1
|
Zuberi HA, Lal M, Verma S, Chamkha AJ, Zainal NA. Impact of gold and silver nanoparticles injected in blood with viscous dissipation. Comput Methods Biomech Biomed Engin 2025:1-25. [PMID: 40312656 DOI: 10.1080/10255842.2025.2495893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2025] [Accepted: 04/13/2025] [Indexed: 05/03/2025]
Abstract
A nano-blood model is developed to study the flow of gold- and silver-infused blood through a porous, stenotic artery under Newtonian assumptions. Wall curvature, convective heating, wall motion, and viscous dissipation are considered. Darcy's model simulates porous resistance, and the Tiwari-Das model captures nanoparticle effects. Governing equations are reduced via similarity transformations and solved using MATLAB's bvp4c solver. Validation against existing studies is provided. Results show gold-blood nanofluid achieves higher velocities than silver-blood. Increasing the Biot number enhances cooling at the arterial wall. Detailed graphs and 3D contour plots illustrate the effects on temperature, velocity, skin friction, and Nusselt number.
Collapse
Affiliation(s)
- Haris Alam Zuberi
- Department of Applied Mathematics, M. J. P. Rohilkhand University, Bareilly, India
| | - Madan Lal
- Department of Applied Mathematics, M. J. P. Rohilkhand University, Bareilly, India
| | - Shivangi Verma
- Department of Applied Mathematics, M. J. P. Rohilkhand University, Bareilly, India
| | - Ali J Chamkha
- Faculty of Engineering, Kuwait College of Science and Technology, Doha District, Kuwait
| | - Nurul Amira Zainal
- Fakulti Teknologi dan Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
| |
Collapse
|
2
|
Gouda M, Khalaf MM, Abou Taleb MF, Abdelaziz MA, Abd El-Lateef HM. Functionalization of cotton fabric using the biogenic synthesized silver nanoparticles for enhanced dye reduction and antimicrobial efficiency: Response surface methodology. Int J Biol Macromol 2025; 307:141853. [PMID: 40058425 DOI: 10.1016/j.ijbiomac.2025.141853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/16/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
This study explores the eco-friendly synthesis of silver nanoparticles (AgNPs) using Spirulina extract and their application for cotton fabrics functionalization in order to enhance the photocatalytic and antimicrobial properties. The small size of the synthesized AgNPs was confirmed using Transmission Electron Microscopy (TEM) and dynamic light scattering (DLS), revealing a spherical morphology with an average size of 8.6 nm. The functionalized cotton fabric exhibited excellent catalytic activity, achieving 100 % Congo red (CR) dye reduction at pH 9, and 45 °C for 120 min. Response surface methodology (RSM) optimization using the Box-Behnken Design (BBD) demonstrated a high correlation (R2 = 0.987) between process variables and catalytic performance. The recyclability of the AgNPs-coated cotton fabric was evaluated over 5 cycles, showing a slight decrease in efficiency to 81.6 % in the 5th cycle, indicating its durability and potential for repeated use. In antimicrobial evaluations, the AgNPs-coated fabric exhibited superior inhibition against multiple pathogenic microorganisms, including Acinetobacter baumannii (42 mm inhibition zone), Klebsiella pneumoniae (39 mm), Pseudomonas aeruginosa (41 mm), Staphylococcus aureus (37 mm), Enterococcus faecalis (35 mm), and Candida albicans (34 mm). The antibacterial efficiency exceeded that of standard ciprofloxacin, highlighting the significant potential of AgNPs-coated cotton fabric in biomedical and industrial applications. These results establish AgNPs-coated cotton fabric as a promising material for wastewater treatment and antimicrobial applications, supporting sustainable advancements in nanotechnology and textile engineering.
Collapse
Affiliation(s)
- Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
3
|
Alian RS, Flasz B, Kędziorski A, Rost-Roszkowska M, Rozpędek K, Majchrzycki Ł, Augustyniak M. Concentration-dependent disturbances of digestive functions in house cricket (Insecta: Orthoptera) exposed to GO-AgNP composite. Sci Rep 2025; 15:12699. [PMID: 40223030 PMCID: PMC11994775 DOI: 10.1038/s41598-025-97589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
This study investigates the effects of graphene oxide (GO) and silver nanoparticle (AgNP) composite (GO-AgNP) on the digestive physiology and gut ultrastructure of Acheta domesticus (house cricket) during extended exposure. Various concentrations of GO-AgNP were tested to assess their impact on food consumption, assimilation, cell status (Dead Cells and ROS + cells), gut enzyme activity, and structural damage to gut cells. Concentration and exposure time had significant effects on oxidative stress, enzyme activity, and gut cell structure. The applied composite reduced cumulative food consumption and assimilation efficiency. Enzyme assays showed that lower concentrations enhanced carbohydrate-degrading enzyme activity, while higher concentrations inhibited protease activity. Histological analysis revealed structural damage to gut epithelial cells and signs of autophagy or necrosis at higher concentrations. These results suggest that GO and AgNPs contribute to oxidative stress, cell cycle disruption, and apoptosis, with AgNPs having a potentially stronger effect than GO. The disturbed enzyme activity may result from conformational changes caused by nanoparticle agglomeration. These findings underline potential risks associated with the environmental or agricultural use of GO-AgNP composites.
Collapse
Affiliation(s)
- Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007, Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007, Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007, Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007, Katowice, Poland
| | - Łukasz Majchrzycki
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965, Poznan, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007, Katowice, Poland.
| |
Collapse
|
4
|
Saba M, Farooq S, Alessa AH, Bektas KI, Belduz AO, Khan AZ, Shah AA, Badshah M, Khan S. Green synthesis of silver nanoparticles using Keratinase from Pseudomonas aeruginosa-C1M, characterization and applications as novel multifunctional biocatalyst. BMC Biotechnol 2025; 25:27. [PMID: 40217210 PMCID: PMC11987353 DOI: 10.1186/s12896-025-00959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
INTRODUCTION This study explores the biogenic synthesis of silver nanoparticles (AgNPs) using keratinase from Pseudomonas aeruginosa-C1M as a reducing and stabilizing agent. The synthesis of AgNPs was characterized by a color change from transparent to dark brown and a UV-Vis absorption peak at 450 nm, confirming nanoparticle formation. The study further investigates the structural, morphological, and functional properties of these AgNPs, particularly their antibacterial activity and their potential role in azo dye decontamination. METHODS AND RESULTS The FTIR confirmed that AgNPs nanoparticles formation with keratinase. X-ray diffraction analysis showed that the prepared AgNPs were crystalline in nature and had face-centered cubic lattice planes. When observed under the transmission electron microscope and scanning electron microscope the nanoparticles were monodispersed spheres of different sizes. The diameter of the AgNPs was ~ 119 nm according to dynamic light scattering. High dispersion, long-term stability and excellent colloidal properties were supported by a high negative zeta potential value. The silver nanoparticles were found to have an antibacterial activity with zone of inhibition 25 mm and 33 mm against pathogenic strains of Staphylococcus aureus and Escherichia coli respectively. The synthesized zero-valent silver nanoparticles assisted in the decontamination of azo dyes (methyl red, methyl orange, safranin O and methyl violet) through the incorporation of sodium borohydride and light-catalyzed processes. CONCLUSION This study demonstrates, for the first time, that keratinase from Pseudomonas aeruginosa-C1M can be used for AgNPs synthesis. The biogenic AgNPs exhibited potent antibacterial activity and played a crucial role in detoxifying hazardous azo dyes. These findings highlight the dual-functional potential of AgNPs for applications in antimicrobial treatments and environmental remediation. Future studies should explore their mechanism of action, scalability, and industrial applications.
