1
|
Baek IC, Sim SY, Suh BK, Kim TG, Cho WK. Assessment of XCI skewing and demonstration of XCI escape region based on single-cell RNA sequencing: comparison between female Grave's disease and control. BMC Mol Cell Biol 2025; 26:8. [PMID: 39891056 PMCID: PMC11786500 DOI: 10.1186/s12860-025-00533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The reactivation and loss of mosaicism hypothesis due to X chromosome inactivation (XCI) skewing and escape could influence gender differences in autoimmune diseases. XCI selectively inactivates one of the two X chromosomes in females. METHODS To estimate XCI skewing and the occurrence of XCI escape, we conducted a normal female (NF) without a history of autoimmune thyroid disease (AITD) and a patient with Grave's disease (GD) based on a thyroid diagnosis. After single-cell RNA sequencing, heterozygous variants were converted and transformed. XCI skewing was calculated using the formula and the skewing degree was defined. NF/GD genes were compared using correction methods. Positions are heterozygous within a single cell as indicated by a unique barcode. RESULTS XCI skewing showed 45.8%/48.9% relatively random, 29.4%/27.0% skewing, 24.6%/23.7% severe skewing, and 0.2%/0.4% extreme severe skewing. 24.8%/24.1% in NF/GD exhibited severe skewing or higher. A total of 13 genes were significantly associated with XCI skewing ratios in NF/GD cells. In total, 371/250 nucleotide positions with only one barcode (representing a unique cell) were identified for XCI escape. A total of 143/52 nucleotide positions spanned 20/6 genes, and 12/1 genes were identified as XCI escapes. CONCLUSIONS These results could aid in understanding the immunogenetics of gender differences in various autoimmune disease pathophysiologies.
Collapse
Affiliation(s)
- In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo Yeun Sim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Kyu Suh
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Won Kyoung Cho
- Department of Pediatrics, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93, Jungbu-daero, Paldal-gu, Suwon-si, Seoul, Gyeonggi-do, 16247, Republic of Korea.
| |
Collapse
|
2
|
Tomczewski MV, Chan JZ, Al-Majmaie DM, Liu MR, Cocco AD, Stark KD, Strathdee D, Duncan RE. Phenotypic Characterization of Female Carrier Mice Heterozygous for Tafazzin Deletion. BIOLOGY 2023; 12:1238. [PMID: 37759637 PMCID: PMC10525480 DOI: 10.3390/biology12091238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Barth syndrome (BTHS) is caused by mutations in tafazzin resulting in deficits in cardiolipin remodeling that alter major metabolic processes. The tafazzin gene is encoded on the X chromosome, and therefore BTHS primarily affects males. Female carriers are typically considered asymptomatic, but age-related changes have been reported in female carriers of other X-linked disorders. Therefore, we examined the phenotype of female mice heterozygous for deletion of the tafazzin gene (Taz-HET) at 3 and 12 months of age. Food intakes, body masses, lean tissue and adipose depot weights, daily activity levels, metabolic measures, and exercise capacity were assessed. Age-related changes in mice resulted in small but significant genotype-specific differences in Taz-HET mice compared with their female Wt littermates. By 12 months, Taz-HET mice weighed less than Wt controls and had smaller gonadal, retroperitoneal, and brown adipose depots and liver and brain masses, despite similar food consumption. Daily movement, respiratory exchange ratio, and total energy expenditure did not vary significantly between the age-matched genotypes. Taz-HET mice displayed improved glucose tolerance and insulin sensitivity at 12 months compared with their Wt littermates but had evidence of slightly reduced exercise capacity. Tafazzin mRNA levels were significantly reduced in the cardiac muscle of 12-month-old Taz-HET mice, which was associated with minor but significant alterations in the heart cardiolipin profile. This work is the first to report the characterization of a model of female carriers of heterozygous tafazzin deficiency and suggests that additional study, particularly with advancing age, is warranted.
Collapse
Affiliation(s)
- Michelle V. Tomczewski
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| | - John Z. Chan
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| | - Duaa M. Al-Majmaie
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| | - Ming Rong Liu
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| | - Alex D. Cocco
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| | - Ken D. Stark
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| | - Douglas Strathdee
- Transgenic Technology Laboratory, Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, Scotland, UK;
| | - Robin E. Duncan
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, 200 University Ave W., BMH1044, Waterloo, ON N2L 3G1, Canada; (M.V.T.); (J.Z.C.); (D.M.A.-M.); (M.R.L.); (K.D.S.)
| |
Collapse
|
3
|
Bucknor MC, Gururajan A, Dale RC, Hofer MJ. A comprehensive approach to modeling maternal immune activation in rodents. Front Neurosci 2022; 16:1071976. [PMID: 36590294 PMCID: PMC9800799 DOI: 10.3389/fnins.2022.1071976] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Prenatal brain development is a highly orchestrated process, making it a very vulnerable window to perturbations. Maternal stress and subsequent inflammation during pregnancy leads to a state referred to as, maternal immune activation (MIA). If persistent, MIA can pose as a significant risk factor for the manifestation of neurodevelopmental disorders (NDDs) such as autism spectrum disorder and schizophrenia. To further elucidate this association between MIA and NDD risk, rodent models have been used extensively across laboratories for many years. However, there are few uniform approaches for rodent MIA models which make not only comparisons between studies difficult, but some established approaches come with limitations that can affect experimental outcomes. Here, we provide researchers with a comprehensive review of common experimental variables and potential limitations that should be considered when designing an MIA study based in a rodent model. Experimental variables discussed include: innate immune stimulation using poly I:C and LPS, environmental gestational stress paradigms, rodent diet composition and sterilization, rodent strain, neonatal handling, and the inclusion of sex-specific MIA offspring analyses. We discuss how some aspects of these variables have potential to make a profound impact on MIA data interpretation and reproducibility.
Collapse
Affiliation(s)
- Morgan C. Bucknor
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Anand Gururajan
- The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Russell C. Dale
- The Children’s Hospital at Westmead, Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Eissman JM, Dumitrescu L, Mahoney ER, Smith AN, Mukherjee S, Lee ML, Scollard P, Choi SE, Bush WS, Engelman CD, Lu Q, Fardo DW, Trittschuh EH, Mez J, Kaczorowski CC, Hernandez Saucedo H, Widaman KF, Buckley RF, Properzi MJ, Mormino EC, Yang HS, Harrison TM, Hedden T, Nho K, Andrews SJ, Tommet D, Hadad N, Sanders RE, Ruderfer DM, Gifford KA, Zhong X, Raghavan NS, Vardarajan BN, The Alzheimer’s Disease Neuroimaging Initiative (ADNI), Alzheimer’s Disease Genetics Consortium (ADGC), A4 Study Team, Pericak-Vance MA, Farrer LA, Wang LS, Cruchaga C, Schellenberg GD, Cox NJ, Haines JL, Keene CD, Saykin AJ, Larson EB, Sperling RA, Mayeux R, Cuccaro ML, Bennett DA, Schneider JA, Crane PK, Jefferson AL, Hohman TJ. Sex differences in the genetic architecture of cognitive resilience to Alzheimer's disease. Brain 2022; 145:2541-2554. [PMID: 35552371 PMCID: PMC9337804 DOI: 10.1093/brain/awac177] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer's disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer's disease neuropathology may uncover novel therapeutic targets to treat Alzheimer's disease. It is well established that there are sex differences in response to Alzheimer's disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, β (females) = 0.08, P (females) = 5.76 × 10-09, β (males) = -0.01, P(males) = 0.70, β (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer's disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer's disease may be personalized based on their biological sex and genetic context.
