1
|
Shi Y, Peng H, Liao Y, Li J, Yin Y, Peng H, Wang L, Tan Y, Li C, Bai H, Ma C, Tan W, Li X. The Prophylactic Protection of Salmonella Typhimurium Infection by Lentilactobacillus buchneri GX0328-6 in Mice. Probiotics Antimicrob Proteins 2024; 16:2054-2072. [PMID: 37668855 PMCID: PMC11573835 DOI: 10.1007/s12602-023-10145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Salmonellosis is a disease caused by non-typhoid Salmonella, and although some lactic acid bacteria strains have been shown previously to relieve Salmonellosis symptoms, little has been studied about the preventive mechanism of Lentilactobacillus buchneri (L. buchneri) against Salmonella infection in vivo. Therefore, the L. buchneri was fed to C57BL/6 mice for 10 days to build a protective system of mice to study its prevention and possible mechanisms. The results showed that L. buchneri GX0328-6 alleviated symptoms caused by Salmonella typhimurium infection among C57BL/6 mice, including low survival rate, weight loss, increase in immune organ index and hepatosplenomegaly, and modulated serum immunoglobulin levels and intrinsic immunity. Importantly, the L. buchneri GX0328-6 enhanced the mucosal barrier of the mouse jejunum by upregulating the expression of tight junction proteins such as ZO-1, occludins, and claudins-4 and improved absorptive capacity by increasing the length of mouse jejunal villus and the ratio of villus length to crypt depth and decreasing the crypt depth. L. buchneri GX0328-6 reduced the intestinal proliferation and invasion of Salmonella typhimurium by modulating the expression of antimicrobial peptides in the intestinal tract of mice, and reduced intestinal inflammation and systemic spread in mice by downregulating the expression of IL-6 and promoting the expression of IL-10. Furthermore, L. buchneri GX0328-6 increased the relative abundance of beneficial bacteria colonies and decreased the relative abundance of harmful bacteria in the cecum microflora by modulating the microflora in the cecum contents.
Collapse
Affiliation(s)
- Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China.
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Yangyan Yin
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongyan Peng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Leping Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yizhou Tan
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Changting Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Huili Bai
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Chunxia Ma
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
- Fangchenggang Administrative Examination and Approval Service Center, Fangchenggang, 538001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, 530021, China
| | - Wenbao Tan
- Qibainong Chicken Industry Development Center of Dahua Yao Autonomous County, Dahua Guangxi, 530800, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Helbawi E, Abd El-Latif SA, Toson MA, Banach A, Mohany M, Al-Rejaie SS, Elwan H. Impacts of Biosynthesized Manganese Dioxide Nanoparticles on Antioxidant Capacity, Hematological Parameters, and Antioxidant Protein Docking in Broilers. ACS OMEGA 2024; 9:9396-9409. [PMID: 38434868 PMCID: PMC10905714 DOI: 10.1021/acsomega.3c08775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Using green tomato extract, a green approach was used to synthesize manganese oxide nanoparticles (MnO2NPs). The synthesis of MnO2NPs was (20.93-36.85 nm) confirmed by energy-dispersive X-ray (EDX), scanning and transmission electron microscopy (SEM and TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy (UV-vis) analyses. One hundred fifty-day-old Arbor Acres broiler chicks were randomly divided into five groups. The control group received a diet containing 60 mg Mn/kg (100% NRC broiler recommendation). The other four groups received different levels of Mn from both bulk MnO2 and green synthesized MnO2NPs, ranging from 66 to 72 mg/kg (110% and 120% of the standard level). Each group comprised 30 birds, in three replicates of 10 birds each. Generally, the study's results indicate that incorporating MnO2NPs as a feed additive had no negative effects on broiler chick growth, antioxidant status, and overall physiological responses. The addition of MnO2NPs, whether at 66 or 72 mg/kg, led to enhanced superoxide dismutase (SOD) activity in both serum and liver tissues of the broiler chicks. Notably, the 72 mg MnO2NPs group displayed significantly higher SOD activity compared to the other groups. The study was further justified through docking. High throughput targeted docking was performed for proteins GHS, GST, and SOD with MnO2. SOD showed an effective binding affinity of -2.3 kcal/mol. This research sheds light on the potential of MnO2NPs as a safe and effective feed additive for broiler chicks. Further studies are required to explore the underlying mechanisms and long-term effects of incorporating MnO2NPs into broiler feed, to optimize broiler production and promote its welfare.
