1
|
Wang K, Shi X, Lin H, Xu T, Xu S. Selenium deficiency exacerbates ROS/ER stress mediated pyroptosis and ferroptosis induced by bisphenol A in chickens thymus. J Environ Sci (China) 2025; 148:13-26. [PMID: 39095152 DOI: 10.1016/j.jes.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
Bisphenol A (BPA) is an industrial pollutant that can cause immune impairment. Selenium acts as an antioxidant, as selenium deficiency often accompanies oxidative stress, resulting in organ damage. This study is the first to demonstrate that BPA and/or selenium deficiency induce pyroptosis and ferroptosis-mediated thymic injury in chicken and chicken lymphoma cell (MDCC-MSB-1) via oxidative stress-induced endoplasmic reticulum (ER) stress. We established a broiler chicken model of BPA and/or selenium deficiency exposure and collected thymus samples as research subjects after 42 days. The results demonstrated that BPA or selenium deficiency led to a decrease in antioxidant enzyme activities (T-AOC, CAT, and GSH-Px), accumulation of peroxides (H2O2 and MDA), significant upregulation of ER stress-related markers (GRP78, IER 1, PERK, EIF-2α, ATF4, and CHOP), a significant increase in iron ion levels, significant upregulation of pyroptosis-related gene (NLRP3, ASC, Caspase1, GSDMD, IL-18 and IL-1β), significantly increase ferroptosis-related genes (TFRC, COX2) and downregulate GPX4, HO-1, FTH, NADPH. In vitro experiments conducted in MDCC-MSB-1 cells confirmed the results, demonstrating that the addition of antioxidant (NAC), ER stress inhibitor (TUDCA) and pyroptosis inhibitor (Vx765) alleviated oxidative stress, endoplasmic reticulum stress, pyroptosis, and ferroptosis. Overall, this study concludes that the combined effects of oxidative stress and ER stress mediate pyroptosis and ferroptosis in chicken thymus induced by BPA exposure and selenium deficiency.
Collapse
Affiliation(s)
- Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, China.
| |
Collapse
|
2
|
Iwińska K, Boratyński JS, Książek A, Błońska J, Borowski Z, Konarzewski M. Reproduction results in parallel changes of oxidative stress and immunocompetence in a wild long-living mammal-edible dormouse Glis glis. Biol Lett 2024; 20:20240257. [PMID: 39471836 PMCID: PMC11521591 DOI: 10.1098/rsbl.2024.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 11/01/2024] Open
Abstract
Oxidative stress (OS) and impaired immune function (IF) have been proposed as key physiological costs of reproduction. The relationship between OS and IF remains unresolved, particularly in long-living iteroparous species. We studied physiological markers of maintenance (OS, IF markers) in lactating, post-lactating and non-lactating females of edible dormice-a long-living rodent. We predicted the OS balance and IF to be compromised by lactation, especially in older females expected to face stronger trade-offs between life functions. We found that the age predictor (body size) correlated negatively with white blood cell level (WBC), positively with neutrophils to lymphocytes ratio and had no effect on OS markers. Oxidative damage markers (reactive oxygen metabolites (ROMs); but not antioxidant capacity) and body size-adjusted WBC were the lowest in lactating, higher in post-lactating and the highest in non-lactating females. Body size/age did not affect this correlation suggesting a similar age-independent allocation strategy during reproduction in this species. The path analysis testing the causal relationship between ROMs and WBC revealed that IF is more likely to affect OS than vice versa. Our study indicates the trade-off between crucial life functions during reproduction and suggests that immunosuppression reduces the risk of OS; therefore, mitigating oxidative costs of reproduction.
Collapse
Affiliation(s)
| | - Jan S. Boratyński
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Aneta Książek
- Faculty of Biology, University of Białystok, Białystok, Poland
| | - Joanna Błońska
- Doctoral School of University of Białystok, Białystok, Poland
| | | | | |
Collapse
|
3
|
Li Y, Cui H, Li D, Fu HY, Li JZ, Xu WX, Fan RF. Selenium alleviates pancreatic fibrosis in chickens caused by mercuric chloride: Involvement of the MAPK signaling pathway and selenoproteins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124448. [PMID: 38942272 DOI: 10.1016/j.envpol.2024.124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Mercuric chloride (HgCl2) is a widespread inorganic mercury with digestive toxicity. The pancreas is an important digestive organ in animals, and pancreatic fibrosis (PF) is a major pathological feature of chronic pancreatitis, which can be caused by heavy metals. Selenium (Se) is an essential trace element for the animal organism, performing biological functions in the form of selenoproteins, as well as alleviating the toxicity of heavy metals. In this study, we explored the specific mechanisms underlying the protective effect of Se on HgCl2-induced pancreatic injury in chickens. Morphological observation and serum biochemical analysis showed that Se attenuated HgCl2-caused pancreatic tissue damage and elevated glucose concentration and α-amylase activity. Next, the expression of oxidative stress indicators such as MDA and GSH-Px as well as inflammation-related markers including IL-1β, IL-6, and TNF-α were detected. Results showed that Se had an inhibitory effect on HgCl2-induced oxidative stress and inflammation. Furthermore, we found that Se alleviated HgCl2-induced PF by detecting the expression of markers related to PF including TGF-β1, α-SMA, COL1A1, and FN1. Mechanistically, Se attenuated HgCl2-induced PF via the MAPK signaling pathway. Importantly, several selenoproteins, especially those with antioxidant activity, were involved in the protective effect of Se on HgCl2 toxicity. In conclusion, our findings demonstrated that Se inhibited HgCl2-induced oxidative stress and inflammation and alleviated chicken PF through the MAPK signaling pathway, in which some antioxidant selenoproteins were involved.
Collapse
Affiliation(s)
- Yue Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Han Cui
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Dan Li
- Shandong Medicine Technician College, 999 Fengtian Road, Tai'an City, Shandong Province, 271016, China
| | - Hong-Yu Fu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Jiu-Zhi Li
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Wan-Xue Xu
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Rui-Feng Fan
- College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
4
|
Zhang M, Liu J, Yu Z, Chen Z, Yang J, Yin Y, Xu S. Supplementation with organic yeast-derived selenium provides immune protection against experimental necrotic enteritis in broiler chickens. Microb Pathog 2024; 192:106691. [PMID: 38759933 DOI: 10.1016/j.micpath.2024.106691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Necrotic enteritis (NE) is a potentially fatal poultry disease that causes enormous economic losses in the poultry industry worldwide. The study aimed to evaluate the effects of dietary organic yeast-derived selenium (Se) on immune protection against experimental necrotic enteritis (NE) in commercial broilers. Chickens were fed basal diets supplemented with different Se levels (0.25, 0.50, and 1.00 Se mg/kg). To induce NE, Clostridium perfringens (C. perfringens) was orally administered at 14 days of age post hatch. The results showed that birds fed 0.25 Se mg/kg exhibited significantly increased body weight gain compared with the non-supplemented/infected birds. There were no significant differences in gut lesions between the Se-supplemented groups and the non-supplemented group. The antibody levels against α-toxin and NetB toxin increased with the increase between 0.25 Se mg/kg and 0.50 Se mg/kg. In the jejunal scrapings and spleen, the Se-supplementation groups up-regulated the transcripts for pro-inflammatory cytokines IL-1β, IL-6, IL-8, iNOS, and LITAF and avian β-defensin 6, 8, and 13 (AvBD6, 8 and 13). In conclusion, supplementation with organic yeast-derived Se alleviates the negative consequences and provides beneficial protection against experimental NE.
Collapse
Affiliation(s)
- Meiyu Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jian Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zehai Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhiyuan Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiehua Yang
- Qingdao Vland Animal Health Group Co., Ltd., Qingdao, 266111, China
| | - Yanbo Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shouzhen Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
Lei Y, Sun W, Xu T, Shan J, Gao M, Lin H. Selenomethionine modulates the JAK2 / STAT3 / A20 pathway through oxidative stress to alleviate LPS-induced pyroptosis and inflammation in chicken hearts. Biochim Biophys Acta Gen Subj 2024; 1868:130564. [PMID: 38272191 DOI: 10.1016/j.bbagen.2024.130564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Selenium (Se) is involved in many physiopathologic processes in humans and animals and is strongly associated with the development of heart disease. Lipopolysaccharides (LPS) are cell wall components of gram-negative bacteria that are present in large quantities during environmental pollution. To investigate the mechanism of LPS-induced cardiac injury and the efficacy of the therapeutic effect of SeMet on LPS, a chicken model supplemented with selenomethionine (SeMet) and/or LPS treatment, as well as a primary chicken embryo cardiomyocyte model with the combined effect of SeMet / JAK2 inhibitor (INCB018424) and/or LPS were established in this experiment. CCK8 kit, Trypan blue staining, DCFH-DA staining, oxidative stress kits, immunofluorescence staining, LDH kit, real-time fluorescence quantitative PCR, and western blot were used. The results proved that LPS exposure led to ROS explosion, hindered the antioxidant system, promoted the expression of the JAK2 pathway, and increased the expression of genes involved in the pyroptosis pathway, inflammatory factors, and heat shock proteins (HSPs). Upon co-treatment with SeMet and LPS, SeMet reduced LPS-induced pyroptosis and inflammation and restored the expression of HSPs by inhibiting the ROS burst and modulating the antioxidant capacity. Co-treatment with INCB018424 and LPS resulted in inhibited of the JAK2 pathway, attenuating pyroptosis, inflammation, and high expression of HSPs. Thus, LPS induced pyroptosis, inflammation, and changes in HSPs activity by activating of the JAK2 / STAT3 / A20 signaling axis in chicken hearts. Moreover, SeMet has a positive effect on LPS-induced injury. This work further provides a theoretical basis for treating cardiac injury by SeMet.
Collapse
Affiliation(s)
- Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Lee J, Shin H, Kim J, Lee G, Yun J. Large litters have a detrimental impact on litter performance and postpartum maternal behaviour in primiparous sows. Porcine Health Manag 2024; 10:9. [PMID: 38365750 PMCID: PMC10870634 DOI: 10.1186/s40813-024-00360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Our previous study confirmed that large litter size adversely affects prepartum maternal hormones and behaviour, concurrently with heightened oxidative stress in primiparous sows. The purpose of this study was to examine the effect of large litter size on litter performance, postpartum maternal behaviour, salivary cortisol levels, and colostral immunoglobulin levels in sows, as well as investigate their correlations with the levels of oxidative stress parameters. RESULTS A total of 24 primiparous sows (Landrace[Formula: see text]Large white) and their offspring were categorised into two groups based on litter size: NORMAL (n = 8) with litter size ranging from 7 to 14 (mean 11.5[Formula: see text]2.7), and LARGE (n=16) with litter size ranging from 15 to 20 (mean 15.9[Formula: see text]1.4). All sows were housed in a group housing system during gestation and transitioned to an adaptable loose housing system (2.4[Formula: see text]2.3 m) during the farrowing and lactation periods. The nursing and carefulness behaviour of the sows was monitored over a 24-h period between 72 and 96 h after parturition. Saliva samples were collected for cortisol assay on 35, 21, and 7 days before parturition (D-35, D-21, and D-7, respectively), as well as on days 1, 7, and 28 after parturition (D1, D7, and D28, respectively). On D1, higher piglet mortality rates were observed among the LARGE group compared to the NORMAL group (p<0.01). The total and successful nursing behaviours of the sows were less frequent in the LARGE group than in the NORMAL group (p<0.05, for both), and the carefulness score of the LARGE group was also lower than that of the NORMAL group (p< 0.01). On D1, cortisol levels in LARGE sows were higher than those in NORMAL sows (p< 0.05), and for other time points (D-21, D-7, D7, and D28), cortisol levels in LARGE sows tended to be higher than those in NORMAL sows (p < 0.10, for all). Successful nursing behaviour displayed negative correlations with levels of salivary cortisol and certain oxidative stress parameters measured on D1. CONCLUSIONS These findings suggest that the strategy for alleviating physiological and oxidative stress during the peripartum periods could benefit potential postpartum maternal behaviour and litter performance in the sows with large litters.