Collapse
Affiliation(s)
- Marium Saba
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Safia Farooq
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Abdulrahman H Alessa
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Kadriye Inan Bektas
- Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Ali Osman Belduz
- Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Alam Zeb Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Aamer Ali Shah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Malik Badshah
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
5
|
Plokhovska S, Fuente-González E, Gutierrez-Albanchez E, Gutierrez-Mañero FJ, Ramos-Solano B. AgNPs biosynthesized from Pseudomonas Z9.3 metabolites as antimicrobial agents against bacterial and fungal pathogens. Front Microbiol 2025; 16:1565689. [PMID: 40260084 PMCID: PMC12009911 DOI: 10.3389/fmicb.2025.1565689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction An eco-friendly method for the biosynthesis of functional silver nanoparticles (AgNPs) using plant growth-promoting bacteria (PGPB), specifically Pseudomonas sp. Z9.3, has been developed. The growing need for sustainable and non-toxic nanoparticle production makes this method significant for various applications. Methods The influence of physicochemical parameters, such as temperature, pH, and concentrations of AgNO3, on the synthesis of AgNPs was studied. The formation of AgNPs was confirmed by UVvis, SEM/TEM, FTIR, and XRD analysis. Antibacterial activity was assessed using the antibacterial disk diffusion assay. For antifungal activity, AgNPs were added to the agar medium, and the size of the inhibition zone was measured. Results and discussion Two optimal conditions were identified: 37°C, pH 9, and a 5:1 ratio of bacterial supernatant to 5 mM AgNO3 (S1-9), and 37°C, pH 7, with a 2:4 ratio (S4-7). The UV-visible spectroscopy results showed an absorption range between 400 and 450 nm, confirming the formation of AgNPs. The SEM and TEM analysis showed the spherical shape of AgNPs with a good distribution of nanoparticles and the average size ranged from 8.24 ± 0.26 to 13.32 ± 0.4 nm. Antibacterial activity against different pathogenic bacteria and fungi was tested. Antibacterial activity of AgNPs against six human pathogens and three phytopathogens was evaluated. The antibacterial potential of S1-9 against Gram-negative strains was lower than against Gram-positive strains; in particular, S. epidermidis was the most sensitive (93.76%) compared to the equivalent concentration of Ag. In the case of fungi, S4-7 exhibited better inhibitory activity compared to the negative control. The highest dose (120 ppm) of S4-7 AgNP inhibited fungal growth being the most sensitive Alternaria sp. (74.97%), followed by Stemphylium sp. (66.30%), Fusarium sp. (45.62%), and Rhizopus sp. (32.68%). These findings highlight the potential of synthesized AgNPs as antimicrobial agents for both bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Svitlana Plokhovska
- Faculty of Pharmacy, Universidad San Pablo-CEU Universities, Madrid, Spain
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics NAS of Ukraine, Kyiv, Ukraine
| | | | | | | | | |
Collapse
|
6
|
Taghipour F, Shahbazi S, Reiisi S, Shabani L. Novel green synthesis of silver nanoparticles using carotenoid extracted from Kocuria sp.: determination of antioxidant, antimicrobial, and anti-human breast cancer activities. 3 Biotech 2025; 15:91. [PMID: 40115324 PMCID: PMC11920494 DOI: 10.1007/s13205-025-04261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/02/2025] [Indexed: 03/23/2025] Open
Abstract
In recent decades, nanotechnology has emerged as a promising field with diverse medical applications. Silver nanoparticles (Ag NPs) exhibit several biological activities. The aim of the current study was to investigate antioxidant, antimicrobial, and anti-breast cancer properties of green-synthesized Ag NPs. To achieve this, Ag NPs were synthesized using Kocuria sp., and their successful formation and physicochemical properties were evaluated using UV-vis, FTIR, XRD, DLS, zeta potential analysis, SEM, and TEM. The antioxidant capacity of Ag NPs was evaluated using a DPPH scavenging assay. The antimicrobial effects of the Ag NPs were tested on two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) using a 96-well plate. HUVEC, MCF7, and MDA-MB-231 cells were treated with varying concentrations of Ag NPs, and cell viability, migration, and apoptosis rates were assessed using MTT, scratch, and flow cytometry assays, respectively. Additionally, qPCR was performed to analyze the expression levels of some genes involved in apoptosis, such as caspases 3, 8, and 9. Characterization techniques confirmed the successful synthesis of pure crystalline structures and spherical Ag NPs. Antioxidant and antimicrobial assays demonstrated the significant antioxidant capacity of the Ag NPs and their antibacterial properties against all tested bacteria. Moreover, in vitro studies indicated that Ag NPs effectively inhibited cell proliferation, suppressed migration, and induced apoptosis, likely owing to the upregulation of caspase 3, 8, and 9 and BCL2 downregulation genes. Our findings suggest that green-synthesized Ag NPs using carotenoids extracted from Kocuria sp. might serve as promising antibacterial and anti-breast cancer agents; however, more in vitro and in vivo investigations are required to elucidate the therapeutic potential of Ag NPs.
Collapse
Affiliation(s)
- Fatemeh Taghipour
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Shahrzad Shahbazi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Leila Shabani
- Department of Plant Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
7
|
Güçlü ZA, Gundes NS, Temur N, Ocsoy I, Ildız N. LED light promoted synthesis of silver nanoparticle with red cabbage extract in clinical conditions and its dental applications. Odontology 2025:10.1007/s10266-025-01086-5. [PMID: 40106067 DOI: 10.1007/s10266-025-01086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Silver nanoparticles (Ag NPs) are effective universal germicides toward various pathogens. Herein, we developed synthesis of fast and stable Ag NPs with red cabbage extract (RCE) used as reducing and capping agent promoted by the LED light device used in clinics for dental polymerization and investigated their antimicrobial properties for dentistry purposes. We systematically explained the formation mechanism of anthocyanins (anth) directed, existing as main and predominant components in RCE, Ag NPs (anth@Ag NP) in 10 s (sn) under photoirradiation by LED light with a standard power mode (1000 mW/cm2). We tested anth@Ag NP as an effective cavity disinfectant and caries arresting agent with its enhanced antimicrobial property against model cariogenic pathogens including standard strains of Streptococcus mutans (S. mutans) ATCC 25275, Enterococcus faecalis (E. faecalis) ATCC 29212, Staphylococcus aureus (S. aureus) ATCC 29213, and Candida albicans (C. albicans) ATCC 90028. We claim that the anth@Ag NP can be doped into several dental materials polymerized by LED light for long-term antimicrobial properties toward dental infections.
Collapse
Affiliation(s)
- Zeynep Aslı Güçlü
- Department of Pediatric Dentistry, Faculty of Dentistry, Erciyes University, 38039, Melikgazi, Kayseri, Türkiye.
| | - Nur Sultan Gundes
- Department of Pediatric Dentistry, Faculty of Dentistry, Erciyes University, 38039, Melikgazi, Kayseri, Türkiye
| | - Nimet Temur
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Nilay Ildız
- Medical Imaging Department, Vocational School of Health Services, Bandırma Onyedi Eylul University, 10200, Bandirma, Türkiye
| |
Collapse
|
8
|
González-Fernández S, Blanco-Agudín N, Rodríguez D, Fernández-Vega I, Merayo-Lloves J, Quirós LM. Silver Nanoparticles: A Versatile Tool Against Infectious and Non-Infectious Diseases. Antibiotics (Basel) 2025; 14:289. [PMID: 40149100 PMCID: PMC11939477 DOI: 10.3390/antibiotics14030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Silver nanoparticles possess remarkable properties that render them highly beneficial for medical applications in both infectious and non-infectious diseases. Among their most renowned attributes is their antimicrobial activity. They have demonstrated efficacy against a wide range of bacteria, fungi, protozoa, and viruses. Additionally, the antitumor and anti-diabetic properties of silver nanoparticles, along with their ability to promote wound healing and their application as biosensors, underscore their therapeutic potential for various non-infectious conditions. As silver nanoparticles are employed for medical purposes, their potential toxicity must be considered. While silver nanoparticles present a promising alternative in the therapeutic domain, further research is needed to elucidate their precise mechanisms of action, optimize their efficacy, and mitigate any potential health risks associated with their use.
Collapse
Affiliation(s)
- Sara González-Fernández
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (N.B.-A.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Nanomaterials and Nanotechnology Research Center (CINN), Consejo Superior de Investigaciones Científicas, 33940 El Entrego, Spain
| | - Noelia Blanco-Agudín
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (N.B.-A.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - David Rodríguez
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain;
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Pathology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
| | - Luis M. Quirós
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain; (S.G.-F.); (N.B.-A.)
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, 33012 Oviedo, Spain; (I.F.-V.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
9
|
Maciag T, Kozieł E, Dudkiewicz M, Otulak-Kozieł K. Microbial Nanoparticles in Biological Plant Protection. Int J Mol Sci 2025; 26:2492. [PMID: 40141136 PMCID: PMC11942215 DOI: 10.3390/ijms26062492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Nanoparticles are small structures that differ in terms of their shape and composition; their high surface-to-volume ratio is responsible for their unique properties that make them perfect mediators for the delivery of substances. Nanoparticles do not only include metallic spheres but also complex polysaccharides capsule viruses or bacterial protein complexes (which can be considered bionanoparticles), which are 1-100 nm in size. Although nanoparticles are most widely studied from medical perspectives, their potential applications are almost limitless. One such promising use of functional nanoparticles is for plant protection against diseases. Although the precise use of nanoparticles decreases the need for the use of other chemical compounds, thanks to their increased product stability and delivery to a target site, the production of nanoparticles is often burdened by large quantities of toxic wastes. This problem can be limited if we apply the bioreactor green synthesis method, which includes the production of nanoparticles with the use of microorganisms. Bacteria can produce nanoparticles internally, externally, by only producing metabolites used for nanoparticle production directly, e.g., polysaccharides or surfactants, or indirectly as reducing agents for metal nanoparticle production. Regardless of the source of the nanoparticles, they can be widely used in processes from plant disease/pathogen detection to disease suppression. The endless variety of materials for nanoparticle production and the possible modifications that nanoparticles can be subjected to makes it impossible to predict how their structures will be used in the future. Nevertheless, in this study, we would like to turn attention to the fact that although nanoparticles are viewed as synthetic structures, they are ever-present in the microbial world and play an important part in intermicrobial interactions. As nanoparticle usefulness has been tested over years of co-evolution, it may be useful to look for potential future directions for this fascinating technology.