Collapse
Affiliation(s)
- Jaclyn M Eissman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Emily R Mahoney
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Alexandra N Smith
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | | | - Michael L Lee
- Department of Medicine, University of Washington,
Seattle, WA, USA
| | - Phoebe Scollard
- Department of Medicine, University of Washington,
Seattle, WA, USA
| | - Seo Eun Choi
- Department of Medicine, University of Washington,
Seattle, WA, USA
| | - William S Bush
- Cleveland Institute for Computational Biology, Department of Population and
Quantitative Health Sciences, Case Western Reserve University,
Cleveland, OH, USA
| | - Corinne D Engelman
- Department of Population Health Sciences, School of Medicine and Public
Health, University of Wisconsin-Madison, Madison,
WI, USA
| | - Qiongshi Lu
- Department of Statistics, University of Wisconsin-Madison,
Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of
Wisconsin-Madison, Madison, WI, USA
| | - David W Fardo
- Department of Biostatistics, College of Public Health, University of
Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky,
Lexington, KY, USA
| | - Emily H Trittschuh
- Department of Psychiatry and Behavioral Sciences, University of Washington
School of Medicine, Seattle, WA, USA
- VA Puget Sound Health Care System, GRECC, Seattle,
WA, USA
| | - Jesse Mez
- Department of Neurology, Boston University School of
Medicine, Boston, MA, USA
| | | | - Hector Hernandez Saucedo
- UC Davis Alzheimer's Disease Research Center, Department of Neurology,
University of California Davis Medical Center, Sacramento,
CA, USA
| | | | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical
School, Boston, MA, USA
- Center for Alzheimer's Research and Treatment, Department of Neurology,
Brigham and Women’s Hospital/Harvard Medical School, Boston,
MA, USA
- Melbourne School of Psychological Sciences, University of
Melbourne, Melbourne, Australia
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital/Harvard Medical
School, Boston, MA, USA
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford
University, Stanford, CA, USA
| | - Hyun Sik Yang
- Department of Neurology, Massachusetts General Hospital/Harvard Medical
School, Boston, MA, USA
- Center for Alzheimer's Research and Treatment, Department of Neurology,
Brigham and Women’s Hospital/Harvard Medical School, Boston,
MA, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California
Berkeley, Berkeley, CA, USA
| | - Trey Hedden
- Icahn School of Medicine at Mount Sinai, New York
City, NY, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease
Center, Indiana University School of Medicine, Indianapolis,
IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University
School of Medicine, Indianapolis, IN, USA
| | - Shea J Andrews
- Icahn School of Medicine at Mount Sinai, New York
City, NY, USA
| | - Douglas Tommet
- Department of Psychiatry and Human Behavior, Brown University School of
Medicine, Providence, RI, USA
| | | | | | - Douglas M Ruderfer
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Katherine A Gifford
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Xiaoyuan Zhong
- Department of Statistics, University of Wisconsin-Madison,
Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of
Wisconsin-Madison, Madison, WI, USA
| | - Neha S Raghavan
- Department of Neurology, Columbia University, New
York, NY, USA
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain,
Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and
The New York Presbyterian Hospital, New York, NY,
USA
| | - Badri N Vardarajan
- Department of Neurology, Columbia University, New
York, NY, USA
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain,
Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and
The New York Presbyterian Hospital, New York, NY,
USA
| | | | | | | | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami School of
Medicine, Miami, FL, USA
| | - Lindsay A Farrer
- Department of Neurology, Boston University School of
Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public
Health, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of
Medicine, Boston, MA, USA
| | - Li San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and
Laboratory Medicine, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of
Medicine, St. Louis, MO, USA
| | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and
Laboratory Medicine, University of Pennsylvania Perelman School of
Medicine, Philadelphia, PA, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Jonathan L Haines
- Cleveland Institute for Computational Biology, Department of Population and
Quantitative Health Sciences, Case Western Reserve University,
Cleveland, OH, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington,
Seattle, WA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of
Medicine, Indianapolis, IN, USA
| | - Eric B Larson
- Department of Medicine, University of Washington,
Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute,
Seattle, WA, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital/Harvard Medical
School, Boston, MA, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University, New
York, NY, USA
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain,
Columbia University, New York, NY, USA
- The Institute for Genomic Medicine, Columbia University Medical Center and
The New York Presbyterian Hospital, New York, NY,
USA
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami School of
Medicine, Miami, FL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical
Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical
Center, Chicago, IL, USA
| | - Paul K Crane
- Department of Medicine, University of Washington,
Seattle, WA, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical
Center, Nashville, TN, USA
| |
Collapse
|
5
|
Brian BF, Sauer ML, Greene JT, Senevirathne SE, Lindstedt AJ, Funk OL, Ruis BL, Ramirez LA, Auger JL, Swanson WL, Nunez MG, Moriarity BS, Lowell CA, Binstadt BA, Freedman TS. A dominant function of LynB kinase in preventing autoimmunity. SCIENCE ADVANCES 2022; 8:eabj5227. [PMID: 35452291 PMCID: PMC9032976 DOI: 10.1126/sciadv.abj5227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Here, we report that the LynB splice variant of the Src-family kinase Lyn exerts a dominant immunosuppressive function in vivo, whereas the LynA isoform is uniquely required to restrain autoimmunity in female mice. We used CRISPR-Cas9 gene editing to constrain lyn splicing and expression, generating single-isoform LynA knockout (LynAKO) or LynBKO mice. Autoimmune disease in total LynKO mice is characterized by production of antinuclear antibodies, glomerulonephritis, impaired B cell development, and overabundance of activated B cells and proinflammatory myeloid cells. Expression of LynA or LynB alone uncoupled the developmental phenotype from the autoimmune disease: B cell transitional populations were restored, but myeloid cells and differentiated B cells were dysregulated. These changes were isoform-specific, sexually dimorphic, and distinct from the complete LynKO. Despite the apparent differences in disease etiology and penetrance, loss of either LynA or LynB had the potential to induce severe autoimmune disease with parallels to human systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Ben F. Brian
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Monica L. Sauer
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph T. Greene
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - S. Erandika Senevirathne
- Graduate Program in Molecular Pharmacology and Therapeutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anders J. Lindstedt
- Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, Minneapolis, MN 55455, USA
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia L. Funk
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian L. Ruis
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luis A. Ramirez
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jennifer L. Auger
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Whitney L. Swanson
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Myra G. Nunez
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryce A. Binstadt
- Department of Pediatrics, Division of Rheumatology, Allergy and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tanya S. Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Maitra S, Roy S, Mukherjee A, Naramala S, Bose S. Thrombocytopenia: A Diagnostic Dilemma and Incidental Detection of Systemic Lupus Erythematosus in a Middle-Aged Asian Male. Cureus 2020; 12:e10375. [PMID: 33062498 PMCID: PMC7550011 DOI: 10.7759/cureus.10375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Systemic lupus erythematosus is a multisystem disorder much more common in females than males due to the effect of the hormone estrogen. There are also specific differences in clinical presentation in men and women. We present a unique case of a 54-year-old middle-aged Asian male presenting with only generalized weakness without other systemic features and with only incidental finding of thrombocytopenia. Notable laboratory values were positive for antinuclear antibody (ANA) and anti-double-stranded DNA (dsDNA), low complement 3 level with normal complement 4 levels, along with severe thrombocytopenia and mild anemia. The patient was eventually diagnosed with systemic lupus erythematosus based on these parameters. Bone marrow biopsy revealed an increased number of megakaryocytes without hypocellular or hypercellular marrow and no dysplasia of cell lines. He was initiated on oral prednisone, and his symptoms recovered remarkably with normalization of lab values upon discharge. The case's importance lies in the fact that the diagnosis of lupus can be missed in male patients with nonspecific clinical features due to certain differences in presentation from females. This diagnosis should be included in the workup of any thrombocytopenia.