Collapse
Affiliation(s)
- Juho Lee
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, 61186, Gwangju, South Korea
| | - Hyeonwook Shin
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, 61186, Gwangju, South Korea
| | - Junsik Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, 61186, Gwangju, South Korea
| | - Geonil Lee
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, 61186, Gwangju, South Korea
| | - Jinhyeon Yun
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, 61186, Gwangju, South Korea.
| |
Collapse
|
7
|
Sun W, Xu T, Lin H, Yin Y, Xu S. BPA and low-Se exacerbate apoptosis and autophagy in the chicken bursa of Fabricius by regulating the ROS/AKT/FOXO1 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168424. [PMID: 37944606 DOI: 10.1016/j.scitotenv.2023.168424] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental pollutant that can have harmful effects on human and animal immune systems by inducing oxidative stress. Selenium (Se) deficiency damages immune organ tissues and exhibits synergistic effects on the toxicity of environmental pollutants. However, oxidative stress, cell apoptosis, and autophagy caused by the combination of BPA and low-Se, have not been studied in the bursa of Fabricius of the immune organ of poultry. Therefore, in this study, BPA and/or low-Se broiler models and chicken lymphoma cells (MDCC-MSB-1 cells) models were established to investigate the effects of BPA and/or low-Se on the bursa of Fabricius of poultry. The data showed that BPA and/or low-Se disrupted the normal structure of the bursa of Fabricius, BPA (60 μM) significantly reduced the activity of MDCC-MSB-1 cells and disrupted normal morphology (IC50 = 192.5 ± 1.026 μM). Compared with the Control group, apoptosis and autophagy were increased in the BPA or low-Se groups, and the generation of reactive oxygen species (ROS) was increased. This inhibited the AKT/FOXO1 pathway, leading to mitochondrial fusion/division imbalance (Mfn1, Mfn2, OPA1 were increased, DRP1 was decreased) and dysfunction (CI-NDUFB8, CII-SDHB, CIII-UQCRC2, CIV-MTCO1, CV-ATP5A1, ATP). Furthermore, combined exposure of BPA and low-Se aggravated the above-mentioned changes. Treatment with N-acetylcysteine (NAC) reduced ROS levels and activated the AKT/FOXO1 pathway to further alleviate BPA and low-Se-induced apoptosis and autophagy. Apoptosis induced by low-Se + BPA was exacerbated after 3-Methyladenine (3-MA, autophagy inhibitor) treatment. Together, these results indicated that BPA and low-Se aggravated apoptosis and autophagy of the bursa of Fabricius in chickens by regulating the ROS/AKT/FOXO1 pathway.
Collapse
Affiliation(s)
- Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Kim MG, Kang MG, Lee MG, Yang SJ, Yeom SW, Lee JH, Choi SM, Yoon JH, Lee EJ, Noh SJ, Kim MS, Kim JS. Periodontitis is associated with the development of fungal sinusitis: A nationwide 12-year follow-up study. J Clin Periodontol 2023; 50:440-451. [PMID: 36415182 DOI: 10.1111/jcpe.13753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
AIM The incidence of fungal sinusitis is increasing; however, its pathophysiology has not been investigated previously. We investigate the effect of periodontitis on the incidence of fungal sinusitis over a 12-year follow-up period using nationwide population-based data. MATERIALS AND METHODS The periodontitis group was randomly selected from the National Health Insurance Service database. The non-periodontitis group was obtained by propensity score matching considering several variables. The primary end point was the diagnosis of sinonasal fungal balls (SFBs) and invasive fungal sinusitis (IFS). RESULTS The periodontitis and non-periodontitis groups included 12,442 and 12,442 individuals, respectively. The overall adjusted hazard ratio (aHR) for SFBs in the periodontitis group was 1.46 (p = .002). In subgroup analysis, the aHR for SFBs was 1.59 (p = 0.008) for those with underlying chronic kidney disease (CKD), 1.58 (p = .022) for those with underlying atopic dermatitis, 1.48 (p = .019) for those with chronic obstructive pulmonary disease (COPD), and 1.36 (p = .030) for those with diabetes mellitus (DM), but these values are applicable only when considering the relationship between periodontitis and SFB. The aHR for IFS in the periodontitis group was higher than in the non-periodontitis group (2.80; p = .004). CONCLUSIONS The risk of SFBs and IFS increased after diagnosis of periodontitis. This trend is often more severe in patients with DM, COPD, or CKD, but this association with underlying diseases is applicable only when considering the association between periodontitis and fungal sinusitis.
Collapse
Affiliation(s)
- Min Gul Kim
- Department of Pharmacology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Min Gu Kang
- Department of Medical Informatics, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Min Gyu Lee
- Department of Medical Informatics, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong J Yang
- Department of Statistics (Institute of Applied Statistics), Jeonbuk National University, Jeonju, Republic of Korea
| | - Sang Woo Yeom
- Department of Medical Informatics, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jong Hwan Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | | | - Ji Hyun Yoon
- Sae Bom Dental Clinic, Jeonju, Republic of Korea
| | - Eun Jung Lee
- Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang Jae Noh
- Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Forensic Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Min-Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Bundang, Republic of Korea
| | - Jong Seung Kim
- Research Institute of Clinical Medicine of Jeonbuk National University - Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Medical Informatics, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
9
|
Heat stress in poultry with particular reference to the role of probiotics in its amelioration: An updated review. J Therm Biol 2022; 108:103302. [DOI: 10.1016/j.jtherbio.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022]
|
10
|
Son J, Kim HJ, Hong EC, Kang HK. Effects of Stocking Density on Growth Performance, Antioxidant Status, and Meat Quality of Finisher Broiler Chickens under High Temperature. Antioxidants (Basel) 2022; 11:871. [PMID: 35624735 PMCID: PMC9138006 DOI: 10.3390/antiox11050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Environmental factors such as stocking density and high temperature can cause oxidative stress and negatively affect the physiological status and meat quality of broiler chickens. Here, we evaluated the effects of heat stress on the growth performance, antioxidant levels, and meat quality of broilers under different stocking densities. A total of 885 28-day-old male broilers (Ross 308) were subjected to five treatments (16, 18, 21, 23, and 26 birds/m2) and exposed to high temperatures (33 °C for 24 h) for 7 days. High stocking density (23 and 26 birds/m2) resulted in significantly decreased body weight (p < 0.01) and superoxide dismutase activity in the blood (p < 0.05) and increased (p < 0.05) rectal temperature and corticosterone. Additionally, the concentrations of heat shock protein 70 and malondialdehyde in the liver were higher in the 26 birds/m2 group (p < 0.05). Similarly, the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of breast meat increased linearly as the stocking density increased (p < 0.05). There was increased shear force in breast meat at low stocking density (p < 0.01). Thus, lower stocking density can relieve oxidative stress induced by high temperatures in broilers and improve the antioxidant capacity and quality of breast meat during hot seasons.
Collapse
Affiliation(s)
| | | | | | - Hwan-Ku Kang
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Korea; (J.S.); (H.-J.K.); (E.-C.H.)
| |
Collapse
|
11
|
Shin D, Choi Y, Soon ZY, Kim M, Kim DJ, Jung JH. Comparative toxicity study of waterborne two booster biocides (CuPT and ZnPT) on embryonic flounder (Paralichthys olivaceus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113337. [PMID: 35219958 DOI: 10.1016/j.ecoenv.2022.113337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
A new generation of booster biocides that include metal pyrithiones (PTs) such as copper pyrithione (CuPT) and zinc pyrithione (ZnPT) are being used as tributyltin alternatives. In the marine environment, ZnPT can easily transchelate Cu to form CuPT, and the environmental fate and persistence of these two metal pyrithiones are closely related. Although some data on the toxicity of biocides on marine fish are available, little is known about their toxicity and toxic pathway. We thus compared the toxic effects of CuPT and ZnPT on embryonic olive flounder (Paralichthys olivaceus) by investigating their adverse effects based on developmental morphogenesis and transcriptional variation. In our study, the toxic potency of CuPT was greater with respect to developmental malformation and mortality than ZnPT. Consistent with the developmental effects, the expression of genes related to tail fin malformation (including plod2, furin, and wnt3a) was higher in embryonic flounder exposed to CuPT than in those exposed to ZnPT. Genes related to muscle and nervous system development exhibited significant changes on differential gene expression profiles using RNA sequencing (cutoff value P < 0.05). Gene ontology analysis of embryos exposed to CuPT revealed affected cellular respiration and kidney development, whereas genes associated with cell development, nervous system development and heart development showed significant variation in embryonic flounder exposed to ZnPT. Overall, our study clarifies the common and unique developmental toxic effects of CuPT and ZnPT through transcriptomic analyses in embryonic flounder.
Collapse
Affiliation(s)
- Dongju Shin
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Youmi Choi
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Zhi Yang Soon
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dae-Jung Kim
- Jeju Fisheries Research Institute, National Institute of Fisheries Science, 63068, Jeju-do, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
12
|
Qing Z, Dongliu L, Xuedie G, Khoso PA, Xiaodan H, Shu L. MiR-144-3p targets STC1 to activate PI3K/AKT pathway to induce cell apoptosis and cell cycle arrest in selenium deficiency broilers. J Inorg Biochem 2021; 226:111665. [PMID: 34800749 DOI: 10.1016/j.jinorgbio.2021.111665] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an indispensable trace element in vertebrate. Se deficiency can damage the immune system. Studies have shown that Se deficiency can cause immune organ damage by regulating the expression of microRNA. Bursa of Fabricius is a special immune organ in poultry. In order to explore the mechanism of bursa of Fabricius injury caused by Se deficiency and the role of miRNA in this process. Firstly, we established the Se deficient model of broilers in vivo and found that Se deficiency could induce apoptosis and cell cycle arrest of bursa of Fabricius cells through Phosphoinositide 3-kinase (PI3K)/Protein Kinase B (AKT) pathway. Secondly, we inferred miRNA (miR-144-3p) and target gene Stanniocalcin 1 (STC1) that may regulate PI3K/AKT pathway through biological analysis system, and further predicted and determined the targeting relationship between them through dual luciferase, it was found that miR-144-3p was highly expressed in the process of cell apoptosis and cell cycle arrest induced by Se deficiency. Finally, in order to further understand whether miR-144-3p/STC1 axis is involved in the process, miR-144-3p knockdown and overexpression experiments were carried out, it was found that miR-144-3p inhibitor can reduce the occurrence of cell apoptosis and cell cycle arrest. In conclusion, Se deficiency can induce apoptosis and cell cycle arrest of bursa of Fabricius in Broilers by up regulating miR-144-3p targeting STC1 and activating PI3K/AKT pathway, leading to injury of bursa of Fabricius in broilers.