Collapse
Affiliation(s)
- Tomasz Maciag
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Małgorzata Dudkiewicz
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| |
Collapse
|
10
|
Weber CJ, Strom NE, Vagnoni EM, Simoska O. Electrochemical Deposition of Silver Nanoparticle Assemblies on Carbon Ultramicroelectrode Arrays. Chemphyschem 2025; 26:e202400791. [PMID: 39586003 DOI: 10.1002/cphc.202400791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Silver nanoparticle (AgNP) assemblies combined with electrode surfaces have a myriad of applications in electrochemical energy storage and conversion devices, (bio)sensor development, and electrocatalysis. Among various nanoparticle synthesis methods, electrochemical deposition is advantageous due to its ability to control experimental parameters, enabling the formation of low-nanoscale (<50 nm) particles with narrow size distributions. Herein, we report the electrodeposition of AgNPs on a unique electrode platform based on carbon ultramicroelectrode arrays (CUAs), exploring several experimental variables including potential, time, and silver ion concentration. Extensive scanning electron microscopy analysis revealed that more reductive deposition potentials resulted in higher counts of smaller-sized AgNPs. While previous studies have employed planar, macro-sized electrodes with millimolar silver ion concentrations and minute-long times for AgNP electrodeposition, our results demonstrate that lower Ag+ concentrations (50-100 μM) and shorter deposition times (15-30 s) are sufficient for successful AgNP formation on CUAs. These findings are attributed to enhanced mass transfer from the radial diffusion of the array-based CUAs. The quantity of deposited Ag was determined to be 1100±200 nmol cm-2, consistent with AgNP-modified CUA electrocatalytic activity for hydrogen peroxide reduction. This study emphasizes the importance of carefully considering AgNP electrodeposition parameters on unconventional electrode surfaces.
Collapse
Affiliation(s)
- Courtney J Weber
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC, 29208, United States
| | - Natalie E Strom
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC, 29208, United States
| | - Emma M Vagnoni
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC, 29208, United States
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC, 29208, United States
| |
Collapse
|
11
|
Khafaga DSR, Muteeb G, Aswa DW, Aatif M, Farhan M, Allam S. Green chemistry: Modern therapies using nanocarriers for treating rare brain cancer metastasis from colon cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100213. [PMID: 39826871 DOI: 10.1016/j.slasd.2025.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Brain metastasis (BM) from colon cancer is associated with a poor prognosis and restricted treatment alternatives, largely due to issues related to blood-brain barrier (BBB) permeability and the negative effects of standard chemotherapy. Nanotechnology improves treatment efficacy by enabling targeted and controlled drug delivery. This review article evaluates the potential of nanotechnology-based therapies for treating colon cancer BM, emphasizing their capacity to cross the BBB, diminish metastatic growth, and enhance overall survival rates. A review of multiple studies evaluated nanoparticles (NPs) as carriers for chemotherapy, focusing on parameters including particle size, surface charge, and drug-loading capacity. The study also reviewed studies that examined BBB penetration, in vitro tumor accumulation, and in vivo tumor growth inhibition. In vitro findings indicated that NPs accumulate more efficiently in BM tissue than in healthy brain tissue and show significant BBB penetration. In vivo, nanotherapy markedly inhibited tumor growth and prolonged survival relative to conventional chemotherapy or control treatments while also exhibiting reduced side effects. Recent studies demonstrated that plant extracts can effectively and safely synthesize nanomaterials, positioning them as a viable and environmentally friendly precursor for nanomaterial production. Nanotechnology-based therapies demonstrate significant potential in the treatment of colon cancer BM by minimizing systemic toxicity, enhancing therapeutic efficacy, and facilitating more targeted drug delivery. Further research is required to confirm these findings and implement them in clinical practice.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City 43511, Suez, Egypt.
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Darin W Aswa
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Salma Allam
- Faculty of Medicine, Galala University, New Galala City 43511, Suez, Egypt
| |
Collapse
|
12
|
Shah N, Shah M, Naz K, Muhammad J, Rehan T, Ali A, Khan A, Bououdina M, Humayun M. Silver immobilized magnetic iron nanoparticles fabricated via green method for detection of cobalt in water and their antibacterial activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9514-9527. [PMID: 40131692 DOI: 10.1007/s11356-025-36306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
This study reports the eco-friendly synthesis of silver immobilized magnetic iron nanoparticles (MAgNPs) using Zingiber officinale (ginger) peel extract, which serves as a reducing and stabilizing agent. Employing a green synthesis approach, these nanoparticles are fabricated to address environmental and health-related applications. The synthesized MAgNPs demonstrated significant performance in detecting cobalt (Co2+) ion in water, with a detection limit reaching as low as 10-9M. Moreover, the antibacterial activity tests against E. coli and S. aureus exhibited substantial inhibition zones measuring up to 18.8 mm for MAgNPs at a concentration of 125 µg/mL. Structural and physicochemical characterizations were carried out using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray, UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), which confirmed the successful coating of silver on magnetic nanoparticles. The BET analysis revealed a specific surface area of 99.304 m2/g, indicating a high potential for adsorptive applications. This work not only highlights the use of natural waste in nanotechnology but also contributes to the development of nanomaterials with promising applications in the environmental and healthcare sectors, thereby supporting sustainable material development.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Muffarih Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Khushboo Naz
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Javariya Muhammad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Touseef Rehan
- Department of Biochemistry, Women University Mardan, Mardan, 23200, KP, Pakistan
| | - Asif Ali
- Department of Applied Chemistry, Graduate School of Science and Engineering, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
| |
Collapse
|
13
|
Martano S, Faktor J, Kote S, Cascione M, Di Corato R, Faktorova D, Semeraro P, Rizzello L, Leporatti S, Rinaldi R, De Matteis V. DIA/SWATH-Mass Spectrometry Revealing Melanoma Cell Proteome Transformations with Silver Nanoparticles: An Innovative Comparative Study. Int J Mol Sci 2025; 26:2029. [PMID: 40076651 PMCID: PMC11901134 DOI: 10.3390/ijms26052029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Melanoma is an aggressive cancer with rising incidence and high mortality rates, largely due to chemotherapy resistance and molecular dysregulation. Nanotechnology, particularly silver nanoparticles (AgNPs), has emerged as a promising therapeutic avenue because of the nanoparticles' ability to induce oxidative stress and apoptosis in cancer cells. However, conventional colloidal AgNPs lack selectivity, often causing significant damage to healthy cells. In this study, we introduce a green synthesis of AgNPs using plant extracts, providing an eco-friendly alternative with improved antitumor selectivity compared to traditional colloidal AgNPs. Leveraging label-free Data-Independent Acquisition/Sequential Window Acquisition of All Theoretical Mass Spectrometry (DIA/SWATH MS) quantitative proteomics, we investigated the antitumor effects of green-synthesized versus traditional AgNPs on A375 melanoma cells at 24 and 48 h. Our findings reveal that green AgNPs selectively reduced melanoma cell viability while sparing healthy keratinocytes (HaCaT), a benefit not observed with colloidal AgNPs. Proteomic analysis highlighted that green AgNPs significantly downregulated oncogenes, enhanced carbohydrate metabolism, and disrupted copper homeostasis in melanoma cells. This marks the first study to explore the differential effects of green and traditional AgNPs on melanoma using an integrated proteomic approach, underscoring the molecular potential of green AgNPs as a targeted and sustainable option for cancer therapy.
Collapse
Affiliation(s)
- Simona Martano
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (S.M.); (M.C.); (R.R.)
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland;
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland;
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (S.M.); (M.C.); (R.R.)
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy;
| | - Riccardo Di Corato
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy;
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia (IIT), 73010 Arnesano, Italy
| | - Dagmar Faktorova
- Faculty of Special Technology, Alexander Dubček University of Trenčín, 911 06 Trenčín, Slovakia;
| | - Paola Semeraro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Loris Rizzello
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Stefano Leporatti
- CNR Nanotec-Istituto Di Nanotecnologia, C/O Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (S.M.); (M.C.); (R.R.)
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy;
| | - Valeria De Matteis
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy;
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
14
|
Elawadi GG, Elsebaei F, Fathy ME, Metwally MES. Sensitive and selective silver nanoparticle-based fluorescence sensor for corticosteroid determination in pharmaceutical formulations. BMC Chem 2025; 19:37. [PMID: 39948595 PMCID: PMC11827160 DOI: 10.1186/s13065-025-01400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Glucocorticoids play a crucial role in metabolic processes and have potent anti-inflammatory and immunosuppressive properties. Hence, developing a facile, sensitive, selective, and green approach to determine corticosteroids is essential. In this study, silver nanoparticles (Ag-NPs) were synthesized via the chemical reduction of silver nitrate using sodium borohydride in distilled water without using non-environmentally friendly organic stabilizers. The synthesized Ag-NPs exhibited high stability, as evidenced by a zeta potential measuring - 36.8 mV. Also, the average particle size was determined to be 8 ± 2 nm. These Ag-NPs were then employed as a nano fluorescence probe to establish a fluorometric assay for determining prednisolone sodium phosphate (PDN) and dexamethasone sodium phosphate (DXZ). Reduction in fluorescence intensity of Ag-NPs observed at 484 nm following excitation at 242 nm exhibited quantitative quenching upon the incremental addition of the investigated drugs, with limits of detection of 0.178 µg/mL and 0.145 µg/mL for PDN and DXZ, respectively. The quenching mechanisms were examined and explained using the Stern-Volmer and Inner Filter Effect methods. The method's selectivity was also assessed by testing other corticosteroids. The proposed method is suitable for drug testing in pharmaceutical products and quality control labs. It follows ICH guidelines and has been confirmed to be safe and eco-friendly.