Collapse
Affiliation(s)
- Somnath Maitra
- General Medicine, Jagannath Gupta Institute of Medical Sciences and Hospital, Kolkata, IND
| | - Sasmit Roy
- Nephrology, University of Virginia, Charlottesville, USA.,Nephrology, Liberty University College of Osteopathic Medicine, Lynchburg, USA
| | - Aveek Mukherjee
- Internal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, USA
| | | | - Subhasish Bose
- Nephrology, Liberty University College of Osteopathic Medicine, Lynchburg, USA.,Nephrology, University of Virginia, Charlottesville, USA.,Nephrology/Internal Medicine, Lynchburg General Hospital, Lynchburg, USA
| |
Collapse
|
7
|
Significance of KIR like natural killer cell receptors in autoimmune disorders. Clin Immunol 2020; 216:108449. [PMID: 32376502 DOI: 10.1016/j.clim.2020.108449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs), act as the regulators for the cytolytic activity of natural killer and certain T cells by interacting with the HLA class I ligands. KIRs have been shown to contribute to the pathogenesis of several autoimmune diseases. However, their specific roles are still not very clear. Autoimmune diseases are multifactorial in nature, highlighting the influence of both genetic and environmental factors. The innate immune response plays an important role in autoimmunity as it alters the self-glycans that mimic molecular patterns found on different intracellular pathogens. Natural killer (NK) cells have an important position in the innate immune response. NK cell receptors are encoded by the leukocyte receptor complex located on the chromosome 19q13.4 and lectin-like receptors on chromosome 12p13. This review focuses on the role of KIRs and their relationship with different autoimmune diseases.
Collapse
|
8
|
Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun 2020; 109:102438. [PMID: 32184036 DOI: 10.1016/j.jaut.2020.102438] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are evolutionally conserved, single-stranded RNAs that regulate gene expression at the posttranscriptional level by disrupting translation. MiRNAs are key players in variety of biological processes that regulate the differentiation, development and activation of immune cells in both innate and adaptive immunity. The disruption and dysfunction of miRNAs can perturb the immune response, stimulate the release of inflammatory cytokines and initiate the production of autoantibodies, and contribute to the pathogenesis of autoimmune diseases, including systemic lupus erythmatosus (SLE), rheumatoid arthritis (RA), primary biliary cholangitis (PBC), and multiple sclerosis (MS). Accumulating studies demonstrate that miRNAs, which can be collected by noninvasive methods, have the potential to be developed as diagnostic and therapeutic biomarkers, the discovery and validation of which is essential for the improvement of disease diagnosis and clinical monitoring. Recently, with the development of detection tools, such as microarrays and NGS (Next Generation Sequencing), large amounts of miRNAs have been identified and suggest a critical role in the pathogenesis of autoimmune diseases. Several miRNAs associated diagnostic biomarkers have been developed and applied clinically, though the pharmaceutical industry is still facing challenges in commercialization and drug delivery. The development of miRNAs is less advanced for autoimmune diseases compared with cancer. However, drugs that target miRNAs have been introduced as candidates and adopted in clinical trials. This review comprehensively summarizes the differentially expressed miRNAs in several types of autoimmune diseases and discusses the role and the significance of miRNAs in clinical management. The study of miRNAs in autoimmunity promises to provide novel and broad diagnostic and therapeutic strategies for a clinical market that is still in its infancy.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical, Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
9
|
Heritability of skewed X-inactivation in female twins is tissue-specific and associated with age. Nat Commun 2019; 10:5339. [PMID: 31767861 PMCID: PMC6877649 DOI: 10.1038/s41467-019-13340-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Female somatic X-chromosome inactivation (XCI) balances the X-linked transcriptional dosages between the sexes. Skewed XCI toward one parental X has been observed in several complex human traits, but the extent to which genetics and environment influence skewed XCI is largely unexplored. To address this, we quantify XCI-skew in multiple tissues and immune cell types in a twin cohort. Within an individual, XCI-skew differs between blood, fat and skin tissue, but is shared across immune cell types. XCI skew increases with age in blood, but not other tissues, and is associated with smoking. XCI-skew is increased in twins with Rheumatoid Arthritis compared to unaffected identical co-twins. XCI-skew is heritable in blood of females >55 years old (h2 = 0.34), but not in younger individuals or other tissues. This results in a Gene x Age interaction that shifts the functional dosage of all X-linked heterozygous loci in a tissue-restricted manner. Skewing of X chromosome inactivation (XCI) occurs when the silencing of one parental X chromosome is non-random. Here, Zito et al. report XCI patterns in lymphoblastoid cell lines, blood, subcutaneous adipose tissue samples and skin samples of monozygotic and dizygotic twins and find XCI skew to associate with tissue and age.
Collapse
|
10
|
Chang C, Tanaka A, Gershwin ME. Unmet needs in autoimmune liver diseases. J Dig Dis 2019; 20:327-330. [PMID: 31232533 DOI: 10.1111/1751-2980.12785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, Florida, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California, USA
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California, USA
| |
Collapse
|
11
|
Lefèvre N, Corazza F, Valsamis J, Delbaere A, De Maertelaer V, Duchateau J, Casimir G. The Number of X Chromosomes Influences Inflammatory Cytokine Production Following Toll-Like Receptor Stimulation. Front Immunol 2019; 10:1052. [PMID: 31143188 PMCID: PMC6521177 DOI: 10.3389/fimmu.2019.01052] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/24/2019] [Indexed: 02/05/2023] Open
Abstract
Sex differences are observed in the evolution of numerous inflammatory conditions. Women exhibit better clinical courses compared to men in acute inflammatory processes, yet worse prognosis in several chronic inflammatory diseases. Inflammatory markers are significantly different between prepubertal boys and girls, whose sex steroid levels are very low, suggesting genetics play a role. To evaluate the potential influence of the X chromosome, we studied cytokine production and protein phosphorylation following Toll-like receptor (TLR) activation in whole blood and purified neutrophils and monocytes of healthy adults of both sexes as well as subjects with Klinefelter syndrome. We recorded higher levels of inflammatory cytokines in men compared to both women and patients with Klinefelter syndrome following whole blood stimulation. In purified monocytes, production of inflammatory cytokines was also higher in men compared to women, while Klinefelter subjects expressed the same pattern of cytokine production as males, in contrast with whole blood analyses. These differences remained after adjusting for sex steroid levels. Our study revealed higher cytokine inflammatory responses in men than women, yet also compared to subjects with Klinefelter syndrome, who carry two copies of the X chromosome, like women, and thus potentially benefit from the cellular mosaicism of X-linked genes.