Collapse
Affiliation(s)
- Esraa
S. Helbawi
- Animal
and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 EL-Minya, Egypt
| | - S. A. Abd El-Latif
- Animal
and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 EL-Minya, Egypt
| | - Mahmoud A. Toson
- Animal
and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 EL-Minya, Egypt
| | - Artur Banach
- Department
of Biology and Biotechnology of Microorganisms, Institute of Biological
Sciences, Faculty of Medicine, The John
Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Mohamed Mohany
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamada Elwan
- Animal
and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 EL-Minya, Egypt
| |
Collapse
|
3
|
Khoshbin MR, Vakili R, Tahmasbi A. Manganese-methionine chelate improves antioxidant activity, immune system and egg manganese enrichment in the aged laying hens. Vet Med Sci 2022; 9:217-225. [PMID: 36409287 PMCID: PMC9857133 DOI: 10.1002/vms3.1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND It has been reported that supplementation of manganese (Mn) could alleviate the negative effects of age on egg quality in laying hens. However, limited information is available on compensatory ways in order to reduce the adverse effects of hen age on health and Mn deposition in the body. OBJECTIVES The objectives were to investigate the effect of organic and inorganic sources of Mn on antioxidant activity, immune system, liver enzymes, shell quality and Mn deposition in the tissues of older laying hens. METHODS A total of 250, 80-week-old Leghorn laying hens (w36) were allocated into five treatment groups with five replications in a completely randomised design. Treatments were control (without Mn supplementation), 100% Mn sulphate, 75% Mn sulphate + 25% organic Mn chelate, 50% Mn sulphate + 50% organic Mn chelate and 25% Mn sulphate + 75% organic Mn chelate. RESULTS The groups fed 50 and 75% organic Mn chelate exhibited the lowest feed conversion ratio, as well as the maximum laying percentage, and egg weight and mass. Except to those fed 75% Mn sulphate, the hens received Mn supplements either as organic or inorganic, had higher immunoglobulin G and M compared with the control (p < 0.05). A significant elevation in the values of superoxide dismutase was observed in the hens receiving 50 and 75% organic Mn chelate when compared with the other treatments. The ALP activity decreased with increasing organic Mn chelate. Mn supplementation, either as organic or inorganic, increased Mn deposition in bone, egg yolk and shell, serum and liver. CONCLUSION Dietary supplementation with 50-75% Mn-methionine has the potential to replace Mn-sulphate in laying hens' diet for improving eggshell quality, Mn deposition in the eggshell, antioxidant capacity and immune response, as well as improving laying performance, egg weight and feed conversion ratio.
Collapse
Affiliation(s)
| | - Reza Vakili
- Department of Animal Science, Kashmar BranchIslamic Azad UniversityKashmarIran
| | | |
Collapse
|
4
|
Tzora A, Nelli A, Kritikou AS, Katsarou D, Giannenas I, Lagkouvardos I, Thomaidis NS, Skoufos I. The "Crosstalk" between Microbiota and Metabolomic Profile of Kefalograviera Cheese after the Innovative Feeding Strategy of Dairy Sheep by Omega-3 Fatty Acids. Foods 2022; 11:3164. [PMID: 37430914 PMCID: PMC9601511 DOI: 10.3390/foods11203164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to examine the effects of two different feeding systems, a control or a flaxseed and lupin diet (experimental), for a sheep flock, on the microbiota and metabolome of Kefalograviera cheese samples produced by their milk. In particular, the microbiota present in Kefalograviera cheese samples was analyzed using 16S rRNA gene sequencing, while ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was applied to investigate the chemical profile of the cheeses, considering the different feeding systems applied. The metagenomic profile was found to be altered by the experimental feeding system and significantly correlated to specific cheese metabolites, with Streptococcaceae and Lactobacillaceae establishing positive and negative correlations with the discriminant metabolites. Overall, more than 120 features were annotated and identified with high confidence level across the samples while most of them belonged to specific chemical classes. Characteristic analytes detected in different concentrations in the experimental cheese samples including arabinose, dulcitol, hypoxanthine, itaconic acid, L-arginine, L-glutamine and succinic acid. Therefore, taken together, our results provide an extensive foodomics approach for Kefalograviera cheese samples from different feeding regimes, investigating the metabolomic and metagenomic biomarkers that could be used to foresee, improve, and control cheese ripening outcomes, demonstrating the quality of the experimental Kefalograviera cheese.
Collapse
Affiliation(s)
- Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece
| | - Aikaterini Nelli
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece
| | - Anastasia S. Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Danai Katsarou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Ilias Giannenas
- Laboratory of Animal Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ilias Lagkouvardos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Ioannis Skoufos
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47132 Arta, Greece
| |
Collapse
|
5
|
Samuelson DR, Haq S, Knoell DL. Divalent Metal Uptake and the Role of ZIP8 in Host Defense Against Pathogens. Front Cell Dev Biol 2022; 10:924820. [PMID: 35832795 PMCID: PMC9273032 DOI: 10.3389/fcell.2022.924820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023] Open
Abstract
Manganese (Mn) and Zinc (Zn) are essential micronutrients whose concentration and location within cells are tightly regulated at the onset of infection. Two families of Zn transporters (ZIPs and ZnTs) are largely responsible for regulation of cytosolic Zn levels and to a certain extent, Mn levels, although much less is known regarding Mn. The capacity of pathogens to persevere also depends on access to micronutrients, yet a fundamental gap in knowledge remains regarding the importance of metal exchange at the host interface, often referred to as nutritional immunity. ZIP8, one of 14 ZIPs, is a pivotal importer of both Zn and Mn, yet much remains to be known. Dietary Zn deficiency is common and commonly occurring polymorphic variants of ZIP8 that decrease cellular metal uptake (Zn and Mn), are associated with increased susceptibility to infection. Strikingly, ZIP8 is the only Zn transporter that is highly induced following bacterial exposure in key immune cells involved with host defense against leading pathogens. We postulate that mobilization of Zn and Mn into key cells orchestrates the innate immune response through regulation of fundamental defense mechanisms that include phagocytosis, signal transduction, and production of soluble host defense factors including cytokines and chemokines. New evidence also suggests that host metal uptake may have long-term consequences by influencing the adaptive immune response. Given that activation of ZIP8 expression by pathogens has been shown to influence parenchymal, myeloid, and lymphoid cells, the impact applies to all mucosal surfaces and tissue compartments that are vulnerable to infection. We also predict that perturbations in metal homeostasis, either genetic- or dietary-induced, has the potential to impact bacterial communities in the host thereby adversely impacting microbiome composition. This review will focus on Zn and Mn transport via ZIP8, and how this vital metal transporter serves as a "go to" conductor of metal uptake that bolsters host defense against pathogens. We will also leverage past studies to underscore areas for future research to better understand the Zn-, Mn- and ZIP8-dependent host response to infection to foster new micronutrient-based intervention strategies to improve our ability to prevent or treat commonly occurring infectious disease.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Division of Pulmonary, Critical Care, and Sleep, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sabah Haq