Collapse
Affiliation(s)
- Ghidaa G Elawadi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Fawzi Elsebaei
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mona E Fathy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed E-S Metwally
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
15
|
Fareid MA, El-Sherbiny GM, Askar AA, Abdelaziz AM, Hegazy AM, Ab Aziz R, Hamada FA. Impeding Biofilm-Forming Mediated Methicillin-Resistant Staphylococcus aureus and Virulence Genes Using a Biosynthesized Silver Nanoparticles-Antibiotic Combination. Biomolecules 2025; 15:266. [PMID: 40001569 PMCID: PMC11852608 DOI: 10.3390/biom15020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) continues to represent a significant clinical challenge, characterized by consistently elevated rates of morbidity and mortality. Care regimen success is still difficult and necessitates assessing new antibiotics as well as supplemental services, including source control and searching for alternative approaches to combating it. Hence, we propose to synthesize silver nanoparticles (Ag-NPs) by employing a cell-free filter (CFF) of Streptomyces sp. to augment antibiotic activity and combat biofilm-forming MRSA. Seven bacterial isolates from clinical samples were identified, antibiotics were profiled with Vitek-2, and the phenotypic detecting of biofilm with Congo red medium and microplate assay was carried out. The PCR technique was used for detecting genes (icaA and icaD) coded in biofilm forming. The characterization of Ag-NPs was performed using several analytical methods, such as UV spectroscopy, dynamic light scattering (DLS), zeta potential measurement, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antibacterial properties of Ag-NPs and oxacillin-Ag-NPs were assessed against standard strains and clinical isolates by employing the agar well diffusion technique and the microdilution assay. The biogenic synthesis Ag-NPs resulted in uniformly spherical particles, with an average size of 20 nm. These Ag-NPs demonstrated significant activity against biofilm-forming MRSA, with minimum inhibitory concentrations (MICs) ranging from 12 to 15 μg/mL. Additionally, Ag-NPs completely impede biofilm formation by MRSA at sublethal doses of 0.75 MICs. The expression levels of the icaA and icaD genes were reduced by 1.9- to 2.2- and 2.4- to 2.8-fold, respectively. A significant synergistic effect was noted when Ag-NPs were used in combination with oxacillin, leading to reduced MICs of 1.87 μg/mL for oxacillin and 4.0 μg/mL for Ag-NPs against MRSA. The FICi of 0.375 further validated the synergistic relationship between oxacillin and Ag-NPs at the concentrations of 1.87 and 4 μg/mL. Findings from the time-kill test demonstrated the highest reduction in log10 (CFU)/mL of the initial MRSA inoculum after 12-hour exposure. The cytotoxicity analysis of Ag-NPs revealed no significant cytotoxic effects on the human skin cell line HFB-4 at low concentrations, with IC50 values of 61.40 µg/mL for HFB-4 and 34.2 µg/mL for HepG-2. Comparable with oxacillin-Ag-NPs, Ag-NPs showed no cytotoxic effects on HFB-4 at different concentrations and exhibited an IC50 value of 31.2 against HepG-2-cells. In conclusion, the biosynthesis of Ag-NPs has demonstrated effective antibacterial activity against MRSA and has completely hindered biofilm formation, suggesting a valuable alternative for clinical applications.
Collapse
Affiliation(s)
- Mohamed A. Fareid
- Clinical Laboratory Science Department, Applied Medical Science College, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.F.); (A.M.H.)
| | - Gamal M. El-Sherbiny
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.A.); (A.M.A.)
| | - Ahmed A. Askar
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.A.); (A.M.A.)
| | - Amer M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (A.A.A.); (A.M.A.)
| | - Asmaa M. Hegazy
- Clinical Laboratory Science Department, Applied Medical Science College, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.F.); (A.M.H.)
| | - Rosilah Ab Aziz
- Basic Sciences Department, First Year of Health and Medical Colleges, University of Ha’il, Hail 2440, Saudi Arabia; (R.A.A.); (F.A.H.)
| | - Fatma A. Hamada
- Basic Sciences Department, First Year of Health and Medical Colleges, University of Ha’il, Hail 2440, Saudi Arabia; (R.A.A.); (F.A.H.)
| |
Collapse
|
16
|
Nagaiah HP, Samsudeen MB, Augustus AR, Shunmugiah KP. In vitro evaluation of silver-zinc oxide-eugenol nanocomposite for enhanced antimicrobial and wound healing applications in diabetic conditions. DISCOVER NANO 2025; 20:14. [PMID: 39847138 PMCID: PMC11757845 DOI: 10.1186/s11671-025-04183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025]
Abstract
Diabetic wounds with chronic infections present a significant challenge, exacerbated by the growing issue of antimicrobial resistance, which often leads to delayed healing and increased morbidity. This study introduces a novel silver-zinc oxide-eugenol (Ag+ZnO+EU) nanocomposite, specifically designed to enhance antimicrobial activity and promote wound healing. The nanocomposite was thoroughly characterized using advanced analytical techniques, confirming its nanoscale structure, stability and chemical composition. The Ag+ZnO+EU nanocomposite demonstrated potent antimicrobial efficacy against a range of wound associated pathogens, including standard and clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Minimum inhibitory concentrations of Ag+ZnO+EU for standard and clinical isolates were significantly lower than those of the individual components, highlighting the synergistic effect of the nanocomposite. Time-kill assays revealed rapid microbial eradication, achieving complete sterility within 240-min. Importantly, the nanocomposite effectively eliminated persister-like cells, which are typically resistant to conventional treatments, suggesting a potential solution for persistent infections. In vitro scratch assays using human keratinocyte cells demonstrated that the Ag+ZnO+EU nanocomposite significantly accelerated wound closure, with near-complete healing observed within 24-h, indicating enhanced cell migration and tissue regeneration. Additionally, the nanocomposite showed potential antidiabetic effects by increasing glucose uptake up to 97.21% in an in vitro assay using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose, a fluorescent glucose analog, suggesting potential applications beyond wound healing. These findings highlight the Ag+ZnO+EU nanocomposite as a promising candidate for addressing both antimicrobial resistance and impaired wound healing in diabetic contexts.
Collapse
|
17
|
Ali S, Ijaz H, Ahmad MU, Rukhma, Ullah N, Sarwar A, Khan MJ, Aziz T, Shami A, Al-Asmari F. Photocatalytic removal of textile wastewater-originated methylene blue and malachite green dyes using spent black tea extract-coated silver nanoparticles. Sci Rep 2025; 15:1851. [PMID: 39805978 PMCID: PMC11730607 DOI: 10.1038/s41598-025-85894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
The spent black tea extract was utilized in order to synthesize the spent black tea silver nanoparticles (SBT-AgNPs). Various parameters were tested to yield the best production of SBT-AgNPs. The characterization was conducted by X-Ray diffraction, Scanning electron microscopy, Zeta potential and energy dispersive X-ray (EDX). The XRD analysis showed hkl planes corresponding to (111), (200), (220), (311) planes at 2θ theta deg 38.3°, 40.8°, 64.5°, and 74.2°. The scanning electron microscopy reported the plate like round shaped morphology of the AgNPs. The zeta potential was examined to be -17.5 mV and a size distribution by intensity of 157.6 d. nm was observed. The EDX was employed to determine the purity of samples by reporting a strong peak of silver (Ag). The degradation activity was examined by photocatalytic removal of methylene blue and malachite green dyes from textile wastewater. The textile wastewater showed a decrease of methylene blue by 25% and 58.3%. The malachite green was also reduced by 33.3% and 60%, which was remarkably significant owing to the presence of the complex factor in the natural environment. The study sets a promising record to harbor the full potential of available food waste resource, such as spent black tea to form SBT-AgNPs and its application in the dye removal from textile waste. The multifaceted outcomes of this study resulted in an eco-friendly procedure, thereby reusing the waste material for environmental cleanup.
Collapse
Affiliation(s)
- Sikander Ali
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Biotechnology, Government College University Lahore, Lahore, Pakistan.
| | - Huma Ijaz
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Biotechnology, Government College University Lahore, Lahore, Pakistan
| | - Muhammad Usman Ahmad
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Biotechnology, Government College University Lahore, Lahore, Pakistan
| | - Rukhma
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Biotechnology, Government College University Lahore, Lahore, Pakistan
| | - Najeeb Ullah
- Food and Biotechnology Research Center, PCSIR Labs Complex Lahore, Lahore, Pakistan
| | - Abid Sarwar
- Food and Biotechnology Research Center, PCSIR Labs Complex Lahore, Lahore, Pakistan
| | - Muhammad Jalal Khan
- Beijing Advanced innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, University, Beijing, China
| | - Tariq Aziz
- Beijing Advanced innovation Center for Food Nutrition and Human Health, Beijing Technology and Business, University, Beijing, China.
