1
|
Genotoxic Risks to Male Reproductive Health from Radiofrequency Radiation. Cells 2023; 12:cells12040594. [PMID: 36831261 PMCID: PMC9954667 DOI: 10.3390/cells12040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
During modern era, mobile phones, televisions, microwaves, radio, and wireless devices, etc., have become an integral part of our daily lifestyle. All these technologies employ radiofrequency (RF) waves and everyone is exposed to them, since they are widespread in the environment. The increasing risk of male infertility is a growing concern to the human population. Excessive and long-term exposure to non-ionizing radiation may cause genetic health effects on the male reproductive system which could be a primitive factor to induce cancer risk. With respect to the concerned aspect, many possible RFR induced genotoxic studies have been reported; however, reports are very contradictory and showed the possible effect on humans and animals. Thus, the present review is focusing on the genomic impact of the radiofrequency electromagnetic field (RF-EMF) underlying the male infertility issue. In this review, both in vitro and in vivo studies have been incorporated explaining the role of RFR on the male reproductive system. It includes RFR induced-DNA damage, micronuclei formation, chromosomal aberrations, SCE generation, etc. In addition, attention has also been paid to the ROS generation after radiofrequency radiation exposure showing a rise in oxidative stress, base adduct formation, sperm head DNA damage, or cross-linking problems between DNA & protein.
Collapse
|
2
|
Acute radiofrequency electromagnetic radiation exposure impairs neurogenesis and causes neuronal DNA damage in the young rat brain. Neurotoxicology 2023; 94:46-58. [PMID: 36336097 DOI: 10.1016/j.neuro.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
A mobile phone is now a commonly used device for digital media and communication among all age groups. Young adolescents use it for longer durations, which exposes them to radiofrequency electromagnetic radiation (RF-EMR). This exposure can lead to neuropsychiatric changes. The underlying cellular mechanism behind these changes requires detailed investigation. In the present study, we investigated the effect of RF-EMR emitted from mobile phones on young adolescent rat brains. Wistar rats (5 weeks, male) were exposed to RF-EMR signal (2115 MHz) at a head average specific absorption rate (SAR) of 1.51 W/kg continuously for 8 h. Higher level of lipid peroxidation, carbon-centered lipid radicals, and single-strand DNA damage was observed in the brain of rat exposed to RF-EMR. The number of BrdU-positive cells in the dentate gyrus (DG) decreased in RF-EMR-exposed rats, indicating reduced neurogenesis. RF-EMR exposure also induced degenerative changes and neuronal loss in DG neurons but had no effect on the CA3 and CA1 neurons of the hippocampus and cerebral cortex. The activity of Pro-caspase3 did not increase upon exposure in any of the brain regions, pointing out that degeneration observed in the DG region is not dependent on caspase activation. Results indicate that short-term acute exposure to RF-EMR induced the generation of carbon-centered lipid radicals and nuclear DNA damage, both of which likely played a role in the impaired neurogenesis and neuronal degeneration seen in the young brain's hippocampus region. The understanding of RF-EMR-induced alteration in the brain at the cellular level will help develop appropriate interventions for reducing its adverse impact.
Collapse
|
3
|
Bektas H, Algul S, Altindag F, Yegin K, Akdag MZ, Dasdag S. Effects of 3.5 GHz radiofrequency radiation on ghrelin, nesfatin-1, and irisin level in diabetic and healthy brains. J Chem Neuroanat 2022; 126:102168. [PMID: 36220504 DOI: 10.1016/j.jchemneu.2022.102168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Diabetes, mobile phone use, and obesity have increased simultaneously in recent years. The radiofrequency radiation (RFR) emitted from mobile phones is largely absorbed in the heads of users. With 5 G, which has started to be used in some countries without the necessary precautions being taken, the amount of RFR to which living things are exposed will increase. In this study, the changes in energy homeostasis and redox balance caused by 5 G (3.5 GHz, GSM-modulated) were explored. The effects of RFR on the brains of diabetic and healthy rats were investigated and histopathological analysis was performed. Twenty-eight Wistar albino rats weighing 200-250 g were divided into 4 groups as sham, RFR, diabetes, and RFR+diabetes groups (n = 7). The rats in each group were kept in a plexiglass carousel for 2 h a day for 30 days. While the rats in the experimental groups were exposed to RFR for 2 h a day, the rats in the sham group were kept under the same experimental conditions but with the radiofrequency generator turned off. At the end of the experiment, brain tissues were collected from euthanized rats. Total antioxidant (TAS), total oxidant (TOS), hydrogen peroxide (H2O2), ghrelin, nesfatin-1, and irisin levels were determined. In addition, histopathological analyses of the brain tissues were performed. The specific absorption rate in the gray matter of the brain was calculated as 323 mW/kg and 195 mW/kg for 1 g and 10 g averaging, respectively. After RFR exposure among diabetic and healthy rats, decreased TAS levels and increased TOS and H2O2 levels were observed in brain tissues. RFR caused increases in ghrelin and irisin and a decrease in nesfatin-1 in the brain. It was also observed that RFR increased the number of degenerated neurons in the hippocampus. Our results indicate that 3.5 GHz RFR causes changes in the energy metabolism and appetite of both healthy and diabetic rats. Thus, 5 G may not be innocent in terms of its biological effects, especially in the presence of diabetes.
Collapse
Affiliation(s)
- Hava Bektas
- Department of Biophysics, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Sermin Algul
- Department of Physiology, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Fikret Altindag
- Department of Histology and Embryology, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Korkut Yegin
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Ege University, Turkey
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School of Dicle University, Diyarbakır, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
4
|
Jagetia GC. Genotoxic effects of electromagnetic field radiations from mobile phones. ENVIRONMENTAL RESEARCH 2022; 212:113321. [PMID: 35508219 DOI: 10.1016/j.envres.2022.113321] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The use of wireless communication technology in mobile phones has revolutionized modern telecommunication and mobile phones have become so popular that their number exceeds the global population. Electromagnetic field radiations (EMR) are an integral part of wireless technology, which are emitted by mobile phones, mobile tower antennas, electric power stations, transmission lines, radars, microwave ovens, television sets, refrigerators, diagnostic, therapeutic, and other electronic devices. Manmade EMR sources have added to the existing burden of natural EMR human exposure arising from the Sun, cosmos, atmospheric discharges, and thunder storms. EMR including radiofrequency waves (RF) and extremely low-frequency radiation (ELF) has generated great interest as their short-term exposure causes headache, fatigue, tinnitus, concentration problems, depression, memory loss, skin irritation, sleep disorders, nausea, cardiovascular effects, chest pain, immunity, and hormonal disorders in humans, whereas long-term exposure to EMR leads to the development of cancer. The review has been written by collecting the information using various search engines including google scholar, PubMed, SciFinder, Science direct, EMF-portal, saferemr, and other websites from the internet. The main focus of this review is to delineate the mutagenic and genotoxic effects of EMR in humans and mammals. Numerous investigations revealed that exposure in the range of 0-300 GHz EMR is harmless as it did not increase micronuclei and chromosome aberrations. On the contrary, several other studies have demonstrated that exposure to EMR is genotoxic and mutagenic as it increases the frequency of micronuclei, chromosome aberrations, DNA adducts, DNA single and double strand breaks at the molecular level in vitro and in vivo. The EMR exposure induces reactive oxygen species and changes the fidelity of genes involved in signal transduction, cytoskeleton formation, and cellular metabolism.
