1
|
Dai J, Yang Z, Liu L, Lv L. Acomprehensive review on microalgae protein as an emerging protein resource. Food Res Int 2025; 212:116511. [PMID: 40382058 DOI: 10.1016/j.foodres.2025.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025]
Abstract
The growing global population is driving an increased demand for protein, while traditional protein sources are increasingly by limited arable land and rising carbon emissions. To meet the sustainable development goals, it is essential to explore sustainable protein alternatives. This article reviews the progress in research on microalgal protein, focusing on its extraction, nutritional profile, bioactivity, functionality, applications, and future challenges. Microalgal protein offers a balanced amino acid composition compared to traditional protein sources. While current mild extraction methods are the main approaches to improving extraction efficiency, advancing promising technologies is also critical. Microalgal protein holds significant potential for development in the food and medicinal sectors; however, the potential toxicity and allergenicity associated with the growth environments of microalgae present safety challenges for consumption. Research on microalgal protein is still in its early stages, and further advancements in extraction techniques could enhance its usability in food applications.
Collapse
Affiliation(s)
- Jing Dai
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziying Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Lu Liu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Liangtao Lv
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Dukić J, Režek Jambrak A, Jurec J, Merunka D, Valić S, Radičić R, Krstulović N, Nutrizio M, Dubrović I. High-Power Ultrasound and High-Voltage Electrical Discharge-Assisted Extractions of Bioactive Compounds from Sugar Beet ( Beta vulgaris L.) Waste: Electron Spin Resonance and Optical Emission Spectroscopy Analysis. Molecules 2025; 30:796. [PMID: 40005108 PMCID: PMC11858574 DOI: 10.3390/molecules30040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
To achieve sustainable extractions, this study examines the impact of different extraction methods to utilize waste from the sugar industry. In addition to conventional thermal extraction, the impact of high-power ultrasound (US) and high-voltage electrical discharge (HVED)-assisted extractions on the yield of bioactive compounds and the antioxidant capacity (AC) value of sugar beet leaf extracts was determined. US extraction proved to be an excellent method for extracting bioactive compounds, while HVED extraction proved to be an excellent method for extracting Vitexin. AC was measured both spectrophotometrically (DPPH and FRAP) and spectroscopically via electron spin resonance (ESR). The AC results correlate with each other, and the highest AC values were found in the US-treated samples with 25% ethanol solution as the extraction solvent. Characterization of the plasma via optical emission spectroscopy (OES) showed that neither the solvent nor the sample influenced the plasma spectra, only the gas used (nitrogen/argon). All of the obtained results provide an excellent basis for future research into the utilization of food waste and by-products.
Collapse
Affiliation(s)
- Josipa Dukić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (J.D.); (M.N.)
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (J.D.); (M.N.)
| | - Jurica Jurec
- Ruđer Bošković Institute, 10000 Zagreb, Croatia; (J.J.); (D.M.); (S.V.)
| | - Dalibor Merunka
- Ruđer Bošković Institute, 10000 Zagreb, Croatia; (J.J.); (D.M.); (S.V.)
| | - Srećko Valić
- Ruđer Bošković Institute, 10000 Zagreb, Croatia; (J.J.); (D.M.); (S.V.)
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Centre for Micro- and Nanosciences and Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Rafaela Radičić
- Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia; (R.R.); (N.K.)
| | - Nikša Krstulović
- Institute of Physics, Bijenička Cesta 46, 10000 Zagreb, Croatia; (R.R.); (N.K.)
| | - Marinela Nutrizio
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (J.D.); (M.N.)
| | - Igor Dubrović
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, 51000 Rijeka, Croatia;
| |
Collapse
|
3
|
Abbaspour L, Ghareaghajlou N, Afshar Mogaddam MR, Ghasempour Z. An innovative technique for the extraction and stability of polyphenols using high voltage electrical discharge: HVED-Assisted Extraction of Polyphenols. Curr Res Food Sci 2024; 9:100928. [PMID: 39650858 PMCID: PMC11625161 DOI: 10.1016/j.crfs.2024.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Polyphenols are the main group of phytochemicals with several biological activities. Due to the adverse effects of conventional solvent extraction methods, innovative extraction techniques have been used as alternatives to overcome these problems. High voltage electric discharge (HVED) is an eco-friendly innovative extraction technique based on the phenomenon of electrical breakdown in water. This technique induces physical and chemical processes, leading to product fragmentation, cellular damage, and liberation of bioactive compounds. HVED treatment can extract polyphenols at lower temperatures and shorter times than the conventional solvent extraction methods. This review summarizes the effect of HVED processing parameters on the recovery and stability of polyphenols from plant sources. Hydroethanolic solutions improve the HVED-assisted extraction of polyphenols compared to water. Moreover, acidic solvents are suitable for the high recovery and protection of polyphenols during electric discharges. This study revealed the efficacy of the HVED technique in extracting polyphenols for their utilization in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Leila Abbaspour
- Students Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Ghareaghajlou
- Students Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Ghasempour
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Ćurko N, Perić K, Vukušić Pavičić T, Balbino S, Tomašević M, Iveković D, Radojčić Redovniković I, Kovačević Ganić K. Effect of Pulsed Electric Field Pretreatment on the Concentration of Lipophilic and Hydrophilic Compounds in Cold-Pressed Grape Seed Oil Produced from Wine Waste. Foods 2024; 13:2299. [PMID: 39063383 PMCID: PMC11276571 DOI: 10.3390/foods13142299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Pretreatment of grape pomace seeds with a pulsed electric field (PEF) was applied to improve the extraction yield of cold-pressed grape seed oil. The effects of different PEF conditions, electric field intensities (12.5, 14.0 and 15.6 kV/cm), and durations (15 and 30 min) on the oil chemical composition were also studied. All PEF pretreatments significantly increased the oil yield, flow rate and concentration of total sterols (p < 0.05). In addition, similar trends were observed for total tocochromanols and phenolic compounds, except for PEF pretreatment under the mildest conditions (12.5 kV/cm, 15 min) (p < 0.05). Notably, the application of 15.6 kV/cm for 30 min resulted in the highest relative increase in oil yield and flow rate (29.6% and 56.5%, respectively) and in the concentrations of total tocochromanols, nonflavonoids, and flavonoids (22.1%, 60.2% and 81.5%, respectively). In addition, the highest relative increase in the concentration of total sterols (25.4%) was achieved by applying 12.5 kV/cm for 30 min. The fatty acid composition of the grape seed oil remained largely unaffected by the PEF pretreatments. These results show that PEF pretreatment effectively improves both the yield and the bioactive properties of cold-pressed grape seed oil.
Collapse
Affiliation(s)
| | | | | | - Sandra Balbino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.Ć.); (K.P.); (T.V.P.); (M.T.); (D.I.); (I.R.R.); (K.K.G.)
| | | | | | | | | |
Collapse
|
5
|
Tsevdou M, Ntzimani A, Katsouli M, Dimopoulos G, Tsimogiannis D, Taoukis P. Comparative Study of Microwave, Pulsed Electric Fields, and High Pressure Processing on the Extraction of Antioxidants from Olive Pomace. Molecules 2024; 29:2303. [PMID: 38792161 PMCID: PMC11123897 DOI: 10.3390/molecules29102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil production is characterized by large amounts of waste, and yet is considerably highly valued. Olive pomace can serve as a cheap source of bioactive compounds (BACs) with important antioxidant activity. Novel technologies like Pulsed Electric Fields (PEF) and High Pressure (HP) and microwave (MW) processing are considered green alternatives for the recovery of BACs. Different microwave (150-600 W), PEF (1-5 kV/cm field strength, 100-1500 pulses/15 µs width), and HP (250-650 MPa) conditions, in various product/solvent ratios, methanol concentrations, extraction temperatures, and processing times were investigated. Results indicated that the optimal MW extraction conditions were 300 W at 50 °C for 5 min using 60% v/v methanol with a product/solvent ratio of 1:10 g/mL. Similarly, the mix of 40% v/v methanol with olive pomace, treated at 650 MPa for the time needed for pressure build-up (1 min) were considered as optimal extraction conditions in the case of HP, while for PEF the optimal conditions were 60% v/v methanol with a product/solvent ratio of 1:10 g/mL, treated at 5000 pulses, followed by 1 h extraction under stirring conditions. Therefore, these alternative extraction technologies could assist the conventional practice in minimizing waste production and simultaneously align with the requirements of the circular bioeconomy concept.