Collapse
Affiliation(s)
- Nicolas Lefèvre
- Department of Pulmonology, Allergology and Cystic Fibrosis, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Francis Corazza
- Laboratory of Translational Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Joseph Valsamis
- Laboratory of Hormonology, Hôpital Universitaire Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Delbaere
- Fertility Clinic, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Viviane De Maertelaer
- Department of Biostatistics and Medical Computing, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean Duchateau
- Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
| | - Georges Casimir
- Department of Pulmonology, Allergology and Cystic Fibrosis, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Pediatrics, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
12
|
Gerussi A, Cristoferi L, Carbone M, Asselta R, Invernizzi P. The immunobiology of female predominance in primary biliary cholangitis. J Autoimmun 2018; 95:124-132. [DOI: 10.1016/j.jaut.2018.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
|
13
|
Upregulation of miR-221/222 expression in rheumatoid arthritis (RA) patients: correlation with disease activity. Clin Exp Med 2018; 19:47-53. [PMID: 30132091 DOI: 10.1007/s10238-018-0524-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
miRNAs are noncoding RNA that play a critical role as fine regulators of gene expression at the posttranscriptional level within cells in numerous autoimmune diseases. miR-221/222 play a role in cancer by regulating cell proliferation, invasion and apoptosis. However, there have been insufficient studies on their role in rheumatoid arthritis (RA). This work is designed to analyze the miR-221/222 expression patterns in peripheral blood mononuclear cells (PBMCs) of patients with RA in comparison with healthy controls using quantitative RT-PCR, in a group of 30 RA patients and 20 healthy controls. The fold change of miR-221/222 expression in PBMCs was significantly elevated (p < 0.01) in RA patients compared with healthy controls. A positive correlation between expression levels of miR-221 and miR-222 was recorded (r = 0.303; p < 0.05). High miR-221/222 expression levels appeared to be elevated with high activity. miR-222 expression in high activity group of RA patients was significantly increased in relation to moderate (p < 0.01) and low (p < 0.001) activity ones with positive correlation (r = 0.363; p < 0.05) between the progress of disease activity and change in miR-222 expression level. ROC analysis showed a sensitivity of 70% and specificity of 75% for miR-221. In miR-222, the sensitivity of 80% and specificity of 70% were recorded. Our data shed some light on the role of miR-221/222 expression in RA patients, and their great potential value as new novel noninvasive biomarkers for disease detection. Therefore; further investigations are warranted to fully elucidate their role in rheumatoid.
Collapse
|
14
|
Gender, aging and longevity in humans: an update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clin Sci (Lond) 2017; 130:1711-25. [PMID: 27555614 PMCID: PMC4994139 DOI: 10.1042/cs20160004] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022]
Abstract
Data showing a remarkable gender difference in life expectancy and mortality, including survival to extreme age, are reviewed starting from clinical and demographic data and stressing the importance of a comprehensive historical perspective and a gene–environment/lifestyle interaction. Gender difference regarding prevalence and incidence of the most important age-related diseases, such as cardiovascular and neurodegenerative diseases, cancer, Type 2 diabetes, disability, autoimmunity and infections, are reviewed and updated with particular attention to the role of the immune system and immunosenescence. On the whole, gender differences appear to be pervasive and still poorly considered and investigated despite their biomedical relevance. The basic biological mechanisms responsible for gender differences in aging and longevity are quite complex and still poorly understood. The present review focuses on centenarians and their offspring as a model of healthy aging and summarizes available knowledge on three basic biological phenomena, i.e. age-related X chromosome inactivation skewing, gut microbiome changes and maternally inherited mitochondrial DNA genetic variants. In conclusion, an appropriate gender-specific medicine approach is urgently needed and should be systematically pursued in studies on healthy aging, longevity and age-related diseases, in a globalized world characterized by great gender differences which have a high impact on health and diseases.
Collapse
|
15
|
Epigenetics and Primary Biliary Cirrhosis: a Comprehensive Review and Implications for Autoimmunity. Clin Rev Allergy Immunol 2015; 50:390-403. [DOI: 10.1007/s12016-015-8502-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Ishido N, Inoue N, Watanabe M, Hidaka Y, Iwatani Y. The relationship between skewed X chromosome inactivation and the prognosis of Graves' and Hashimoto's diseases. Thyroid 2015; 25:256-61. [PMID: 25338305 PMCID: PMC4322037 DOI: 10.1089/thy.2014.0318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autoimmune thyroid diseases (AITDs) predominantly develop in females. One of two X chromosomes is randomly inactivated by methylation in each female cell, but it has been reported that skewed X chromosome inactivation (XCI) may be associated with the development of autoimmune diseases. To clarify the significance of skewed XCI in the prognosis and development of AITD, we investigated the proportion of skewed XCI in female patients with AITD. METHODS We analyzed the degree of XCI skewing in 120 female patients with AITD (77 patients with Graves' disease [GD] and 43 patients with Hashimoto's disease [HD]) and 49 female controls in DNA from peripheral blood mononuclear cells (PBMC). We performed XCI analysis by digesting inactive DNA with a methylation-sensitive restriction enzyme (HpaII) followed by a polymerase chain reaction (PCR) assay for the polymorphic CAG repeat of the androgen receptor gene and electrophoresis of the PCR products. RESULTS The proportion of skewed XCI (≥65% skewing) was not significantly different between AITD patients and control subjects but was higher in patients with intractable GD (66.7%) than those with GD in remission (25.0%, p=0.0033) and control subjects (32.6%, p=0.0038). When the cutoff value for XCI skewing was relaxed, the proportion of skewed XCI (≥60% skewing) was higher in patients with severe HD (76.5%) than in those with mild HD (41.2%, p=0.0342). CONCLUSIONS Skewed XCI is related to the prognosis of AITD, particularly the intractability of GD.
Collapse
Affiliation(s)
- Naoko Ishido
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoya Inoue
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mikio Watanabe
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoh Hidaka
- Department of Laboratory Medicine; Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshinori Iwatani
- Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
17
|
D'Amico F, Skarmoutsou E, Mazzarino MC. The sex bias in systemic sclerosis: on the possible mechanisms underlying the female disease preponderance. Clin Rev Allergy Immunol 2014; 47:334-43. [PMID: 24126759 DOI: 10.1007/s12016-013-8392-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Systemic sclerosis is a multifactorial and heterogeneous disease. Genetic and environmental factors are known to interplay in the onset and progression of systemic sclerosis. Sex plays an important and determinant role in the development of such a disorder. Systemic sclerosis shows a significant female preponderance. However, the reason for this female preponderance is incompletely understood. Hormonal status, genetic and epigenetic differences, and lifestyle have been considered in order to explain female preponderance in systemic sclerosis. Sex chromosomes play a determinant role in contributing to systemic sclerosis onset and progression, as well as in its sex-biased prevalence. It is known, in fact, that X chromosome contains many sex- and immuno-related genes, thus contributing to immuno tolerance and sex hormone status. This review focuses mainly on the recent progress on epigenetic mechanisms--exclusively linked to the X chromosome--which would contribute to the development of systemic sclerosis. Furthermore, we report also some hypotheses (dealing with skewed X chromosome inactivation, X gene reactivation, acquired monosomy) that have been proposed in order to justify the female preponderance in autoimmune diseases. However, despite the intensive efforts in elucidating the mechanisms involved in the pathogenesis of systemic sclerosis, many questions remain still unanswered.