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Daren L. Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Daren L. Knoell,
| |
Collapse
|
6
|
Batiha GES, Al-Gareeb AI, Qusti S, Alshammari EM, Kaushik D, Verma R, Al-Kuraishy HM. Deciphering the immunoboosting potential of macro and micronutrients in COVID support therapy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43516-43531. [PMID: 35391642 PMCID: PMC8989262 DOI: 10.1007/s11356-022-20075-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/30/2022] [Indexed: 04/16/2023]
Abstract
The immune system protects human health from the effects of pathogenic organisms; however, its activity is affected when individuals become infected. These activities require a series of molecules, substrates, and energy sources that are derived from diets. The consumed nutrients from diets help to enhance the immunity of infected individuals as it relates to COVID-19 patients. This study aims to review and highlight requirement and role of macro- and micronutrients of COVID-19 patients in enhancing their immune systems. Series of studies were found to have demonstrated the enhancing potentials of macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins, copper, zinc, iron, calcium, magnesium, and selenium) in supporting the immune system's fight against respiratory infections. Each of these nutrients performs a vital role as an antiviral defense in COVID-19 patients. Appropriate consumption or intake of dietary sources that yield these nutrients will help provide the daily requirement to support the immune system in its fight against pathogenic viruses such as COVID-19.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| |
Collapse
|
7
|
Alqazlan N, Astill J, Raj S, Sharif S. Strategies for enhancing immunity against avian influenza virus in chickens: A review. Avian Pathol 2022; 51:211-235. [PMID: 35297706 DOI: 10.1080/03079457.2022.2054309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Poultry infection with avian influenza viruses (AIV) is a continuous source of concern for poultry production and human health. Uncontrolled infection and transmission of AIV in poultry increases the potential for viral mutation and reassortment, possibly resulting in the emergence of zoonotic viruses. To this end, implementing strategies to disrupt the transmission of AIVs in poultry, including a wide array of traditional and novel methods, is much needed. Vaccination of poultry is a targeted approach to reduce clinical signs and shedding in infected birds. Strategies aimed at enhancing the effectiveness of AIV vaccines are multi-pronged and include methods directed towards eliciting immune responses in poultry. Strategies include producing vaccines of greater immunogenicity via vaccine type and adjuvant application and increasing bird responsiveness to vaccines by modification of the gastrointestinal tract (GIT) microbiome and dietary interventions. This review provides an in-depth discussion of recent findings surrounding novel AIV vaccines for poultry, including reverse genetics vaccines, vectors, protein vaccines and virus like particles, highlighting their experimental efficacy among other factors such as safety and potential for use in the field. In addition to the type of vaccine employed, vaccine adjuvants also provide an effective way to enhance AIV vaccine efficacy, therefore, research on different types of vaccine adjuvants and vaccine adjuvant delivery strategies is discussed. Finally, the poultry gastrointestinal microbiome is emerging as an important factor in the effectiveness of prophylactic treatments. In this regard, current findings on the effects of the chicken GIT microbiome on AIV vaccine efficacy are summarized here.
Collapse
Affiliation(s)
- Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jake Astill
- Artemis Technologies Inc., Guelph, ON, N1L 1E3, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
8
|
Zhang Y, Wang S, Huang X, Li K, Ruan D, Xia W, Wang S, Chen W, Zheng C. Comparative effects of inorganic and organic manganese supplementation on productive performance, egg quality, tibial characteristics, serum biochemical indices, and fecal Mn excretion of laying ducks. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2021.115159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
9
|
Sun Y, Geng S, Yuan T, Liu Y, Zhang Y, Di Y, Li J, Zhang L. Effects of Manganese Hydroxychloride on Growth Performance, Antioxidant Capacity, Tibia Parameters and Manganese Deposition of Broilers. Animals (Basel) 2021; 11:ani11123470. [PMID: 34944247 PMCID: PMC8697934 DOI: 10.3390/ani11123470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Manganese is a vital trace element for the growth of broilers. In order to meet the requirement of manganese in broiler production, the additives of manganese sources are usually added into the diet for broilers. Manganese hydroxychloride is a category of hydroxy trace minerals. The present study investigated the effect of dietary supplemental manganese as manganese hydroxychloride for growth performance, antioxidant capacity, tibial quality, and manganese deposition of broilers and recommended that optimal supplementation with manganese as manganese hydroxychloride in diets for broilers was 50–90 mg/kg. This study provides a rational recommendation for the application of manganese hydroxychloride in broiler diets. Abstract This study was conducted to investigate the effects of dietary supplementation with manganese hydroxychloride (MHC) on production performance, antioxidant capacity, tibial quality, and manganese (Mn) deposition of broilers. A total of 756 one-day-old male Arbor Acres broilers were randomly allotted to 7 treatments of 6 replicates with 18 broilers per replicate. Broilers were fed corn-soybean meal basal diets supplemented of 100 mg/kg Mn as Mn sulfate (MnSO4), or 0, 20, 40, 60, 80, 100 mg/kg Mn as MHC for 42 days. The growth performance of broilers was not affected by dietary MnSO4 or MHC (p > 0.05), whereas the dressing percentage increased linearly (p < 0.05) with increasing of dietary MHC addition level. The activities of catalase (CAT) and manganese superoxide dismutase (MnSOD), and total antioxidant capability (T-AOC) in serum and liver on day 42 increased linearly (p < 0.05) with increasing of dietary MHC level, while malondialdehyde (MDA) concentration reduced linearly (p < 0.05). The length, strength, and density index of tibia increased linearly (p < 0.05) on day 21 as MHC supplementation level increased; there were no differences between MnSO4 group and 40–100 mg/kg Mn as MHC groups in tibial parameters of broilers (p > 0.05). As supplemental MHC levels increased, the Mn contents in heart, liver, kidney, and tibia increased linearly on day 42 (p < 0.05). In summary, dietary supplementation with MHC improved antioxidant capacity, bone quality, and Mn contents in broilers, but no effects on growth performance were detected. Based on the results of this study, dietary inclusion of 50–90 mg/kg Mn in the form of MHC to broilers is recommended.