Collapse
Affiliation(s)
| | | | | | | | | | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Heroon Polytechniou Str., 15780 Athens, Greece; (M.T.); (A.N.); (M.K.); (G.D.); (D.T.)
| |
Collapse
|
6
|
Meza-Velázquez JA, Aguilera-Ortiz M, Ragazzo-Sanchez JA, León JARD, Minjares-Fuentes JR, Luna-Zapién EA. Combined application of high pressure and ultrasound in fig paste: effect on bioactive and volatile compounds. Food Sci Biotechnol 2024; 33:1103-1112. [PMID: 38440688 PMCID: PMC10908685 DOI: 10.1007/s10068-023-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 03/06/2024] Open
Abstract
The combined impact of high-hydrostatic pressure (HHP) and ultrasound (US) on the cyanidin-3-O-rutinoside (C3R), quercetin-3-O-rutinoside (Q3R), and volatile compounds from fig (Ficus carica) paste was investigated. The HHP increased the content of C3R and Q3R, from 70 to 133 mg/kg fw and 31 to 44 mg/kg fw, respectively. The combination of HHP and US further enhanced the extraction of these bioactive compounds. Specifically, processing fig paste with US for 5 min at 40 °C yielded approximately 250 mg of C3R/kg fw and 45 mg of Q3R/kg fw, after 20 min. More than 25 volatile compounds were identified, with benzaldehyde being the predominant compound, accounting > 75%. Trace amounts of hydroxymethylfurfural (< 0.36 mg/100 g fw) were detected in HHP-processed fig paste. The application of HHP at mild temperatures and short time, combined with US, effectively promotes the content of bioactive compounds present in fig paste without adversely affecting the fruit's volatile compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01410-1.
Collapse
Affiliation(s)
- J. A. Meza-Velázquez
- Faculty of Chemical Sciences, Juarez University of the State of Durango. Av, Articulo 123 S/N Fracc Philadelphia, 35010 Gómez Palacio, Dgo Mexico
| | - M. Aguilera-Ortiz
- Faculty of Chemical Sciences, Juarez University of the State of Durango. Av, Articulo 123 S/N Fracc Philadelphia, 35010 Gómez Palacio, Dgo Mexico
| | - J. A. Ragazzo-Sanchez
- Integral Food Laboratory, Technological Institute of Tepic, Av. Tecnológico 2595 Lagos de Country, 63175 Tepic Nay, Mexico
| | - J. A. Ramírez-De León
- Department of Food Science and Technology, UAM Reynosa-Aztlán, UAT Calle 16 and Lake Chapala. Col. Aztlan, 88743 Reynosa, Tamps Mexico
| | - J. R. Minjares-Fuentes
- Faculty of Chemical Sciences, Juarez University of the State of Durango. Av, Articulo 123 S/N Fracc Philadelphia, 35010 Gómez Palacio, Dgo Mexico
| | - E. A. Luna-Zapién
- Faculty of Chemical Sciences, Juarez University of the State of Durango. Av, Articulo 123 S/N Fracc Philadelphia, 35010 Gómez Palacio, Dgo Mexico
| |
Collapse
|
7
|
Rrucaj E, Carpentieri S, Scognamiglio M, Siano F, Ferrari G, Pataro G. Sustainable Valorization of Industrial Cherry Pomace: A Novel Cascade Approach Using Pulsed Electric Fields and Ultrasound Assisted-Extraction. Foods 2024; 13:1043. [PMID: 38611349 PMCID: PMC11012044 DOI: 10.3390/foods13071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, a two-stage cascade extraction process utilizing pulsed electric fields (PEF) (3 kV/cm, 10 kJ/kg) for initial extraction, followed by ultrasound (US) (200 W, 20 min)-assisted extraction (UAE) in a 50% (v/v) ethanol-water mixture (T = 50 °C, t = 60 min), was designed for the efficient release of valuable intracellular compounds from industrial cherry pomace. The extracted compounds were evaluated for total phenolic content (TPC), flavonoid content (FC), total anthocyanin content (TAC), and antioxidant activity (FRAP), and were compared with conventional solid-liquid extraction (SLE). Results showed that the highest release of bioactive compounds occurred in the first stage, which was attributed to the impact of PEF pre-treatment, resulting in significant increases in TPC (79%), FC (79%), TAC (83%), and FRAP values (80%) of the total content observed in the post-cascade PEF-UAE process. The integration of UAE into the cascade process further augmented the extraction efficiency, yielding 21%, 49%, 56%, and 26% increases for TPC, FC, TAC, and FRAP, respectively, as compared to extracts obtained through a second-stage conventional SLE. HPLC analysis identified neochlorogenic acid, 4-p-coumaroylquinic, and cyanidin-3-O-rutinoside as the predominant phenolic compounds in both untreated and cascade-treated cherry pomace extracts, and no degradation of the specific compounds occurred upon PEF and US application. SEM analysis revealed microstructural changes in cherry pomace induced by PEF and UAE treatments, enhancing the porosity and facilitating the extraction process. The study suggests the efficiency of the proposed cascade PEF-UAE extraction approach for phenolic compounds from industrial cherry pomace with potential applications to other plant-based biomasses.
Collapse
Affiliation(s)
- Ervehe Rrucaj
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
| | - Mariarosa Scognamiglio
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
| | - Francesco Siano
- Institute of Food Science, National Research Council (CNR), Via Roma 64, 83100 Avellino, AV, Italy;
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy (S.C.); (M.S.); (G.F.)
- ProdAl Scarl, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
8
|
Gadhoumi H, Dhouafli Z, Yeddes W, serairi beji R, Miled K, Trifi M, Chirchi A, Saidani Tounsi M, Hayouni EA. Biochemical Composition, Antioxidant Capacity and Protective Effects of Three Fermented Plants Beverages on Hepatotoxicity and Nephrotoxicity Induced by Carbon Tetrachloride in Mice. Indian J Microbiol 2024; 64:229-243. [PMID: 38468731 PMCID: PMC10924858 DOI: 10.1007/s12088-023-01172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/30/2023] [Indexed: 03/13/2024] Open
Abstract
Functional beverages play an essential role in our modern life and contribute to nutritional well-being. Current efforts to understand and develop functional beverages to promote health and wellness have been enhanced. The present study aimed to investigate the production of three fermented plants beverages (FPBs) from aromatic and medicinal plants and to evaluate the fermented product in terms of physio-biochemical composition, the aromatic compounds, antioxidant activity, and in vivo protective effects on hepatotoxicity and nephrotoxicity induced by carbon tetrachloride (CCl4). The results showed that the fermented beverage NurtBio B had the highest levels of polyphenols, flavonoids, and tannins; 242.3 ± 12.4 µg GAE/mL, 106.4 ± 7.3 µg RE/mL and 94.2 ± 5.1 µg CE/mL, respectively. The aromatic profiles of the fermented beverages showed thirty-one interesting volatile compounds detected by GC-MS headspace analyses such as benzaldehyde, Eucalyptol, Fenchone, 3-Octadecyne, Estragole, and Benzene propanoic acid 1-methylethyl ester. In addition, the fermentation process was significantly improved, indicating its great potential as a functional food with both strong antioxidant activity and good flavor. In vivo administration of CCl4 in mice induced hepatotoxicity and nephrotoxicity by a significant rise in the levels of serum liver and kidney biomarkers. The protective effects of the FPBs showed that they significantly restored the majority of these biological parameters to normal levels, along with increase antioxidant enzyme activities, as well as an improvement of histopathological changes, suggesting their protective effects.
