De Nil
- Physiotherapy and Rehabilitation, Denderbelle, Belgium
| | - Jo Nijs
- Pain in Motion Research Group, Department of Human Physiology and Physiotherapy, Vrije Universiteit Brussel (Free University Brussels) Belgium, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium
| | - Jarl K Kampen
- StatUA, University of Antwerp, Antwerp, Belgium; Biometris, Wageningen University, Wageningen, the Netherlands
| | - Greta Moorkens
- Head Department of Internal Medicine, Antwerp University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| |
Collapse
|
42
|
Uhde M, Indart AC, Yu XB, Jang SS, De Giorgio R, Green PHR, Volta U, Vernon SD, Alaedini A. Markers of non-coeliac wheat sensitivity in patients with myalgic encephalomyelitis/chronic fatigue syndrome. Gut 2019; 68:377-378. [PMID: 29550784 PMCID: PMC6352651 DOI: 10.1136/gutjnl-2018-316133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Melanie Uhde
- Department of Medicine, Columbia University Medical Center, New York, New York, USA,Celiac Disease Center, Columbia University Medical Center, New York, New York, USA
| | - Alyssa C Indart
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Xuechen B Yu
- Department of Medicine, Columbia University Medical Center, New York, New York, USA,Institute of Human Nutrition, Columbia University Medical Center, New York, New York, USA
| | - Sophie S Jang
- Department of Medicine, Columbia University Medical Center, New York, New York, USA,Institute of Human Nutrition, Columbia University Medical Center, New York, New York, USA
| | - Roberto De Giorgio
- Departments of Medical and Surgical Sciences and Digestive System, Centro di Ricerca Biomedica Applicata (C.R.B.A.), University of Bologna, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Peter H R Green
- Department of Medicine, Columbia University Medical Center, New York, New York, USA,Celiac Disease Center, Columbia University Medical Center, New York, New York, USA
| | - Umberto Volta
- Departments of Medical and Surgical Sciences and Digestive System, Centro di Ricerca Biomedica Applicata (C.R.B.A.), University of Bologna, St. Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Armin Alaedini
- Department of Medicine, Columbia University Medical Center, New York, New York, USA,Celiac Disease Center, Columbia University Medical Center, New York, New York, USA,Institute of Human Nutrition, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
43
|
Mi Y, Gao X, Xu H, Cui Y, Zhang Y, Gou X. The Emerging Roles of Ferroptosis in Huntington's Disease. Neuromolecular Med 2019; 21:110-119. [PMID: 30600476 DOI: 10.1007/s12017-018-8518-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant and fatal neurodegenerative disorder, which is caused by an abnormal CAG repeat in the huntingtin gene. Despite its well-defined genetic origin, the molecular mechanisms of neuronal death are unclear yet, thus there are no effective strategies to block or postpone the process of HD. Ferroptosis, a recently identified iron-dependent cell death, attracts considerable attention due to its putative involvement in neurodegenerative diseases. Accumulative data suggest that ferroptosis is very likely to participate in HD, and inhibition of the molecules and signaling pathways involved in ferroptosis can significantly eliminate the symptoms and pathology of HD. This review first describes evidence for the close relevance of ferroptosis and HD in patients and mouse models, then summarizes advances for the mechanisms of ferroptosis involved in HD, finally outlines some therapeutic strategies targeted ferroptosis. Comprehensive understanding of the emerging roles of ferroptosis in the occurrence of HD will help us to explore effective therapies for slowing the progression of this disease.
Collapse
Affiliation(s)
- Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Hao Xu
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yuanyuan Cui
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yuelin Zhang
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China.
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
44
|
Wyller VBB. Pain is common in chronic fatigue syndrome – current knowledge and future perspectives. Scand J Pain 2018; 19:5-8. [DOI: 10.1515/sjpain-2018-2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Vegard Bruun Bratholm Wyller
- Institute of Clinical Medicine, University of Oslo , Oslo , Norway
- Department of Pediatrics and Adolescent Medicine , Akershus University Hospital , Sykehusveien 25, PO Box 1000 , 1478 Lørenskog , Norway , Phone: +47 91 16 66 81
| |
Collapse
|
45
|
Germain A, Ruppert D, Levine SM, Hanson MR. Prospective Biomarkers from Plasma Metabolomics of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Implicate Redox Imbalance in Disease Symptomatology. Metabolites 2018; 8:metabo8040090. [PMID: 30563204 PMCID: PMC6315598 DOI: 10.3390/metabo8040090] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disease of enigmatic origin with no established cure. Its constellation of symptoms has silently ruined the lives of millions of people around the world. A plethora of hypotheses have been vainly investigated over the past few decades, so that the biological basis of this debilitating condition remains a mystery. In this study, we investigate whether there is a disturbance in homeostasis of metabolic networks in the plasma of a female 32-patient cohort compared to 19 healthy female controls. Extensive analysis of the 832-metabolite dataset generated by Metabolon®, covering eight biological classes, generated important insight into metabolic disruptions that occur in ME/CFS. We report on 14 metabolites with differences in abundance, allowing us to develop a theory of broad redox imbalance in ME/CFS patients, which is consistent with findings of prior work in the ME/CFS field. Moreover, exploration of enrichment analysis using www.MetaboAnalyst.ca provides information concerning similarities between metabolite disruptions in ME/CFS and those that occur in other diseases, while its biomarker analysis unit yielded prospective plasma biomarkers for ME/CFS. This work contributes key elements to the development of ME/CFS diagnostics, a crucial step required for discovering a therapy for any disease of unknown origin.