Collapse
|
10
|
Zhang KK, Han MM, Dong YY, Miao ZQ, Zhang JZ, Song XY, Feng Y, Li HF, Zhang LH, Wei QY, Xu JP, Gu DC, Li JH. Low levels of organic compound trace elements improve the eggshell quality, antioxidant capacity, immune function, and mineral deposition of aged laying hens. Animal 2021; 15:100401. [PMID: 34794097 DOI: 10.1016/j.animal.2021.100401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022] Open
Abstract
In the egg production industry, trace elements are required as additional dietary supplements to play vital roles in performance and egg quality. Compared to inorganic microelements (ITs), appropriate dose of organic trace microelements (OTs) are environmentally friendly and sufficient to satisfy the needs of hens. In order to evaluate the extent to which low-dose OTs replace whole ITs, the effects of organic copper, zinc, manganese, and iron compound on the performance, eggshell quality, antioxidant capacity, immune function, and mineral deposition of old laying hens were investigated. A total of 1 080 57-week-old Jing Hong laying hens were assigned to five groups with six replicates of 36 layers each for an 8-week experimental period. The birds were fed either a basal diet (control treatment (CT)) or the basal diet supplemented with commercial levels of inorganic trace elements (IT 100%) or the equivalent organic trace elements at 20%, 30%, and 50% of the inorganic elements (OT 20%, OT 30%, and OT 50%, respectively). Results showed that compared with those in the CT treatment, feeding hens with inorganic or organic microelement diet had significant effects on the eggshell quality, antioxidant capacity, immune function, and mineral deposition of old laying hens (P < 0.05). The eggshell strength and ratio between OT 30%, OT 50%, and IT 100% were similar at weeks 4 and 8, and the eggshell thickness of these groups was also similar at weeks 6 and 8. At week 8, the eggshell colour in OT 50% was darker than that in IT 100%. The mineral content in the eggshells of OT 50% and IT 100% significantly increased (P < 0.001), with no significant difference in effective thickness, mammillary thickness, and mammillary knob width between groups. There were no differences in the malondialdehyde content, total antioxidant capacity, and total superoxide dismutase activity in serum between OT 30%, OT 50%, and IT100%. While the catalase activities, the interleukin-1β, interleukin-10, immunoglobulin G, and immunoglobulin M concentrations in serum were not significantly different between OT 50% and IT 100%. The mineral contents in the faeces of the organic groups were considerably reduced compared with those in IT 100% (P < 0.001). In conclusion, dietary supplementation with 30-50% organic compound microelements has the potential to replace 100% inorganic microelements in the hen industry for improving eggshell quality, mineral deposition in the eggshell, antioxidant capacity, and immune function, and reducing emissions to the environment without negative effects on laying performance.
Collapse
Affiliation(s)
- K K Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - M M Han
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Y Y Dong
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Z Q Miao
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - J Z Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - X Y Song
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Y Feng
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - H F Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - L H Zhang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Q Y Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - J P Xu
- DeBon Bio-Tech Co., Ltd., Hunan 421500, China
| | - D C Gu
- DeBon Bio-Tech Co., Ltd., Hunan 421500, China
| | - J H Li
- Department of Animal Nutrition and Feed Science, College of Animal Science, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
11
|
Li Z, Zhang C, Li B, Zhang S, Haj FG, Zhang G, Lee Y. The modulatory effects of alfalfa polysaccharide on intestinal microbiota and systemic health of Salmonella serotype (ser.) Enteritidis-challenged broilers. Sci Rep 2021; 11:10910. [PMID: 34035347 PMCID: PMC8149654 DOI: 10.1038/s41598-021-90060-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/04/2021] [Indexed: 12/26/2022] Open
Abstract
Salmonella serotype (ser.) Enteritidis infection in broilers is a main foodborne illness that substantially threatens food security. This study aimed to examine the effects of a novel polysaccharide isolated from alfalfa (APS) on the intestinal microbiome and systemic health of S. ser. Enteritidis-infected broilers. The results indicated that broilers receiving the APS-supplemented diet had the improved (P < 0.05) growth performance and gut health than those fed no APS-supplemented diet. Supplementation with APS enhanced (P < 0.05) the richness of gut beneficial microbes such as Bacteroidetes, Barnesiella, Parabacteroides, Butyricimonas, and Prevotellaceae, while decreased (P < 0.05) the abundance of facultative anaerobic bacteria including Proteobacteria, Actinobacteria, Ruminococcaceae, Lachnospiraceae, and Burkholderiaceae in the S. ser. Enteritidis-infected broilers. The Bacteroides and Odoribacter were identified as the two core microbes across all treatments and combined with their syntrophic microbes formed the hub in co-occurrence networks linking microbiome structure to performance of broilers. Taken together, dietary APS supplementation improved the systemic health of broilers by reshaping the intestinal microbiome regardless of whether S. ser. Enteritidis infection was present. Therefore, APS can be employed as a potential functional additives to inhibit the S. ser. Enteritidis and enhance the food safety in poultry farming.