Collapse
Affiliation(s)
- Hamza Gadhoumi
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar, Tunis 2092, Tunis, Tunisia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Zohra Dhouafli
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Walid Yeddes
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Raja serairi beji
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Khaled Miled
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Mounir Trifi
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Abdelhamid Chirchi
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Moufida Saidani Tounsi
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - El Akrem Hayouni
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
9
|
Enaime G, Dababat S, Wichern M, Lübken M. Olive mill wastes: from wastes to resources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20853-20880. [PMID: 38407704 PMCID: PMC10948480 DOI: 10.1007/s11356-024-32468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
Olive oil extraction has recently experienced a continuous increase due to its related beneficial properties. Consequently, large amounts of olive mill wastes (OMWs) derived from the trituration process are annually produced, causing serious environmental problems. The limited financial capabilities of olive mills make them usually unable to bear the high costs required for the disposal of their wastes. Alternatively, the valorization of OMWs within the framework of the so-called waste-to-resource concept and their recycling can represent a successful strategy for the implementation of circular economy model in the olive industry, which could have significant socioeconomic impacts on low-income Mediterranean countries. There is, however, no unique solution for OMWs valorization, due to the wide variety of the wastes' composition and their seasonal production. In this review, the potential of OMWs for being reused and the recent technological advances in the field of OMWs valorization are assessed. Special focus is given to the analysis of the advantages and limitations of each technology and to reporting the most significant issues that still limiting its industrial scale-up. The information collected in this review shows that OMW could be effectively exploited in several sectors, including energy production and agriculture. OMWs potential seems, however, undervalued, and the implementation of sustainable valorization strategies in large-scale remains challenging. More efforts and policy actions, through collective actions, encouraging subsidies, and establishing public-private collaborations, are still needed to reconcile research progress with industrial practices and encourage the large-scale implementation of the waste-to-resource concept in the olive sector.
Collapse
Affiliation(s)
- Ghizlane Enaime
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| | - Salahaldeen Dababat
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Marc Wichern
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Manfred Lübken
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| |
Collapse
|
10
|
Mitchaleaw M, Juntrapirom S, Bunrod A, Kanjanakawinkul W, Yawootti A, Charoensup W, Sirilun S, Chaiyana W. Antimicrobial Properties Related to Anti-Acne and Deodorant Efficacy of Hedychium coronarium J. Koenig Extracts from Pulsed Electric Field Extraction. Antibiotics (Basel) 2024; 13:108. [PMID: 38275337 PMCID: PMC10812461 DOI: 10.3390/antibiotics13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
This study investigated the potential of pulsed electric field (PEF) extraction in enhancing the antimicrobial properties related to anti-acne and deodorant properties of Hedychium coronarium extract. The dried leaf and rhizome of H. coronarium were extracted using 95% v/v ethanol through both conventional solvent extraction and PEF extraction techniques (10, 14, and 20 kV/cm). The chemical composition of the extracts was analyzed. The antimicrobial activities, specifically in relation to acne treatment against Cutibacterium acnes and deodorant properties against Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Pseudomonas aeruginosa, and Escherichia coli, were determined. The irritation profile of was evaluated using the hen's egg chorioallantoic membrane test. The results showed that PEF extraction increased the extract yield, particularly at an electric field strength of 20 kV/cm. Furthermore, PEF extraction significantly enhanced the ellagic acid content, particularly in the leaf extract. Furthermore, the leaf extract demonstrated stronger inhibitory effects against microorganisms associated with body odor and acne compared to the rhizome extract. Notably, all extracts exhibited no signs of irritation, indicating their safety. Overall, the findings suggest that PEF extraction from H. coronarium enhances yield, bioactive compound content, and antimicrobial effects. This indicates the potential of the extract for acne treatment and deodorant use.
Collapse
Affiliation(s)
- Manasanan Mitchaleaw
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.M.); (W.C.); (S.S.)
| | - Saranya Juntrapirom
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (A.B.); (W.K.)
| | - Anurak Bunrod
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (A.B.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (A.B.); (W.K.)
| | - Artit Yawootti
- Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand;
| | - Wannaree Charoensup
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.M.); (W.C.); (S.S.)
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.M.); (W.C.); (S.S.)
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.M.); (W.C.); (S.S.)
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
11
|
Constantin OE, Stoica F, Rațu RN, Stănciuc N, Bahrim GE, Râpeanu G. Bioactive Components, Applications, Extractions, and Health Benefits of Winery By-Products from a Circular Bioeconomy Perspective: A Review. Antioxidants (Basel) 2024; 13:100. [PMID: 38247524 PMCID: PMC10812587 DOI: 10.3390/antiox13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Significant waste streams produced during winemaking include winery by-products such as pomace, skins, leaves, stems, lees, and seeds. These waste by-products were frequently disposed of in the past, causing resource waste and environmental issues. However, interest has risen in valorizing vineyard by-products to tap into their latent potential and turn them into high-value products. Wine industry by-products serve as a potential economic interest, given that they are typically significant natural bioactive sources that may exhibit significant biological properties related to human wellness and health. This review emphasizes the significance of winery by-product valorization as a sustainable management resource and waste management method. The novelty of this review lies in its comprehensive analysis of the potential of winery by-products as a source of bioactive compounds, extraction techniques, health benefits, and applications in various sectors. Chemical components in winery by-products include bioactive substances, antioxidants, dietary fibers, organic acids, and proteins, all of which have important industrial and therapeutic applications. The bioactives from winery by-products act as antioxidant, antidiabetic, and anticancer agents that have proven potential health-promoting effects. Wineries can switch from a linear waste management pattern to a more sustainable and practical method by adopting a circular bioeconomy strategy. Consequently, the recovery of bioactive compounds that function as antioxidants and health-promoting agents could promote various industries concomitant within the circular economy.
Collapse
Affiliation(s)
- Oana Emilia Constantin
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| | - Florina Stoica
- Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Roxana Nicoleta Rațu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
- Faculty of Agriculture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania;
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| | - Gabriela Râpeanu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania; (O.E.C.); (R.N.R.); (N.S.); (G.E.B.)
| |
Collapse
|
12
|
Giri S, Kshirod Kumar Dash, Bhagya Raj G, Kovács B, Ayaz Mukarram S. Ultrasound assisted phytochemical extraction of persimmon fruit peel: Integrating ANN modeling and genetic algorithm optimization. ULTRASONICS SONOCHEMISTRY 2024; 102:106759. [PMID: 38211494 PMCID: PMC10825330 DOI: 10.1016/j.ultsonch.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
In the present study, ultrasound assisted extraction (UAE) of phytochemicals from persimmon fruit peel (PFP) was modeled using an artificial neural network (ANN) and optimized by integrating with genetic algorithm (GA). The range of process parameters selected for conducting the experiments was ultrasonication power (XU) 150---350 W, extraction temperatures (XT) 30---70 °C, solid to solvent ratio (XS) 1:15---1:35 g/ml, and ethanol concentration (XC) 40---80 %. The range of responses total phenolic content (YP), antioxidant activity (YA), total beta carotenoid (YB) and total flavonoid content (YF) at various independent variables combinations were found to be 7.72---24.62 mg GAE/g d.w., 51.44---85.58 %DPPH inhibition, 24.78---56.56 µg/g d.w. and 0.29---1.97 mg QE/g d.w. respectively. The modelling utilised an ANN architecture with a configuration of 4-12-4. The training process employed the Levenberg-Marquardt method, whereas the activation function chosen for the layers was the log sigmoid. The optimum condition predicted by the hybrid ANN-GA model for the independent variables, XU, XT, XS and XC was found to be 230.18 W, 50.66 °C, 28.27 g/ml, and 62.75 % respectively. The extraction process was carried out for 25 min, with 5-minute intervals, at various temperatures between 30 and 60 °C, to investigate the kinetic and thermodynamic characteristics of the process, under the optimal conditions of XU, XS and XC. The UAE of phytochemicals from persimmon peel followed pseudo second order kinetic model and the extraction process was endothermic in nature.