Collapse
Affiliation(s)
- Arnaud Germain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - David Ruppert
- Department of Statistical Science and School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Susan M Levine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
46
|
Morris G, Fernandes BS, Puri BK, Walker AJ, Carvalho AF, Berk M. Leaky brain in neurological and psychiatric disorders: Drivers and consequences. Aust N Z J Psychiatry 2018; 52:924-948. [PMID: 30231628 DOI: 10.1177/0004867418796955] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The blood-brain barrier acts as a highly regulated interface; its dysfunction may exacerbate, and perhaps initiate, neurological and neuropsychiatric disorders. METHODS In this narrative review, focussing on redox, inflammatory and mitochondrial pathways and their effects on the blood-brain barrier, a model is proposed detailing mechanisms which might explain how increases in blood-brain barrier permeability occur and can be maintained with increasing inflammatory and oxidative and nitrosative stress being the initial drivers. RESULTS Peripheral inflammation, which is causatively implicated in the pathogenesis of major psychiatric disorders, is associated with elevated peripheral pro-inflammatory cytokines, which in turn cause increased blood-brain barrier permeability. Reactive oxygen species, such as superoxide radicals and hydrogen peroxide, and reactive nitrogen species, such as nitric oxide and peroxynitrite, play essential roles in normal brain capillary endothelial cell functioning; however, chronically elevated oxidative and nitrosative stress can lead to mitochondrial dysfunction and damage to the blood-brain barrier. Activated microglia, redox control of which is mediated by nitric oxide synthases and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, secrete neurotoxic molecules such as reactive oxygen species, nitric oxide, prostaglandin, cyclooxygenase-2, quinolinic acid, several chemokines (including monocyte chemoattractant protein-1 [MCP-1], C-X-C motif chemokine ligand 1 [CXCL-1] and macrophage inflammatory protein 1α [MIP-1α]) and the pro-inflammatory cytokines interleukin-6, tumour necrosis factor-α and interleukin-1β, which can exert a detrimental effect on blood-brain barrier integrity and function. Similarly, reactive astrocytes produce neurotoxic molecules such as prostaglandin E2 and pro-inflammatory cytokines, which can cause a 'leaky brain'. CONCLUSION Chronic inflammatory and oxidative and nitrosative stress is associated with the development of a 'leaky gut'. The following evidence-based approaches, which address the leaky gut and blood-brain barrier dysfunction, are suggested as potential therapeutic interventions for neurological and neuropsychiatric disorders: melatonin, statins, probiotics containing Bifidobacteria and Lactobacilli, N-acetylcysteine, and prebiotics containing fructo-oligosaccharides and galacto-oligosaccharides.
Collapse
Affiliation(s)
- Gerwyn Morris
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Brisa S Fernandes
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Basant K Puri
- 3 Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Andre F Carvalho
- 2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Berk
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,4 Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
47
|
Hatziagelaki E, Adamaki M, Tsilioni I, Dimitriadis G, Theoharides TC. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome-Metabolic Disease or Disturbed Homeostasis due to Focal Inflammation in the Hypothalamus? J Pharmacol Exp Ther 2018; 367:155-167. [PMID: 30076265 DOI: 10.1124/jpet.118.250845] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease characterized by debilitating fatigue, lasting for at least 6 months, with associated malaise, headaches, sleep disturbance, and cognitive impairment, which severely impacts quality of life. A significant percentage of ME/CFS patients remain undiagnosed, mainly due to the complexity of the disease and the lack of reliable objective biomarkers. ME/CFS patients display decreased metabolism and the severity of symptoms appears to be directly correlated to the degree of metabolic reduction that may be unique to each individual patient. However, the precise pathogenesis is still unknown, preventing the development of effective treatments. The ME/CFS phenotype has been associated with abnormalities in energy metabolism, which are apparently due to mitochondrial dysfunction in the absence of mitochondrial diseases, resulting in reduced oxidative metabolism. Such mitochondria may be further contributing to the ME/CFS symptomatology by extracellular secretion of mitochondrial DNA, which could act as an innate pathogen and create an autoinflammatory state in the hypothalamus. We propose that stimulation of hypothalamic mast cells by environmental, neuroimmune, pathogenic and stress triggers activates microglia, leading to focal inflammation in the brain and disturbed homeostasis. This process could be targeted for the development of novel effective treatments.