Collapse
Affiliation(s)
- Zhang Qing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Luo Dongliu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Gu Xuedie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Pervez Ahmed Khoso
- Shaheed Benazir Bhutto, University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Huang Xiaodan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
13
|
Wang B, Cui Y, Zhang Q, Wang S, Xu S. Selenomethionine alleviates LPS-induced JNK/NLRP3 inflammasome-dependent necroptosis by modulating miR-15a and oxidative stress in chicken lungs. Metallomics 2021; 13:6332293. [PMID: 34329475 DOI: 10.1093/mtomcs/mfab048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
Selenium (Se) was involved in many physiological processes in humans and animals. microRNAs (miRNAs) also played important roles in lung diseases. However, the regulatory mechanism of miRNA in chicken lungs and the mechanism of lipopolysaccharide (LPS)-induced pneumonia remained unclear. To further study these mechanisms, we established a supplement of selenomethionine (SeMet) and/or LPS-treated chicken model and a cell model of LPS and/or high and low expression of miR-15a in chicken hepatocellular carcinoma (LMH) cells. We detected the expression of some selenoproteins, p-c-Jun N-terminal kinase (JNK), nod-like receptor protein 3 (NLRP3), caspase1, receptor-interacting serine-threonine kinase 1 (RIPK1), receptor-interacting serine-threonine kinase 3 (RIPK3), mixed lineage kinase domain-like pseudokinase (MLKL), miR-15a and oxidative stress kits. Additionally, we observed the morphology of lungs by H.E. staining in vitro. The results indicated that necroptosis occurred in LPS-treated chicken and LMH cells. Moreover, LPS stimulation inhibited miR-15a, and increased the expression of JNK, NLRP3, caspase1, RIPK1, RIPK3, MLKL. We also found that LPS treatment not only increased the content of H2O2 and MDA in the lungs but also increased the activities of iNOS and CAT and the content of GSH decreased. Conclusion: SeMet could reduce the oxidative damage and activate NLRP3 inflammasome reaction by stimulating miR-15a/JNK, thus reduced the pulmonary necroptosis induced by LPS.
Collapse
Affiliation(s)
- Bing Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, P. R. China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, P. R. China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, P. R. China
| | - ShengChen Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, P. R. China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Vetearinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
14
|
Kaixin Z, Xuedie G, Jing L, Yiming Z, Khoso PA, Zhaoyi L, Shu L. Selenium-deficient diet induces inflammatory response in the pig adrenal glands by activating TLR4/NF-κB pathway via miR-30d-R_1. Metallomics 2021; 13:6300451. [PMID: 34132350 DOI: 10.1093/mtomcs/mfab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 01/07/2023]
Abstract
Selenium (Se) is an important trace element to maintain the body's dynamic balance. Lack of Se can cause inflammation. Studies have shown that inflammation often leads to disorders of the hypothalamic-pituitary-adrenal axis, but the mechanism by which Se deficiency causes inflammation of the porcine adrenal glands is still unclear. In order to study the effect of Se deficiency on the adrenal glands of pigs, we obtained Se-deficient pig adrenal glands through a low-Se diet. The results of mass spectrometry showed that the Se content in the Se-deficient group was only one-tenth of the control group. We detected the expression of the toll-like receptor 4 (TLR4) and downstream factors by qRT-PCR and Western blotting, and found that the lack of Se affected the TLR4/NF-κB pathway. It is known that miR-155-3p, miR-30d-R_1, and miR-146b have all been verified for targeting relationship with TLR4. We confirmed by qRT-PCR that miR-30d-R_1 decreased most significantly in the Se-deficient pig model. Then we tested 25 selenoproteins and some indicators of oxidative stress. It is confirmed that Se deficiency reduces the antioxidant capacity and induces oxidative stress in pig adrenal tissue. In short, a diet lacking Se induces oxidative stress in pig adrenal tissues and leads to inflammation through the miR-30d-R_1/TLR4 pathway. This study provides a reference for the prevention of adrenal inflammation in pigs from a nutritional point of view.
Collapse
Affiliation(s)
- Zhang Kaixin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Gu Xuedie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lan Jing
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhang Yiming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Pervez Ahmed Khoso
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, Pakistan
| | - Liu Zhaoyi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
15
|
Protective Effect of Epigallocatechin-3-Gallate in Hydrogen Peroxide-Induced Oxidative Damage in Chicken Lymphocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7386239. [PMID: 33488931 PMCID: PMC7790551 DOI: 10.1155/2020/7386239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/04/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is one of the fundamental compounds in green tea. The present study was to evaluate the protective effect of EGCG in oxidative damage and apoptosis induced by hydrogen peroxide (H2O2) in chicken lymphocytes. Results showed that preincubation of lymphocytes with EGCG significantly decreased H2O2-reduced cell viability and apoptotic cells with DNA damage, restored the H2O2-dependent reduction in total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), glutathione (GSH), and glutathione disulfide (GSSG), and suppressed the increase in intracellular reactive oxygen species (ROS), nitric oxide (NO), nitric oxide synthesis (NOS), malondialdehyde (MDA), lipid peroxide (LPO), and protein carbonyl (Carbonyl). In addition, preincubation of the cells with EGCG increased mitochondrial membrane potential (MMP) and reduced calcium ion ([Ca2+]i) load. The protective effect of EGCG in oxidative damage in lymphocytes was accompanied by mRNA expression of SOD, Heme oxygenase-1 (HO-1), Catalase (CAT), GSH-PX, nuclear factor erythroid 2-related factor 2 (Nrf2), and thioredoxin-1 (Trx-1). As EGCG had been removed before lymphocytes were challenged with H2O2, the activation of genes such as Nrf2 and Trx-1 by preincubation with EGCG could be the main reason for EGCG to protect the cells from oxidative damage by H2O2. Since oxidative stress is an important mechanism of biological damage and is regarded as the reasons of several pathologies, the present findings may be helpful for the use of tea products to prevent oxidative stress and maintain healthy in both humans and animals.
Collapse
|
16
|
Dueke-Eze CU, Fasina TM, Oluwalana AE, Familoni OB, Mphalele JM, Onubuogu C. Synthesis and biological evaluation of copper and cobalt complexes of (5-substituted-salicylidene) isonicotinichydrazide derivatives as antitubercular agents. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Li M, Zhang Y, Li S. Effects of selenium deficiency on testis development and autophagy in chicks. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1786739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ming Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Life and environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
18
|
Implications of Oxidative Stress and Cellular Senescence in Age-Related Thymus Involution. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7986071. [PMID: 32089780 PMCID: PMC7025075 DOI: 10.1155/2020/7986071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
The human thymus is a primary lymphoepithelial organ which supports the production of self-tolerant T cells with competent and regulatory functions. Paradoxically, despite the crucial role that it exerts in T cell-mediated immunity and prevention of systemic autoimmunity, the thymus is the first organ of the body that exhibits age-associated degeneration/regression, termed “thymic involution.” A hallmark of this early phenomenon is a progressive decline of thymic mass as well as a decreased output of naïve T cells, thus resulting in impaired immune response. Importantly, thymic involution has been recently linked with cellular senescence which is a stress response induced by various stimuli. Accumulation of senescent cells in tissues has been implicated in aging and a plethora of age-related diseases. In addition, several lines of evidence indicate that oxidative stress, a well-established trigger of senescence, is also involved in thymic involution, thus highlighting a possible interplay between oxidative stress, senescence, and thymic involution.
Collapse
|
19
|
Zhang Y, Yu D, Zhang J, Bao J, Tang C, Zhang Z. The role of necroptosis and apoptosis through the oxidative stress pathway in the liver of selenium-deficient swine. Metallomics 2020; 12:607-616. [PMID: 32176230 DOI: 10.1039/c9mt00295b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Necroptosis is regarded as a new paradigm of cell death that plays a key role in the liver damage observed with selenium (Se) deficiency.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China
- Ministry of Agriculture and Rural Affairs
- Beijing 100193
- China
| | - Dahai Yu
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China
- Ministry of Agriculture and Rural Affairs
- Beijing 100193
- China
| | - Jiuli Zhang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Jun Bao
- College of Animal Science
- Northeast Agricultural University
- Harbin 150030
- P. R. China
| | - Chaohua Tang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences
- Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China
- Ministry of Agriculture and Rural Affairs
- Beijing 100193
- China
| | - Ziwei Zhang
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- P. R. China
- Northeast Agricultural University/Key Laboratory of Swine Facilities Engineering
| |
Collapse
|
20
|
Lian S, Zhao L, Xun X, Lou J, Li M, Li X, Wang S, Zhang L, Hu X, Bao Z. Genome-Wide Identification and Characterization of SODs in Zhikong Scallop Reveals Gene Expansion and Regulation Divergence after Toxic Dinoflagellate Exposure. Mar Drugs 2019; 17:md17120700. [PMID: 31842317 PMCID: PMC6949909 DOI: 10.3390/md17120700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
As filter-feeding animals mainly ingesting microalgae, bivalves could accumulate paralytic shellfish toxins (PSTs) produced by harmful algae through diet. To protect themselves from the toxic effects of PSTs, especially the concomitant oxidative damage, the production of superoxide dismutase (SOD), which is the only eukaryotic metalloenzyme capable of detoxifying superoxide, may assist with toxin tolerance in bivalves. To better understand this process, in the present study, we performed the first systematic analysis of SOD genes in bivalve Chlamys farreri, an important aquaculture species in China. A total of six Cu/Zn-SODs (SOD1-6) and two Mn-SODs (SOD7, SOD8) were identified in C. farreri, with gene expansion being revealed in Cu/Zn-SODs. In scallops exposed to two different PSTs-producing dinoflagellates, Alexandrium minutum and A. catenella, expression regulation of SOD genes was analyzed in the top ranked toxin-rich organs, the hepatopancreas and the kidney. In hepatopancreas, which mainly accumulates the incoming PSTs, all of the six Cu/Zn-SODs showed significant alterations after A. minutum exposure, with SOD1, 2, 3, 5, and 6 being up-regulated, and SOD4 being down-regulated, while no significant change was detected in Mn-SODs. After A. catenella exposure, up-regulation was observed in SOD2, 4, 6, and 8, and SOD7 was down-regulated. In the kidney, where PSTs transformation occurs, SOD4, 5, 6, and 8 were up-regulated, and SOD7 was down-regulated in response to A. minutum feeding. After A. catenella exposure, all the Cu/Zn-SODs except SOD1 were up-regulated, and SOD7 was down-regulated in kidney. Overall, in scallops after ingesting different toxic algae, SOD up-regulation mainly occurred in the expanded Cu/Zn-SOD group, and SOD6 was the only member being up-regulated in both toxic organs, which also showed the highest fold change among all the SODs, implying the importance of SOD6 in protecting scallops from the stress of PSTs. Our results suggest the diverse function of scallop SODs in response to the PST-producing algae challenge, and the expansion of Cu/Zn-SODs might be implicated in the adaptive evolution of scallops or bivalves with respect to antioxidant defense against the ingested toxic algae.