Collapse
Affiliation(s)
- Souvik Giri
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.
| | - Gvs Bhagya Raj
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary.
| | - Shaikh Ayaz Mukarram
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
13
|
Majid I, Khan S, Aladel A, Dar AH, Adnan M, Khan MI, Mahgoub Awadelkareem A, Ashraf SA. Recent insights into green extraction techniques as efficient methods for the extraction of bioactive components and essential oils from foods. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2022.2157492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ishrat Majid
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Shafat Khan
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Alanoud Aladel
- Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Arras, Saudi Arabia
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
14
|
Athanasiadis V, Chatzimitakos T, Kotsou K, Kalompatsios D, Bozinou E, Lalas SI. Polyphenol Extraction from Food (by) Products by Pulsed Electric Field: A Review. Int J Mol Sci 2023; 24:15914. [PMID: 37958898 PMCID: PMC10650265 DOI: 10.3390/ijms242115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nowadays, more and more researchers engage in studies regarding the extraction of bioactive compounds from natural sources. To this end, plenty of studies have been published on this topic, with the interest in the field growing exponentially. One major aim of such studies is to maximize the extraction yield and, simultaneously, to use procedures that adhere to the principles of green chemistry, as much as possible. It was not until recently that pulsed electric field (PEF) technology has been put to good use to achieve this goal. This new technique exhibits many advantages, compared to other techniques, and they have successfully been reaped for the production of extracts with enhanced concentrations in bioactive compounds. In this advancing field of research, a good understanding of the existing literature is mandatory to develop more advanced concepts in the future. The aim of this review is to provide a thorough discussion of the most important applications of PEF for the enhancement of polyphenols extraction from fresh food products and by-products, as well as to discuss the current limitations and the prospects of the field.
Collapse
Affiliation(s)
| | - Theodoros Chatzimitakos
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera str., 43100 Karditsa, Greece; (V.A.); (K.K.); (D.K.); (E.B.); (S.I.L.)
| | | | | | | | | |
Collapse
|
15
|
Mahmoud M, Alelyani M, Ahmed AM, Fagiry MA, Alonazi B, Abdelbasset WK, Davidson R, Osman H, Khandaker MU, Musa MA, Alhailiy AB. Ultrasonic technology as a non-thermal approach for processing of fruit and vegetable juices: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023; 26:1114-1121. [DOI: 10.1080/10942912.2023.2202356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 10/12/2024]
Affiliation(s)
- Mustafa Mahmoud
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Magbool Alelyani
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Amna Mohamed Ahmed
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Moram A. Fagiry
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Batil Alonazi
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rob Davidson
- Faculty of Health, University of Canberra, Canberra, Australia
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar, Malaysia
- Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University, Dhaka, Bangladesh
| | - Mohammed A. Musa
- Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ali Bahny Alhailiy
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
16
|
Saravana PS, Ummat V, Bourke P, Tiwari BK. Emerging green cell disruption techniques to obtain valuable compounds from macro and microalgae: a review. Crit Rev Biotechnol 2023; 43:904-919. [PMID: 35786238 DOI: 10.1080/07388551.2022.2089869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 11/03/2022]
Abstract
In the modern era, macro-microalgae attract a strong interest across scientific disciplines, owing to the wide application of these cost-effective valuable bioresources in food, fuel, nutraceuticals, and pharmaceuticals etc. The practice of eco-friendly extraction techniques has led scientists to create alternative processes to the conventional methods, to enhance the extraction of the key valuable compounds from macro-microalgae. This review narrates the possible use of novel cell disruption techniques, including use of ionic liquid, deep eutectic solvent, surfactant, switchable solvents, high voltage electrical discharge, explosive decompression, compressional-puffing, plasma, and ozonation, which can enable the recovery of value added substances from macro-microalgae, complying with the principles of green chemistry and sustainability. The above-mentioned innovative techniques are reviewed with respect to their working principles, benefits, and possible applications for macro-microalgae bioactive compound recovery and biofuel. The benefits of these techniques compared to conventional extraction methods include shorter extraction time, improved yield, and reduced cost. Furthermore, various combinations of these innovative technologies are used for the extraction of thermolabile bioactive compounds. The challenges and prospects of the innovative extraction processes for the forthcoming improvement of environmentally and cost-effective macro-microalgal biorefineries are also explained in this review.
Collapse
Affiliation(s)
- Periaswamy Sivagnanam Saravana
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Viruja Ummat
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Paula Bourke
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Dublin, Ireland
| |
Collapse
|
17
|
Nwokocha BC, Chatzifragkou A, Fagan CC. Impact of Ultrasonication on African Oil Bean ( Pentaclethra macrophylla Benth) Protein Extraction and Properties. Foods 2023; 12:foods12081627. [PMID: 37107422 PMCID: PMC10137838 DOI: 10.3390/foods12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
African oil bean (Pentaclethra macrophylla Benth) is an underutilised edible oil seed that could represent a sustainable protein source. In this study, the impact of ultrasonication on the extraction efficiency and properties of protein from African oil bean (AOB) seeds was evaluated. The increase in the duration of extraction favoured the extraction of AOB proteins. This was observed by an increase in extraction yield from 24% to 42% (w/w) when the extraction time was increased from 15 min to 60 min. Desirable properties were observed in extracted AOB proteins; the amino acid profile of protein isolates revealed higher ratios of hydrophobic to hydrophilic amino acids compared to those of the defatted seeds, suggesting alterations in their functional properties. This was also supported by the higher proportion of hydrophobic amino acids and high surface hydrophobicity index value (3813) in AOB protein isolates. The foaming capacity of AOB proteins was above 200%, with an average foaming stability of 92%. The results indicate that AOB protein isolates can be considered promising food ingredients and could help stimulate the growth of the food industry in tropical Sub-Saharan regions where AOB seeds thrive.
Collapse
Affiliation(s)
- Blessing C Nwokocha
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights RG6 6DZ, UK
| | - Afroditi Chatzifragkou
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights RG6 6DZ, UK
| | - Colette C Fagan
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights RG6 6DZ, UK
| |
Collapse
|
18
|
McReynolds C, Adrien A, Silvestre de Ferron A, Boussetta N, Grimi N, Pecastaing L, Fernandes SCM. Extraction of Mycosporine-like Amino Acids and Proteins from the Agarophyte Gelidium corneum Using Pulsed Power Techniques. Foods 2023; 12:foods12071473. [PMID: 37048293 PMCID: PMC10094572 DOI: 10.3390/foods12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Gelidium corneum (syn. sesquipedale) is an industrially and ecologically important species of red alga used for the production of high-quality agar. However, the species is also of growing interest for the production of other valuable compounds, such as mycosporine-like amino acids (MAAs), with potential cosmeceutical and biomedical applications. Novel methods using two pulsed power techniques, high-voltage electrical discharges (HVED) and pulsed electrical fields (PEF), were evaluated for efficacy of MAA extraction. Algal suspensions were prepared at two ratios (1:20 and 1:40 w:v). Four different extraction protocols were compared: (i) high-voltage electrical discharges, (ii) pulsed electric fields, (iii) maceration at room temperature, and (iv) maceration at 50 °C. The algae were treated in three states: freshly harvested, dried, and powdered. HVED and PEF treatments were effective when performed on fresh algae, and in particular the HVED treatment resulted in yields of MAAs twenty times higher than the control: 0.81 ± 0.05 mg/gDry Weight (DW) vs. 0.037 ± 0.002 mg/gDW. This effect was not observed to the same extent when the algae were dried or powdered, although HVED remained the most selective method overall.