Collapse
Affiliation(s)
- Zemin Li
- Department of Animal Nutrition, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, China
| | - Chongyu Zhang
- Department of Animal Nutrition, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, China
| | - Bo Li
- Department of Animal Nutrition, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, China
| | - Shimin Zhang
- Department of Animal Nutrition, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, China
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Guiguo Zhang
- Department of Animal Nutrition, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018, China. .,Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA.
| | - Yunkyoung Lee
- Department of Food Science and Nutrition, and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
12
|
Optimal Level of Supplemental Manganese for Yellow-Feathered Broilers during the Growth Phase. Animals (Basel) 2021; 11:ani11051389. [PMID: 34068258 PMCID: PMC8153165 DOI: 10.3390/ani11051389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/11/2023] Open
Abstract
This experiment investigated the effect of an optimized supplemental dietary manganese (Mn) on growth performance, tibial characteristics, immune function and meat quality, of yellow-feathered broilers. In three rearing periods, birds were fed for 21-d periods, from d 1 (starter), d 22 (grower) and d 43 (finisher), respectively, with basal diets (containing 16, 17, and 14 mg/kg analyzed Mn, respectively) supplemented with 0, 20, 40, 60, 80, 100, 120 and 140 mg/kg Mn. For starter phase broilers, supplemental manganese affected feed to gain ratio (F/G), and the minimum value was observed with 120 mg/kg manganese. During the grower phase, ADG increased quadratically (p < 0.05) with supplemental Mn and was maximal with 54 mg/kg additional manganese estimated using the regression equation. There was no influence of supplemental manganese on growth performance of broilers during the finisher phase (p > 0.05). The thymic relative weight of broilers were linearly (p < 0.05) and quadratically (p < 0.05) increased with supplemental Mn and maxima were obtained with 95 and 110 mg/kg additional Mn at 42 d and 63 d. The bone density of the tibia in broilers at d 21, 42 and 63 were increased quadratically (p < 0.05) by supplemental Mn, and optimal supplementation for the three phases was 52, 60 and 68 mg/kg, respectively. The weight, diameter, breaking strength and bone density of the tibia of 63-d broilers were influenced (p < 0.05) by supplemental manganese. The lightness (L*) value (linear, p < 0.05) and yellowness (b*) value (p < 0.05) of the breast muscle were decreased by dietary manganese supplementation, and the optimal supplementation, based on L*, was 86 mg/kg. In conclusion, supplemental Mn affected the growth performance, thymic relative weight, tibial characteristics, and the meat color of yellow-feathered broilers. From the quadratic regressions, the optimal supplementation of yellow-feathered broilers at the starter, grower and finisher phases to achieve the best performance was 52, 60, and 68 mg/kg, respectively.
Collapse
|
13
|
Recent Advances in Understanding the Influence of Zinc, Copper, and Manganese on the Gastrointestinal Environment of Pigs and Poultry. Animals (Basel) 2021; 11:ani11051276. [PMID: 33946674 PMCID: PMC8145729 DOI: 10.3390/ani11051276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Pigs and poultry, similar to humans, need regular consumption of zinc, copper, and manganese for normal functioning. To ensure adequate dietary intake, and prevent deficiency, their diets are supplemented with sufficient, often excessive, levels of these minerals or even at higher levels, which have been associated with improvements in their health and/or growth. However, if provided in excess, mineral quantities beyond those required are simply excreted from the animal, which is associated with negative consequences for the environment and even the development of antimicrobial resistance. Therefore, it is of great interest to better understand the dynamics of zinc, copper, and manganese in the intestine of pigs and poultry following consumption of supplemented diets, and how the requirements and benefits related to these minerals can be optimized and negative impacts minimized. The intestine of pigs and poultry contains vast numbers of microorganisms, notably bacteria, that continually interact with, and influence, their host. This review explores the influence of zinc, copper, and manganese on these interactions and how novel forms of these minerals have the potential to maximize their delivery and benefits, while limiting any negative consequences. Abstract Zinc, copper, and manganese are prominent essential trace (or micro) minerals, being required in small, but adequate, amounts by pigs and poultry for normal biological functioning. Feed is a source of trace minerals for pigs and poultry but variable bioavailability in typical feed ingredients means that supplementation with low-cost oxides and sulphates has become common practice. Such trace mineral supplementation often provides significant ‘safety margins’, while copper and zinc have been supplemented at supra-nutritional (or pharmacological) levels to improve health and/or growth performance. Regulatory mechanisms ensure that much of this oversupply is excreted by the host into the environment, which can be toxic to plants and microorganisms or promote antimicrobial resistance in microbes, and thus supplying trace minerals more precisely to pigs and poultry is necessary. The gastrointestinal tract is thus central to the maintenance of trace mineral homeostasis and the provision of supra-nutritional or pharmacological levels is associated with modification of the gut environment, such as the microbiome. This review, therefore, considers recent advances in understanding the influence of zinc, copper, and manganese on the gastrointestinal environment of pigs and poultry, including more novel, alternative sources seeking to maintain supra-nutritional benefits with minimal environmental impact.