Collapse
Affiliation(s)
- Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
| | - Jiarun Lou
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
| | - Xu Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-8203-1970; Fax: +86-0532-8203-1802
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; (S.L.); (L.Z.); (X.X.); (J.L.); (M.L.); (X.L.); (S.W.); (L.Z.); (Z.B.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
21
|
Glutathione peroxidases in poultry biology: Part 2. Modulation of enzymatic activities. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933918000260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Changing levels of selenium and zinc in cadmium-exposed workers: probable association with the intensity of inflammation. Mol Biol Rep 2019; 46:5455-5464. [PMID: 31364019 DOI: 10.1007/s11033-019-05001-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/24/2019] [Indexed: 01/08/2023]
Abstract
Inflammation is a response mediated by multiple cytokines, such as IL-6, IL-10 and TNF-α. Cadmium (Cd) has been involved in the etiopathogenesis of many diseases via inflammation. Selenium (Se) and zinc (Zn) play a pivotal role in maintaining many physiological functions of cells as well as inhibiting Cd-induced cytotoxicity. This study investigated the anti-inflammatory effects of Se and Zn in cadmium-exposed workers by measuring the levels of IL-6, IL-10 and TNF-α cytokines in 68 control and 91 Cd-exposed subjects. Blood samples were obtained from each participant for immunological, toxicological and routine analysis. All samples were digested by microwave oven and analysed by inductively coupled plasma mass spectrometry (ICP-MS). IL-6, IL-10 and TNF-α cytokine levels were found to be statistically different (p < 0.001) between the control and Cd-exposed groups (23.50 ± 7.70 pg/mL vs. 69.05 ± 19.06 pg/mL; 28.61 ± 9.83 pg/mL vs. 51.79 ± 11.77 pg/mL; 3.44 ± 1.14 pg/mL vs. 5.79 ± 1.04 pg/mL, respectively). High positive correlations were found between Cd levels of participants and IL-6, IL-10, TNF-α and CRP levels (r = 0.568, r = 0.615, r = 0.614 and r = 0.296, respectively, p < 0.01). In terms of the regression analysis results, there were significant effects of Cd on IL-6, IL-10 and TNF-α levels (p < 0.05). The Cd, Zn and Se levels between control and exposed group were significantly different [0.26 ± 0.15 µg/L vs. 3.36 ± 1.80 µg/L; 143.91 ± 71.13 µg/dL vs. 121.09 ± 59.88 µg/dL; 92.98 ± 17.03 µg/L vs. 82.72 ± 34.46 µg/L (p < 0.001, p < 0.03, p < 0.015), respectively]. In conclusion, increasing levels of Se and Zn decreases the intensity of inflammation as measured by IL-6, IL-10 and TNF-α levels.
Collapse
|
23
|
Gajski G, Žegura B, Ladeira C, Novak M, Sramkova M, Pourrut B, Del Bo' C, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales - (Part 2 Vertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:130-164. [PMID: 31416573 DOI: 10.1016/j.mrrev.2019.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
The comet assay has become one of the methods of choice for the evaluation and measurement of DNA damage. It is sensitive, quick to perform and relatively affordable for the evaluation of DNA damage and repair at the level of individual cells. The comet assay can be applied to virtually any cell type derived from different organs and tissues. Even though the comet assay is predominantly used on human cells, the application of the assay for the evaluation of DNA damage in yeast, plant and animal cells is also quite high, especially in terms of biomonitoring. The present extensive overview on the usage of the comet assay in animal models will cover both terrestrial and water environments. The first part of the review was focused on studies describing the comet assay applied in invertebrates. The second part of the review, (Part 2) will discuss the application of the comet assay in vertebrates covering cyclostomata, fishes, amphibians, reptiles, birds and mammals, in addition to chordates that are regarded as a transitional form towards vertebrates. Besides numerous vertebrate species, the assay is also performed on a range of cells, which includes blood, liver, kidney, brain, gill, bone marrow and sperm cells. These cells are readily used for the evaluation of a wide spectrum of genotoxic agents both in vitro and in vivo. Moreover, the use of vertebrate models and their role in environmental biomonitoring will also be discussed as well as the comparison of the use of the comet assay in vertebrate and human models in line with ethical principles. Although the comet assay in vertebrates is most commonly used in laboratory animals such as mice, rats and lately zebrafish, this paper will only briefly review its use regarding laboratory animal models and rather give special emphasis to the increasing usage of the assay in domestic and wildlife animals as well as in various ecotoxicological studies.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal; Centro de Investigação e Estudos em Saúde de Publica, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Monika Sramkova
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bertrand Pourrut
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Cristian Del Bo'
- DeFENS-Division of Human Nutrition, University of Milan, Milan, Italy
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Solange Costa
- Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry-MILK, NILU - Norwegian Institute for Air Research, Kjeller, Norway
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
| | - Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Khoso PA, Zhang Y, Yin H, Teng X, Li S. Selenium Deficiency Affects Immune Function by Influencing Selenoprotein and Cytokine Expression in Chicken Spleen. Biol Trace Elem Res 2019; 187:506-516. [PMID: 29926390 DOI: 10.1007/s12011-018-1396-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/23/2018] [Indexed: 01/14/2023]
Abstract
Se is an important bioelement essential for a healthy immune system. Dietary Se influences both innate and adaptive immune responses. However, the effects of Se deficiency in chicken spleen are still unknown; thus, we designed an experiment to study the role of Se in chicken spleen. A total of 180 one-day-old sea blue white laying hens were randomly allocated into two groups (a control group and a Se-deficient group). The control group was fed a diet supplemented with sodium selenite with a final Se content of 0.15 mg/kg, and the Se-deficient group was fed a Se-deficient diet with a Se content of 0.033 mg/kg. Twenty selenoproteins and ten cytokines were investigated in detail. The expression levels of selenoproteins in spleen were determined via real-time qPCR at 15, 35, and 55 days, and cytokine levels were determined using ELISA at 15, 35, and 55 days. Protein-protein interaction predictions and principal component analysis were performed. We found that the selenoprotein mRNA levels were significantly lower (P < 0.05) in the Se-deficient group compared with the control group. The expression levels of IL-2, IL-1β, IL-6, IFN-α, and IL-17 were significantly lower (P < 0.05), and the levels of IL-8, IL-10, IFN-γ, IFN-β, and TNF-α were significantly higher (P < 0.05) in the Se-deficient group. These selenoproteins were positively correlated with component 1 and component 2 of the PCA, but the relationship between cytokines and principal components in spleens was very complex. The investigation showed that Se deficiency caused a reduction in selenoprotein gene expression and further affected certain cytokines levels. Our results provide some compensatory data about selenoproteins and cytokines in spleens of Se-deficient chickens and provide clues for further research on the relationship between selenoproteins and cytokines.
Collapse
Affiliation(s)
- Pervez Ahmed Khoso
- College of Veterinary Medicine*, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Shaheed Benazir Bhutto, University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Yiming Zhang
- College of Veterinary Medicine*, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hang Yin
- College of Veterinary Medicine*, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine*, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
25
|
Wang L, Jing J, Yan H, Tang J, Jia G, Liu G, Chen X, Tian G, Cai J, Shang H, Zhao H. Selenium Pretreatment Alleviated LPS-Induced Immunological Stress Via Upregulation of Several Selenoprotein Encoding Genes in Murine RAW264.7 Cells. Biol Trace Elem Res 2018; 186:505-513. [PMID: 29671252 DOI: 10.1007/s12011-018-1333-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022]
Abstract
This study was conducted to profile selenoprotein encoding genes in mouse RAW264.7 cells upon lipopolysaccharide (LPS) challenge and integrate their roles into immunological regulation in response to selenium (Se) pretreatment. LPS was used to develop immunological stress in macrophages. Cells were pretreated with different levels of Se (0, 0.5, 1.0, 1.5, 2.0 μmol Se/L) for 2 h, followed by LPS (100 ng/mL) stimulation for another 3 h. The mRNA expression of 24 selenoprotein encoding genes and 9 inflammation-related genes were investigated. The results showed that LPS (100 ng/mL) effectively induced immunological stress in RAW264.7 cells with induced inflammation cytokines, IL-6 and TNF-α, mRNA expression, and cellular secretion. LPS increased (P < 0.05) mRNA profiles of 9 inflammation-related genes in cells, while short-time Se pretreatment modestly reversed (P < 0.05) the LPS-induced upregulation of 7 genes (COX-2, ICAM-1, IL-1β, IL-6, IL-10, iNOS, and MCP-1) and further increased (P < 0.05) expression of IFN-β and TNF-α in stressed cells. Meanwhile, LPS decreased (P < 0.05) mRNA levels of 18 selenoprotein encoding genes and upregulated mRNA levels of TXNRD1 and TXNRD3 in cells. Se pretreatment recovered (P < 0.05) expression of 3 selenoprotein encoding genes (GPX1, SELENOH, and SELENOW) in a dose-dependent manner and increased (P < 0.05) expression of another 5 selenoprotein encoding genes (SELENOK, SELENOM, SELENOS, SELENOT, and TXNRD2) only at a high level (2.0 μmol Se/L). Taken together, LPS-induced immunological stress in RAW264.7 cells accompanied with the global downregulation of selenoprotein encoding genes and Se pretreatment alleviated immunological stress via upregulation of a subset of selenoprotein encoding genes.
Collapse
Affiliation(s)
- Longqiong Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinzhong Jing
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hui Yan
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Trace Element Research Center, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Trace Element Research Center, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haiying Shang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.