Collapse
Affiliation(s)
- Fabio D'Amico
- Department of Bio-medical Sciences, University of Catania, via Androne 83, 95124, Catania, Italy,
| | | | | |
Collapse
|
18
|
Contributing factors in multiple sclerosis and the female sex bias. Immunol Lett 2014; 162:223-32. [DOI: 10.1016/j.imlet.2014.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/19/2014] [Accepted: 09/02/2014] [Indexed: 11/22/2022]
|
19
|
Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol 2014; 35:347-69. [PMID: 24793874 DOI: 10.1016/j.yfrne.2014.04.004] [Citation(s) in RCA: 666] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/20/2014] [Accepted: 04/22/2014] [Indexed: 12/21/2022]
Abstract
Autoimmune diseases are a range of diseases in which the immune response to self-antigens results in damage or dysfunction of tissues. Autoimmune diseases can be systemic or can affect specific organs or body systems. For most autoimmune diseases there is a clear sex difference in prevalence, whereby females are generally more frequently affected than males. In this review, we consider gender differences in systemic and organ-specific autoimmune diseases, and we summarize human data that outlines the prevalence of common autoimmune diseases specific to adult males and females in countries commonly surveyed. We discuss possible mechanisms for sex specific differences including gender differences in immune response and organ vulnerability, reproductive capacity including pregnancy, sex hormones, genetic predisposition, parental inheritance, and epigenetics. Evidence demonstrates that gender has a significant influence on the development of autoimmune disease. Thus, considerations of gender should be at the forefront of all studies that attempt to define mechanisms that underpin autoimmune disease.
Collapse
Affiliation(s)
- S T Ngo
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia; University of Queensland Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
| | - F J Steyn
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - P A McCombe
- University of Queensland Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia; Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Queensland, Australia.
| |
Collapse
|
20
|
Konsta OD, Thabet Y, Le Dantec C, Brooks WH, Tzioufas AG, Pers JO, Renaudineau Y. The contribution of epigenetics in Sjögren's Syndrome. Front Genet 2014; 5:71. [PMID: 24765104 PMCID: PMC3982050 DOI: 10.3389/fgene.2014.00071] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022] Open
Abstract
Sjögren’s syndrome (SS) is a chronic autoimmune epithelitis that combines exocrine gland dysfunctions and lymphocytic infiltrations. While the pathogenesis of SS remains unclear, its etiology is multifunctional and includes a combination of genetic predispositions, environmental factors, and epigenetic factors. Recently, interest has grown in the involvement of epigenetics in autoimmune diseases. Epigenetics is defined as changes in gene expression, that are inheritable and that do not entail changes in the DNA sequence. In SS, several epigenetic mechanisms are defective including DNA demethylation that predominates in epithelial cells, an abnormal expression of microRNAs, and abnormal chromatin positioning-associated with autoantibody production. Last but not least, epigenetic modifications are reversible as observed in minor salivary glands from SS patients after B cell depletion using rituximab. Thus epigenetic findings in SS open new perspectives for therapeutic approaches as well as the possible identification of new biomarkers.
Collapse
Affiliation(s)
- Orsia D Konsta
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France ; Department of Pathophysiology, School of Medicine, National University of Athens Athens, Greece
| | - Yosra Thabet
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France
| | - Christelle Le Dantec
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France
| | - Wesley H Brooks
- Department of Chemistry, University of South Florida Tampa, FL, USA
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National University of Athens Athens, Greece
| | - Jacques-Olivier Pers
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France
| | - Yves Renaudineau
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France ; Laboratory of Immunology and Immunotherapy, Hôpital Morvan - Brest University Medical School Brest France
| |
Collapse
|
21
|
Duke JM, Bauer J, Fear MW, Rea S, Wood FM, Boyd J. Burn injury, gender and cancer risk: population-based cohort study using data from Scotland and Western Australia. BMJ Open 2014; 4:e003845. [PMID: 24441050 PMCID: PMC3902327 DOI: 10.1136/bmjopen-2013-003845] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the risk of cancer and potential gender effects in persons hospitalised with burn injury. DESIGN Population-based retrospective cohort study using record-linkage systems in Scotland and Western Australia. PARTICIPANTS Records of 37 890 and 23 450 persons admitted with a burn injury in Scotland and Western Australia, respectively, from 1983 to 2008. Deidentified extraction of all linked hospital morbidity records, mortality and cancer records were provided by the Information Service Division Scotland and the Western Australian Data Linkage Service. MAIN OUTCOME MEASURES Total and gender-specific number of observed and expected cases of total ('all sites') and site-specific cancers and standardised incidence ratios (SIRs). RESULTS From 1983 to 2008, for female burn survivors, there was a greater number of observed versus expected notifications of total cancer with 1011 (SIR, 95% CI 1.3, 1.2 to 1.4) and 244 (SIR, 95% CI 1.12, 1.05 to 1.30), respectively, for Scotland and Western Australia. No statistically significant difference in total cancer risk was found for males. Significant excesses in observed cancers among burn survivors (combined gender) in Scotland and Western Australian were found for buccal cavity, liver, larynx and respiratory tract and for cancers of the female genital tract. CONCLUSIONS Results from the Scotland data confirmed the increased risk of total ('all sites') cancer previously observed among female burn survivors in Western Australia. The gender dimorphism observed in this study may be related to the role of gender in the immune response to burn injury. More research is required to understand the underlying mechanism(s) that may link burn injury with an increased risk of some cancers.
Collapse
Affiliation(s)
- Janine M Duke
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Crawley, Western Australia, Australia
| | - Jacqui Bauer
- Population Health Research Network, Centre for Data Linkage, Curtin University, Perth, Western Australia, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Crawley, Western Australia, Australia
| | - Suzanne Rea
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Crawley, Western Australia, Australia
- Burns Service of Western Australia, Royal Perth Hospital and Princess Margaret Hospital, Perth, Western Australia, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Surgery, University of Western Australia, Crawley, Western Australia, Australia
- Burns Service of Western Australia, Royal Perth Hospital and Princess Margaret Hospital, Perth, Western Australia, Australia
- Fiona Wood Foundation, Crawley, Western Australia, Australia
| | - James Boyd
- Population Health Research Network, Centre for Data Linkage, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
22
|
|
23
|
Szymański K, Miśkiewicz P, Pirko K, Jurecka-Lubieniecka B, Kula D, Hasse-Lazar K, Krajewski P, Bednarczuk T, Płoski R. rs3827440, a nonsynonymous single nucleotide polymorphism within GPR174 gene in X chromosome, is associated with Graves' disease in Polish Caucasian population. ACTA ACUST UNITED AC 2013; 83:41-4. [PMID: 24289805 DOI: 10.1111/tan.12259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/17/2013] [Accepted: 10/31/2013] [Indexed: 01/23/2023]
Abstract
Recently Chu et al. conducted a two-stage genome wide association study in Chinese that identified a novel X-linked Graves' disease (GD) susceptibility marker at rs3827440 - a nonsynonymous (P162S) nucleotide transition (519C<T) within G protein-coupled receptor 174 (GPR174) gene. We aimed to replicate this finding in Caucasians. Using the TaqMan approach we typed rs3827440 in 560 GD patients from Warsaw and 196 patients from Gliwice as well as ethically matched controls (N = 748, N = 198, respectively). We found an association of the rs3827440 T allele with GD using both an allelic and genotype comparison [odds ratio (OR) = 1.19, 95% confidence interval (CI): 1.03-1.38, P = 0.021; OR=1.32, 95% CI: 1.03-1.69, P = 0.03, respectively]. There was no difference in distribution of rs3827440 alleles/genotypes vs gender, tobacco smoking, ophthalmopathy or age at disease onset. Also, no statistically significant differences were observed after stratifying patients for DRB1*03- or GD-associated variants in CTLA4 or TSHR genes. Our study provides the first replication in a Caucasian population of the association between GD and rs3827440 originally reported among Chinese. Our results also validate statistical methodology used by Chu et al. to detect associations with X-linked markers.