Collapse
|
14
|
Manganese homeostasis at the host-pathogen interface and in the host immune system. Semin Cell Dev Biol 2021; 115:45-53. [PMID: 33419608 DOI: 10.1016/j.semcdb.2020.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Manganese serves as an indispensable catalytic center and the structural core of various enzymes that participate in a plethora of biological processes, including oxidative phosphorylation, glycosylation, and signal transduction. In pathogenic microorganisms, manganese is required for survival by maintaining basic biochemical activity and virulence; in contrast, the host utilizes a process known as nutritional immunity to sequester manganese from invading pathogens. Recent epidemiological and animal studies have shown that manganese increases the immune response in a wide range of vertebrates, including humans, rodents, birds, and fish. On the other hand, excess manganese can cause neurotoxicity and other detrimental effects. Here, we review recent data illustrating the essential role of manganese homeostasis at the host-pathogen interface and in the host immune system. We also discuss the accumulating body of evidence that manganese modulates various signaling pathways in immune processes. Finally, we discuss the key molecular players involved in manganese's immune regulatory function, as well as the clinical implications with respect to cancer immunotherapy.
Collapse
|
15
|
Zhang YN, Wang S, Huang XB, Li KC, Chen W, Ruan D, Xia WG, Wang SL, Abouelezz KFM, Zheng CT. Estimation of dietary manganese requirement for laying duck breeders: effects on productive and reproductive performance, egg quality, tibial characteristics, and serum biochemical and antioxidant indices. Poult Sci 2020; 99:5752-5762. [PMID: 33142493 PMCID: PMC7647759 DOI: 10.1016/j.psj.2020.06.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023] Open
Abstract
This study was aimed at estimating the dietary manganese (Mn) requirement for laying duck breeders. A total of 504 Longyan duck breeders (body weight: 1.20 ± 0.02 kg) aged 17 wk were randomly allocated to 6 treatments. The birds were fed with a basal diet (Mn, 17.5 mg/kg) or diets supplemented with 20, 40, 80, 120, or 160 mg/kg of Mn (as MnSO4·H2O) for 18 wk. Each treatment had 6 replicates of 14 ducks each. As a result of this study, dietary Mn supplementation did not affect the productive performance of laying duck breeders in the early laying period (17–18 wk), but affected egg production, egg mass, and feed conversion ratio (FCR) from 19 to 34 wk (P < 0.05), and there was a linear and quadratic effect of supplement level (P < 0.05). The proportion of preovulatory ovarian follicles increased (P < 0.01) linearly and quadratically, and atretic follicles (weight and percentage) decreased (P < 0.05) quadratically with dietary Mn supplementation. The density and breaking strength of tibias increased (quadratic; P < 0.05), the calcium content of tibias decreased (linear, quadratic; P < 0.01), and Mn content increased (linear, quadratic; P < 0.001) with increase in Mn. The addition of Mn had a quadratic effect on serum contents of estradiol, prolactin, progesterone, luteinizing hormone, and follicle-stimulating hormone (P < 0.001). Dietary Mn supplementation decreased serum contents of total protein (linear, P < 0.05), glucose (quadratic, P < 0.05), total bilirubin, triglycerides, total cholesterol, low-density lipoprotein cholesterol, and calcium (linear, quadratic; P < 0.05). The serum total antioxidant capacity and total and Mn-containing superoxide dismutase activities increased (linear, quadratic; P < 0.001), and malondialdehyde content decreased (linear, quadratic; P < 0.001) in response to Mn supplemental levels. The dietary Mn requirements, in milligram per kilogram for a basal diet containing 17.5 mg/kg of Mn, for Longyan duck breeders from 19 to 34 wk of age were estimated to be 84.2 for optimizing egg production, 85.8 for egg mass, and 95.0 for FCR. Overall, dietary Mn supplementation, up to 160 mg/kg of feed, affected productive performance, tibial characteristics, and serum biochemical and antioxidant status of layer duck breeders. Supplementing this basal diet (17.5 mg/kg of Mn) with 85 to 95 mg/kg of additional Mn was adequate for laying duck breeders during the laying period.
Collapse
Affiliation(s)
- Y N Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - X B Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - K C Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - D Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - W G Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - S L Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China
| | - K F M Abouelezz
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China; Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - C T Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, 510640 Guangzhou, China.
| |
Collapse
|
16
|
Wu A, Bai S, Ding X, Wang J, Zeng Q, Peng H, Wu B, Zhang K. The Systemic Zinc Homeostasis Was Modulated in Broilers Challenged by Salmonella. Biol Trace Elem Res 2020; 196:243-251. [PMID: 31641975 PMCID: PMC7289780 DOI: 10.1007/s12011-019-01921-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022]
Abstract
Salmonella challenge leads to systemic responses that induce the hypozincaemia in mice, which is considered a vital strategy against Salmonella invasion. However, it is not yet known if this phenomenon occurs in broilers. To investigate the change in zinc homeostasis of broilers against Salmonella challenge, 1-day-old male broilers were fed with the basal diet for 7 days. Afterwards, broilers were orally inoculated with either 0 or 0.5 × 108 CFU Salmonella Typhimurium (ST). The serum and selected tissues of Salmonella-challenged and non-challenged broilers were collected at 1, 3 and 7 days post-challenge for zinc homeostasis analysis. Our results showed that Salmonella challenge results in hypozincaemia (serum zinc decrease and liver zinc increase) via modulating the systemic zinc homeostasis of broilers. A profound, zinc transporter-mediated zinc absorption and redistribution affecting zinc homeostasis provided a mechanistic explanation for this phenomenon. In addition, we found that the zinc importers Zip5, Zip10, Zip11, Zip12, Zip13 and Zip14 were mainly downregulated in Salmonella-challenged broilers to reduce zinc absorption in the duodenum, while the Zip14 mRNA expression was upregulated to redistribute zinc into the liver. Collectively, these findings reveal that broilers counteract Salmonella infection via modulating their systemic zinc homeostasis.
Collapse
Affiliation(s)
- Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Bing Wu
- Sichuan Chelota Group, Liangshui Village, Jinyu Town, Guanghan City, 618300, Sichuan, China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China.