- Trace Element Research Center, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
26
|
Lee MT, Lin WC, Lee TT. Potential crosstalk of oxidative stress and immune response in poultry through phytochemicals - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:309-319. [PMID: 30381743 PMCID: PMC6409470 DOI: 10.5713/ajas.18.0538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
Phytochemicals which exist in various plants and fungi are non-nutritive compounds that exert numerous beneficial bioactive actions for animals. In recent years following the restriction of antibiotics, phytochemicals have been regarded as a primal selection when dealing with the challenges during the producing process in the poultry industry. The selected fast-growing broiler breed was more fragile when confronting the stressors in their growing environments. The disruption of oxidative balance that impairs the production performance in birds may somehow be linked to the immune system since oxidative stress and inflammatory damage are multi-stage processes. This review firstly discusses the individual influence of oxidative stress and inflammation on the poultry industry. Next, studies related to the application of phytochemicals or botanical compounds with the significance of their antioxidant and immunomodulatory abilities are reviewed. Furthermore, we bring up nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and nuclear factor kappa B (NF-κB) for they are respectively the key transcription factors involved in oxidative stress and inflammation for elucidating the underlying signal transduction pathways. Finally, by the discussion about several reports using phytochemicals to regulate these transcription factors leading to the improvement of oxidative status, heme oxygenase-1 gene is found crucial for Nrf2-mediated NF-κB inhibition.
Collapse
Affiliation(s)
- M T Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - W C Lin
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - T T Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
27
|
Li Q, Chen G, Wang W, Zhang W, Ding Y, Zhao T, Li F, Mao G, Feng W, Wang Q, Yang L, Wu X. A novel Se-polysaccharide from Se-enriched G. frondosa protects against immunosuppression and low Se status in Se-deficient mice. Int J Biol Macromol 2018; 117:878-889. [DOI: 10.1016/j.ijbiomac.2018.05.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
|
28
|
Wan N, Xu Z, Liu T, Min Y, Li S. Ameliorative Effects of Selenium on Cadmium-Induced Injury in the Chicken Ovary: Mechanisms of Oxidative Stress and Endoplasmic Reticulum Stress in Cadmium-Induced Apoptosis. Biol Trace Elem Res 2018; 184:463-473. [PMID: 29090375 DOI: 10.1007/s12011-017-1193-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022]
Abstract
Despite the well-established toxicity of cadmium (Cd) to animals and the ameliorative effects of selenium (Se), some specific mechanisms in the chicken ovary are not yet clarified. To explore the mechanism by which the toxicity effect of Cd is induced and explore the effect of supranutritional Se on Cd toxicity in female bird reproduction, forty-eight 50-day-old Isa Brown female chickens were divided randomly into four groups. Group I (control group) was fed the basic diet containing 0.2 mg/kg Se. Group II (Se-treated group) was fed the basic diet supplemented with sodium selenite (Na2SeO3), and the total Se content was 2 mg/kg. Group III (Se + Cd-treated group) was fed the basic diet supplemented with Na2SeO3; the total Se content was 2 mg/kg, and it was supplemented with 150 mg/kg cadmium chloride (CdCl2). Group IV (Cd-treated group) was with the basic diet supplemented with 150 mg/kg CdCl2. The Cd, estradiol (E2), and progestogen (P4) contents changed after subchronic Cd exposure in chicken ovarian tissue; subsequently, oxidative stress occurred and activated the endoplasmic reticulum (ER) pathway to induce apoptosis. Further, Se decreased the accumulation of Cd in ovarian tissue, increased the E2 and P4 contents, alleviated oxidative stress, and reduced apoptosis via the ER stress pathway. The present results demonstrated that Cd could induce apoptosis via the ER stress pathway in chicken ovarian tissue and that Se had a significant antagonistic effect. These results are potentially valuable for finding a strategy to prevent Cd poisoning.
Collapse
Affiliation(s)
- Na Wan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhe Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tianqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yahong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
29
|
Konieczka P, Barszcz M, Choct M, Smulikowska S. The interactive effect of dietary n-6: n-3 fatty acid ratio and vitamin E level on tissue lipid peroxidation, DNA damage in intestinal epithelial cells, and gut morphology in chickens of different ages. Poult Sci 2018; 97:149-158. [PMID: 29077918 PMCID: PMC5850597 DOI: 10.3382/ps/pex274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/31/2017] [Indexed: 01/10/2023] Open
Abstract
Feeding chickens diets high in n-3 fatty acids (FA) increases their incorporation into tissue lipids, but leads to oxidative stress in cells. This study investigated the effect of the dietary polyunsaturated FA ratio (PUFA n-6: n-3) and vitamin E (vE) level on DNA damage and morphological changes in the gut epithelium of chickens. One-day-old female broiler chicks (n = 176) were divided into 4 groups fed for 43 d diets with a high (HR) or low (LR) PUFA n-6: n-3 ratio and supplemented with 50 or 300 mg vE kg-1. Performance was calculated for periods of d 1 to 9, d 9 to 16, d 9 to 35, and d 9 to 42, while organs were sampled at d 9, d 17, d 36, and d 43. At d 17 and d 43, DNA damage of epithelial cells in the duodenum and jejunum was measured and duodenal and jejunal morphology was analyzed. HR diets improved FCR for the periods of d 1 to 9, d 9 to 16 and d 9 to 42, whereas the increased vE level improved FCR for the period of d 9 to 16. In the jejunum DNA damage was greater in chickens fed LR than HR diets at d 17 (P < 0.001) and the increased vE level promoted DNA damage in both intestinal segments (P < 0.02) in younger birds. The morphology of the duodenum was marginally affected by the diets, whereas LR diets in the jejunum reduced villus surface area at d 17 (P = 0.022), and mucosa thickness (P = 0.029) and villus height (P = 0.035) at d 43. The results indicated that feeding birds LR diets and vE levels significantly exceeding the recommendation induced DNA damage in epithelial cells, but this effect varied depending on the intestinal segment and the age of birds.
Collapse
Affiliation(s)
- P Konieczka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland
| | - M Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland
| | - M Choct
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - S Smulikowska
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland
| |
Collapse
|
30
|
Lee M, Lin W, Wang S, Lin L, Yu B, Lee T. Evaluation of potential antioxidant and anti-inflammatory effects of Antrodia cinnamomea powder and the underlying molecular mechanisms via Nrf2- and NF-κB-dominated pathways in broiler chickens. Poult Sci 2018; 97:2419-2434. [DOI: 10.3382/ps/pey076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
|
31
|
Yuan X, Zhao J, Qu W, Zhang Y, Jia B, Fan Z, He Q, Li J. Accumulation and effects of dietary advanced glycation end products on the gastrointestinal tract in rats. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13817] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaojin Yuan
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Jinsong Zhao
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Wanting Qu
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Yingxiao Zhang
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Benpan Jia
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Zhiyi Fan
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Qihan He
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| | - Juxiu Li
- College of Food Science and Engineering; Northwest A&F University; Yangling 712100 China
| |
Collapse
|
32
|
Pan T, Liu T, Tan S, Wan N, Zhang Y, Li S. Lower Selenoprotein T Expression and Immune Response in the Immune Organs of Broilers with Exudative Diathesis Due to Selenium Deficiency. Biol Trace Elem Res 2018; 182:364-372. [PMID: 28780654 DOI: 10.1007/s12011-017-1110-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
The objective of the present study was to investigate whether dietary selenium (Se) deficiency would affect the expression of selenoprotein T (SelT) and immune response in the immune organs of broilers. Changes in expression of inflammatory cytokines and oxidative stress response caused by Se deficiency can lead to organism damage, which in turn leads to immune response. Sixty (1-day-old) broilers were divided into the control group and Se-deficiency group. Animal models with exudative diathesis were duplicated in the broilers by feeding them Se-deficient diet for 20 days. After the Se-deficient group exhibited symptoms of exudative diathesis, all the broilers were euthanized, and their immune organs were taken for analysis. The tissues including spleen, bursa of Fabricius, and thymus were treated to determine the pathological changes (including microscopic and ultramicroscopic), the messenger RNA (mRNA) expression levels of SelT and its synthetase (SecS and SPS1), cytokine mRNA expression levels, and antioxidant status. The microscopic and ultramicroscopic analyses showed that immune tissues were obviously injured in the Se-deficient group. The mRNA expression of SelT was decreased compared with that in the control group. Meanwhile, the mRNA expression levels of SecS and SPS1 were downregulated. In the Se-deficient group, the mRNA expression levels of IL-1R and IL-1β were higher than those of three control organs. Additionally, the IL-2 and INF-γ mRNA expression levels were lower than those of the control group. The activity of CAT was decreased, and the contents of H2O2 and •OH were increased due to Se deficiency. Pearson method analysis showed that the expression of SelT had a positive correlation with IL-2, INF-γ, SecS, and SPS1 and a negative correlation with IL-1R and IL-1β. In summary, these data indicated that Se-deficient diet decreased the SelT expression and its regulation of oxidative stress, and it inhibited a pleiotropic mechanism of the immune response.
Collapse
Affiliation(s)
- Tingru Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tianqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Siran Tan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Na Wan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
33
|
Infection, Oxidative Stress, and Changes in Circulating Regulatory T Cells of Heart Failure Patients Supported by Continuous-Flow Ventricular Assist Devices. ASAIO J 2018; 63:128-133. [PMID: 27922883 DOI: 10.1097/mat.0000000000000487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to investigate the changes in oxidative stress (OS) and circulating regulatory T cells (Tregs) of the immune system in patients supported by continuous-flow ventricular assist device (CF-VAD) with or without infection. We recruited 16 CF-VAD patients (5 with infection and 11 without infection) and 7 healthy volunteers. Generation of reactive oxygen species (ROS) from lymphocytes, superoxide dismutase (SOD) in erythrocyte, total antioxidant capacity (TAC), and oxidized low-density lipoprotein (oxLDL) in plasma were measured. Circulating Tregs were evaluated by flow cytometry. Heart failure (HF) patients had elevated OS than healthy volunteers as evident from higher lymphocyte ROS, elevated oxLDL, as well as depleted SOD and TAC levels. At baseline, HF patients had decreased percentage of Tregs (5.12 ± 1.5% vs. 8.14 ± 3.01%, p < 0.01) when compared with healthy volunteers. Postimplant patients with infection illustrated 35% and 44% rise in ROS and oxLDL, respectively, 31% decrease in TAC, and marked rise in percentage of Tregs (14.27 ± 3.17% vs. 9.38 ± 3.41%, p < 0.01) when compared with the patients without infection. Elevated OS and rise in Tregs were more prominent in CF-VAD patients with infection. In conclusion, OS and compromised immune system may be important indicators of systemic response of the body to CF-VAD among HF patients with infection.