Collapse
Affiliation(s)
- Colin McReynolds
- IPREM-Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials, E2S UPPA: Energy Environment Solutions, Université de Pau et des Pays de l'Adour, CNRS-Centre National de la Recherche Scientifique, 64600 Anglet, France
- MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64600 Anglet, France
| | - Amandine Adrien
- IPREM-Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials, E2S UPPA: Energy Environment Solutions, Université de Pau et des Pays de l'Adour, CNRS-Centre National de la Recherche Scientifique, 64600 Anglet, France
- MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64600 Anglet, France
| | - Antoine Silvestre de Ferron
- Laboratoire des Sciences de l'Ingénieur Appliquées à la Mécanique et au Génie Électrique-Fédération IPRA, Université de Pau et des Pays de l'Adour/E2S UPPA, EA4581, 64000 Pau, France
| | - Nadia Boussetta
- TIMR (Integrated Transformations of Renewable Matter), ESCOM, Université de Technologie de Compiègne, Sorbonne Universités, Centre de Recherche Royallieu, CEDEX CS 60319, 60203 Compiègne, France
| | - Nabil Grimi
- TIMR (Integrated Transformations of Renewable Matter), ESCOM, Université de Technologie de Compiègne, Sorbonne Universités, Centre de Recherche Royallieu, CEDEX CS 60319, 60203 Compiègne, France
| | - Laurent Pecastaing
- IPREM-Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials, E2S UPPA: Energy Environment Solutions, Université de Pau et des Pays de l'Adour, CNRS-Centre National de la Recherche Scientifique, 64600 Anglet, France
- Laboratoire des Sciences de l'Ingénieur Appliquées à la Mécanique et au Génie Électrique-Fédération IPRA, Université de Pau et des Pays de l'Adour/E2S UPPA, EA4581, 64000 Pau, France
| | - Susana C M Fernandes
- IPREM-Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials, E2S UPPA: Energy Environment Solutions, Université de Pau et des Pays de l'Adour, CNRS-Centre National de la Recherche Scientifique, 64600 Anglet, France
- MANTA-Marine Materials Research Group, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64600 Anglet, France
| |
Collapse
|
19
|
Carpentieri S, Ferrari G, Pataro G. Pulsed electric fields-assisted extraction of valuable compounds from red grape pomace: Process optimization using response surface methodology. Front Nutr 2023; 10:1158019. [PMID: 37006934 PMCID: PMC10063923 DOI: 10.3389/fnut.2023.1158019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Background The application of Pulsed electric fields as a mild and easily scalable electrotechnology represents an effective approach to selectively intensify the extractability of bioactive compounds from grape pomace, one of the most abundant residues generated during the winemaking process. Objective This study addressed the optimization of the pulsed electric fields (PEF)-assisted extraction to enhance the extraction yields of bioactive compounds from red grape pomace using response surface methodology (RSM). Methods The cell disintegration index (Z p ) was identified as response variable to determine the optimal PEF processing conditions in terms of field strength (E = 0.5-5 kV/cm) and energy input (WT = 1-20 kJ/kg). For the solid-liquid extraction (SLE) process the effects of temperature (20-50°C), time (30-300min), and solvent concentration (0-50% ethanol in water) on total phenolic content (TPC), flavonoid content (FC), total anthocyanin content (TAC), tannin content (TC), and antioxidant activity (FRAP) of the extracts from untreated and PEF-treated plant tissues were assessed. The phenolic composition of the obtained extracts was determined via HPLC-PDA. Results Results demonstrated that the application of PEF at the optimal processing conditions (E = 4.6 kV/cm, WT = 20 kJ/kg) significantly enhanced the permeabilization degree of cell membrane of grape pomace tissues, thus intensifying the subsequent extractability of TPC (15%), FC (60%), TAC (23%), TC (42%), and FRAP values (31%) concerning the control extraction. HPLC-PDA analyses showed that, regardless of the application of PEF, the most abundant phenolic compounds were epicatechin, p-coumaric acid, and peonidin 3-O-glucoside, and no degradation of the specific compounds occurred upon PEF application. Conclusion The optimization of the PEF-assisted extraction process allowed to significantly enhance the extraction yields of high-value-added compounds from red grape pomace, supporting further investigations of this process at a larger scale.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
- ProdAl Scarl - University of Salerno, Fisciano, SA, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| |
Collapse
|
20
|
SALEE N, NARUENARTWONGSAKUL S, CHAIYANA W, YAWOOTTI A, HUNSAKUL K, TINPOVONG B, UTAMA-ANG N. Comparison of pulse electric field, microwave and ultrasonic pretreatment prior to black rice extraction on antioxidant and sirtuin1 enzyme stimulating activities. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
21
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
22
|
Testing of a new high voltage electrical discharge generator prototype at high frequencies to assist anthocyanin extraction from blueberries. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Physicochemical and Functional Properties Changes in Myofibrillar Protein Extracted from Channel Catfish by a High-Voltage Electrostatic Field. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Feng Y, Yang T, Zhang Y, Zhang A, Gai L, Niu D. Potential applications of pulsed electric field in the fermented wine industry. Front Nutr 2022; 9:1048632. [PMID: 36407532 PMCID: PMC9668251 DOI: 10.3389/fnut.2022.1048632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/14/2022] [Indexed: 01/05/2023] Open
Abstract
Fermented wine refers to alcoholic beverages with complex flavor substances directly produced by raw materials (fruit or rice) through microbial fermentation (yeast and bacteria). Its production steps usually include saccharification, fermentation, filtration, sterilization, aging, etc., which is a complicated and time-consuming process. Pulsed electric field (PEF) is a promising non-thermal food processing technology. Researchers have made tremendous progress in the potential application of PEF in the fermented wine industry over the past few years. The objective of this paper is to systematically review the achievements of PEF technology applied to the winemaking and aging process of fermented wine. Research on the application of PEF in fermented wine suggests that PEF treatment has the following advantages: (1) shortening the maceration time of brewing materials; (2) promoting the extraction of main functional components; (3) enhancing the color of fermented wine; (4) inactivating spoilage microorganisms; and (5) accelerating the formation of aroma substances. These are mainly related to PEF-induced electroporation of biomembranes, changes in molecular structure and the occurrence of chemical reactions. In addition, the key points of PEF treatments for fermented wine are discussed and some negative impacts and research directions are proposed.
Collapse
Affiliation(s)
- Yuanxin Feng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Tao Yang
- School of Pharmacy, Hainan Medical University, Haikou, China
| | - Yongniu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ailin Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lili Gai
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China,*Correspondence: Debao Niu,
| |
Collapse
|
25
|
Bocker R, Silva EK. Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chem X 2022; 15:100398. [PMID: 36211728 PMCID: PMC9532718 DOI: 10.1016/j.fochx.2022.100398] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 12/13/2022] Open
Abstract
Pulsed electric field (PEF) technology enables the extraction of food pigments at lower temperatures. PEF process intensification may reduce the extraction yield depending on the plant matrix. Coupling PEF with other emerging technologies is a smart strategy to extract natural pigments. The application of PEF technology in natural food pigment extraction still requires further studies.
Coloring compounds are widely applied to manufacturing foods and beverages. The worldwide food market is replacing artificial colorants with natural alternatives, given the increased consumer demand for natural products. However, these substitutes are still an issue due to their high production cost and low chemical and physical stability. Furthermore, natural pigments are highly sensitive to processes applied in conventional extraction techniques, such as thermal, mechanical, and chemical stresses. In this regard, pulsed electric field (PEF) technology has emerged as a promising non-thermal alternative for recovering and producing natural colorings from food matrices. Its action mechanism on cell structures through the electroporation effect is a smart alternative to overcoming the challenging issues associated with producing natural colorants. In this scenario, this review provides an overview of the PEF assisted extraction of natural pigments and colorants, such as anthocyanins (red-blue-purple), betalains (red), carotenoids (yellow-orange-red), and chlorophylls (green) from plant sources. Moreover, the potential and limitations of this emerging technology to integrate the extraction process of natural colorants were discussed.
Collapse
|
26
|
Grillo G, Cintas P, Colia M, Calcio Gaudino E, Cravotto G. Process intensification in continuous flow organic synthesis with enabling and hybrid technologies. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.966451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Industrial organic synthesis is time and energy consuming, and generates substantial waste. Traditional conductive heating and mixing in batch reactors is no longer competitive with continuous-flow synthetic methods and enabling technologies that can strongly promote reaction kinetics. These advances lead to faster and simplified downstream processes with easier workup, purification and process scale-up. In the current Industry 4.0 revolution, new advances that are based on cyber-physical systems and artificial intelligence will be able to optimize and invigorate synthetic processes by connecting cascade reactors with continuous in-line monitoring and even predict solutions in case of unforeseen events. Alternative energy sources, such as dielectric and ohmic heating, ultrasound, hydrodynamic cavitation, reactive extruders and plasma have revolutionized standard procedures. So-called hybrid or hyphenated techniques, where the combination of two different energy sources often generates synergistic effects, are also worthy of mention. Herein, we report our consolidated experience of all of these alternative techniques.