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Huimin Road 211, Chengdu, 611130, China.
| |
Collapse
|
17
|
Zhang H, Pan S, Zhang K, Michiels J, Zeng Q, Ding X, Wang J, Peng H, Bai J, Xuan Y, Su Z, Bai S. Impact of Dietary Manganese on Intestinal Barrier and Inflammatory Response in Broilers Challenged with Salmonella Typhimurium. Microorganisms 2020; 8:microorganisms8050757. [PMID: 32443502 PMCID: PMC7285304 DOI: 10.3390/microorganisms8050757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022] Open
Abstract
Growing concern for public health and food safety has prompted a special interest in developing nutritional strategies for removing waterborne and foodborne pathogens, including Salmonella. Strong links between manganese (Mn) and intestinal barrier or immune function hint that dietary Mn supplementation is likely to be a promising approach to limit the loads of pathogens in broilers. Here, we provide evidence that Salmonella Typhimurium (S. Typhimurium, 4 × 108 CFUs) challenge-induced intestinal injury along with systemic Mn redistribution in broilers. Further examining of the effect of dietary Mn treatments (a basal diet plus additional 0, 40, or 100 mg Mn/kg for corresponding to Mn-deficient, control, or Mn-surfeit diet, respectively) on intestinal barrier and inflammation status of broilers infected with S. Typhimurium revealed that birds fed the control and Mn-surfeit diets exhibited improved intestinal tight junctions and microbiota composition. Even without Salmonella infection, dietary Mn deficiency alone increased intestinal permeability by impairing intestinal tight junctions. In addition, when fed the control and Mn-surfeit diets, birds showed decreased Salmonella burdens in cecal content and spleen, with a concomitant increase in inflammatory cytokine levels in spleen. Furthermore, the dietary Mn-supplementation-mediated induction of cytokine production was probably associated with the nuclear factor kappa-B (NF-κB)/hydrogen peroxide (H2O2) pathway, as judged by the enhanced manganese superoxide dismutase activity and the increased H2O2 level in mitochondria, together with the increased mRNA level of NF-κB in spleen. Ingenuity-pathway analysis indicated that acute-phase response pathways, T helper type 1 pathway, and dendritic cell maturation were significantly activated by the dietary Mn supplementation. Our data suggest that dietary Mn supplementation could enhance intestinal barrier and splenic inflammatory response to fight against Salmonella infection in broilers.
Collapse
Affiliation(s)
- Huaiyong Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Shuqin Pan
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium;
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Huanwei Peng
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Jie Bai
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Yue Xuan
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Zhuowei Su
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (H.Z.); (S.P.); (K.Z.); (Q.Z.); (X.D.); (J.W.); (H.P.); (J.B.); (Y.X.); (Z.S.)
- Correspondence: ; Tel.: +86-028-86290922
| |
Collapse
|
18
|
Welch BM, Branscum A, Geldhof GJ, Ahmed SM, Hystad P, Smit E, Afroz S, Megowan M, Golam M, Sharif O, Rahman M, Quamruzzaman Q, Christiani DC, Kile ML. Evaluating the effects between metal mixtures and serum vaccine antibody concentrations in children: a prospective birth cohort study. Environ Health 2020; 19:41. [PMID: 32276596 PMCID: PMC7146972 DOI: 10.1186/s12940-020-00592-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/27/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Many populations are exposed to arsenic, lead, and manganese. These metals influence immune function. We evaluated the association between exposure to single and multiple metals, including arsenic, lead, and manganese, to humoral immunity as measured by antibody concentrations to diphtheria and tetanus toxoid among vaccinated Bangladeshi children. Additionally, we examined if this association was potentially mediated by nutritional status. METHODS Antibody concentrations to diphtheria and tetanus were measured in children's serum at age 5 (n = 502). Household drinking water was sampled to quantify arsenic (W-As) and manganese (W-Mn), whereas lead was measured in blood (B-Pb). Exposure samples were taken during pregnancy, toddlerhood, and early childhood. Multiple linear regression models (MLRs) with single or combined metal predictors were used to determine the association with antibody outcomes. MLR results were transformed to units of percent change in outcome per doubling of exposure to improve interpretability. Structural equation models (SEMs) were used to further assess exposure to metal mixtures. SEMs regressed a latent exposure variable (Metals), informed by all measured metal variables (W-As, W-Mn, and B-Pb), on a latent outcome variable (Antibody), informed by measured antibody variables (diphtheria and tetanus). Weight-for-age z-score (WFA) at age 5 was evaluated as a mediator. RESULTS Diphtheria antibody was negatively associated with W-As during pregnancy in MLR, but associations were attenuated after adjusting for W-Mn and B-Pb (- 2.9% change in diphtheria antibody per doubling in W-As, 95% confidence interval [CI]: - 7%, 1.5%). Conversely, pregnancy levels of B-Pb were positively associated with tetanus antibody, even after adjusting for W-As and W-Mn (13.3%, 95% CI: 1.7%, 26.3%). Overall, null associations were observed between W-Mn and antibody outcomes. Analysis by SEMs showed that the latent Metals mixture was significantly associated with the latent Antibody outcome (β = - 0.16, 95% CI: - 0.26, - 0.05), but the Metals variable was characterized by positive and negative loadings of W-As and B-Pb, respectively. Sex-stratified MLR and SEM analyses showed W-As and B-Pb associations were exclusive to females. Mediation by WFA was null, indicating Metals only had direct effects on Antibody. CONCLUSIONS We observed significant modulation of vaccine antibody concentrations among children with pregnancy and early life exposures to drinking water arsenic and blood lead. We found distinct differences by child sex, as only females were susceptible to metal-related modulations in antibody levels. Weight-for-age, a nutritional status proxy, did not mediate the association between the metal mixture and vaccine antibody.