Collapse
|
5
|
Verma S, Keshri GK, Karmakar S, Mani KV, Chauhan S, Yadav A, Sharma M, Gupta A. Effects of Microwave 10 GHz Radiation Exposure in the Skin of Rats: An Insight on Molecular Responses. Radiat Res 2021; 196:404-416. [PMID: 34407201 DOI: 10.1667/rade-20-00155.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/06/2021] [Indexed: 11/03/2022]
Abstract
Microwave (MW) radiation poses the risk of potential hazards on human health. The present study investigated the effects of MW 10 GHz exposure for 3 h/day for 30 days at power densities of 5.23 ± 0.25 and 10.01 ± 0.15 mW/cm2 in the skin of rats. The animals exposed to 10 mW/cm2 (corresponded to twice the ICNIRP-2020 occupational reference level of MW exposure for humans) exhibited significant biophysical, biochemical, molecular and histological alterations compared to sham-irradiated animals. Infrared thermography revealed an increase in average skin surface temperature by 1.8°C and standard deviation of 0.3°C after 30 days of 10 mW/cm2 MW exposure compared to the sham-irradiated animals. MW exposure also led to oxidative stress (ROS, 4-HNE, LPO, AOPP), inflammatory responses (NFkB, iNOS/NOS2, COX-2) and metabolic alterations [hexokinase (HK), lactate dehydrogenase (LDH), citrate synthase (CS) and glucose-6-phospahte dehydrogenase (G6PD)] in 10 mW/cm2 irradiated rat skin. A significant alteration in expression of markers associated with cell survival (Akt/PKB) and HSP27/p38MAPK-related stress-response signaling cascade was observed in 10 mW/cm2 irradiated rat skin compared to sham-irradiated rat skin. However, MW-irradiated groups did not show apoptosis, evident by unchanged caspase-3 levels. Histopathological analysis revealed a mild cytoarchitectural alteration in epidermal layer and slight aggregation of leukocytes in 10 mW/cm2 irradiated rat skin. Altogether, the present findings demonstrated that 10 GHz exposure in continuous-wave mode at 10 mW/cm2 (3 h/day, 30 days) led to significant alterations in molecular markers associated with adaptive stress-response in rat skin. Furthermore, systematic scientific studies on more prevalent pulsed-mode of MW-radiation exposure for prolonged duration are warranted.
Collapse
Affiliation(s)
- Saurabh Verma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Gaurav K Keshri
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Santanu Karmakar
- Microwave Tube Research and Development Centre (MTRDC), DRDO, Bangalore, India
| | - Kumar Vyonkesh Mani
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Satish Chauhan
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Anju Yadav
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Manish Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Asheesh Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| |
Collapse
|
6
|
Bhartiya P, Mumtaz S, Lim JS, Kaushik N, Lamichhane P, Nguyen LN, Jang JH, Yoon SH, Choi JJ, Kaushik NK, Choi EH. Pulsed 3.5 GHz high power microwaves irradiation on physiological solution and their biological evaluation on human cell lines. Sci Rep 2021; 11:8475. [PMID: 33875781 PMCID: PMC8055702 DOI: 10.1038/s41598-021-88078-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Microwave (MW) radiation is increasingly being used for several biological applications. Many investigations have focused on understanding the potential influences of pulsed MW irradiation on biological solutions. The current study aimed to investigate the effects of 3.5 GHz pulsed MW radiation-irradiated liquid solutions on the survival of human cancer and normal cells. Different physiological solutions such as phosphate buffer saline, deionized water, and Dulbecco's modified Eagle medium (DMEM) for cell culture growth were irradiated with pulsed MW radiation (45 shots with the energy of 1 mJ/shot). We then evaluated physiological effects such as cell viability, metabolic activity, mitochondrial membrane potential, cell cycle, and cell death in cells treated with MW-irradiated biological solutions. As MW irradiation with power density ~ 12 kW/cm2 mainly induces reactive nitrogen oxygen species in deionized water, it altered the cell cycle, membrane potential, and cell death rates in U373MG cells due to its high electric field ~ 11 kV/cm in water. Interestingly, MW-irradiated cell culture medium and phosphate-buffered saline did not alter the cellular viability and metabolic energy of cancer and normal cells without affecting the expression of genes responsible for cell death. Taken together, MW-irradiated water can alter cellular physiology noticeably, whereas irradiated media and buffered saline solutions induce negligible or irrelevant changes that do not affect cellular health.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jun Sup Lim
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Neha Kaushik
- College of Engineering, Department of Biotechnology, University of Suwon, Hwaseong, 18323, Korea
| | - Pradeep Lamichhane
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jung Hyun Jang
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Sang Ho Yoon
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jin Joo Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| |
Collapse
|
7
|
Schuermann D, Mevissen M. Manmade Electromagnetic Fields and Oxidative Stress-Biological Effects and Consequences for Health. Int J Mol Sci 2021; 22:ijms22073772. [PMID: 33917298 PMCID: PMC8038719 DOI: 10.3390/ijms22073772] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
Concomitant with the ever-expanding use of electrical appliances and mobile communication systems, public and occupational exposure to electromagnetic fields (EMF) in the extremely-low-frequency and radiofrequency range has become a widely debated environmental risk factor for health. Radiofrequency (RF) EMF and extremely-low-frequency (ELF) MF have been classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer (IARC). The production of reactive oxygen species (ROS), potentially leading to cellular or systemic oxidative stress, was frequently found to be influenced by EMF exposure in animals and cells. In this review, we summarize key experimental findings on oxidative stress related to EMF exposure from animal and cell studies of the last decade. The observations are discussed in the context of molecular mechanisms and functionalities relevant to health such as neurological function, genome stability, immune response, and reproduction. Most animal and many cell studies showed increased oxidative stress caused by RF-EMF and ELF-MF. In order to estimate the risk for human health by manmade exposure, experimental studies in humans and epidemiological studies need to be considered as well.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
- Correspondence: (D.S.); (M.M.)