Collapse
|
34
|
Liu Q, Yang J, Cai J, Luan Y, Sattar H, Liu M, Xu S, Zhang Z. Analysis of the Interactions Between Thioredoxin and 20 Selenoproteins in Chicken. Biol Trace Elem Res 2017; 179:304-317. [PMID: 28251482 DOI: 10.1007/s12011-017-0961-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
Thioredoxin (Trx) is a small molecular protein with complicated functions in a number of processes, including inflammation, apoptosis, embryogenesis, cardiovascular disease, and redox regulation. Some selenoproteins, such as glutathione peroxidase (Gpx), iodothyronine deiodinase (Dio), and thioredoxin reductase (TR), are involved in redox regulation. However, whether there are interactions between Trx and selenoproteins is still not known. In the present paper, we used a Modeller, Hex 8.0.0, and the KFC2 Server to predict the interactions between Trx and selenoproteins. We used the Modeller to predict the target protein in objective format and assess the accuracy of the results. Molecular interaction studies with Trx and selenoproteins were performed using the molecular docking tools in Hex 8.0.0. Next, we used the KFC2 Server to further test the protein binding sites. In addition to the selenoprotein physiological functions, we also explored potential relationships between Trx and selenoproteins beyond all the results we got. The results demonstrate that Trx has the potential to interact with 19 selenoproteins, including iodothyronine deiodinase 1 (Dio1), iodothyronine deiodinase 3 (Dio3), glutathione peroxidase 1 (Gpx1), glutathione peroxidase 2 (Gpx2), glutathione peroxidase 3 (Gpx3), glutathione peroxidase 4 (Gpx4), selenoprotein H (SelH), selenoprotein I (SelI), selenoprotein M (SelM), selenoprotein N (SelN), selenoprotein T (SelT), selenoprotein U (SelU), selenoprotein W (SelW), selenoprotein 15 (Sep15), methionine sulfoxide reductase B (Sepx1), selenophosphate synthetase 1 (SPS1), TR1, TR2, and TR3, among which TR1, TR2, TR3, SPS1, Sep15, SelN, SelM, SelI, Gpx2, Gpx3, Gpx4, and Dio3 exhibited intense correlations with Trx. However, additional experiments are needed to verify them.
Collapse
Affiliation(s)
- Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yilin Luan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hamid Sattar
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Man Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
35
|
Yang J, Hamid S, Liu Q, Cai J, Xu S, Zhang Z. Gene expression of selenoproteins can be regulated by thioredoxin(Txn) silence in chicken cardiomyocytes. J Inorg Biochem 2017; 177:118-126. [PMID: 28957736 DOI: 10.1016/j.jinorgbio.2017.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
Abstract
Thioredoxin (Txn) system is the most crucial antioxidant defense mechanism in myocardium. The aim of this study was to clarify the effect of Txn low expression on 25 selenoproteins in chicken cardiomyocytes. We developed a Se-deficient model (0.033mg/kg) and Txn knock down cardiomyocytes model (siRNA) studies. Western Blot, Quantitative Real-time PCR (qPCR) were performed, and correlation analysis, heat map were used for further analysis. Both low expression of Txn models are significantly decreased (P<0.05) the mRNA levels of Deiodinase 1, 2 (Dio 1, 2), Glutathione Peroxidase 1, 2, 3, 4 (Gpx 1, 2, 3, 4), Thioredoxin Reductase 1, 2, 3 (TR 1, 2, 3), Selenoprotein t (Selt), Selenoprotein w (Selw), Selenoprotein k (Selk), selenoprotein x1 (Sepx1), and significantly increased (P<0.05) the mRNA levels of the rest of selenoproteins. Correlation analysis showed that Deiodinase 3 (Dio 3), Selenoprotein m (Selm), 15-kDa Selenoprotein (Selp15), Selenoprotein h (Selh), Selenoprotein u (Selu), Selenoprotein i (Seli), Selenoprotein n (Seln), Selenoprotein p1 (Sepp1), Selenoprotein o (Selo), Selenoprotein s (Sels), Selenoprotein synthetase 2 (Sels2) and Selenoprotein p (Selp) had a negative correlation with Txn, while the rest of selenoproteins had a positive correlation with Txn. Combined in vivo and in vitro we can know that hamper Txn expression can inhibit Gpx 1, 2, 3, 4, TR 1, 2, 3, Dio 1, 2, Selt, Selw, Selk, Sepx1, meanwhile, over expression the rest of selenoproteins. In conclusion, the different selenoproteins possess and exhibit distinct responses to silence of Txn in chicken cardiomyocytes.
Collapse
Affiliation(s)
- Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Sattar Hamid
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
36
|
Wang Y, Liu Y, Wan H, Zhu Y, Chen P, Hao P, Cheng Z, Liu J. Moderate selenium dosing inhibited chromium (VI) toxicity in chicken liver. J Biochem Mol Toxicol 2017; 31. [PMID: 28321998 DOI: 10.1002/jbt.21916] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/10/2017] [Accepted: 02/17/2017] [Indexed: 01/18/2023]
Abstract
This study aimed to clarify the effect of selenium (Se) on chromium (VI) [Cr(VI)]-induced damage in chicken liver. A total of 105 chickens were randomly divided into seven groups of 15. Group I received deionized water; group II received Cr(VI) (7.83 mg/kg/d) alone; and other groups orally received both Cr(VI) (7.83 mg/kg/d) and Se of different doses (0.14, 0.29, 0.57, 1.14, and 2.28 mg/kg/d). The levels of superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), Ca2+ -ATPase, and mitochondrial membrane potential (MMP) were measured. Results showed that Cr(VI) increased MDA content and decreased GSH content, T-SOD activity, Ca2+ -ATPase activity, and MMP level. Meanwhile, Se co-treatment (0.14, 0.29, and 0.57 mg/kg/d) increased the viability of the above indicators compared with Cr(VI)-treatment alone. In addition, histopathologic examination revealed that Cr(VI) can cause liver damage, whereas Se supplementation of moderate dose inhibited this damage. This study confirmed that Se exerted protective effect against Cr(VI)-induced liver damage.
Collapse
Affiliation(s)
- Yang Wang
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, People's Republic of China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, People's Republic of China
| | - Huiyu Wan
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, People's Republic of China
| | - Yiran Zhu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, People's Republic of China
| | - Peng Chen
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, People's Republic of China
| | - Pan Hao
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, People's Republic of China
| | - Ziqiang Cheng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, People's Republic of China
| | - Jianzhu Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong, 271018, People's Republic of China
| |
Collapse
|
37
|
Tan S, Chi Q, Liu T, Sun Z, Min Y, Zhang Z, Li S. Alleviation Mechanisms of Selenium on Cadmium-Spiked Neutrophil Injury to Chicken. Biol Trace Elem Res 2017; 178:301-309. [PMID: 28064415 DOI: 10.1007/s12011-016-0924-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/25/2016] [Indexed: 01/10/2023]
Abstract
To determine the negative effects of cadmium (Cd) exposure and the protective role of selenium (Se) on Cd-spiked neutrophils of chicken, forty-eight 28-day-old Isa Brown male chickens were divided randomly into four groups. Group I (control group) was fed with the basic diet containing 0.2 mg/kg Se. Group II (Se-treated group) was fed with the basic diet supplemented with Na2SeO3, and the total Se content was 2 mg/kg. Group III (Se/Cd-treated group) was fed with the basic diet supplemented with Na2SeO3; the total Se content was 2 mg/kg and supplemented with 150 mg/kg CdCl2. Group IV (Cd-treated group) was fed with the basic diet supplemented with 150 mg/kg CdCl2. Analyses of inflammatory factors, cytokines, and heat shock protein (Hsp) messenger RNA (mRNA) expression were detected by real-time PCR (RT-PCR). Additionally, we evaluated the phagocytic rate of neutrophils in peripheral blood. First, we observed that Cd significantly induced the mRNA expression levels of inflammatory factors NF-κB, iNOS, COX-2, and TNF-α, while Se/Cd treatment reduced their mRNA expression, although these expression levels remained higher than that of the control group. In addition, the mRNA expression levels of cytokines (IL-2, IL-4, and IL-10) for the Se-treated group exhibited significant differences between the Se/Cd-treated group and the Cd-treated group. Furthermore, the mRNA expression levels of Hsps demonstrated that the Se/Cd-treated group and the Cd-treated group were significantly higher (P < 0.05) than the control group and the Se-treated group. These results demonstrated that Se presented partial protection on Cd-spiked neutrophils of chicken with Hsps being involved in the process of the Cd-spiked toxic effects in chicken peripheral blood neutrophils.
Collapse
Affiliation(s)
- Siran Tan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tianqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhepeng Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yahong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
38
|
Selenium deficiency-induced thioredoxin suppression and thioredoxin knock down disbalanced insulin responsiveness in chicken cardiomyocytes through PI3K/Akt pathway inhibition. Cell Signal 2017; 38:192-200. [PMID: 28734787 DOI: 10.1016/j.cellsig.2017.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/26/2017] [Accepted: 07/16/2017] [Indexed: 01/15/2023]
Abstract
Thioredoxin (Txn) system is the most crucial antioxidant defense mechanism in cell consisting of Txn, thioredoxin reductase (TR) and Nicotinamide Adenine Dinucleotide Phosphate (NADPH). Perturbations in Txn system may compromise cell survival through oxidative stress induction. Metabolic activity of insulin plays important roles in fulfilling the stable and persistent demands of heart through glucose metabolism. However, the roles of Txn and Txn system in insulin modulated cardiac energy metabolism have been less reported. Therefore, to investigate the role of Txn in myocardial metabolism, we developed a Se-deficient chicken model (0.033mg/kg) for in-vivo and Txn knock down cardiomyocytes culture model (siRNA) for in-vitro studies. Quantitative real time PCR and western blotting was performed. Se deficiency suppressed Txn and TR in cardiac tissues. Significant increases in ROS (P<0.05) levels signify the onset of oxidative stress and in both models. Se deficiency-induced Txn suppression model and Txn knock down cardiomyocytes models significantly decreased (P<0.05), the mRNA and protein levels of insulin-like growth factors (IGF1, IGF2), IGF-binding proteins (IGFBP2, IGFBP4), insulin receptor (IR), insulin receptor substrates (IRS1, IRS2), and glucose transporters (GLUT1, GLUT3, GLUT8), however, IGFBP3 expression increased in Txn knock down cardiomyocytes. In addition, in contrast to their respective controls, Se deficiency-induced Txn depleted tissues and Txn deleted cardiomyocytes showed suppression in mRNA and protein levels of PI3K, AKT, P-PI3K, and repression in FOX, P-FOX JNK genes. Combing the in vitro and in vivo experiments, we demonstrate that Txn gene suppression can cause dysfunction of insulin-modulated cardiac energy metabolism and increase insulin resistance through PI3K-Akt pathway inhibition. Herein, we conclude that inactivation of Txn system can alter cellular insulin response through IRS/PI3K/Akt pathway repression and JNK and FOX expression. These findings point out that Txn system can redox regulate the insulin dependent glucose metabolism in heart and is essential for cell vitality. Moreover, the increased expression of IGFBP3 indicates that it can be a potential negative modulator of metabolic activity of insulin in Txn deficient cells.