Collapse
|
27
|
Ghasemy-Piranloo F, Kavousi F, Kazemi-Abharian M. Comparison for the production of essential oil by conventional, novel and biotechnology methods. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2120557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Fatemeh Kavousi
- Biosphere Technology Company, Environmental Laboratory, Abhar, Iran
| | | |
Collapse
|
28
|
Pulsed electric field as a promising technology for solid foods processing: A review. Food Chem 2022; 403:134367. [DOI: 10.1016/j.foodchem.2022.134367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
|
29
|
Rodrigues RP, Gando-Ferreira LM, Quina MJ. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules 2022; 27:molecules27154709. [PMID: 35897883 PMCID: PMC9331683 DOI: 10.3390/molecules27154709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
The wine industry is one of the most relevant socio-economic activities in Europe. However, this industry represents a growing problem with negative effects on the environment since it produces large quantities of residues that need appropriate valorization or management. From the perspective of biorefinery and circular economy, the winery residues show high potential to be used for the formulation of new products. Due to the substantial quantities of phenolic compounds, flavonoids, and anthocyanins with high antioxidant potential in their matrix, these residues can be exploited by extracting bioactive compounds before using the remaining biomass for energy purposes or for producing fertilizers. Currently, there is an emphasis on the use of new and greener technologies in order to recover bioactive molecules from solid and liquid winery residues. Once the bio compounds are recovered, the remaining residues can be used for the production of energy through bioprocesses (biogas, bioethanol, bio-oil), thermal processes (pyrolysis, gasification combustion), or biofertilizers (compost), according to the biorefinery concept. This review mainly focuses on the discussion of the feasibility of the application of the biorefinery concept for winery residues. The transition from the lab-scale to the industrial-scale of the different technologies is still lacking and urgent in this sector.
Collapse
|
30
|
Hernández-Corroto E, Boussetta N, Marina ML, García MC, Vorobiev E. High voltage electrical discharges followed by deep eutectic solvents extraction for the valorization of pomegranate seeds (Punica granatum L.). INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
del Mar Contreras M, Romero-García JM, López-Linares JC, Romero I, Castro E. Residues from grapevine and wine production as feedstock for a biorefinery. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Carpentieri S, Ferrari G, Pataro G. Optimization of Pulsed Electric Fields-Assisted Extraction of Phenolic Compounds From White Grape Pomace Using Response Surface Methodology. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.854968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This study was focused on the optimization of the pulsed electric fields (PEF)-assisted extraction process using central composite design for response surface methodology from response surface methodology (RSM) with the aim to sustainably intensify the extractability of phenolic compounds from white grape pomace. The cell disintegration index (Zp) was used as response variable to identify the optimal PEF pre-treatment conditions of grape pomace in terms of field strength (E = 0.5–5 kV/cm) and energy input (WT = 1–20 kJ/kg), to be applied prior to the subsequent solid-liquid extraction (SLE) process. for both untreated and PEF-treated samples SLE process was optimized to determine the most effective combination of extraction temperature (20–50°C), extraction time (30–300 min), and solvent concentration (0–100% ethanol in water). Total phenolic content (TPC), flavonoid content (FC), and antioxidant activity (FRAP) of the obtained extracts were determined. The extracted compounds from untreated and PEF-treated samples at the optimal conditions were analyzed via HPLC-PDA analysis. Results revealed that, at a fixed extraction temperature (50°C), the application of PEF at optimal processing conditions (E = 3.8 kV/cm, WT = 10 kJ/kg) prior to SLE has the potential to reduce the solvent consumption (3–12%) and shorten the extraction time (23–103 min) to obtain the same recovery yield of phenolic compounds. Under optimized conditions, the extracts derived from PEF-treated samples showed significantly higher TPC (8%), FC (31%), and FRAP (36%) values, as compared to the control extraction. HPLC analyses revealed that epicatechin, p-coumaric acid, and quercetin were among the main phenolic compounds extracted, and no degradation phenomena occurred due to PEF application.
Collapse
|
33
|
Coelho M, Oliveira C, Coscueta ER, Fernandes J, Pereira RN, Teixeira JA, Rodrigues AS, Pintado ME. Bioactivity and Bioaccessibility of Bioactive Compounds in Gastrointestinal Digestion of Tomato Bagasse Extracts. Foods 2022; 11:foods11071064. [PMID: 35407151 PMCID: PMC8997470 DOI: 10.3390/foods11071064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
A nutrient-rich diet is a key to improving the chemical signals, such as antioxidants, which modulate pathogens’ resistance in the gut and prevent diseases. A current industrial problem is the generation of undervalued by-products, such as tomato bagasse, which are rich in bioactive compounds and of commercial interest (carotenoids and phenolic compounds). This work analyzed the effect of gastrointestinal digestion on the bioactivity and bioaccessibility of carotenoids and phenolic compounds from tomato bagasse extracts. Thus, the extraction by ohmic heating (OH) technology was compared with conventional (organic solvents). The results showed that the main phenolic compounds identified by UPLC-qTOF-MS were p-coumaric acid, naringenin, and luteolin. A higher recovery index for total phenolic compounds throughout the gastrointestinal digestion was observed for OH while for carotenoids, a strong reduction after stomach conditions was observed for both extracts. Furthermore, colon-available fraction exhibited a prebiotic effect upon different Bifidobacterium and Lactobacillus, but a strain-dependent and more accentuated effect on OH. Thus, the extraction technology highly influenced bioaccessibility, with OH demonstrating a positive impact on the recovery of bioactive compounds and related health benefits, such as antioxidant, anti-hypertensive, prebiotic, and anti-inflammatory properties. Of these properties, the last is demonstrated here for the first time.
Collapse
Affiliation(s)
- Marta Coelho
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (C.O.); (E.R.C.); (J.F.)
- LABBELS—Associate Laboratory-CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (J.A.T.)
| | - Carla Oliveira
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (C.O.); (E.R.C.); (J.F.)
| | - Ezequiel R. Coscueta
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (C.O.); (E.R.C.); (J.F.)
| | - João Fernandes
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (C.O.); (E.R.C.); (J.F.)
| | - Ricardo N. Pereira
- LABBELS—Associate Laboratory-CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (J.A.T.)
| | - José A. Teixeira
- LABBELS—Associate Laboratory-CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (R.N.P.); (J.A.T.)
| | - António Sebastião Rodrigues
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal;
| | - Manuela E. Pintado
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (M.C.); (C.O.); (E.R.C.); (J.F.)
- Correspondence:
| |
Collapse
|
34
|
Feng T, Zhang M, Sun Q, Mujumdar AS, Yu D. Extraction of functional extracts from berries and their high quality processing: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7108-7125. [PMID: 35187995 DOI: 10.1080/10408398.2022.2040418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Berry fruits have attracted increasing more attention of the food processing industry as well as consumers due to their widely acclaimed advantages as highly effective anti-oxidant properties which may provide protection against some cancers as well as aging. However, the conventional extraction methods are inefficient and wasteful of solvent utilization. This paper presents a critical overview of some novel extraction methods applicable to berries, including pressurized-liquid extraction, ultrasound-assisted extraction, microwave-assisted extraction, supercritical fluid extraction, enzyme-assisted extraction as well as some combined extraction methods. When combined with conventional methods, the new technologies can be more efficient and environmentally friendly. Additionally, high quality processing of the functional extracts from berry fruits, such as refined processing technology, is introduced in this review. Finally, progress of applications of berry functional extracts in the food industry is described in detail; this should encourage further scientific research and industrial utilization.
Collapse
Affiliation(s)
- Tianlin Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Qing Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| | - Dongxing Yu
- Shanghao Biotech Co., Ltd, Qingdao, Shandong, China
| |
Collapse
|
35
|
Macroalgal Proteins: A Review. Foods 2022; 11:foods11040571. [PMID: 35206049 PMCID: PMC8871301 DOI: 10.3390/foods11040571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Population growth is the driving change in the search for new, alternative sources of protein. Macroalgae (otherwise known as seaweeds) do not compete with other food sources for space and resources as they can be sustainably cultivated without the need for arable land. Macroalgae are significantly rich in protein and amino acid content compared to other plant-derived proteins. Herein, physical and chemical protein extraction methods as well as novel techniques including enzyme hydrolysis, microwave-assisted extraction and ultrasound sonication are discussed as strategies for protein extraction with this resource. The generation of high-value, economically important ingredients such as bioactive peptides is explored as well as the application of macroalgal proteins in human foods and animal feed. These bioactive peptides that have been shown to inhibit enzymes such as renin, angiotensin-I-converting enzyme (ACE-1), cyclooxygenases (COX), α-amylase and α-glucosidase associated with hypertensive, diabetic, and inflammation-related activities are explored. This paper discusses the significant uses of seaweeds, which range from utilising their anthelmintic and anti-methane properties in feed additives, to food techno-functional ingredients in the formulation of human foods such as ice creams, to utilising their health beneficial ingredients to reduce high blood pressure and prevent inflammation. This information was collated following a review of 206 publications on the use of seaweeds as foods and feeds and processing methods to extract seaweed proteins.