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, CH-3012 Bern, Switzerland
- Correspondence: (D.S.); (M.M.)
| |
Collapse
|
8
|
Gökçek-Saraç Ç. Effects of 2.1 GHz Electromagnetic Radiation on Locomotor Activity, Recognition Memory, and Anxiety-Related Behavior in Rats. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09881-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Lai YF, Wang HY, Peng RY. Establishment of injury models in studies of biological effects induced by microwave radiation. Mil Med Res 2021; 8:12. [PMID: 33597038 PMCID: PMC7890848 DOI: 10.1186/s40779-021-00303-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
Microwave radiation has been widely used in various fields, such as communication, industry, medical treatment, and military applications. Microwave radiation may cause injuries to both the structures and functions of various organs, such as the brain, heart, reproductive organs, and endocrine organs, which endanger human health. Therefore, it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation. The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies. In this article, we review the microwave exposure conditions, subjects used to establish injury models, the methods used for the assessment of the injuries, and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
Collapse
Affiliation(s)
- Yun-Fei Lai
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hao-Yu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
10
|
Yadav H, Rai U, Singh R. Radiofrequency radiation: A possible threat to male fertility. Reprod Toxicol 2021; 100:90-100. [PMID: 33497741 DOI: 10.1016/j.reprotox.2021.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022]
Abstract
Radiofrequency exposure from man-made sources has increased drastically with the era of advanced technology. People could not escape from such RF radiations as they have become the essential part of our routine life such as Wi-Fi, microwave ovens, TV, mobile phones, etc. Although non-ionizing radiations are less damaging than ionizing radiations but its long term exposure effect cannot be avoided. For fertility to be affected, either there is an alteration in germ cell, or its nourishing environment, and RF affects both the parameters subsequently, leading to infertility. This review with the help of in vitro and in vivo studies shows that RF could change the morphology and physiology of germ cells with affected spermatogenesis, motility and reduced concentration of male gametes. RF also results in genetic and hormonal changes. In addition, the contribution of oxidative stress and protein kinase complex after RFR exposure is also summarized which could also be the possible mechanism for reduction in sperm parameters. Further, some preventative measures are described which could help in reverting the radiofrequency effects on germ cells.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Umesh Rai
- Deparment of Zoology, University of Delhi, Delhi, 110007, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India.
| |
Collapse
|
11
|
Negi P, Singh R. Association between reproductive health and nonionizing radiation exposure. Electromagn Biol Med 2021; 40:92-102. [PMID: 33471575 DOI: 10.1080/15368378.2021.1874973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Recently, a decreasing rate of fertility has to be credited to an array of factors such as environmental, health and lifestyle. Male infertility is likely to be affected by the strong exposure to heat and radiations. The most common sources of nonionizing radiations are cell phones, laptops, Wi-Fi and microwave ovens, which may participate to the cause of male infertility. One of the major sources of daily exposure to non-ionizing radiation is mobile phones. A mobile phone is now basically dominating our daily life through better services such as connectivity, smartphone devices. However, the health consequences are linked with their usage are frequently ignored. Constant exposure to non-ionizing radiations produced from a cell phone is one of the possible reasons for growing male infertility. Recently, several studies have shown that cell phone users have altered sperm parameters causing declining reproductive health. Cell phone radiation harms male fertility by affecting the different parameters like sperm motility, sperm count, sperm morphology, semen concentration, morphometric abnormalities, increased oxidative stress along with some hormonal changes. This review is focusing on the prevailing literature from in vitro and in vivo studies suggesting that non-ionizing exposure negatively affects human male infertility.
Collapse
Affiliation(s)
- Pooja Negi
- Department of Environmental Studies, Satyawati College, University of Delhi , Ashok Vihar, Delhi, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi , Ashok Vihar, Delhi, India
| |
Collapse
|
12
|
Gökçek-Saraç Ç, Akçay G, Karakurt S, Ateş K, Özen Ş, Derin N. Possible effects of different doses of 2.1 GHz electromagnetic radiation on learning, and hippocampal levels of cholinergic biomarkers in Wistar rats. Electromagn Biol Med 2021; 40:179-190. [PMID: 33259237 DOI: 10.1080/15368378.2020.1851251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/01/2020] [Indexed: 01/01/2023]
Abstract
The present study evaluated whether short-term exposure to different doses of 2.1 GHz radiofrequency electromagnetic radiation (RF-EMR) has different effects on rats' behaviour and hippocampal levels of central cholinergic biomarkers. Animals were divided into three equal groups namely; group 1 was sham-exposed group, group 2-3 were exposed to 45 V/m and 65 V/m doses of 2.1 GHz frequency for 1 week respectively. Numerical dosimetry simulations were carried out. Object location and Y-maze were used as behavioural tasks. The protein and mRNA expression levels of AChE, ChAT, and VAChT, in the hippocampus were tested using Western Blotting and Real-Time PCR. The impairment performance of rats subjected to 65 V/m dose of 2.1 GHz RF-EMR in both object location and Y-maze tasks was observed. The hippocampal levels of AChE, ChAT, and VAChT, were significantly lower in rats exposed to 65 V/m dose of 2.1 GHz RF-EMR than others. The stronger effect of "65 V/m" dose on both rat's hippocampal-dependent behavioural performances and hippocampal levels of cholinergic biomarkers may be due to the stronger effect of "65 V/m" dose where rats' snouts were located at the nearest distance from the monopole antenna. Furthermore, the simulated SAR values were high for 65 V/m electric-field strengths. For the first time, we report the potential dose-dependent effects of short-term exposure to 2.1 GHz radiation on rat's behavioural performances as well as hippocampal levels of cholinergic biomarkers. Further studies are needed to understand the mechanisms by which RF-EMR influences the function of the central cholinergic system in the brain.
Collapse
Affiliation(s)
- Çiğdem Gökçek-Saraç
- Faculty of Engineering, Department of Biomedical Engineering, Akdeniz University , Antalya, Turkey
| | - Güven Akçay
- Faculty of Medicine, Department of Biophysics, Akdeniz University , Antalya, Turkey
| | - Serdar Karakurt
- Faculty of Science, Department of Biochemistry, Selçuk University , Konya, Turkey
| | - Kayhan Ateş
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University , Antalya, Turkey
| | - Şükrü Özen
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University , Antalya, Turkey
| | - Narin Derin
- Faculty of Medicine, Department of Biophysics, Akdeniz University , Antalya, Turkey
| |
Collapse
|
13
|
Poque E, Ruigrok HJ, Arnaud-Cormos D, Habauzit D, Chappe Y, Martin C, De Gannes FP, Hurtier A, Garenne A, Lagroye I, Le Dréan Y, Lévêque P, Percherancier Y. Effects of radiofrequency field exposure on proteotoxic-induced and heat-induced HSF1 response in live cells using the bioluminescence resonance energy transfer technique. Cell Stress Chaperones 2021; 26:241-251. [PMID: 33067759 PMCID: PMC7736596 DOI: 10.1007/s12192-020-01172-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/09/2023] Open
Abstract
As of today, only acute effects of RF fields have been confirmed to represent a potential health hazard and they are attributed to non-specific heating (≥ 1 °C) under high-level exposure. Yet, the possibility that environmental RF impact living matter in the absence of temperature elevation needs further investigation. Since HSF1 is both a thermosensor and the master regulator of heat-shock stress response in eukaryotes, it remains to assess HSF1 activation in live cells under exposure to low-level RF signals. We thus measured basal, temperature-induced, and chemically induced HSF1 trimerization, a mandatory step on the cascade of HSF1 activation, under RF exposure to continuous wave (CW), Global System for Mobile (GSM), and Wi-Fi-modulated 1800 MHz signals, using a bioluminescence resonance energy transfer technique (BRET) probe. Our results show that, as expected, HSF1 is heat-activated by acute exposure of transiently transfected HEK293T cells to a CW RF field at a specific absorption rate of 24 W/kg for 30 min. However, we found no evidence of HSF1 activation under the same RF exposure condition when the cell culture medium temperature was fixed. We also found no experimental evidence that, at a fixed temperature, chronic RF exposure for 24 h at a SAR of 1.5 and 6 W/kg altered the potency or the maximal capability of the proteasome inhibitor MG132 to activate HSF1, whatever signal used. We only found that RF exposure to CW signals (1.5 and 6 W/kg) and GSM signals (1.5 W/kg) for 24 h marginally decreased basal HSF1 activity.