Collapse
Affiliation(s)
- K Szymański
- Department of Medical Genetics, Centre for Biostructure, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Casimir GJ, Lefèvre N, Corazza F, Duchateau J. Sex and inflammation in respiratory diseases: a clinical viewpoint. Biol Sex Differ 2013; 4:16. [PMID: 24128344 PMCID: PMC3765878 DOI: 10.1186/2042-6410-4-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/07/2013] [Indexed: 12/15/2022] Open
Abstract
This review discusses sex differences in the prognosis of acute or chronic inflammatory diseases. The consequences of severe inflammation vary in relation to sex, depending on illness duration. In the majority of acute diseases, males present higher mortality rates, whereas continuous chronic inflammation associated with tissue damage is more deleterious in females. The recruitment of cells, along with its clinical expression, is more significant in females, as reflected by higher inflammatory markers. Given that estrogens or androgens are known to modulate inflammation, their different levels in males and females cannot account for the sexual dimorphism observed in humans and animals from birth to death with regard to inflammation. Numerous studies evaluated receptors, cytokine production, and clinical outcomes in both animals and humans, revealing that estrogens clearly modulate the immune response, but the results are contradictory and difficult to link to hormone concentrations. Even in prepubescent children, the presentation of acute pneumonia or chronic diseases mimics the adult pattern. Several genes located on the X chromosome have been shown to encode molecules involved in inflammation. Moreover, 10% to 15% of the genes from silenced X chromosome may escape inhibition. Females are also a mosaic of cells with genes from either paternal or maternal X chromosome. Therefore, polymorphism of X-linked genes would result in the presence of two cell populations with distinct regulatory arsenals, providing females with greater diversity to fight against infectious challenges, in comparison with the uniform cell populations in hemizygous males. The similarities observed between males and Turner syndrome patients using an endotoxin stimulation model support the difference in gene expression between monosomy and disomy for the X chromosome. Considering the enhanced inflammation in females, cytokine production may be assumed to be higher in females than males. Even if all results are not clear-cut, nonetheless, many studies have reported higher cytokine levels in both male humans and animals than in females. High IL-6 levels in males correlated with poorer prognosis and shorter longevity. A sound understanding of the basic regulatory mechanisms responsible for these gender differences may lead to new therapeutic targets.
Collapse
Affiliation(s)
- Georges J Casimir
- Department of Pulmonology, Allergology and Cystic Fibrosis, Hôpital Universitaire des Enfants Reine Fabiola, Avenue JJ. Crocq 15, B-1020, Brussels, Belgium ; Laboratory of Pediatrics, Université Libre de Bruxelles (ULB), Place Arthur Van Gehuchten 4, B-1020, Brussels, Belgium
| | - Nicolas Lefèvre
- Department of Pulmonology, Allergology and Cystic Fibrosis, Hôpital Universitaire des Enfants Reine Fabiola, Avenue JJ. Crocq 15, B-1020, Brussels, Belgium ; Laboratory of Immunology, Hôpital Universitaire Brugmann, Place Arthur Van Gehuchten, 4, B-1020, Brussels, Belgium
| | - Francis Corazza
- Laboratory of Immunology, Hôpital Universitaire Brugmann, Place Arthur Van Gehuchten, 4, B-1020, Brussels, Belgium
| | - Jean Duchateau
- Laboratory of Pediatrics, Université Libre de Bruxelles (ULB), Place Arthur Van Gehuchten 4, B-1020, Brussels, Belgium
| |
Collapse
|
25
|
Abstract
Genetic studies in immune-mediated diseases have yielded a large number of disease-associated loci. Here we review the progress being made in 12 such diseases, for which 199 independently associated non-HLA loci have been identified by genome-wide association studies since 2007. It is striking that many of the loci are not unique to a single disease but shared between different immune-mediated diseases. The challenge now is to understand how the unique and shared genetic factors can provide insight into the underlying disease biology. We annotated disease-associated variants using the Encyclopedia of DNA Elements (ENCODE) database and demonstrate that, of the predisposing disease variants, the majority have the potential to be regulatory. We also demonstrate that many of these variants affect the expression of nearby genes. Furthermore, we summarize results from the Immunochip, a custom array, which allows a detailed comparison between five of the diseases that have so far been analyzed using this platform.
Collapse
Affiliation(s)
- Isis Ricaño-Ponce
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands;
| | | |
Collapse
|
26
|
Płoski R, Szymański K, Bednarczuk T. The genetic basis of graves' disease. Curr Genomics 2012; 12:542-63. [PMID: 22654555 PMCID: PMC3271308 DOI: 10.2174/138920211798120772] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 01/09/2023] Open
Abstract
The presented comprehensive review of current knowledge about genetic factors predisposing to Graves’ disease (GD) put emphasis on functional significance of observed associations. In particular, we discuss recent efforts aimed at refining diseases associations found within the HLA complex and implicating HLA class I as well as HLA-DPB1 loci. We summarize data regarding non-HLA genes such as PTPN22, CTLA4, CD40, TSHR and TG which have been extensively studied in respect to their role in GD. We review recent findings implicating variants of FCRL3 (gene for FC receptor-like-3 protein), SCGB3A2 (gene for secretory uteroglobin-related protein 1- UGRP1) as well as other unverified possible candidate genes for GD selected through their documented association with type 1 diabetes mellitus: Tenr–IL2–IL21, CAPSL (encoding calcyphosine-like protein), IFIH1(gene for interferon-induced helicase C domain 1), AFF3, CD226 and PTPN2. We also review reports on association of skewed X chromosome inactivation and fetal microchimerism with GD. Finally we discuss issues of genotype-phenotype correlations in GD.