Collapse
Affiliation(s)
- Barrett M. Welch
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
- Oregon Health and Sciences University, Portland, OR USA
| | - Adam Branscum
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - G. John Geldhof
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Sharia M. Ahmed
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Ellen Smit
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | - Meghan Megowan
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | | | - Omar Sharif
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | | | | | | | - Molly L. Kile
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| |
Collapse
|
19
|
Bai S, Peng J, Zhang K, Ding X, Wang J, Zeng Q, Peng H, Bai J, Xuan Y, Su Z. Effects of Dietary Iron on Manganese Utilization in Broilers Fed with Corn-Soybean Meal Diet. Biol Trace Elem Res 2020; 194:514-524. [PMID: 31230207 DOI: 10.1007/s12011-019-01780-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 01/22/2023]
Abstract
To investigate the effects of dietary iron (Fe) levels on manganese (Mn) utilization, 900 8-day-old broilers were randomly assigned to 1 of 6 treatments in a 3 (Fe level) × 2 (Mn level) factorial arrangement after feeding Mn- and Fe-unsupplemented diet for 7 days. The broilers were then fed with basal corn-soybean meal diets (approximately 28 mg Mn/kg and 60 mg Fe/kg) added with 0, 80, or 160 mg/kg Fe (L-Fe, M-Fe, or H-Fe), and 0 or 100 mg/kg Mn for 35 days. Body weight gain was lower for H-Fe broilers than that for L-Fe and M-Fe broilers. On day 42, H-Fe broilers had lower serum Mn concentration as compared with L-Fe and M-Fe broilers, and tibia Mn concentration decreased as dietary Fe increased. In Mn-supplemented broilers, liver Mn was lower in L-Fe and H-Fe treatments than that in M-Fe treatment. H-Fe treatment decreased Mn concentration and manganese-containing superoxide dismutase (MnSOD) activity in the heart when compared with L-Fe and M-Fe treatments. Dietary Fe did not significantly influence Mn concentrations in the liver and heart, and heart MnSOD activity in Mn-unsupplemented broilers. In the duodenum, L-Fe treatment decreased divalent metal transporter 1 (DMT1) mRNA abundance when compared with M-Fe and H-Fe treatments, and ferroportin 1 (FPN1) mRNA level was higher in M-Fe treatment than that in L-Fe and H-Fe treatments. These results suggested H-Fe diet decreased Mn status in broilers evaluated by Mn concentrations in serum and heart, and heart MnSOD activity. Dietary Fe influenced Mn absorption possibly through effects on duodenal DMT1 and FPN1 expression.
Collapse
Affiliation(s)
- Shiping Bai
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China.
| | - Jialong Peng
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Keying Zhang
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xuemei Ding
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jianping Wang
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Qiufeng Zeng
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Huanwei Peng
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jie Bai
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Yue Xuan
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Zuowei Su
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, 611130, Sichuan, China
| |
Collapse
|
20
|
Shojadoost B, Kulkarni RR, Yitbarek A, Laursen A, Taha-Abdelaziz K, Negash Alkie T, Barjesteh N, Quinteiro-Filho WM, Smith TK, Sharif S. Dietary selenium supplementation enhances antiviral immunity in chickens challenged with low pathogenic avian influenza virus subtype H9N2. Vet Immunol Immunopathol 2018; 207:62-68. [PMID: 30593352 DOI: 10.1016/j.vetimm.2018.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022]
Abstract
Selenium supplementation in poultry feeds has been known to have beneficial effects on the bird health and performance; however antiviral effects of selenium have remained largely unknown. In this study, we have evaluated the effects of supplementation of chicken diets with organic (Selenium Enriched Yeast; SEY) and inorganic selenium (Sodium Selenite; SS) on low pathogenicity avian influenza virus (H9N2) shedding in the cloacal and oropharyngeal swab samples as well as examined the expression of immune related genes. Chickens were fed two doses (High- 0.30 mg/kg of feed; Low- 0.15 mg/kg of feed) of selenium supplementation for 2 weeks followed by low pathogenicity avian influenza virus challenge. Our results showed that the cloacal shedding of virus in all the selenium supplemented groups was significantly lower when compared to the non-supplemented control groups. In addition, the oropharyngeal shedding of virus in chickens fed with organic selenium supplementation was significantly lower than that in the chickens that received either inorganic selenium supplemented feed or controls. Furthermore, the expression of interferon stimulated genes (Viperin, OAS: 2'-5' oligoadenylate synthetase and MDA5: melanoma differentiation-associated gene) in the cecal tonsils was significantly elevated in the selenium treated groups when compared to controls. Additionally, a significantly higher transcription of interferon (IFN)-α, IFN-β and IFN-γ genes in the cecal tonsils and spleens of chickens receiving SEY-L and SS-H supplemented feed was also observed at post virus challenge time points compared to untreated controls. The results of this study demonstrated that supplementation of chicken diets with selenium, can enhance antiviral defense and thus, may have a beneficial effect in controlling viral infections in poultry.
Collapse
Affiliation(s)
- Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Raveendra R Kulkarni
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Alexander Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Adrianna Laursen
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada; Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah, 62511, Beni-Suef, Egypt
| | - Tamiru Negash Alkie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Neda Barjesteh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | | | - Trevor K Smith
- Department of Animal Biosciences, Ontario Agricultural College, Guelph, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada.
| |
Collapse
|