Collapse
Affiliation(s)
- Emmanuelle Poque
- CNRS, Bordeaux INP, CBMN laboratory, UMR5248, Bordeaux University, F-33607, Pessac, France
| | - Hermanus J Ruigrok
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
| | - Delia Arnaud-Cormos
- CNRS, XLIM, UMR 7252, Limoges University, F-87000, Limoges, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | - Denis Habauzit
- Institut de Recherche en Santé, Environnement et Travail (IRSET) - UMR_S 1085, Rennes University, F-35000, Rennes, France
| | - Yann Chappe
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
| | - Catherine Martin
- Institut de Recherche en Santé, Environnement et Travail (IRSET) - UMR_S 1085, Rennes University, F-35000, Rennes, France
| | | | - Annabelle Hurtier
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
| | - André Garenne
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
| | - Isabelle Lagroye
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France
- Paris Sciences et Lettres Research University, F-75006, Paris, France
| | - Yves Le Dréan
- Institut de Recherche en Santé, Environnement et Travail (IRSET) - UMR_S 1085, Rennes University, F-35000, Rennes, France
| | - Philippe Lévêque
- CNRS, XLIM, UMR 7252, Limoges University, F-87000, Limoges, France
| | - Yann Percherancier
- CNRS, IMS laboratory, UMR5218, Bordeaux University, F-33400, Talence, France.
| |
Collapse
|
14
|
Alkis ME, Akdag MZ, Dasdag S. Effects of Low-Intensity Microwave Radiation on Oxidant-Antioxidant Parameters and DNA Damage in the Liver of Rats. Bioelectromagnetics 2020; 42:76-85. [PMID: 33368426 DOI: 10.1002/bem.22315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/18/2020] [Accepted: 12/05/2020] [Indexed: 01/09/2023]
Abstract
The continuously increasing usage of cell phones has raised concerns about the adverse effects of microwave radiation (MWR) emitted by cell phones on health. Several in vitro and in vivo studies have claimed that MWR may cause various kinds of damage in tissues. The aim of this study is to examine the possible effects of exposure to low-intensity MWR on DNA and oxidative damage in the livers of rats. Eighteen Sprague-Dawley male rats were divided into three equal groups randomly (n = 6). Group 1 (Sham-control): rats were kept under conditions the same as those of other groups, except for MWR exposure. Group 2: rats exposed to 1800 MHz (SAR: 0.62 W/kg) at 0.127 ± 0.04 mW/cm2 power density, and Group 3: rats exposed to 2,100 MHz (SAR: 0.2 W/kg) at 0.038 ± 0.03 mW/cm2 power density. Microwave application groups were exposed to MWR 2 h/day for 7 months. At the end of the exposure period, the rats were sacrificed and DNA damage, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and total oxidant-antioxidant parameter analyses were conducted in their liver tissue samples. It was found that 1800 and 2100 MHz low-intensity MWR caused a significant increase in MDA, 8-OHdG, total oxidant status, oxidative stress index, and comet assay tail intensity (P < 0.05), while total antioxidant status levels (P < 0.05) decreased. The results of our study showed that whole-body exposure to 1800 and 2100 MHz low-intensity MWR emitted by cell phones can induce oxidative stress by altering oxidant-antioxidant parameters and lead to DNA strand breaks and oxidative DNA damage in the liver of rats. Bioelectromagnetics. 2021;42:76-85. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Mehmet E Alkis
- Department of Occupational Health and Safety, Health School of Muş Alparslan University, Muş, Turkey
| | - Mehmet Z Akdag
- Department of Biophysics, Medical School of Dicle University, Diyarbakir, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
15
|
Singh KV, Gautam R, Meena R, Nirala JP, Jha SK, Rajamani P. Effect of mobile phone radiation on oxidative stress, inflammatory response, and contextual fear memory in Wistar rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19340-19351. [PMID: 32212071 DOI: 10.1007/s11356-020-07916-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
In the present lifestyle, we are continuously exposed to radiofrequency electromagnetic field (RF-EMF) radiation generated mainly by mobile phones (MP). Among other organs, our brain and hippocampus in specific, is the region where effect of any environmental perturbation is most pronounced. So, this study was aimed to examine changes in major parameters (oxidative stress, level of pro-inflammatory cytokines (PICs), hypothalamic-pituitary-adrenal (HPA) axis hormones, and contextual fear conditioning) which are linked to hippocampus directly or indirectly, upon exposure to mobile phone radiofrequency electromagnetic field (MP-RF-EMF) radiation. Exposure was performed on young adult male Wistar rats for 16 weeks continuously (2 h/day) with MP-RF-EMF radiation having frequency, power density, and specific absorption rate (SAR) of 1966.1 MHz, 4.0 mW/cm2, and 0.36 W/kg, respectively. Another set of animals kept in similar conditions without any radiation exposure serves as control. Towards the end of exposure period, animals were tested for fear memory and then euthanized to measure hippocampal oxidative stress, level of circulatory PICs, and stress hormones. We observed significant increase in hippocampal oxidative stress (p < 0.05) and elevated level of circulatory PICs viz. IL-1beta (p < 0.01), IL-6 (p < 0.05), and TNF-alpha (p < 0.001) in experimental animals upon exposure to MP-RF-EMF radiation. Adrenal gland weight (p < 0.001) and level of stress hormones viz. adrenocorticotropic hormone (ACTH) (p < 0.01) and corticosterone (CORT) (p < 0.05) were also found to increase significantly in MP-RF-EMF radiation-exposed animals as compared with control. However, alteration in contextual fear memory was not significant enough. In conclusion, current study shows that chronic exposure to MP-RF-EMF radiation emitted from mobile phones may induce oxidative stress, inflammatory response, and HPA axis deregulation. However, changes in hippocampal functionality depend on the complex interplay of several opposing factors that got affected upon MP-RF-EMF exposure.
Collapse
Affiliation(s)
- Kumari Vandana Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ramovtar Meena
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sushil Kumar Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
16
|
Li DY, Song JD, Liang ZY, Oskouei K, Xiao XQ, Hou WZ, Li JT, Yang YS, Wang ML, Murbach M. Apoptotic Effect of 1800 MHz Electromagnetic Radiation on NIH/3T3 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030819. [PMID: 32013005 PMCID: PMC7037840 DOI: 10.3390/ijerph17030819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/26/2022]
Abstract
To investigate the effect of 1800 MHz electromagnetic radiation (EMR) on apoptosis, we exposed NIH/3T3 cells at 1800 MHz with a specific absorption rate (SAR) of 2 W/kg intermittently for 12, 24, 36, and 48 h. After exposure, Cell Counting Kit-8 (CCK-8) and flow cytometry were used to detect cell viability and apoptosis; the expression of p53, a molecule with the key role in apoptosis, was measured by real-time qPCR, western blot, and immunofluorescence; and images of the structure of the mitochondria, directly reflecting apoptosis, were captured by electron microscopy. The results showed that the viability of cells in the 12, 36, and 48 h exposure groups significantly decreased compared with the sham groups; after 48 h of exposure, the percentage of late apoptotic cells in the exposure group was significantly higher. Real-time qPCR results showed that p53 mRNA in the 48 h exposure group was 1.4-fold of that in the sham group; significant differences of p53 protein fluorescence expression were observed between the exposure groups and the sham groups after 24 h and 48 h. The mitochondrial swelling and vesicular morphology were found in the electron microscopy images after 48 h exposure. These findings demonstrated 1800 MHz, SAR 2 W/kg EMR for 48 h may cause apoptosis in NIH/3T3 cells and that this apoptosis might be attributed to mitochondrial damage and upregulation of p53 expression.