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| |
Collapse
|
18
|
Puttasiddaiah R, Basavegowda N, Lakshmanagowda NK, Raghavendra VB, Sagar N, Sridhar K, Dikkala PK, Bhaswant M, Baek KH, Sharma M. Emerging Nanoparticle-Based Diagnostics and Therapeutics for Cancer: Innovations and Challenges. Pharmaceutics 2025; 17:70. [PMID: 39861718 PMCID: PMC11768644 DOI: 10.3390/pharmaceutics17010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant growth is expected to surpass other significant causes of death as one of the top reasons for dismalness and mortality worldwide. According to a World Health Organization (WHO) study, this illness causes approximately between 9 and 10 million instances of deaths annually. Chemotherapy, radiation, and surgery are the three main methods of treating cancer. These methods seek to completely eradicate all cancer cells while having the fewest possible unintended impacts on healthy cell types. Owing to the lack of target selectivity, the majority of medications have substantial side effects. On the other hand, nanomaterials have transformed the identification, diagnosis, and management of cancer. Nanostructures with biomimetic properties have been grown as of late, fully intent on observing and treating the sickness. These nanostructures are expected to be consumed by growth in areas with profound disease. Furthermore, because of their extraordinary physicochemical properties, which incorporate nanoscale aspects, a more prominent surface region, explicit geometrical features, and the ability to embody different substances within or on their outside surfaces, nanostructures are remarkable nano-vehicles for conveying restorative specialists to their designated regions. This review discusses recent developments in nanostructured materials such as graphene, dendrimers, cell-penetrating peptide nanoparticles, nanoliposomes, lipid nanoparticles, magnetic nanoparticles, and nano-omics in the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Rachitha Puttasiddaiah
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | | | - Niju Sagar
- Teresian College Research Centre, Teresian College, Siddarthanagar, Mysore 570011, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| |
Collapse
|
19
|
Dubey S, Virmani T, Yadav SK, Kumar G, Sharma A, Gugulothu D. Utilizing Plant Phytoconstituents in Metal Oxide Nanoparticle Synthesis for Cancer Therapies. Curr Pharm Des 2025; 31:1270-1289. [PMID: 39781736 DOI: 10.2174/0113816128329342241120105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as Cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety. OBJECTIVE This study aims to investigate the role of plant phytoconstituents in the development of MONPs via green synthesis and explore the therapeutic effectiveness of MONPs in treating several types of cancer. Primarily, it examines the potential of plant phytoconstituents (phenolic compounds, flavonoids, glycosides, alkaloids, etc.) in the development of MONPs as well as their improved ability to target numerous types of cancer. METHODS A systemic search was conducted on recent literature, focusing on developing green MONPs by utilizing plants' phytoconstituents (plant extracts). The study of plant phytochemicals (present in different parts of a plant such as leaves, flowers, stems, peels, and roots) and their role in the synthesis of green metal oxide nanoparticles as well as their anticancer activity against several types of cancers was analyzed. Also focusing on their anticancer mechanism that involves ROS production, generates oxidative stress, and apoptosis leads to cancer inhibition. RESULTS Phytochemicals-mediated metal oxide nanoparticle synthesis revealed many advantages such as improved biological compatibility and enhanced sensitivity towards cancer cells. Phytochemicals present in plant extracts act as natural capping, reducing, and stabilizing agents, enhancing nanoparticle synthesis which leads to synergistic anticancer activity. Additionally, the natural antioxidant and anticancer activity of various phytochemicals enhances the therapeutic potential of metal oxide nanoparticles, producing them more effective against ROS-generated apoptosis and showing negligible toxicity towards normal cells. CONCLUSION The utilization of plant phytochemicals in metal oxide nanoparticle production presents a safe, eco-friendly, sustainable, and effective approach to developing effective and safer cancer nanomedicines. Green synthesis not only increases anticancer activity but also decreases the biocompatibility problems associated with the physiochemical synthetic approach. Further research needs to concentrate on improving this synergy to create a targeted phytochemical-based metal oxide nanoparticle for cancer therapeutics.
Collapse
Affiliation(s)
- Swati Dubey
- Department of Pharmacy, School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, India
| | - Tarun Virmani
- Department of Pharmacy, School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, India
| | - Shiv Kumar Yadav
- Department of Pharmacy, B.S. Anangpuria Institute of Pharmacy, Faridabad, India
| | - Girish Kumar
- Department of Pharmacy, School of Pharmaceutical Sciences, MVN University, Palwal, Haryana, India
| | - Ashwani Sharma
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Dalapathi Gugulothu
- Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
20
|
Chin S, Moniruzzaman M, Smirnova E, Thoung DTC, Sureshbabu A, Karthikeyan A, Lee DI, Min T. Green metal nanotechnology in monogastric animal health: current trends and future prospects - A review. Anim Biosci 2025; 38:19-32. [PMID: 39483002 PMCID: PMC11725731 DOI: 10.5713/ab.24.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Green nanotechnology is an emerging field of research in recent decades with rapidly growing interest. This integrates green chemistry with green engineering to avoid using toxic chemicals in the synthesis of organic nanomaterials. Green nanotechnology would create a huge potential for the use of nanoparticles for more sustainable utilization in improving animal health. Nanoparticles can be synthesised by physical, chemical and biological processes. Traditional methods for physical and chemical synthesis of nanoparticles are toxic to humans, animals and environmental health, which limits their usefulness. Green synthesis of nanoparticles via biological processes and their application in animal health could maximize the benefits of nanotechnology in terms of enhancing food animal health and production as well as minimize the undesirable impacts on Planetary Health. Recent advances in nanotechnology have meant different nanomaterials, especially those from metal sources, are now available for use in nanomedicine. Metal nanoparticles are one of the most widely researched in green nanotechnology, and the number of articles on this subject in food animal production is growing. Therefore, research on metal nanoparticles using green technologies have utmost importance. In this review, we report the recent advancement of green synthesized metal nanoparticles in terms of their utilization in monogastric animal health, elucidate the research gap in this field and provide recommendations for future prospects.
Collapse
Affiliation(s)
- Sungyeon Chin
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243,
Korea
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243,
Korea
| | - Elena Smirnova
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243,
Korea
| | - Do Thi Cat Thoung
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243,
Korea
| | - Anjana Sureshbabu
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243,
Korea
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243,
Korea
| | - Dong I. Lee
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
| | - Taesun Min
- Department of Animal Biotechnology, Bio-resources Computing Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243,
Korea
| |
Collapse
|
21
|
Mandal K, Das D, Bose SK, Chaudhuri A, Chakraborty A, Mandal S, Ghosh S, Roy S. Spectroscopic approach to optimize the biogenic silver nanoparticles for photocatalytic removal of ternary dye mixture and ecotoxicological impact of treated wastewater. Sci Rep 2024; 14:31174. [PMID: 39732808 DOI: 10.1038/s41598-024-82341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024] Open
Abstract
The fabricating of extremely effective, economical, ecologically safe, and reusable nanoparticle (NP) catalysts for the removal of water pollution is urgently needed. This study, spectroscopically optimizes the process parameters for the biogenic synthesis of AgNP catalysts using Cledrdendrum infortunatum leaf extract. The optimization of several synthesis parameters was systematically studied using UV-Vis spectroscopy to identify the ideal conditions for AgNPs formation. The AgNPs are spherical with a size of ~ 20 nm, pure and stable. Mechanistic insights into the biogenic synthesis process were explored. The photocatalytic performance of biogenic AgNPs was evaluated for the degradation of three common (crystal violet, thioflavin T, and methylene blue) dyes as models in ternary mixtures under the influence of sunlight. AgNPs show excellent photocatalytic efficiency in terms of degradation percentage (82.89-96.96% within 110 min), kinetics (0.0247-0.0331 min-1), half-life (20.96-28.11 min), and T80 (48.67-65.28 min) and also easily recovered and reused. Ecological safety assessment of the treated wastewater was assessed on the growths of rice, mustard, and lentil plants, and preliminary findings demonstrated that seedling growths for treated wastewater were nearly similar to the control sample but retarded in dye-contaminated wastewater suggesting potential use of treated wastewater for sustainable agriculture without compromising ecological balance. So, this study explores biogenic AgNPs as cost-effective, safe, and sustainable photocatalytic agents for the remediation of hazardous mix dyes and real-life applications of treated water for agricultural purposes.
Collapse
Affiliation(s)
- Keya Mandal
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India
| | - Dipti Das
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India
| | - Supriya Kumar Bose
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India
| | - Aparna Chaudhuri
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India
| | - Arpita Chakraborty
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India
| | - Sapna Mandal
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India
| | - Sabyasachi Ghosh
- Department of Biotechnology, School of Life Science, Swami Vivekananda University, Barrackpore, West Bengal, 700121, India.
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India.
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Nadia, Mohanpur, West Bengal, 741252, India.