Collapse
|
39
|
Khoso PA, Pan T, Wan N, Yang Z, Liu C, Li S. Selenium Deficiency Induces Autophagy in Immune Organs of Chickens. Biol Trace Elem Res 2017; 177:159-168. [PMID: 27744599 DOI: 10.1007/s12011-016-0860-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
Abstract
The aim of the present study was to investigate the effects of selenium (Se) deficiency on autophagy-related genes and on ultrastructural changes in the spleen, bursa of Fabricius, and thymus of chickens. The Se deficiency group was fed a basal diet containing Se at 0.033 mg/kg and the control group was fed the same basal diet containing Se at 0.15 mg/kg. The messenger RNA (mRNA) levels of the autophagy genes microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin 1, dynein, autophagy associated gene 5 (ATG5), and target of rapamycin complex 1 (TORC1) were assessed using real-time qPCR. The protein levels of LC3-II, Beclin 1, and dynein were investigated using western blot analysis. Furthermore, the ultrastructure was observed using an electron microscope. The results indicated that spleen mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of LC3-II, Beclin 1, and dynein were increased in the Se deficiency group compared with the control group. In the bursa of Fabricius, the mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of Beclin 1 and dynein were increased; furthermore, the protein level of LC3-II was decreased in the Se deficiency group compared to the control group. In the thymus, the mRNA levels of LC3-I, Beclin 1, and ATG5 increased; the levels of LC3-II, dynein, and TORC1 were decreased; the protein level of Beclin 1 increased; and the levels of LC3-II and dynein decreased in the Se deficiency group compared to those in the control group. Further cellular morphological changes, such as autophagy vacuoles, autolysosomes, and lysosomal degradation, were observed in the spleen, bursa of Fabricius, and thymus of the Se-deficiency group. In summary, Se deficiency caused changes in autophagy-related genes, which increased the autophagic process and also caused structural damages to the immune organs of chickens.
Collapse
Affiliation(s)
- Pervez Ahmed Khoso
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tingru Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Na Wan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
40
|
Jiao X, Yang K, An Y, Teng X, Teng X. Alleviation of lead-induced oxidative stress and immune damage by selenium in chicken bursa of Fabricius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7555-7564. [PMID: 28116627 DOI: 10.1007/s11356-016-8329-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
We investigated lead (Pb)-induced oxidative stress and immune damage in the chicken bursa of Fabricius (BF) and the ameliorative effect of selenium (Se). Seven-day-old male chickens were randomly divided into four groups and were provided standard diet and drinking water, Na2SeO3 added to the standard diet and drinking water, standard diet and (CH3COO)2Pb added to drinking water, and Na2SeO3 added to the standard diet and (CH3COO)2Pb added to drinking water for 30, 60, and 90 days. The presence of Pb inhibited total antioxidant capacity (T-AOC), glutathione peroxidase (GPx), glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) activities; decreased glutathione (GSH) content; increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents; inhibited interleukin (IL)-2 and interferon-γ (IFN-γ) messenger RNA (mRNA) expression; and increased IL-4, IL-6, IL-10, IL-12β, and IL-17 mRNA expression. The presence of Se relieved all of the above Pb-induced changes. There were close correlations among GSH, CAT, T-AOC, SOD, GPx, MDA, and H2O2 and among IL-2, IL-4, IL-6, IL-12β, IL-17, and IFN-γ. Our data showed that Pb caused oxidative stress and immune damage in the chicken BF. Se alleviated Pb-induced oxidative stress and immune damage in the chicken BF.
Collapse
Affiliation(s)
- Xiaoyan Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kai Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yang An
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaojie Teng
- Grassland Workstation in Heilongjiang Province, Harbin, 150067, People's Republic of China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
41
|
Yang T, Zhao Z, Liu T, Zhang Z, Wang P, Xu S, Lei XG, Shan A. Oxidative stress induced by Se-deficient high-energy diet implicates neutrophil dysfunction via Nrf2 pathway suppression in swine. Oncotarget 2017; 8:13428-13439. [PMID: 28077800 PMCID: PMC5355109 DOI: 10.18632/oncotarget.14550] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/27/2016] [Indexed: 01/09/2023] Open
Abstract
The mechanism of the interaction between Se deficiency and high energy remains limited. The aim of the current study was to identify whether Se-deficient, high-energy diet can induce oxidative stress, and downregulate the Nrf2 pathway and phagocytic dysfunction of neutrophils. We detected the phagocytic activity, ROS production, protein levels of Nrf2 and Nrf2 downstream target genes, and the mRNA levels of 25 selenoproteins, heat shock proteins, and cytokines in neutrophils. Cytokine ELISA kits were used to measure the serum cytokines. The concentration of ROS was elevated (P < 0.05) in obese swine fed on a low Se diet (less than 0.03 mg/kg Se) compared to control swine. The protein levels of Nrf2 and its downstream target genes were depressed during Se deficiency and high-energy intake. The mRNA levels of 16 selenoproteins were significantly decreased (P < 0.05) in the Se-deficient group and Se-deficient, high-energy group compared to the control group. However, the mRNA levels of 13 selenoproteins in peripheral blood neutrophils were upregulated in high energy group, except TrxR1, SelI and SepW. In summary, these data indicated that a Se-deficient, high-energy diet inhibits the Nrf2 pathway and its regulation of oxidative stress, and prompted a pleiotropic mechanism that suppresses phagocytosis.
Collapse
Affiliation(s)
- Tianshu Yang
- Northeast Agricultural University, Harbin, P. R. China
| | - Zeping Zhao
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tianqi Liu
- Northeast Agricultural University, Harbin, P. R. China
| | - Ziwei Zhang
- Northeast Agricultural University, Harbin, P. R. China
| | - Pengzu Wang
- Northeast Agricultural University, Harbin, P. R. China
| | - Shiwen Xu
- Northeast Agricultural University, Harbin, P. R. China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Anshan Shan
- Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
42
|
Liu Y, Jiao X, Teng X, Gu X, Teng X. Antagonistic effect of selenium on lead-induced inflammatory injury through inhibiting the nuclear factor-κB signaling pathway and stimulating selenoproteins in chicken hearts. RSC Adv 2017. [DOI: 10.1039/c7ra00034k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the chicken model of Pb and Se, Se alleviated Pb-induced the changes of inflammatory factors, selenoproteins, and histology. Se alleviated Pb-induced inflammatory injury through inhibiting NF-κB signaling pathway and stimulating selenoproteins in the chicken hearts.
Collapse
Affiliation(s)
- Yanyan Liu
- College of Veterinary Medicine
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Xiaoyan Jiao
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Xiaojie Teng
- Grassland Workstation in Heilongjiang Province
- Harbin 150067
- People's Republic of China
| | - Xianhong Gu
- Institute of Animal Science
- Chinese Academy of Agricultural Sciences
- Beijing 100193
- People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| |
Collapse
|
43
|
Khoso PA, Liu C, Liu C, Khoso MH, Li S. Selenium Deficiency Activates Heat Shock Protein Expression in Chicken Spleen and Thymus. Biol Trace Elem Res 2016; 173:492-500. [PMID: 27005933 DOI: 10.1007/s12011-016-0673-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/14/2016] [Indexed: 01/27/2023]
Abstract
Heat shock proteins (Hsps) are protective proteins present in nearly all species; they are used as biomarkers of various stress conditions in humans, animals, and birds. Selenium (Se) deficiency, which can depress the production of Hsps, can cause chicken tissue injuries. To investigate Hsp production, mRNA, and protein levels in Se-deficient chicken spleens and thymuses, a total of 180 1-day-old sea blue white laying hens (90 chickens/group) were harvested in two groups (the control group and the Se-deficient group) in 15, 25, 35, 45, and 55 days, respectively. The results showed that mRNA levels of Hsp27, Hsp40, Hsp60, Hsp70, and Hsp90 were significantly increased in the spleens and thymuses of the Se-deficient group compared to the control group. Further protein levels of Hsp60, Hsp70, and Hsp90 were also significantly increased in the spleen and thymus of the Se-deficient group compared to the control group. Meanwhile, the spleen expression ratio of Hsp40 mRNA level and Hsp70 protein level were higher in the Se-deficient group than other proteins. In the thymus, the Hsp90 mRNA level and Hsp60 protein expression level were the highest level in the Se-deficient group among other proteins. Based on these results, we concluded that Se deficiency could induce a protective stress response in chicken by means of promoting the mRNA and protein expression of Hsps, thus easing the effects of Se deficiency to some extent.
Collapse
Affiliation(s)
- Pervez Ahmed Khoso
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chunpeng Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Mir Hassan Khoso
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
44
|
Akşit D, Yazıcı A, Akşit H, Sarı ES, Yay A, Yıldız O, Kılıç A, Ermiş SS, Seyrek K. Selenium Protects Retinal Cells from Cisplatin-Induced Alterations in Carbohydrate Residues. Balkan Med J 2016; 33:441-7. [PMID: 27606141 PMCID: PMC5001823 DOI: 10.5152/balkanmedj.2015.155532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Investigate alterations in the expression and localization of carbohydrate units in rat retinal cells exposed to cisplatin toxicity. AIMS The aim of the study was to evaluate putative protective effects of selenium on retinal cells subjected to cisplatin. STUDY DESIGN Animal experiment. METHODS Eighteen healthy Wistar rats were divided into three equal groups: 1. Control, 2. Cisplatin and 3. Cisplatin+selenium groups. After anesthesia, the right eye of each rat was enucleated. RESULTS Histochemically, retinal cells of control groups reacted with α-2,3-bound sialic acid-specific Maackia amurensis lectin (MAA) strongly, while cisplatin reduced the staining intensity for MAA. However, selenium administration alleviated the reducing effect of cisplatin on the binding sites for MAA in retinal cells. The staining intensity for N-acetylgalactosamine (GalNAc residues) specific Griffonia simplicifolia-1 (GSL-1) was relatively slight in control animals and cisplatin reduced this slight staining for GSL-1 further. Selenium administration mitigated the reducing effect of cisplatin on the binding sites for GSL-1. A diffuse staining for N-acetylglucosamine (GlcNAc) specific wheat germ agglutinin (WGA) was observed throughout the retina of the control animals. In particular, cells localized in the inner plexiform and photoreceptor layers are reacted strongly with WGA. Compared to the control animals, binding sites for WGA in the retina of rats given cisplatin were remarkably decreased. However, the retinal cells of rats given selenium reacted strongly with WGA. CONCLUSION Cisplatin reduces α-2,3-bound sialic acid, GlcNAc and GalNAc residues in certain retinal cells. However, selenium alleviates the reducing effect of cisplatin on carbohydrate residues in retinal cells.