Collapse
Affiliation(s)
- Dan-Yang Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
| | - Jing-Dong Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.-D.S.); (W.-Z.H.)
| | - Zhao-Yuan Liang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
| | - Kiana Oskouei
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
| | - Xiang-Qian Xiao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
| | - Wen-Zhe Hou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (J.-D.S.); (W.-Z.H.)
| | - Jin-Tao Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
| | - Yi-Shu Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
| | - Ming-Lian Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China; (D.-Y.L.); (Z.-Y.L.); (K.O.); (X.-Q.X.); (J.-T.L.); (Y.-S.Y.)
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing 100124, China
- Correspondence: (M.-L.W.); (M.M.)
| | - Manuel Murbach
- IT’IS Foundation, Zeughausstrasse 43, 8004 Zurich, Switzerland
- Correspondence: (M.-L.W.); (M.M.)
| |
Collapse
|
17
|
Durdik M, Kosik P, Markova E, Somsedikova A, Gajdosechova B, Nikitina E, Horvathova E, Kozics K, Davis D, Belyaev I. Microwaves from mobile phone induce reactive oxygen species but not DNA damage, preleukemic fusion genes and apoptosis in hematopoietic stem/progenitor cells. Sci Rep 2019; 9:16182. [PMID: 31700008 PMCID: PMC6838175 DOI: 10.1038/s41598-019-52389-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Exposure to electromagnetic fields (EMF) has been associated with the increased risk of childhood leukemia, which arises from mutations induced within hematopoietic stem cells often through preleukemic fusion genes (PFG). In this study we investigated whether exposure to microwaves (MW) emitted by mobile phones could induce various biochemical markers of cellular damage including reactive oxygen species (ROS), DNA single and double strand breaks, PFG, and apoptosis in umbilical cord blood (UCB) cells including CD34+ hematopoietic stem/progenitor cells. UCB cells were exposed to MW pulsed signals from GSM900/UMTS test-mobile phone and ROS, apoptosis, DNA damage, and PFG were analyzed using flow cytometry, automated fluorescent microscopy, imaging flow cytometry, comet assay, and RT-qPCR. In general, no persisting difference in DNA damage, PFG and apoptosis between exposed and sham-exposed samples was detected. However, we found increased ROS level after 1 h of UMTS exposure that was not evident 3 h post-exposure. We also found that the level of ROS rise with the higher degree of cellular differentiation. Our data show that UCB cells exposed to pulsed MW developed transient increase in ROS that did not result in sustained DNA damage and apoptosis.
Collapse
Affiliation(s)
- Matus Durdik
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Pavol Kosik
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Eva Markova
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Alexandra Somsedikova
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Beata Gajdosechova
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ekaterina Nikitina
- Department of Oncovirology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Eva Horvathova
- Deparment of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Kozics
- Deparment of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Devra Davis
- The Hebrew University Hadassah School of Medicine, and Environmental Health Trust, Washington, USA
| | - Igor Belyaev
- Deparment of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
18
|
Gene expression of certain heat shock proteins and antioxidant enzymes in microwave exposed rats. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
von Niederhäusern N, Ducray A, Zielinski J, Murbach M, Mevissen M. Effects of radiofrequency electromagnetic field exposure on neuronal differentiation and mitochondrial function in SH-SY5Y cells. Toxicol In Vitro 2019; 61:104609. [PMID: 31351122 DOI: 10.1016/j.tiv.2019.104609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/08/2023]
Abstract
Exposure to radiofrequency electromagnetic fields (RF-EMF) has dramatically increased in the last decades with expanding use of mobile phones worldwide. The aim of this study was to evaluate effects of RF-EMF on neuronal differentiation and underlying signaling pathways involved in neuronal differentiation, neurodegeneration, and mitochondrial function. Differentiation of SH-SY5Y cells was performed using all-trans retinoic acid or staurosporine to obtain cholinergic and dopaminergic neurons. Exposure of SH-SY5Y cells at 935 MHz, 4 W/kg for 24 h did not alter the neuronal phenotypes quantitatively. Markers of the signaling pathways investigated, namely the mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinases (Erk) 1 and 2 (p-Erk1/2) and protein kinase B (Akt), glycogen synthase kinase 3 β (GSK3β) and Wnt/β-catenin were not significantly affected by RF-EMF compared to sham. RF-EMF-impaired mitochondrial respiration in cells under glucose deprivation, but glutathione levels and mitochondrial fission and fusion markers were not altered. These findings indicate that RF-EMF might lead to an impairment of mitochondrial function that is only manifest at maximal respiration and additional stressors such as glucose deprivation. Further research is needed to investigate the effects of RF-EMF on mitochondrial function in detail because mitochondrial impairment is closely related to the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicole von Niederhäusern
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland.
| | - Angélique Ducray
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland.
| | - Jana Zielinski
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland
| | - Manuel Murbach
- IT'IS Foundation, Zeughausstrasse 43, 8004 Zurich, Switzerland.
| | - Meike Mevissen
- Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, 3012 Bern, Switzerland.