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
22
|
Toader C, Dumitru AV, Eva L, Serban M, Covache-Busuioc RA, Ciurea AV. Nanoparticle Strategies for Treating CNS Disorders: A Comprehensive Review of Drug Delivery and Theranostic Applications. Int J Mol Sci 2024; 25:13302. [PMID: 39769066 PMCID: PMC11676454 DOI: 10.3390/ijms252413302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
This review aims to address the significant challenges of treating central nervous system (CNS) disorders such as neurodegenerative diseases, strokes, spinal cord injuries, and brain tumors. These disorders are difficult to manage due to the complexity of disease mechanisms and the protective blood-brain barrier (BBB), which restricts drug delivery. Recent advancements in nanoparticle (NP) technologies offer promising solutions, with potential applications in drug delivery, neuroprotection, and neuroregeneration. By examining current research, we explore how NPs can cross the BBB, deliver medications directly to targeted CNS regions, and enhance both diagnostics and treatment. Key NP strategies, such as passive targeting, receptor-mediated transport, and stimuli-responsive systems, demonstrate encouraging results. Studies show that NPs may improve drug delivery, minimize side effects, and increase therapeutic effectiveness in models of Alzheimer's, Parkinson's, stroke, and glioblastoma. NP technologies thus represent a promising approach for CNS disorder management, combining drug delivery and diagnostic capabilities to enable more precise and effective treatments that could significantly benefit patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Adrian Vasile Dumitru
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Pathology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Lucian Eva
- Department of Neurosurgery, Dunarea de Jos University, 800010 Galati, Romania
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section Within the Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
23
|
Heikal YM, Shweqa NS, Abdelmigid HM, Alyamani AA, Soliman HM, El-Naggar NEA. Assessment of the Biocontrol Efficacy of Silver Nanoparticles Synthesized by Trichoderma asperellum Against Infected Hordeum vulgare L. Germination. Life (Basel) 2024; 14:1560. [PMID: 39768268 PMCID: PMC11676777 DOI: 10.3390/life14121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated the biosynthesis, statistical optimization, characterization, and biocontrol activity of silver nanoparticles (AgNPs) produced by newly isolated Trichoderma sp. The Trichoderma asperellum strain TA-3N was identified based on the ITS gene sequence, together with its phenotypic characteristics (GenBank accession number: OM321439). The color change from light yellow to brown after the incubation period indicates AgNPs biosynthesis. The UV spectrum revealed a single peak with the maximum absorption at 453 nm, indicating that T. asperellum produces AgNPs effectively. A Rotatable Central Composite Design (RCCD) was used to optimize the biosynthesis of AgNPs using the aqueous mycelial-free filtrate of T. asperellum. The optimal conditions for maximum AgNPs biosynthesis (156.02 µg/mL) were predicted theoretically using the desirability function tool and verified experimentally. The highest biosynthetic produced AgNPs by T. asperellum reached 160.3 µg/mL using AgNO3 concentration of 2 mM/mL, initial pH level of 6, incubation time of 60 h, and biomass weight of 6 g/100 mL water. SEM and TEM imaging revealed uniform spherical shape particles that varied in size between 8.17 and 17.74 nm. The synthesized AgNPs have a Zeta potential value of -9.51 mV. FTIR analysis provided insights into the surface composition of AgNPs, identifying various functional groups such as N-H, -OH, C-H, C=O, and the amide I bond in proteins. Cytotoxicity and genotoxicity assays demonstrated that AgNPs in combination with T. asperellum can mitigate the toxic effects of Fusarium oxysporum on barley. This intervention markedly enhanced cell division rates and decreased chromosomal irregularities. The results indicate that AgNPs synthesized by T. asperellum show the potential as an eco-friendly and efficient method for controlling plant diseases. Further studies are necessary to investigate their possible use in the agricultural sector.
Collapse
Affiliation(s)
- Yasmin M. Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Nada S. Shweqa
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Hala M. Abdelmigid
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Amal A. Alyamani
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Hoda M. Soliman
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt;
| |
Collapse
|
24
|
Zúñiga-Miranda J, Vaca-Vega D, Vizuete K, Carrera-Pacheco SE, Gonzalez-Pastor R, Heredia-Moya J, Mayorga-Ramos A, Barba-Ostria C, Coyago-Cruz E, Debut A, Guamán LP. Green Synthesis of Silver Oxide Nanoparticles from Mauritia flexuosa Fruit Extract: Characterization and Bioactivity Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1875. [PMID: 39683263 DOI: 10.3390/nano14231875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 12/18/2024]
Abstract
The increasing prevalence of multidrug-resistant (MDR) pathogens, persistent biofilms, oxidative stress, and cancerous cell proliferation poses significant challenges in healthcare and environmental settings, highlighting the urgent need for innovative and sustainable therapeutic solutions. The exploration of nanotechnology, particularly the use of green-synthesized nanoparticles, offers a promising avenue to address these complex biological challenges due to their multifunctional properties and biocompatibility. Utilizing a green synthesis approach, Mauritia flexuosa Mf-Ag2ONPs were synthesized and characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy coupled with scanning electron microscopy (EDS-SEM), UV-Vis spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The Mf-Ag2ONPs exhibited potent antibacterial effects against both non-resistant and MDR bacterial strains, with minimum inhibitory concentrations (MICs) ranging from 11.25 to 45 µg/mL. Mf-Ag2ONPs also demonstrated significant antifungal efficacy, particularly against Candida glabrata, with an MIC of 5.63 µg/mL. Moreover, the nanoparticles showed strong biofilm inhibition capabilities and substantial antioxidant properties, underscoring their potential to combat oxidative stress. Additionally, Mf-Ag2ONPs exhibited pronounced anticancer properties against various cancer cell lines, displaying low IC50 values across various cancer cell lines while maintaining minimal hemolytic activity at therapeutic concentrations. These findings suggest that Mf-Ag2ONPs synthesized via an eco-friendly approach offer a promising alternative for biomedical applications, including antimicrobial, antifungal, antioxidant, and anticancer therapies, warranting further in vivo studies to fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - David Vaca-Vega
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Saskya E Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología, Universidad Politécnica Salesiana, Quito 170143, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
- Departamento de Ciencias de la Vida y Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Linda P Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
25
|
Ma Y, Xiao X, Wang Y, Sun J, Tang P, Li J, Sun X, Xu D, Yang Z, Chen S, Liu X. Insight into Antiviral Activity of Ag/TiO 2 Nanocomposites Against Influenza H1N1 Virus and Its Antiviral Mechanism. Int J Nanomedicine 2024; 19:11305-11320. [PMID: 39524926 PMCID: PMC11549891 DOI: 10.2147/ijn.s469684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose Synthesis and characterization of silver (Ag)/titanium dioxide (TiO2) nanocomposite (ATA) to investigate its antiviral activity against the H1N1 influenza virus and antiviral mechanisms. Materials and Methods A water-dispersible ATA was prepared by a photocatalytic reduction process from AgNO3 and TiO2. The characterization of ATA was performed by ultraviolet-visible spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The antiviral activities and the antiviral mechanism of ATA were investigated in detail by light microscopy, transmission electron microscopy and biological techniques such as cell cytotoxicity, 50% tissue culture infectious dose detection, western blot and reverse transcription-polymerase chain reaction. Results These results showed the successful synthesis of ATA nanocomposite with uniform particle size and distribution. It demonstrated the highly efficient antiviral activity of ATA in a dose- and time-dependent manner, as indicated by the reduction of viral titer and the reduction of cytopathic effects caused by viral infection. In the presence of ATA, the structure of the H1N1 influenza virus is directly destroyed and even disintegrated, with the damaged surface membrane proteins and fuzzy contour. It reduces the infection efficiency of influenza by suppressing the activity and expression of hemagglutinin and neuraminidase. The results of mechanistic studies suggested that ATA nanocomposite primarily interferes with virus attachment to viral receptors on the cell surface. Conclusion Our study suggests that ATA may be a good antiviral candidate against the influenza virus. Compared with AgNPs alone, our synthesized ATA nanocomposites can achieve similar viral inactivation rates using only a much smaller concentration of AgNPs, greatly reducing the amount of AgNPs and their potential side effects. It has great practical value for attaching ATA to the high-efficiency particulate air network in the air purifier, which can kill the virus attached to it and limit its spread.