Collapse
Affiliation(s)
- Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Maria Adamaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Irene Tsilioni
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - George Dimitriadis
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| | - Theoharis C Theoharides
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece (E.H., M.A., G.D.); Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology (I.T., T.C.T.) and Sackler School of Graduate Biomedical Sciences (T.C.T.), Tufts University School of Medicine, Boston, Massachusetts; and Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts (T.C.T.)
| |
Collapse
|
48
|
Nascimento GC, Bariotto-dos-Santos K, Leite-Panissi CRA, Del-Bel EA, Bortolanza M. Nociceptive Response to l-DOPA-Induced Dyskinesia in Hemiparkinsonian Rats. Neurotox Res 2018; 34:799-807. [DOI: 10.1007/s12640-018-9896-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/17/2022]
|
49
|
Monro JA, Puri BK. A Molecular Neurobiological Approach to Understanding the Aetiology of Chronic Fatigue Syndrome (Myalgic Encephalomyelitis or Systemic Exertion Intolerance Disease) with Treatment Implications. Mol Neurobiol 2018; 55:7377-7388. [PMID: 29411266 PMCID: PMC6096969 DOI: 10.1007/s12035-018-0928-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Currently, a psychologically based model is widely held to be the basis for the aetiology and treatment of chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME)/systemic exertion intolerance disease (SEID). However, an alternative, molecular neurobiological approach is possible and in this paper evidence demonstrating a biological aetiology for CFS/ME/SEID is adduced from a study of the history of the disease and a consideration of the role of the following in this disease: nitric oxide and peroxynitrite, oxidative and nitrosative stress, the blood–brain barrier and intestinal permeability, cytokines and infections, metabolism, structural and chemical brain changes, neurophysiological changes and calcium ion mobilisation. Evidence is also detailed for biologically based potential therapeutic options, including: nutritional supplementation, for example in order to downregulate the nitric oxide-peroxynitrite cycle to prevent its perpetuation; antiviral therapy; and monoclonal antibody treatment. It is concluded that there is strong evidence of a molecular neurobiological aetiology, and so it is suggested that biologically based therapeutic interventions should constitute a focus for future research into CFS/ME/SEID.
Collapse
Affiliation(s)
- Jean A Monro
- Breakspear Medical Group, Hemel Hempstead, England, UK
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
50
|
Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 2017; 341:154-175. [PMID: 29289598 DOI: 10.1016/j.bbr.2017.12.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a unique form of programmed death, characterised by cytosolic accumulation of iron, lipid hydroperoxides and their metabolites, and effected by the fatal peroxidation of polyunsaturated fatty acids in the plasma membrane. It is a major driver of cell death in neurodegenerative neurological diseases. Moreover, cascades underpinning ferroptosis could be active drivers of neuropathology in major psychiatric disorders. Oxidative and nitrosative stress can adversely affect mechanisms and proteins governing cellular iron homeostasis, such as the iron regulatory protein/iron response element system, and can ultimately be a source of abnormally high levels of iron and a source of lethal levels of lipid membrane peroxidation. Furthermore, neuroinflammation leads to the upregulation of divalent metal transporter1 on the surface of astrocytes, microglia and neurones, making them highly sensitive to iron overload in the presence of high levels of non-transferrin-bound iron, thereby affording such levels a dominant role in respect of the induction of iron-mediated neuropathology. Mechanisms governing systemic and cellular iron homeostasis, and the related roles of ferritin and mitochondria are detailed, as are mechanisms explaining the negative regulation of ferroptosis by glutathione, glutathione peroxidase 4, the cysteine/glutamate antiporter system, heat shock protein 27 and nuclear factor erythroid 2-related factor 2. The potential role of DJ-1 inactivation in the precipitation of ferroptosis and the assessment of lipid peroxidation are described. Finally, a rational approach to therapy is considered, with a discussion on the roles of coenzyme Q10, iron chelation therapy, in the form of deferiprone, deferoxamine (desferrioxamine) and deferasirox, and N-acetylcysteine.
Collapse
|