| |
Collapse
|
20
|
Abstract
During recent years, an increasing percentage of male infertility has to be attributed to an array of environmental, health and lifestyle factors. Male infertility is likely to be affected by the intense exposure to heat and extreme exposure to pesticides, radiations, radioactivity and other hazardous substances. We are surrounded by several types of ionizing and non-ionizing radiations and both have recognized causative effects on spermatogenesis. Since it is impossible to cover all types of radiation sources and their biological effects under a single title, this review is focusing on radiation deriving from cell phones, laptops, Wi-Fi and microwave ovens, as these are the most common sources of non-ionizing radiations, which may contribute to the cause of infertility by exploring the effect of exposure to radiofrequency radiations on the male fertility pattern. From currently available studies it is clear that radiofrequency electromagnetic fields (RF-EMF) have deleterious effects on sperm parameters (like sperm count, morphology, motility), affects the role of kinases in cellular metabolism and the endocrine system, and produces genotoxicity, genomic instability and oxidative stress. This is followed with protective measures for these radiations and future recommendations. The study concludes that the RF-EMF may induce oxidative stress with an increased level of reactive oxygen species, which may lead to infertility. This has been concluded based on available evidences from in vitro and in vivo studies suggesting that RF-EMF exposure negatively affects sperm quality.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH 44195 USA
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535 South Africa
| |
Collapse
|
21
|
Gautam R, Singh KV, Nirala J, Murmu NN, Meena R, Rajamani P. Oxidative stress-mediated alterations on sperm parameters in male Wistar rats exposed to 3G mobile phone radiation. Andrologia 2018; 51:e13201. [DOI: 10.1111/and.13201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rohit Gautam
- School of Environmental Sciences; Jawaharlal Nehru University; New Delhi - 110067 India
| | - Kumari Vandana Singh
- School of Environmental Sciences; Jawaharlal Nehru University; New Delhi - 110067 India
| | - Jayprakash Nirala
- School of Environmental Sciences; Jawaharlal Nehru University; New Delhi - 110067 India
| | - Nina Nancy Murmu
- School of Environmental Sciences; Jawaharlal Nehru University; New Delhi - 110067 India
| | - Ramovatar Meena
- School of Environmental Sciences; Jawaharlal Nehru University; New Delhi - 110067 India
| | - Paulraj Rajamani
- School of Environmental Sciences; Jawaharlal Nehru University; New Delhi - 110067 India
| |
Collapse
|
22
|
Belpomme D, Hardell L, Belyaev I, Burgio E, Carpenter DO. Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:643-658. [PMID: 30025338 DOI: 10.1016/j.envpol.2018.07.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/31/2018] [Accepted: 07/04/2018] [Indexed: 05/24/2023]
Abstract
Exposure to low frequency and radiofrequency electromagnetic fields at low intensities poses a significant health hazard that has not been adequately addressed by national and international organizations such as the World Health Organization. There is strong evidence that excessive exposure to mobile phone-frequencies over long periods of time increases the risk of brain cancer both in humans and animals. The mechanism(s) responsible include induction of reactive oxygen species, gene expression alteration and DNA damage through both epigenetic and genetic processes. In vivo and in vitro studies demonstrate adverse effects on male and female reproduction, almost certainly due to generation of reactive oxygen species. There is increasing evidence the exposures can result in neurobehavioral decrements and that some individuals develop a syndrome of "electro-hypersensitivity" or "microwave illness", which is one of several syndromes commonly categorized as "idiopathic environmental intolerance". While the symptoms are non-specific, new biochemical indicators and imaging techniques allow diagnosis that excludes the symptoms as being only psychosomatic. Unfortunately standards set by most national and international bodies are not protective of human health. This is a particular concern in children, given the rapid expansion of use of wireless technologies, the greater susceptibility of the developing nervous system, the hyperconductivity of their brain tissue, the greater penetration of radiofrequency radiation relative to head size and their potential for a longer lifetime exposure.
Collapse
Affiliation(s)
- Dominique Belpomme
- European Cancer Environment Research Institute, Brussels, Belgium; Paris V University Hospital, Paris, France
| | - Lennart Hardell
- European Cancer Environment Research Institute, Brussels, Belgium; Department of Oncology, Orebro University Hospital, Faculty of Medicine, Orebro, Sweden
| | - Igor Belyaev
- European Cancer Environment Research Institute, Brussels, Belgium; Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Science, Bratislava, Slovak Republic; Laboratory of Radiobiology, Institute of General Physics, Russian Academy of Science, Moscow, Russian Federation
| | - Ernesto Burgio
- European Cancer Environment Research Institute, Brussels, Belgium; Instituto Scientifico Biomedico Euro Mediterraneo, Mesagne, Italy
| | - David O Carpenter
- European Cancer Environment Research Institute, Brussels, Belgium; Institute for Health and the Environment, University at Albany, Albany, NY, USA; Child Health Research Centre, The University of Queensland, Faculty of Medicine, Brisbane, Australia.
| |
Collapse
|
23
|
Akdag M, Dasdag S, Canturk F, Akdag MZ. Exposure to non-ionizing electromagnetic fields emitted from mobile phones induced DNA damage in human ear canal hair follicle cells. Electromagn Biol Med 2018; 37:66-75. [PMID: 29667447 DOI: 10.1080/15368378.2018.1463246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate effect of radiofrequency radiation (RFR) emitted from mobile phones on DNA damage in follicle cells of hair in the ear canal. The study was carried out on 56 men (age range: 30-60 years old)in four treatment groups with n = 14 in each group. The groups were defined as follows: people who did not use a mobile phone (Control), people use mobile phones for 0-30 min/day (second group), people use mobile phones for 30-60 min/day (third group) and people use mobile phones for more than 60 min/day (fourth group). Ear canal hair follicle cells taken from the subjects were analyzed by the Comet Assay to determine DNA damages. The Comet Assay parameters measured were head length, tail length, comet length, percentage of head DNA, tail DNA percentage, tail moment, and Olive tail moment. Results of the study showed that DNA damage indicators were higher in the RFR exposure groups than in the control subjects. In addition, DNA damage increased with the daily duration of exposure. In conclusion, RFR emitted from mobile phones has a potential to produce DNA damage in follicle cells of hair in the ear canal. Therefore, mobile phone users have to pay more attention when using wireless phones.
Collapse
Affiliation(s)
- Mehmet Akdag
- a Department of Otolaryngology-Head and Neck Surgery , Medical School of Dicle University , Diyarbakir , Turkey
| | - Suleyman Dasdag
- b Department of Biophysics , Medical School of Istanbul Medeniyet University , Istanbul , Turkey
| | - Fazile Canturk
- c Department of Biophysics , Medical School of Erciyes University , Kayseri , Turkey
| | - Mehmet Zulkuf Akdag
- d Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| |
Collapse
|
24
|
Gökçek-Saraç Ç, Er H, Kencebay Manas C, Kantar Gok D, Özen Ş, Derin N. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. Int J Radiat Biol 2017; 93:980-989. [DOI: 10.1080/09553002.2017.1337279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Çiğdem Gökçek-Saraç
- Faculty of Engineering, Department of Biomedical Engineering, Akdeniz University, Antalya, Turkey
| | - Hakan Er
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Ceren Kencebay Manas
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Deniz Kantar Gok
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Şükrü Özen
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Narin Derin
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
25
|
Sharma A, Kesari KK, Saxena VK, Sisodia R. Ten gigahertz microwave radiation impairs spatial memory, enzymes activity, and histopathology of developing mice brain. Mol Cell Biochem 2017; 435:1-13. [DOI: 10.1007/s11010-017-3051-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/27/2017] [Indexed: 12/13/2022]
|
26
|
Evaluation of the potential of mobile phone specific electromagnetic fields (UMTS) to produce micronuclei in human glioblastoma cell lines. Toxicol In Vitro 2017; 40:264-271. [DOI: 10.1016/j.tiv.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 01/05/2023]
|
27
|
Biochemical and histological studies on adverse effects of mobile phone radiation on rat's brain. J Chem Neuroanat 2016; 78:10-19. [PMID: 27474378 DOI: 10.1016/j.jchemneu.2016.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Abstract
With the rapid development of electronic technologies, the public concern about the potential health hazards induced by radiofrequency (RF) radiation has been grown. To investigate the effect of 1800MHz RF radiation emitted from mobile phone on the rat's brain, the present study was performed. Forty male rats were randomly divided into two equal groups; control and exposed group. The later one exposed to 1800MHz emitted from mobile phone with an SAR value of 0.6W/kg for two hours/day for three months. The brain tissues were collected at the end of the experimental period and separated into hippocampus and cerebellum for subsequent biochemical, histological, immunohistochemical and electron microscopic investigations. The rats that were exposed to RF- radiation had a significant elevation in MDA content and a significant reduction in antioxidant parameters (glutathione, super oxide dismutase and glutathione peroxidase) in both regions. Degenerative changes were observed in the hippocampus pyramidal cells, dark cells and cerebellar Purkinje cells with vascular congestion. In addition a significant DNA fragmentation and over expression of cyclooxygenase-2 apoptotic gene was detected. Those results suggested that, direct chronic exposure to mobile phone caused severe biochemical and histopathological changes in the brain.