Collapse
|
36
|
Carpentieri S, Režek Jambrak A, Ferrari G, Pataro G. Pulsed Electric Field-Assisted Extraction of Aroma and Bioactive Compounds From Aromatic Plants and Food By-Products. Front Nutr 2022; 8:792203. [PMID: 35155517 PMCID: PMC8829011 DOI: 10.3389/fnut.2021.792203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
In this work, the effect of pulsed electric field (PEF) pre-treatment on the extractability in green solvents (i. e., ethanol–water mixture and propylene glycol) of target aroma and bioactive compounds, such as vanillin from vanilla pods, theobromine and caffeine from cocoa bean shells, linalool from vermouth mixture, and limonene from orange peels, was investigated. The effectiveness of PEF as a cell disintegration technique in a wide range of field strength (1–5 kV/cm) and energy input (1–40 kJ/kg) was confirmed using impedance measurements, and results were used to define the optimal PEF conditions for the pre-treatment of each plant tissue before the subsequent solid–liquid extraction process. The extracted compounds from untreated and PEF-treated samples were analyzed via GC-MS and HPLC-PDA analysis. Results revealed that the maximum cell disintegration index was detected for cocoa bean shells and vanilla pods (Zp = 0.82), followed by vermouth mixture (Zp = 0.77), and orange peels (Zp = 0.55). As a result, PEF pre-treatment significantly enhanced the extraction yield of the target compounds in both solvents, but especially in ethanolic extracts of vanillin (+14%), theobromine (+25%), caffeine (+34%), linalool (+114%), and limonene (+33%), as compared with untreated samples. Moreover, GC-MS and HPLC-PDA analyses revealed no evidence of degradation of individual compounds due to PEF application. The results obtained in this work suggest that the application of PEF treatment before solid–liquid extraction with green solvents could represent a sustainable approach for the recovery of clean labels and natural compounds from aromatic plants and food by-products.
Collapse
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- ProdAl Scarl, University of Salerno, Fisciano, Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
- *Correspondence: Gianpiero Pataro
| |
Collapse
|
37
|
Cano-Lamadrid M, Artés-Hernández F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2021; 11:59. [PMID: 35010186 PMCID: PMC8750753 DOI: 10.3390/foods11010059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to provide comprehensive information about non-thermal technologies applied in fruit and vegetables (F&V) by-products to enhance their phytochemicals and to obtain pectin. Moreover, the potential use of such compounds for food supplementation will also be of particular interest as a relevant and sustainable strategy to increase functional properties. The thermal instability of bioactive compounds, which induces a reduction of the content, has led to research and development during recent decades of non-thermal innovative technologies to preserve such nutraceuticals. Therefore, ultrasounds, light stresses, enzyme assisted treatment, fermentation, electro-technologies and high pressure, among others, have been developed and improved. Scientific evidence of F&V by-products application in food, pharmacologic and cosmetic products, and packaging materials were also found. Among food applications, it could be mentioned as enriched minimally processed fruits, beverages and purees fortification, healthier and "clean label" bakery and confectionary products, intelligent food packaging, and edible coatings. Future investigations should be focused on the optimization of 'green' non-thermal and sustainable-technologies on the F&V by-products' key compounds for the full-utilization of raw material in the food industry.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Food Quality and Safety Group, Department of Agrofood Technology, Universidad Miguel Hernández, Ctra. Beniel, Km 3.2, Orihuela, 03312 Alicante, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
38
|
Castro-Muñoz R, Díaz-Montes E, Gontarek-Castro E, Boczkaj G, Galanakis CM. A comprehensive review on current and emerging technologies toward the valorization of bio-based wastes and by products from foods. Compr Rev Food Sci Food Saf 2021; 21:46-105. [PMID: 34957673 DOI: 10.1111/1541-4337.12894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 01/07/2023]
Abstract
Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, San Antonio Buenavista, Toluca de Lerdo, Mexico.,Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Barrio La Laguna Ticoman, Ciudad de México, Mexico
| | - Emilia Gontarek-Castro
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Charis M Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece.,Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
39
|
de Andrade RB, Machado BAS, Barreto GDA, Nascimento RQ, Corrêa LC, Leal IL, Tavares PPLG, Ferreira EDS, Umsza-Guez MA. Syrah Grape Skin Residues Has Potential as Source of Antioxidant and Anti-Microbial Bioactive Compounds. BIOLOGY 2021; 10:biology10121262. [PMID: 34943177 PMCID: PMC8698917 DOI: 10.3390/biology10121262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022]
Abstract
Simple Summary The aim of this study was to verify the influence of different extraction parameters (temperature and ultrasound time) of bioactive compounds from the skin of the Syrah variety of grape. Among the extracts obtained, those exposed to 20 min of sonication had the best results in terms of flavonoid content, antioxidant potential and phenolic profile. The temperature of 60 °C provided the most relevant results for the content of total phenolics, stilbenes, flavonols and phenolic acids, however, the association of this temperature with the use of ultrasound showed lower results as a source of antioxidant and antimicrobial bioactive compounds. Abstract In this study, we evaluated the effects of ultrasound-assisted extraction (UAE) under different time-temperature conditions on the content of bioactive compounds, antioxidant and antimicrobial activities of Syrah grape skin residue. The application of UAE showed a positive effect on the extraction of total flavonoids, and a negative effect on total polyphenols. The temperature of 40 °C and 60 °C without the UAE caused an increase of 260% and 287% of the total polyphenols, respectively. Nineteen individually bioactive compounds were quantified. The anthocyanin concentration (malvidin-3,5-di-O-glucoside 118.8–324.5 mg/100 g) showed high variation, to a lesser extent for phenolic acids, flavonoids, flavonols, procyanidins and stilbenes due to the UAE process. The Syrah grape skin residue has a high concentration of total phenolic compounds of 196–733.7 mg·GAE/100 g and a total flavonoid content of 9.8–40.0 mg·QE/100 g. The results of free radical scavenging activity (16.0–48.7 mg/100 mL, as EC50) and its inhibition of microbial growth (0.16 mg/mL, as EC50 for S. aureus, and 0.04 mg/mL, as EC50 for E. coli) by grape skin extract (UAE 40:20) indicate high antioxidant and antibacterial activity. It was concluded that the use of ultrasound needs further analysis for its application in this context, as it has shown deleterious effects on some compounds of interest. Syrah grape skin residue has potential as a source of bioactive antioxidants, antimicrobial activity and for use as a functional food ingredient.
Collapse
Affiliation(s)
- Roberta Barreto de Andrade
- School of Pharmacy, Federal University of Bahia (UFBA), Salvador 40170-115, BA, Brazil or (R.B.d.A.); (R.Q.N.); or (I.L.L.); or (P.P.L.G.T.)
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil; (B.A.S.M.); or (G.d.A.B.)
| | - Gabriele de Abreu Barreto
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil; (B.A.S.M.); or (G.d.A.B.)
| | - Renata Quartieri Nascimento
- School of Pharmacy, Federal University of Bahia (UFBA), Salvador 40170-115, BA, Brazil or (R.B.d.A.); (R.Q.N.); or (I.L.L.); or (P.P.L.G.T.)
| | - Luiz Claudio Corrêa
- Brazilian Semi-Arid Agricultural Research Company (Embrapa Semiárido), BR428, Km 152, P.O. Box 23, Petrolina 56302-970, PE, Brazil;
| | - Ingrid Lessa Leal
- School of Pharmacy, Federal University of Bahia (UFBA), Salvador 40170-115, BA, Brazil or (R.B.d.A.); (R.Q.N.); or (I.L.L.); or (P.P.L.G.T.)