Collapse
Affiliation(s)
- Rafał Płoski
- Department of Medical Genetics, Centre for Biostructure, Medical University of Warsaw, Poland
| | | | | |
Collapse
|
27
|
Fairweather D, Petri MA, Coronado MJ, Cooper LT. Autoimmune heart disease: role of sex hormones and autoantibodies in disease pathogenesis. Expert Rev Clin Immunol 2012; 8:269-84. [PMID: 22390491 DOI: 10.1586/eci.12.10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) and autoimmune diseases (ADs) are the first and third highest causes of death in the USA, respectively. Men have an increased incidence of the majority of CVDs, including atherosclerosis, myocarditis, dilated cardiomyopathy and heart failure. By contrast, nearly 80% of all ADs occur in women. However, in one category of ADs, rheumatic diseases, CVD is the main cause of death. Factors that link rheumatic ADs to CVD are inflammation and the presence of autoantibodies. In this review we will examine recent findings regarding sex differences in the immunopathogenesis of CVD and ADs, explore possible reasons for the increased occurrence of CVD within rheumatic ADs and discuss whether autoantibodies, including rheumatoid factor, could be involved in disease pathogenesis.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Johns Hopkins University Bloomberg School of Public Health, Department of Environmental Health Sciences, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
28
|
Seidel MG, Rami B, Item C, Schober E, Zeitlhofer P, Huber WD, Heitger A, Bodamer OA, Haas OA. Concurrent FOXP3- and CTLA4-associated genetic predisposition and skewed X chromosome inactivation in an autoimmune disease-prone family. Eur J Endocrinol 2012; 167:131-4. [PMID: 22450550 DOI: 10.1530/eje-12-0197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CLTA4 is relevant for FOXP3(+)Treg cells, and the link between skewed X chromosome inactivation (XCI) and autoimmunity is recognized. The observation of immune dysregulation polyendocrinopathy enteropathy X-linked syndrome and multiorgan endocrine autoimmune phenomena in various members of one family, associated with a CTLA4 polymorphism and skewed XCI, provides an in vivo model of how mechanisms of immune dysregulation may cooperate.
Collapse
Affiliation(s)
- M G Seidel
- St Anna Children's Hospital, Kinderspitalgasse 6, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sex Differences in Inflammatory Cytokines and CD99 Expression Following In Vitro Lipopolysaccharide Stimulation. Shock 2012; 38:37-42. [DOI: 10.1097/shk.0b013e3182571e46] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Sex differences associated with primary biliary cirrhosis. Clin Dev Immunol 2012; 2012:610504. [PMID: 22693524 PMCID: PMC3369468 DOI: 10.1155/2012/610504] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/27/2012] [Indexed: 12/14/2022]
Abstract
Primary biliary cirrhosis (PBC) is a cholestatic liver disease of autoimmune origin, characterised by the destruction of small intrahepatic bile ducts. The disease has an unpredictable clinical course but may progress to fibrosis and cirrhosis. The diagnostic hallmark of PBC is the presence of disease-specific antimitochondrial antibodies (AMA), which are pathognomonic for the development of PBC. The disease overwhelmingly affects females, with some cases of male PBC being reported. The reasons underlying the low incidence of males with PBC are largely unknown. Epidemiological studies estimate that approximately 7–11% of PBC patients are males. There does not appear to be any histological, serological, or biochemical differences between male and female PBC, although the symptomatology may differ, with males being at higher risk of life-threatening complications such as gastrointestinal bleeding and hepatoma. Studies on X chromosome and sex hormones are of interest when studying the low preponderance of PBC in males; however, these studies are far from conclusive. This paper will critically analyze the literature surrounding PBC in males.
Collapse
|
31
|
Sex differences and genomics in autoimmune diseases. J Autoimmun 2012; 38:J254-65. [DOI: 10.1016/j.jaut.2011.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 12/23/2022]
|
32
|
Bianchi I, Lleo A, Gershwin ME, Invernizzi P. The X chromosome and immune associated genes. J Autoimmun 2012; 38:J187-J192. [PMID: 22178198 DOI: 10.1016/j.jaut.2011.11.012] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/22/2011] [Indexed: 12/13/2022]
Abstract
The X chromosome is known to contain the largest number of immune-related genes of the whole human genome. For this reason, X chromosome has recently become subject of great interest and attention and numerous studies have been aimed at understanding the role of genes on the X chromosome in triggering and maintaining the autoimmune aggression. Autoimmune diseases are indeed a growing heath burden affecting cumulatively up to 10% of the general population. It is intriguing that most X-linked primary immune deficiencies carry significant autoimmune manifestations, thus illustrating the critical role played by products of single gene located on the X chromosome in the onset, function and homeostasis of the immune system. Again, the plethora of autoimmune stigmata observed in patients with Turner syndrome, a disease due to the lack of one X chromosome or the presence of major X chromosome deletions, indicate that X-linked genes play a unique and major role in autoimmunity. There have been several reports on a role of X chromosome gene dosage through inactivation or duplication in women with autoimmune diseases, for example through a higher rate of circulating cells with a single X chromosome (i.e. with X monosomy). Finally, a challenge for researchers in the coming years will be to dissect the role for the large number of X-linked microRNAs from the perspective of autoimmune disease development. Taken together, X chromosome might well constitute the common trait of the susceptibility to autoimmune diseases, other than to explain the female preponderance of these conditions. This review will focus on the available evidence on X chromosome changes and discuss their potential implications and limitations.
Collapse
Affiliation(s)
- Ilaria Bianchi
- Center for Autoimmune Liver Diseases, Department of Medicine, IRCCS Istituto Clinico Humanitas, Rozzano, Italy
| | | | | | | |
Collapse
|
33
|
Tan TC, Fang H, Magder LS, Petri MA. Differences between male and female systemic lupus erythematosus in a multiethnic population. J Rheumatol 2012; 39:759-69. [PMID: 22382348 DOI: 10.3899/jrheum.111061] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Male patients with systemic lupus erythematosus (SLE) are thought to be similar to female patients with SLE, but key clinical characteristics may differ. Comparisons were made between male and female patients with SLE in the Hopkins Lupus Cohort. METHODS A total of 1979 patients in the Hopkins Lupus Cohort were included in the analysis. RESULTS The cohort consisted of 157 men (66.2% white, 33.8% African American) and 1822 women (59.8% white, 40.2% African American). The mean followup was 6.02 years (range 0-23.73). Men were more likely than women to have disability, hypertension, thrombosis, and renal, hematological, and serological manifestations. Men were more likely to be diagnosed at an older age and to have a lower education level. Women were more likely to have malar rash, photosensitivity, oral ulcers, alopecia, Raynaud's phenomenon, or arthralgia. Men were more likely than women to have experienced end organ damage including neuropsychiatric, renal, cardiovascular, peripheral vascular disease, and myocardial infarction, and to have died. In general, differences between males and females were more numerous and striking in whites, especially with respect to lupus nephritis, abnormal serologies, and thrombosis. CONCLUSION Our study suggests that there are major clinical differences between male and female patients with SLE. Differences between male and female patients also depend on ethnicity. Future SLE studies will need to consider both ethnicity and gender to understand these differences.