Collapse
Affiliation(s)
- Yihe Ma
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, People’s Republic of China
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, School of Medicine, Shenzhen University, Shenzhen, People’s Republic of China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaojun Xiao
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, School of Medicine, Shenzhen University, Shenzhen, People’s Republic of China
| | - Yutao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Sun
- Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, People’s Republic of China
| | - Ping Tang
- Department of General Practice, Third Affiliated Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xizhuo Sun
- Department of General Practice, Third Affiliated Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Damo Xu
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, People’s Republic of China
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, School of Medicine, Shenzhen University, Shenzhen, People’s Republic of China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Shiguo Chen
- Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, People’s Republic of China
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, School of Medicine, Shenzhen University, Shenzhen, People’s Republic of China
| |
Collapse
|
26
|
Georgeous J, AlSawaftah N, Abuwatfa WH, Husseini GA. Review of Gold Nanoparticles: Synthesis, Properties, Shapes, Cellular Uptake, Targeting, Release Mechanisms and Applications in Drug Delivery and Therapy. Pharmaceutics 2024; 16:1332. [PMID: 39458661 PMCID: PMC11510955 DOI: 10.3390/pharmaceutics16101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The remarkable versatility of gold nanoparticles (AuNPs) makes them innovative agents across various fields, including drug delivery, biosensing, catalysis, bioimaging, and vaccine development. This paper provides a detailed review of the important role of AuNPs in drug delivery and therapeutics. We begin by exploring traditional drug delivery systems (DDS), highlighting the role of nanoparticles in revolutionizing drug delivery techniques. We then describe the unique and intriguing properties of AuNPs that make them exceptional for drug delivery. Their shapes, functionalization, drug-loading bonds, targeting mechanisms, release mechanisms, therapeutic effects, and cellular uptake methods are discussed, along with relevant examples from the literature. Lastly, we present the drug delivery applications of AuNPs across various medical domains, including cancer, cardiovascular diseases, ocular diseases, and diabetes, with a focus on in vitro and in vivo cancer research.
Collapse
Affiliation(s)
- Joel Georgeous
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Nour AlSawaftah
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.); (W.H.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.); (W.H.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (N.A.); (W.H.A.)
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Biosciences and Bioengineering Ph.D. Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
27
|
Abdel-Fatah SS, Mohammad NH, Elshimy R, Mosallam FM. Impeding microbial biofilm formation and Pseudomonas aeruginosa virulence genes using biologically synthesized silver Carthamus nanoparticles. Microb Cell Fact 2024; 23:240. [PMID: 39238019 PMCID: PMC11378559 DOI: 10.1186/s12934-024-02508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Long-term antibiotic treatment results in the increasing resistance of bacteria to antimicrobials drugs, so it is necessary to search for effective alternatives to prevent and treat pathogens that cause diseases. This study is aimed for biological synthesis of silver Carthamus nanoparticles (Ag-Carth-NPs) to combat microbial biofilm formation and Pseudomonas aeruginosa virulence genes. Ag-Carth-NPs are synthesized using Carthamus tenuis aqueous extract as environmentally friendly method has no harmful effect on environment. General factorial design is used to optimize Ag-Carth-NPs synthesis using three variables in three levels are Carthamus extract concentration, silver nitrate concentration and gamma radiation doses. Analysis of response data indicates gamma radiation has a significant effect on Ag-Carth-NPs production. Ag-Carth-NPs have sharp peak at λ max 425 nm, small and spherical particles with size 20.0 ± 1.22 nm, high stability up to 240 day with zeta potential around - 43 ± 0.12 mV, face centered cubic crystalline structure and FT-IR spectroscopy shows peak around 620 cm-1 that corresponding to AgNPs that stabilized by C. tenuis extract functional moiety. The antibacterial activity of Ag-Carth-NPs against pathogenic bacteria and fungi was determined using well diffusion method. The MIC values of Ag-Carth-NPs were (6.25, 6.25, 3.126, 25, 12.5, 12.5, 25 and 12.5 µg/ml), MBC values were (12.5, 12.5, 6.25, 50, 25, 25, 50 and 25 µg/ml) and biofilm inhibition% were (62.12, 68.25, 90.12, 69.51, 70.61, 71.12, 75.51 and 77.71%) against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, Candida tropicalis and Candida albicans respectively. Ag-Carth-NPs has bactericidal efficacy and significantly reduced the swarming, swimming motility, pyocyanin and protease production of P. aeruginosa. Furthermore, P. aeruginosa ToxA gene expression was significantly down regulated by 81.5%, while exoU reduced by 78.1%, where lasR gene expression reduction was 68%, while the reduction in exoU was 66% and 60.1% decrease in lasB gene expression after treatment with Ag-Carth-NPs. This activity is attributed to effect of Ag-Carth-NPs on cell membrane integrity, down regulation of virulence gene expression, and induction of general and oxidative stress in P. aeruginosa. Ag-Carth-NPs have no significant cytotoxic effects on normal human cell (Hfb4) but have IC50 at 5.6µg/mL against of HepG-2 cells. Limitations of the study include studies with low risks of silver nanoparticles for in vitro antimicrobial effects and its toxicity.
Collapse
Affiliation(s)
- Sobhy S Abdel-Fatah
- Drug Radiation Research Department, Drug Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nasser H Mohammad
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Rana Elshimy
- Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt
- Microbiology and immunology, Faculty of Pharmacy, AL-Aharm Canadian University (ACU), Giza, Egypt
| | - Farag M Mosallam
- Drug Radiation Research Department, Drug Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
28
|
Al-Asiri WY, Al-Sheddi ES, Farshori NN, Al-Oqail MM, Al-Massarani SM, Malik T, Ahmad J, Al-Khedhairy AA, Siddiqui MA. Cytotoxic and Apoptotic Effects of Green Synthesized Silver Nanoparticles via Reactive Oxygen Species-Mediated Mitochondrial Pathway in Human Breast Cancer Cells. Cell Biochem Funct 2024; 42:e4113. [PMID: 39223765 DOI: 10.1002/cbf.4113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Due to their exceptional physicochemical features, green synthesized silver nanoparticles (AgNPs) have been of considerable interest in cancer treatment. In the present study, for the first time, we aimed to green synthesize AgNPs from Euphorbia retusa and explore their anticancer potential on human breast cancer (MCF-7) cells. First, the green synthesized AgNPs (EU-AgNPs) were well characterized by UV-visible spectroscopy, Fourier transmission infrared (FTIR) spectrum, XRD, scanning and transmission electron microscopy (SEM and TEM), and EDX techniques. The characterization data exhibited that EU-AgNPs were spherical in shape and crystalline in nature with an average size of 17.8 nm. FTIR results established the presence of active metabolites in EU-AgNPs. Second, the anticancer effect of EU-AgNPs was evaluated against MCF-7 cells by MTT and neutral red uptake (NRU) assays. Moreover, morphological changes, ROS production, MMP, and apoptotic marker genes were also studied upon exposure to cytotoxic doses of EU-AgNPs. Our results showed that EU-AgNPs induce cytotoxicity in a concentration-dependent manner, with an IC50 value of 40 μg/mL. Morphological changes in MCF-7 cells exposed to EU-AgNPs also confirm their cytotoxic effects. Increased ROS and decreased MMP levels revealed that EU-AgNPs induced oxidative stress and mitochondrial membrane dysfunction. Moreover, ROS-mediated apoptosis was confirmed by elevated levels of proapoptotic marker genes (p53, Bax, caspase-3, and caspase-9) and reduced levels of an antiapoptotic gene (Bcl-2). Altogether, these findings suggested that EU-AgNPs could induce potential anticancer effects through ROS-mediated apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- Wajd Y Al-Asiri
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ebtesam S Al-Sheddi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nida N Farshori
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mai M Al-Oqail
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shaza M Al-Massarani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Javed Ahmad
- Chair for DNA Research, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Maqsood A Siddiqui
- Division of Research and Development, Lovely Professional University, Phagwara, India
| |
Collapse
|
29
|
Carvalho-Silva JM, Reis ACD. Anti-inflammatory action of silver nanoparticles in vivo: systematic review and meta-analysis. Heliyon 2024; 10:e34564. [PMID: 39113960 PMCID: PMC11305315 DOI: 10.1016/j.heliyon.2024.e34564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The aim of this study was to systematically review the literature to investigate whether silver nanoparticles (AgNPs) have an anti-inflammatory effect in vivo. The guidelines of PRISMA were applied, and a registration was made in PROSPERO. A personalized search of the PubMed, Web of Science, Scopus, Embase, Lilacs, and Google Scholar databases was conducted in September 2023. For the data analysis, the inverse variance in the random effects model was used. The tools of SYRCLE and GRADE were used to assess the risk of bias and the certainty of evidence, respectively. From the 9185 identified studies, 5685 duplicate studies were excluded; 52 were read in full text, and 7 were included in this review. Six studies were evaluated by the meta-analysis, and an increase in anti-inflammatory molecules (SMD -5.22; PI [-6.50, -3.94]) and an increase in anti-inflammatory ones (SMD 5.75; PI [3.79, 7.72]) were observed. Qualitative analysis showed a reduction in pro-inflammatory proteins and in the COX-2 pathway. It was concluded that AgNPs present an anti-inflammatory action in vivo through mechanisms involving the reduction of pro-inflammatory molecules and proteins, the increase of anti-inflammatory molecules, and selective inhibition of the COX-2 pathway.