Collapse
|
28
|
Meena JK, Verma A, Kohli C, Ingle GK. Mobile phone use and possible cancer risk: Current perspectives in India. Indian J Occup Environ Med 2016; 20:5-9. [PMID: 27390472 PMCID: PMC4922278 DOI: 10.4103/0019-5278.183827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mobile communication is now essentially ruling our daily lives through better connectivity and intelligent smartphone services. There has been a tremendous growth in Indian communication industry along with growing concerns regarding health effects of mobile radiation exposure. Concerns posed are especially regarding carcinogenesis and other health-related effects of mobile radiation exposure. In the effort to establish or refute any such concerns, many studies have been undertaken in the past three decades, mostly case-control designs or cross-sectional surveys. However, most of them considerably failed to establish causal association primarily owing to potential biases and errors in their conduct and analysis. Past cohort studies have provided contradictory results leading to continued uncertainty regarding tumorigenic potential of mobile radiation exposure. In India, there remains a huge knowledge gap pertaining to this particular topic and only few studies are presently underway such as the Indian Council of Medical Research (ICMR) cell phone study in the National capital region (NCR). International Agency for Research on Cancer (IARC) has classified radiofrequency electromagnetic fields associated with wireless phone use as possibly carcinogenic to humans (Group 2B), causing major concerns worldwide among mobile companies and subscribers equivocally. The World Health Organization (WHO) is presently carrying formal risk assessment of all studied health outcomes from radio frequency field's exposures and is likely to publish it by the year 2016.
Collapse
Affiliation(s)
- Jitendra Kumar Meena
- Department of Community Medicine, Maulana Azad Medical College, New Delhi, India
| | - Anjana Verma
- Department of Community Medicine, Maulana Azad Medical College, New Delhi, India
| | - Charu Kohli
- Department of Community Medicine, Maulana Azad Medical College, New Delhi, India
| | - Gopal Krishna Ingle
- Department of Community Medicine, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
29
|
Glushkova OV, Khrenov MO, Vinogradova EV, Lunin SM, Fesenko EE, Novoselova EG. The role of p38 protein kinase in mouse responses to low-intensity electromagnetic radiation of the centimeter range. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Chauhan P, Verma HN, Sisodia R, Kesari KK. Microwave radiation (2.45 GHz)-induced oxidative stress: Whole-body exposure effect on histopathology of Wistar rats. Electromagn Biol Med 2016; 36:20-30. [PMID: 27362544 DOI: 10.3109/15368378.2016.1144063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm2). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p < 0.001), brain (p < 0.004) and spleen (p < 0.006) in samples from rats exposed to microwave radiation. Also histological changes were observed in the brain, liver, testis, kidney and spleen after whole-body microwave exposure, compared to the control group. Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.
Collapse
Affiliation(s)
- Parul Chauhan
- a Department of Engineering and Technology , Jaipur National University , Jaipur , India
| | - H N Verma
- a Department of Engineering and Technology , Jaipur National University , Jaipur , India
| | - Rashmi Sisodia
- b Department of Zoology , University of Rajasthan , Jaipur , India
| | - Kavindra Kumar Kesari
- a Department of Engineering and Technology , Jaipur National University , Jaipur , India.,c Department of Environmental Sciences , University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
31
|
Banerjee S, Singh NN, Sreedhar G, Mukherjee S. Analysis of the Genotoxic Effects of Mobile Phone Radiation using Buccal Micronucleus Assay: A Comparative Evaluation. J Clin Diagn Res 2016; 10:ZC82-5. [PMID: 27135009 DOI: 10.7860/jcdr/2016/17592.7505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/21/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Micronucleus (MN) is considered to be a reliable marker for genotoxic damage and it determines the presence and the extent of the chromosomal damage. The MN is formed due to DNA damage or chromosomal disarrangements. The MN has a close association with cancer incidences. In the new era, mobile phones are constantly gaining popularity specifically in the young generation, but this device uses radiofrequency radiation that may have a possible carcinogenic effect. The available reports related to the carcinogenic effect of mobile radiation on oral mucosa are contradictory. AIM To explore the effects of mobile phone radiation on the MN frequency in oral mucosal cells. MATERIALS AND METHODS The subjects were divided into two major groups: low mobile phone users and high mobile phone users. Subjects who used their mobile phone since less than five years and less than three hours a week comprised of the first group and those who used their mobile since more than five years and more than 10 hours a week comprised of the second group. Net surfing and text messaging was not considered in this study. Exfoliated buccal mucosal cells were collected from both the groups and the cells were stained with DNA-specific stain acridine orange. Thousand exfoliated buccal mucosal cells were screened and the cells which were positive for micronuclei were counted. The micronucleus frequency was represented as mean±SD, and unpaired Student t-test was used for intergroup comparisons. RESULTS The number of micronucleated cells/ 1000 exfoliated buccal mucosal cells was found to be significantly increased in high mobile phone users group than the low mobile phone users group. The use of mobile phone with the associated complaint of warmth around the ear showed a maximum increase in the number of micronucleated cells /1000 exfoliated buccal mucosal cells. CONCLUSION Mobile phone radiation even in the permissible range when used for longer duration causes significant genotoxicity. The genotoxicity can be avoided to some extent by the regular use of headphones.
Collapse
Affiliation(s)
- Sumita Banerjee
- Assistant Professor, Department of Oral Pathology and Oral Microbiology, Dental College, Regional Institute of Medical Sciences , Lamphelpat, Imphal, Manipur, India
| | - Narendra Nath Singh
- Professor and Head of the Department, Department of Oral Pathology, Kothiwal Dental College and Research Center , Moradabad, Uttar Pradesh, India
| | - Gadiputi Sreedhar
- Professor and Head of the Department, Department of Oral and Maxillofacial Pathology and Microbiology, Babu Banarasi Das College of Dental Sciences , Lucknow, Uttar Pradesh, India
| | - Saikat Mukherjee
- DBT-Research Associate, Department of Biochemistry, Manipur University , Imphal, Manipur, India
| |
Collapse
|
32
|
Sahin D, Ozgur E, Guler G, Tomruk A, Unlu I, Sepici-Dinçel A, Seyhan N. The 2100MHz radiofrequency radiation of a 3G-mobile phone and the DNA oxidative damage in brain. J Chem Neuroanat 2016; 75:94-8. [PMID: 26775761 DOI: 10.1016/j.jchemneu.2016.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 11/29/2022]
Abstract
We aimed to evaluate the effect of 2100MHz radiofrequency radiation emitted by a generator, simulating a 3G-mobile phone on the brain of rats during 10 and 40 days of exposure. The female rats were randomly divided into four groups. Group I; exposed to 3G modulated 2100MHz RFR signal for 6h/day, 5 consecutive days/wk for 2 weeks, group II; control 10 days, were kept in an inactive exposure set-up for 6h/day, 5 consecutive days/wk for 2 weeks, group III; exposed to 3G modulated 2100MHz RFR signal for 6h/day, 5 consecutive days/wk for 8 weeks and group IV; control 40 days, were kept in an inactive exposure set-up for 6h/day, 5 consecutive days/wk for 8 weeks. After the genomic DNA content of brain was extracted, oxidative DNA damage (8-hydroxy-2'deoxyguanosine, pg/mL) and malondialdehyde (MDA, nmoL/g tissue) levels were determined. Our main finding was the increased oxidative DNA damage to brain after 10 days of exposure with the decreased oxidative DNA damage following 40 days of exposure compared to their control groups. Besides decreased lipid peroxidation end product, MDA, was observed after 40 days of exposure. The measured decreased quantities of damage during the 40 days of exposure could be the means of adapted and increased DNA repair mechanisms.