Collapse
Affiliation(s)
- Dilek Akşit
- Department of Pharmacology and Toxicology, Balıkesir University School of Veterinary, Balıkesir, Turkey
| | - Alper Yazıcı
- Department of Ophthalmology, Balıkesir University School of Medicine, Balıkesir, Turkey
| | - Hasan Akşit
- Department of Biochemistry, Balıkesir University School of Veterinary, Balıkesir, Turkey
| | - Esin S. Sarı
- Department of Ophthalmology, Balıkesir University School of Medicine, Balıkesir, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, University of Erciyes School of Medicine, Kayseri, Turkey
| | - Onur Yıldız
- Department of Biochemistry, Balıkesir University School of Veterinary, Balıkesir, Turkey
| | - Adil Kılıç
- Department of Ophthalmology, Balıkesir University School of Medicine, Balıkesir, Turkey
| | - Sıtkı S. Ermiş
- Department of Ophthalmology, Balıkesir University School of Medicine, Balıkesir, Turkey
| | - Kamil Seyrek
- Department of Medicinal Biochemistry, Balıkesir University School of Medicine, Balıkesir, Turkey
| |
Collapse
|
45
|
Cao C, Zhao X, Fan R, Zhao J, Luan Y, Zhang Z, Xu S. Dietary selenium increases the antioxidant levels and ATPase activity in the arteries and veins of poultry. Biol Trace Elem Res 2016; 172:222-227. [PMID: 26637493 DOI: 10.1007/s12011-015-0584-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022]
Abstract
Selenium (Se) deficiency is associated with the pathogenesis of vascular diseases. It has been shown that oxidative levels and ATPase activity were involved in Se deficiency diseases in humans and mammals; however, the mechanism by how Se influences the oxidative levels and ATPase activity in the poultry vasculature is unclear. We assessed the effects of dietary Se deficiency on the oxidative stress parameters (superoxide dismutase, catalase, and hydroxyl radical) and ATPase (Na(+)K(+)-ATPase, Ca(++)-ATPase, Mg(++)-ATPase, and Ca(++)Mg(++)-ATPase) activity in broiler poultry. A total of 40 broilers (1-day old) were randomly divided into a Se-deficient group (L group, fed a Se-deficient diet containing 0.08 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.20 mg/kg Se). Then, arteries and veins were collected following euthanasia when typical symptoms of Se deficiency appeared. Antioxidant indexes and ATPase activity were evaluated using standard assays in arteries and veins. The results indicated that superoxide dismutase activity in the artery according to dietary Se deficiency was significantly lower (p < 0.05) compared with the C group. The catalase activity in the veins and hydroxyl radical inhibition in the arteries and veins by dietary Se deficiency were significantly higher (p < 0.05) compared with the C group. The Se-deficient group showed a significantly lower (p < 0.05) tendency in Na(+)K(+)-ATPase activity, Ca(++)-ATPase activity, and Ca(++)Mg(++)-ATPase activity. There were strong correlations between antioxidant indexes and Ca(++)-ATPase activity. Thus, these results indicate that antioxidant indexes and ATPases may have special roles in broiler artery and vein injuries under Se deficiency.
Collapse
Affiliation(s)
- Changyu Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ruifeng Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jinxin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yilin Luan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
46
|
Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. Int J Cardiol 2016; 213:8-14. [PMID: 26316329 DOI: 10.1016/j.ijcard.2015.08.109] [Citation(s) in RCA: 798] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022]
Abstract
Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Italy
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Italy
| | - Santo Gratteri
- Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), University "Magna Graecia" of Catanzaro, Italy.
| |
Collapse
|
47
|
Goel A, Bhanja SK, Mehra M, Mandal A, Pande V. In ovo trace element supplementation enhances expression of growth genes in embryo and immune genes in post-hatch broiler chickens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2737-2745. [PMID: 26399199 DOI: 10.1002/jsfa.7438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/25/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Differential expression of growth- and immunity-related genes and post-hatch performances were evaluated in in ovo zinc (Zn), iodine (I) or selenium (Se) supplemented chicken embryos. RESULT There was about 9-18% reduction in hatchability of Zn, I or Se supplemented eggs. In ovo trace element supplementation did not improve post-hatch growth. Two-way analysis of data revealed significant effect (P > 0.01) of period, trace elements and their interactions. Expression of hepatic somatotropin, insulin-like growth factor-II and mucin gene was highest at 20(th) embryonic day but decreased during post-hatch periods. In ovo Zn or I supplemented embryos had higher expression of growth-related genes compared to the Se or un-injected control group. Expression of interleukin-6 was higher (P < 0.01) in in ovo I supplemented chicks (2.5-fold) but lower in the Zn and Se groups than in the un-injected control group. However, Zn and Se supplemented chicks had higher cellular immune gene expression. In vivo response to mitogen phytohaemaglutinin was also higher (P < 0.01) in Zn or Se supplemented chicks CONCLUSION In ovo supplementation of Zn, I and Se did not improve the post-hatch growth, but increased growth-related gene expression. Iodine improved humoral immune gene expression whereas Zn and Se enhanced cell-mediated immune gene expression in broiler chickens. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Akshat Goel
- Central Avian Research Institute, Bareilly, Uttar Pradesh, India
- Division of Biotechnology, Kumaon University, Bhimtal, Uttrakhand, India
| | - Subrat K Bhanja
- Central Avian Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Mehra
- Central Avian Research Institute, Bareilly, Uttar Pradesh, India
| | - Asitbaran Mandal
- Central Avian Research Institute, Bareilly, Uttar Pradesh, India
| | - Veena Pande
- Division of Biotechnology, Kumaon University, Bhimtal, Uttrakhand, India
| |
Collapse
|
48
|
Yang Z, Liu C, Zheng W, Teng X, Li S. The Functions of Antioxidants and Heat Shock Proteins Are Altered in the Immune Organs of Selenium-Deficient Broiler Chickens. Biol Trace Elem Res 2016; 169:341-51. [PMID: 26123162 DOI: 10.1007/s12011-015-0407-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Despite increasing evidence indicating the essential involvement of selenium (Se) in the immune system, the effect of Se deficiency on the regulation of oxidative stress and heat shock proteins (Hsps) in broiler chickens is still unclear. In the present study, we established an exudative diathesis (ED) broiler chicken model caused by Se deficiency. We then analyzed histological observations and detected the expression levels of Hsps and antioxidant indexes in immune tissues. The antioxidant function declined remarkably, and most of the Hsp expression levels increased significantly in the spleen, thymus, and bursa of Fabricius of the broiler chicks with ED (except the messenger RNA (mRNA) levels of Hsp27, Hsp40, and Hsp70, which decreased in thymus tissues from the treatment groups); therefore, constitutive oxidation resistance and higher Hsps in broiler chicks with ED caused defects in immune organ morphology and function, as evidenced by abnormal histological structures: red pulp broadening and lymphocytes in the cortex and medulla of the thymic lobule decreased distinctly and distributed loosely. These results underscore the importance of Se in establishing an immune organ microenvironment conducive to normal function.
Collapse
Affiliation(s)
- Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Weijia Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
49
|
Guo Y, Zhao P, Guo G, Hu Z, Tian L, Zhang K, Zhang W, Xing M. The Role of Oxidative Stress in Gastrointestinal Tract Tissues Induced by Arsenic Toxicity in Cocks. Biol Trace Elem Res 2015; 168:490-9. [PMID: 25971879 DOI: 10.1007/s12011-015-0357-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/26/2015] [Indexed: 01/08/2023]
Abstract
Arsenic (As) is a widely distributed trace element which is known to be associated with numerous adverse effects on human beings and animals. Arsenic trioxide (As2O3) is an inorganic arsenical-containing toxic compound. The effect of excessive amounts of As2O3 exposure on gastrointestinal tract tissue damage in cocks is still unknown. This study was conducted to investigate the effect of As2O3 exposure on gastrointestinal tract tissue damage in cocks. In total, 72 1-day-old male Hyline cocks were randomly divided into four groups and fed either a commercial diet or an As2O3 supplement diet containing 7.5, 15, and 30 mg/kg As2O3. The experiment lasted for 90 days and gastrointestinal tract tissue samples (gizzard, glandular stomach, duodenum, jejunum, ileum, cecum, and rectum) were collected at 30, 60, and 90 days. Catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px) activities; malondialdehyde (MDA) contents; and hydroxyl radical (OH·)-mediated inhibition were examined. Furthermore, the results demonstrated that MDA content in the gastrointestinal tract was increased, while the activities of CAT, GSH, and GSH-Px and the ability to resist OH· was decreased in the As2O3 treatment groups. Extensive damage was observed in the gastrointestinal tract. These findings indicated that As2O3 exposure caused oxidative damage in the gastrointestinal tract of cocks due to alterations in antioxidant enzyme activities and elevation of free radicals.
Collapse
Affiliation(s)
- Ying Guo
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| | - Panpan Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| | - Guangyang Guo
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Zhibo Hu
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Li Tian
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Kexin Zhang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China
| | - Wen Zhang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang Province, China.
| |
Collapse
|
50
|
Wang Y, Wang H, Zhan X. Effects of different dl-selenomethionine and sodium selenite levels on growth performance, immune functions and serum thyroid hormones concentrations in broilers. J Anim Physiol Anim Nutr (Berl) 2015; 100:431-9. [PMID: 26608352 DOI: 10.1111/jpn.12396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/29/2015] [Indexed: 11/28/2022]
Abstract
This trial was conducted in a 2 × 3 + 1 factorial arrangement based on a completely randomized design to evaluate the effects of different dl-selenomethionine (dl-Se-Met) and sodium selenite (SS) levels on growth performance, immune functions and serum thyroid hormones concentrations in broilers. A total of 840 Ross 308 broilers (7 days old) were allocated by body weight to seven treatments (three replicates of 40 birds each treatment) including (1) basal diet (containing 0.04 mg of selenium (Se)/kg; control) without supplementary Se; (2, 3 and 4) basal diet + 0.05, 0.15 or 0.25 mg/kg Se as SS; (5, 6 and 7) basal diet + 0.05, 0.15 or 0.25 mg/kg Se as dl-Se-Met. The experiment lasted 42 days. The results revealed that dietary Se supplementation improved (p < 0.05) average daily gain, feed efficiency, immune organ index, serum immunoglobulin A (IgA), immunoglobulin G (IgG), immunoglobulin M (IgM) and triiodothyronine (T3 ) concentrations and decreased (p < 0.01) thyroxine (T4 )/T3 ratio in serum compared with the control. Broilers receiving the dl-Se-Met-supplemented diets had higher (p < 0.05) feed efficiency, thymus index, the amounts of IgA, IgG, IgM and T3 as well as lower (p < 0.05) serum T4 concentrations and T4 /T3 ratio than those consuming the SS-supplemented diets. Serum IgA and IgM levels of broilers fed 0.15 mg Se/kg were significantly higher (p < 0.05) than those of broilers fed 0.05 or 0.25 mg Se/kg. In summary, we concluded that dl-Se-Met is more effective than SS in increasing immunity and promoting conversion of T4 to T3 , thus providing an effective way to improve the growth performance of broilers. Besides, based on a consideration of all experiment indices, 0.15 mg Se/kg was suggested to be the optimal level of Se supplementation under the conditions of this study.
Collapse
Affiliation(s)
- Y Wang
- College of Animal Science and Technology, Zhejiang A and F University, Linan, China
| | - H Wang
- College of Animal Science and Technology, Zhejiang A and F University, Linan, China
| | - X Zhan
- College of Animal Science and Technology, Zhejiang A and F University, Linan, China.,Feed Science Institute, College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|