Collapse
Affiliation(s)
- João Marcos Carvalho-Silva
- Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido dos Reis
- Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
30
|
Chutrakulwong F, Thamaphat K, Intarasawang M. Investigating UV-Irradiation Parameters in the Green Synthesis of Silver Nanoparticles from Water Hyacinth Leaf Extract: Optimization for Future Sensor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1018. [PMID: 38921894 PMCID: PMC11206564 DOI: 10.3390/nano14121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Silver nanoparticles (AgNPs) can be produced safely and greenly using water hyacinth, an invasive aquatic plant, as a reducing agent. This study aimed to optimize the UV-irradiation parameters for the synthesis of AgNPs from water hyacinth leaf extract. The study varied the reaction time and pH levels and added a stabilizing agent to the mixture. The synthesized AgNPs were characterized using UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and inductively coupled plasma optical emission spectroscopy (ICP-OES). The findings revealed that the optimal conditions for synthesizing AgNPs were achieved by adjusting the pH level to 8.5, adding starch as a stabilizing agent, and exposing the mixture to UV-A radiation for one hour. These conditions resulted in the smallest size and highest quantity of AgNPs. Furthermore, the synthesized AgNP colloids remained stable for up to six months. This study highlights the potential of utilizing water hyacinth as a sustainable and cost-effective reducing agent for AgNP synthesis, with potential applications in pharmaceuticals, drug development, catalysis, and sensing detection.
Collapse
Affiliation(s)
- Fueangfakan Chutrakulwong
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand;
| | - Kheamrutai Thamaphat
- Green Synthesis and Application Laboratory, Applied Science and Engineering for Social Solution Research Unit, Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Mana Intarasawang
- Department of Science and Technology, Suksanari School, Bangkok 10600, Thailand;
| |
Collapse
|
31
|
Bokhari SS, Ali T, Naeem M, Hussain F, Nasir A. Recent advances in nanoformulation-based delivery for cancer immunotherapy. Nanomedicine (Lond) 2024; 19:1253-1269. [PMID: 38717427 PMCID: PMC11285355 DOI: 10.1080/17435889.2024.2343273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer is one of the leading causes of mortality worldwide, and its treatment faces several challenges. Phytoconstituents derived from recently discovered medicinal plants through nanotechnology potentially target cancer cells via PI3K/Akt/mTOR pathways and exert their effects selectively through the generation of reactive oxygen species through β-catenin inhibition, DNA damage, and increasing caspase 3/9 and p53 expression. These nanocarriers act specifically against different cancer cell lines such as HT-29, MOLT-4 human leukemia cancer and MCF-7 cell lines SKOV-3, Caov-3, SW-626, HepG2, A-549, HeLa, and MCF-7. This review comprehensively elaborates on the cellular and molecular mechanisms, and therapeutic prospects of various plant-mediated nanoformulations to attain a revolutionary shift in cancer immunotherapy.
Collapse
Affiliation(s)
- Seyedeh Saimeh Bokhari
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
32
|
Sadeghi-Kiakhani M, Hashemi E, Norouzi MM. Clean synthesis of silver nanoparticles (AgNPs) on polyamide fabrics by Verbascum thapsus L. (mullein) extract: characterization, colorimetric, antibacterial, and colorfastness studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32637-32648. [PMID: 38658510 DOI: 10.1007/s11356-024-33373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
The production of antibacterial colored textiles using nanomaterials (NMs) has become an ideal goal from both a research and industrial perspective. In this study, the clean synthesis and characterization of silver nanoparticles (AgNPs) on polyamide fabrics were performed using mullein extract for the first time. Natural dyes were extracted from mullein leaves using an ultrasonic method, with an optimal amount of 15 g/L. The synthesized AgNPs in different ratios of mullein extract and Ag ions were analyzed (using UV-visible spectroscopy) and dynamic light scattering (DLS). It was found that AgNPs synthesized with a ratio of 1:4 of mullein extract: to Ag ions had a diameter of 85 nm. The active site groups of the synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR). Nylon fabrics dyed with different ratios of mullein extract and Ag ions exhibited acceptable color strength values (K/S) of 3.36. Furthermore, the reduction in bacterial growth for dyed fabrics improved with an increase in the ratio of Ag ions, with a 100% reduction observed for a sample dyed with mullein extract: Ag ions at a ratio of 1:4. Overall, this method offers a simple, low-cost, and compatible process with environment without the consumption of any chemicals to producing nylon with acceptable antibacterial and dyeing properties.
Collapse
Affiliation(s)
- Mousa Sadeghi-Kiakhani
- Department of Organic Colorants, Institute for Color Science and Technology, Tehran, Iran.
| | - Elaheh Hashemi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad-Mahdi Norouzi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
33
|
Ogwuegbu MC, Ayangbenro AS, Mthiyane DMN, Babalola OO, Onwudiwe DC. Green synthesis of CuO nanoparticles using Ligustrum lucidum extract, and the antioxidant and antifungal evaluation. MATERIALS RESEARCH EXPRESS 2024; 11:055010. [DOI: 10.1088/2053-1591/ad4e9d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Biosynthesis of metal oxide nanoparticles using plant extract is an inexpensive, simple, rapid, and environmentally friendly approach to obtaining nanoparticles for biological applications. Herein, copper oxide nanoparticles (CuO-NPs) were successfully synthesized using an aqueous extract from Ligustrum lucidum leaves. The structural, optical, and morphological characteristics of the nanoparticles were assessed using x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectrophotometer, transmission and scanning electron microscopy (TEM and SEM), and energy-dispersive x-ray (EDX). Nanocrystalline CuO with an average crystalline size of 22.0 nm and a band gap energy of 1.4 eV were confirmed from the XRD and UV-vis spectrophotometer, respectively. Morphological studies showed spherical nanoparticles, whose particle size estimation (30 ± 5 nm) agrees with the crystalline size deduced from the XRD pattern. A free radical scavenging activity of the CuO nanoparticles, evaluated using the 1, 1-diphenhyl-2-picrylhydrazyl (DPPH) assay, showed that it exhibited high antioxidant activity (IC50: 63.35 μg ml−1) that is concentration dependent. Antifungal evaluation using four different fungal strains (Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, and Trichoderma harzianum) indicated a direct relationship between the potency of the particles and their concentration, with 1 ppm solution exhibiting the highest potency. The green synthesized CuO-NPs using Ligustrum lucidum may be potentially used as an antioxidant and antifungal agent for therapeutic applications.
Collapse
|
34
|
Monroy Caltzonci D, Rasu Chettiar AD, Ibarra VC, Marasamy L, Loredo-Tovías M, Acosta-Torres LS, Manisekaran R. Antimicrobial and Cytotoxic Effect of Positively Charged Nanosilver-Coated Silk Sutures. ACS OMEGA 2024; 9:17636-17645. [PMID: 38645349 PMCID: PMC11025086 DOI: 10.1021/acsomega.4c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/16/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
Sutures are a crucial component of surgical procedures, serving to close and stabilize wound margins to promote healing. However, microbial contamination of sutures can increase the risk of surgical site infections (SSI) due to colonization by pathogens. This study aimed to tackle SSI by synthesizing positively charged silver nanoparticles (P-AgNPs) and using them to produce antimicrobial sutures. The P-AgNPs were reduced and stabilized using polyethylenimine (PEI), a cationic branched polymer. The physiochemical characteristics of P-AgNPs were confirmed from the surface plasmon resonance (SPR) peak at 419 nm, spherical morphology with a particle size range of 8-10 nm, PEI functional groups on NPs, a hydrodynamic diameter of 12.3 ± 2.4 nm, and a zeta potential of 31.3 ± 6 mV. Subsequently, the surfaces of silk sutures were impregnated with P-AgNPs at different time intervals (24, 48, and 96 h) using an ex situ method. Scanning electron microscopy (SEM) and tensile strength studies were conducted to determine the coating and durability of the NP-coated sutures. The NPs were quantified on sutures using inductively coupled plasma optical emission spectrophotometry (ICP-OES), which was in the range of 1-5 μg. Primarily, antimicrobial activity was studied using three microorganisms (Candida albicans, Streptococcus mutans, and Staphylococcus aureus) for both P-AgNPs and suture-coated P-AgNPs using the agar diffusion method. The results showed that only the NPs and NP-coated sutures exhibited enhanced antimicrobial effects against bacteria and fungi. Finally, the cytotoxicity of the sutures was investigated using stem cells from the apical papilla (SCAPs) for 24 h, which exhibited more than 75% cell viability. Overall, the results indicate that NP-coated sutures can potentially be used as antimicrobial sutures to diminish or inhibit SSI in postoperative or general surgery patients.
Collapse
Affiliation(s)
- Diego
Antonio Monroy Caltzonci
- Interdisciplinary
Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela
Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero,
Comunidad de los Tepetates, 37689 León, Mexico
| | - Aruna-Devi Rasu Chettiar
- Facultad
de Química, Materiales-Energía, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico
| | - Verónica Campos Ibarra
- Interdisciplinary
Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela
Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero,
Comunidad de los Tepetates, 37689 León, Mexico
| | - Latha Marasamy
- Facultad
de Química, Materiales-Energía, Universidad Autónoma de Querétaro, 76010 Querétaro, Mexico
| | - Marcos Loredo-Tovías
- Área
de Ciencias de la Tierra, Facultad de Ingeniería,UASLP, Av. Manuel Nava no.8, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary
Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela
Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero,
Comunidad de los Tepetates, 37689 León, Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary
Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela
Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero,
Comunidad de los Tepetates, 37689 León, Mexico
| |
Collapse
|