Collapse
Affiliation(s)
- Duygu Sahin
- Department of Medical Biochemistry, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Elcin Ozgur
- Department of Biophysics, Gazi University Faculty of Medicine and Gazi Non-Ionizing Radiation Protection Center, Ankara, Turkey.
| | - Goknur Guler
- Department of Biophysics, Gazi University Faculty of Medicine and Gazi Non-Ionizing Radiation Protection Center, Ankara, Turkey
| | - Arın Tomruk
- Department of Biophysics, Gazi University Faculty of Medicine and Gazi Non-Ionizing Radiation Protection Center, Ankara, Turkey
| | - Ilhan Unlu
- Department of Otorhinolaryngology, Düzce University Faculty of Medicine, Düzce, Turkey
| | - Aylin Sepici-Dinçel
- Department of Medical Biochemistry, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Nesrin Seyhan
- Department of Biophysics, Gazi University Faculty of Medicine and Gazi Non-Ionizing Radiation Protection Center, Ankara, Turkey
| |
Collapse
|
33
|
Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 2015; 35:186-202. [PMID: 26151230 DOI: 10.3109/15368378.2015.1043557] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review aims to cover experimental data on oxidative effects of low-intensity radiofrequency radiation (RFR) in living cells. Analysis of the currently available peer-reviewed scientific literature reveals molecular effects induced by low-intensity RFR in living cells; this includes significant activation of key pathways generating reactive oxygen species (ROS), activation of peroxidation, oxidative damage of DNA and changes in the activity of antioxidant enzymes. It indicates that among 100 currently available peer-reviewed studies dealing with oxidative effects of low-intensity RFR, in general, 93 confirmed that RFR induces oxidative effects in biological systems. A wide pathogenic potential of the induced ROS and their involvement in cell signaling pathways explains a range of biological/health effects of low-intensity RFR, which include both cancer and non-cancer pathologies. In conclusion, our analysis demonstrates that low-intensity RFR is an expressive oxidative agent for living cells with a high pathogenic potential and that the oxidative stress induced by RFR exposure should be recognized as one of the primary mechanisms of the biological activity of this kind of radiation.
Collapse
Affiliation(s)
- Igor Yakymenko
- a Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Olexandr Tsybulin
- b Department of Biophysics , Bila Tserkva National Agrarian University , Bila Tserkva , Ukraine
| | - Evgeniy Sidorik
- a Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Diane Henshel
- c School of Public and Environmental Affairs , Indiana University Bloomington , Bloomington , IN , USA
| | - Olga Kyrylenko
- d A.I. Virtanen Institute, University of Eastern Finland , Kuopio , Finland
| | - Sergiy Kyrylenko
- e Department of Structural and Functional Biology , University of Campinas , Campinas , Brazil
| |
Collapse
|
34
|
Hao YH, Zhao L, Peng RY. Effects of microwave radiation on brain energy metabolism and related mechanisms. Mil Med Res 2015; 2:4. [PMID: 26000171 PMCID: PMC4440565 DOI: 10.1186/s40779-015-0033-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
With the rapid development of electronic technologies, anxiety regarding the potential health hazards induced by microwave radiation (MW) has been growing in recent years. The brain is one of the most sensitive target organs for microwave radiation, where mitochondrial injury occurs earlier and more severely than in other organs. Energy metabolism disorders do play an important role during the process of microwave radiation-induced brain damage. In this paper, we will review the biological effects of microwave radiation, the features of brain energy supply and consumption and the effects of microwave radiation on mitochondrial energy metabolism and potential related mechanisms.
Collapse
Affiliation(s)
- Yan-Hui Hao
- Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Rui-Yun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850 China
| |
Collapse
|
35
|
Belpomme D, Campagnac C, Irigaray P. Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder. REVIEWS ON ENVIRONMENTAL HEALTH 2015; 30:251-271. [PMID: 26613326 DOI: 10.1515/reveh-2015-0027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Much of the controversy over the causes of electro-hypersensitivity (EHS) and multiple chemical sensitivity (MCS) lies in the absence of both recognized clinical criteria and objective biomarkers for widely accepted diagnosis. Since 2009, we have prospectively investigated, clinically and biologically, 1216 consecutive EHS and/or MCS-self reporting cases, in an attempt to answer both questions. We report here our preliminary data, based on 727 evaluable of 839 enrolled cases: 521 (71.6%) were diagnosed with EHS, 52 (7.2%) with MCS, and 154 (21.2%) with both EHS and MCS. Two out of three patients with EHS and/or MCS were female; mean age (years) was 47. As inflammation appears to be a key process resulting from electromagnetic field (EMF) and/or chemical effects on tissues, and histamine release is potentially a major mediator of inflammation, we systematically measured histamine in the blood of patients. Near 40% had a increase in histaminemia (especially when both conditions were present), indicating a chronic inflammatory response can be detected in these patients. Oxidative stress is part of inflammation and is a key contributor to damage and response. Nitrotyrosin, a marker of both peroxynitrite (ONOO°-) production and opening of the blood-brain barrier (BBB), was increased in 28% the cases. Protein S100B, another marker of BBB opening was increased in 15%. Circulating autoantibodies against O-myelin were detected in 23%, indicating EHS and MCS may be associated with autoimmune response. Confirming animal experiments showing the increase of Hsp27 and/or Hsp70 chaperone proteins under the influence of EMF, we found increased Hsp27 and/or Hsp70 in 33% of the patients. As most patients reported chronic insomnia and fatigue, we determined the 24 h urine 6-hydroxymelatonin sulfate (6-OHMS)/creatinin ratio and found it was decreased (<0.8) in all investigated cases. Finally, considering the self-reported symptoms of EHS and MCS, we serially measured the brain blood flow (BBF) in the temporal lobes of each case with pulsed cerebral ultrasound computed tomosphygmography. Both disorders were associated with hypoperfusion in the capsulothalamic area, suggesting that the inflammatory process involve the limbic system and the thalamus. Our data strongly suggest that EHS and MCS can be objectively characterized and routinely diagnosed by commercially available simple tests. Both disorders appear to involve inflammation-related hyper-histaminemia, oxidative stress, autoimmune response, capsulothalamic hypoperfusion and BBB opening, and a deficit in melatonin metabolic availability; suggesting a risk of chronic neurodegenerative disease. Finally the common co-occurrence of EHS and MCS strongly suggests a common pathological mechanism.
Collapse
|