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, BA, Brazil; (B.A.S.M.); or (G.d.A.B.)
| | | | - Ederlan de Souza Ferreira
- School of Pharmacy, Federal University of Bahia (UFBA), Salvador 40170-115, BA, Brazil or (R.B.d.A.); (R.Q.N.); or (I.L.L.); or (P.P.L.G.T.)
- Correspondence: (E.d.S.F.); (M.A.U.-G.); Tel.: +55-71-9923-13184 (E.d.S.F.); +55-71-9285-9330 (M.A.U.-G.)
| | - Marcelo Andrés Umsza-Guez
- Department of Biotechnology, Health Science Institute, Federal University of Bahia (UFBA), Salvador 40170-115, BA, Brazil
- Correspondence: (E.d.S.F.); (M.A.U.-G.); Tel.: +55-71-9923-13184 (E.d.S.F.); +55-71-9285-9330 (M.A.U.-G.)
| |
Collapse
|
40
|
Mango Peel Pectin: Recovery, Functionality and Sustainable Uses. Polymers (Basel) 2021; 13:polym13223898. [PMID: 34833196 PMCID: PMC8618765 DOI: 10.3390/polym13223898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/25/2022] Open
Abstract
Concerns regarding the overconsumption of natural resources has provoked the recovery of biopolymers from food processing biomass. Furthermore, the current market opportunity for pectin in other areas has increased, necessitating the search for alternative pectin resources. This is also a step towards the sustainable and circular green economy. Mango peel is the byproduct of agro-processing and has been used for high value-added components such as polysaccharide biopolymers. Pectin derived from the peel is yet to be exploited to its greatest extent, particularly in terms of its separation and physiochemical properties, which limit its applicability to dietary fiber in culinary applications. The functionality of the mango peel pectin (MPP) strongly depends on the molecular size and degree of esterification which highlight the importance of isolation and characterisation of pectin from this novel resource. This article therefore provides a useful overview of mango peel as a potential biomaterial for the recovery of MPP. Different extraction techniques and the integrated recovery were also discussed. The utilisation of MPP in different industrial schemes are also detailed out from different perspectives such as the pharmaceutical and biotechnology industries. This review convincingly expresses the significance of MPP, providing a sustainable opportunity for food and pharmaceutical development.
Collapse
|
41
|
Effect of electrohydrodynamic and ultrasonic pretreatments on the extraction of bioactive compounds from Melissa officinalis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01183-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Blahovec J, Kouřím P, Lebovka N. Volumetric Shrinkage and Poisson ‘s Ratio of Carrot Treated by Pulse Electric Fields. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02711-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
|
44
|
Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants (Basel) 2021; 10:antiox10091417. [PMID: 34573049 PMCID: PMC8471374 DOI: 10.3390/antiox10091417] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nowadays, the food industry is heavily involved in searching for green sources of valuable compounds, to be employed as potential food ingredients, to cater to the evolving consumers’ requirements for health-beneficial food ingredients. In this frame, agri-food by-products represent a low-cost source of natural bioactive compounds, including antioxidants. However, to effectively recover these intracellular compounds, it is necessary to reduce the mass transfer resistances represented by the cellular envelope, within which they are localized, to enhance their extractability. To this purpose, emerging extraction technologies, have been proposed, including Supercritical Fluid Extraction, Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, High-Pressure Homogenization, Pulsed Electric Fields, High Voltage Electrical Discharges. These technologies demonstrated to be a sustainable alternative to conventional extraction, showing the potential to increase the extraction yield, decrease the extraction time and solvent consumption. Additionally, in green extraction processes, also the contribution of solvent selection, as well as environmental and economic aspects, represent a key factor. Therefore, this review focused on critically analyzing the main findings on the synergistic effect of low environmental impact technologies and green solvents towards the green extraction of antioxidants from food by-products, by discussing the main associated advantages and drawbacks, and the criteria of selection for process sustainability.
Collapse
|
45
|
Emerging technologies to obtain pectin from food processing by-products: A strategy for enhancing resource efficiency. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021; 26:molecules26164893. [PMID: 34443475 PMCID: PMC8400384 DOI: 10.3390/molecules26164893] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Different parts of a plant (seeds, fruits, flower, leaves, stem, and roots) contain numerous biologically active compounds called “phytoconstituents” that consist of phenolics, minerals, amino acids, and vitamins. The conventional techniques applied to extract these phytoconstituents have several drawbacks including poor performance, low yields, more solvent use, long processing time, and thermally degrading by-products. In contrast, modern and advanced extraction nonthermal technologies such as pulsed electric field (PEF) assist in easier and efficient identification, characterization, and analysis of bioactive ingredients. Other advantages of PEF include cost-efficacy, less time, and solvent consumption with improved yields. This review covers the applications of PEF to obtain bioactive components, essential oils, proteins, pectin, and other important materials from various parts of the plant. Numerous studies compiled in the current evaluation concluded PEF as the best solution to extract phytoconstituents used in the food and pharmaceutical industries. PEF-assisted extraction leads to a higher yield, utilizes less solvents and energy, and it saves a lot of time compared to traditional extraction methods. PEF extraction design should be safe and efficient enough to prevent the degradation of phytoconstituents and oils.
Collapse
|
47
|
Ohmic Heating-Aided Mechanical Extraction of Gamma-Oryzanol and Phytosterols in Rice Bran Oil. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02655-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Rifna EJ, Misra NN, Dwivedi M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit Rev Food Sci Nutr 2021; 63:719-752. [PMID: 34309440 DOI: 10.1080/10408398.2021.1952923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fruits and vegetables are the most important commodities of trade value among horticultural produce. They are utilized as raw or processed, owing to the presence of health-promoting components. Significant quantities of waste are produced during fruits and vegetables processing that are majorly accounted by waste peels (∼90-92%). These wastes, however, are usually exceptionally abundant in bioactive molecules. Retrieving these valuable compounds is a core objective for the valorization of waste peel, besides making them a prevailing source of beneficial additives in food and pharmaceutical industry. The current review is focused on extraction of bioactive compounds derived from fruit and vegetable waste peels and highlights the supreme attractive conventional and non-conventional extraction techniques, such as microwave-assisted, ultrasound assisted, pulsed electric fields, pulsed ohmic heating, pressurized liquid extraction, supercritical fluid extraction, pressurized hot water, high hydrostatic pressure, dielectric barrier discharge plasma extraction, enzyme-assisted extraction and the application of "green" solvents say as well as their synergistic effects that have been applied to recover bioactive from waste peels. Superior yields achieved with non-conventional technologies were identified to be of chief interest, considering direct positive economic consequences. This review also emphasizes leveraging efficient, modern extraction technologies for valorizing abundantly available low-cost waste peel, to achieve economical substitutes, whilst safeguarding the environment and building a circular economy. It is supposed that the findings discussed though this review might be a valuable tool for fruit and vegetable processing industry to imply an economical and effectual sustainable extraction methods, converting waste peel by-product to a high added value functional product.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
49
|
Carpentieri S, Mazza L, Nutrizio M, Jambrak AR, Ferrari G, Pataro G. Pulsed electric fields‐ and ultrasound‐assisted green extraction of valuable compounds from
Origanum v
ulgare
L. and
Thymus serpyllum
L. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Serena Carpentieri
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
| | - Luisa Mazza
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
| | - Marinela Nutrizio
- Faculty of Food Technology and Biotechnology University of Zagreb Pierottijeva 6 Zagreb 10000 Croatia
| | - Anet R. Jambrak
- Faculty of Food Technology and Biotechnology University of Zagreb Pierottijeva 6 Zagreb 10000 Croatia
| | - Giovanna Ferrari
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
- ProdAl Scarl – University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
| | - Gianpiero Pataro
- Department of Industrial Engineering University of Salerno via Giovanni Paolo II Fisciano (SA) 132 ‐ 84084 Italy
| |
Collapse
|
50
|
Moro KIB, Bender ABB, da Silva LP, Penna NG. Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02665-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|