Collapse
Affiliation(s)
- Tze Chin Tan
- Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 7500, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
34
|
Selmi C, Brunetta E, Raimondo MG, Meroni PL. The X chromosome and the sex ratio of autoimmunity. Autoimmun Rev 2011; 11:A531-7. [PMID: 22155196 DOI: 10.1016/j.autrev.2011.11.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number of human conditions that are currently considered to be autoimmune diseases (AID) has been steadily growing over the past decades and it is now estimated that over 10 million people are affected in the United States. One of the major shared features among AID is the predominance in the female sex which in some cases changes with the age at disease diagnosis. Numerous hypotheses have been formulated based on intuitive scientific backgrounds to justify this sex imbalance, i.e. sex hormones and reproductive factors, fetal microchimerism, other sex-related environmental factors, a skewing of the X-chromosome inactivation patterns, and major defects in sex chromosomes. Nevertheless, none of these hypotheses has thus far gathered enough convincing evidence and in most cases data are conflicting, as well illustrated by the reports on fetal microchimerism in systemic sclerosis or primary biliary cirrhosis. The present article will critically discuss the main hypotheses (loss of mosaicism, reactivation, and haploinsufficiency) that have been proposed based on findings in female patients with specific AID along with two additional mechanisms (X-chromosome vulnerability and X-linked polyamine genes) that have been observed in AID models. Further, recent data have significantly shifted the paradigm of X chromosome inactivation by demonstrating that a large number of genes can variably escape silencing on one or both chromosomes. As a result we may hypothesize that more than one mechanism may contribute to the female susceptibility to tolerance breakdown while the possibility that unknown factors may indeed protect men from AID should not be overlooked.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA.
| | | | | | | |
Collapse
|
35
|
Pinheiro I, Dejager L, Libert C. X-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. Bioessays 2011; 33:791-802. [PMID: 21953569 DOI: 10.1002/bies.201100047] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 12/21/2022]
Abstract
In this paper, we hypothesize that X chromosome-associated mechanisms, which affect X-linked genes and are behind the immunological advantage of females, may also affect X-linked microRNAs. The human X chromosome contains 10% of all microRNAs detected so far in the human genome. Although the role of most of them has not yet been described, several X chromosome-located microRNAs have important functions in immunity and cancer. We therefore provide a detailed map of all described microRNAs located on human and mouse X chromosomes, and highlight the ones involved in immune functions and oncogenesis. The unique mode of inheritance of the X chromosome is ultimately the cause of the immune disadvantage of males and the enhanced survival of females following immunological challenges. How these aspects influence X-linked microRNAs will be a challenge for researchers in the coming years, not only from an evolutionary point of view, but also from the perspective of disease etiology.
Collapse
Affiliation(s)
- Iris Pinheiro
- Department for Molecular Biomedical Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | | | | |
Collapse
|
36
|
Meda F, Folci M, Baccarelli A, Selmi C. The epigenetics of autoimmunity. Cell Mol Immunol 2011; 8:226-36. [PMID: 21278766 PMCID: PMC3093958 DOI: 10.1038/cmi.2010.78] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 12/12/2022] Open
Abstract
The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately, epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Meda
- Department of Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | |
Collapse
|
37
|
Fernández-Morera JL, Calvanese V, Rodríguez-Rodero S, Menéndez-Torre E, Fraga MF. Epigenetic regulation of the immune system in health and disease. ACTA ACUST UNITED AC 2011; 76:431-9. [PMID: 21058938 DOI: 10.1111/j.1399-0039.2010.01587.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epigenetics comprises various mechanisms that mold chromatin structures and regulate gene expression with stability, thus defining cell identity and function and adapting cells to environmental changes. Alteration of these mechanisms contributes to the inception of various pathological conditions. Given the complexity of the immune system, one would predict that a higher-order, supragenetic regulation is indispensable for generation of its constituents and control of its functions. Here, we summarize various aspects of immune system physiology and pathology in which epigenetic pathways have been implicated. Increasing knowledge in this field, together with the development of specific tools with which to manipulate epigenetic pathways, might form a basis for new strategies of immune function modulation, both to optimize immune therapies for infections or cancer and to control immune alterations in aging or autoimmunity.
Collapse
Affiliation(s)
- J L Fernández-Morera
- Endocrinology and Nutrition Service, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | | | | |
Collapse
|
38
|
Abstract
Epigenetics is a steadily growing research area. In many human diseases, especially in cancers, but also in autoimmune diseases, epigenetic aberrations have been found. Rheumatoid arthritis is an autoimmune disease characterized by chronic inflammation and destruction of synovial joints. Even though the etiology is not yet fully understood, rheumatoid arthritis is generally considered to be caused by a combination of genetic predisposition, deregulated immunomodulation, and environmental influences. To gain a better understanding of this disease, researchers have become interested in studying epigenetic changes in rheumatoid arthritis. Here, we want to review the current knowledge on epigenetics in rheumatoid arthritis.
Collapse
Affiliation(s)
- Michelle Trenkmann
- Center of Experimental Rheumatology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
39
|
The X chromosome in immune functions: when a chromosome makes the difference. Nat Rev Immunol 2010; 10:594-604. [DOI: 10.1038/nri2815] [Citation(s) in RCA: 523] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Lu LJ, Wallace DJ, Ishimori ML, Scofield RH, Weisman MH. Review: Male systemic lupus erythematosus: a review of sex disparities in this disease. Lupus 2009; 19:119-29. [PMID: 19946032 DOI: 10.1177/0961203309350755] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although males with systemic lupus erythematosus (SLE) represent 4-22% of all SLE patients, it may not be appropriate that these cases should be subordinated to females with SLE in terms of most health-related issues. Over the past few decades, some distinctive features of male lupus have been observed with regard to genetic and environmental aspects of sex differences, clinical features, and outcome. In addition, recent insights into sex disparities in this disease have brought forth a few plausible and novel pathogenetic hypotheses. This review discusses these findings and sex disparities in SLE that appear to be especially noteworthy and pertinent to our understanding of male SLE.
Collapse
Affiliation(s)
- L-J Lu
- Cedars Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | | | |
Collapse
|
41
|
Invernizzi P, Gershwin ME. The genetics of human autoimmune disease. J Autoimmun 2009; 33:290-9. [DOI: 10.1016/j.jaut.2009.07.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
|
42
|
Uz E, Mustafa C, Topaloglu R, Bilginer Y, Dursun A, Kasapcopur O, Ozen S, Bakkaloglu A, Ozcelik T. Increased frequency of extremely skewed X chromosome inactivation in juvenile idiopathic arthritis. ARTHRITIS AND RHEUMATISM 2009; 60:3410-3412. [PMID: 19877028 DOI: 10.1002/art.24956] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Juvenile idiopathic arthritis (JIA) is a childhood rheumatic disease of unknown etiology. Two subgroups of JIA, i.e., oligoarticular and polyarticular, are thought to have an autoimmune component, and show a higher female:male ratio. Skewed X chromosome inactivation (XCI) has previously been shown to be associated with scleroderma and autoimmune thyroiditis, 2 autoimmune disorders occurring predominantly in females. This study was undertaken to extend the analysis to the pediatric age group and to determine the XCI profiles of patients with JIA. METHODS A polymorphic repeat in the androgen receptor gene was genotyped to determine XCI status in 81 female patients with JIA (21 with polyarticular disease and 60 with oligoarticular disease) and 211 healthy female controls. DNA obtained from venous blood samples was used for this analysis. RESULTS Informative data were obtained on 62 JIA patients and 155 controls. Skewed XCI was observed in 14 patients (22.6%) and 11 controls (7.1%) (P = 0.0036), and extreme skewing was apparent in 8 patients (12.9%) and 2 controls (1.3%) (P = 0.0008). CONCLUSION Our findings in the present study indicate that skewed XCI may be a risk factor for the occurrence of autoimmune disorders, including JIA.
Collapse
Affiliation(s)
- Elif Uz
- Bilkent University, Faculty of Science and Institute of Materials Science and Nanotechnology, Ankara, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Invernizzi P, Pasini S, Selmi C, Gershwin ME, Podda M. Female predominance and X chromosome defects in autoimmune diseases. J Autoimmun 2009; 33:12-6. [PMID: 19356902 DOI: 10.1016/j.jaut.2009.03.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/03/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
Abstract
It is known that autoimmune diseases cumulatively affect 5-10% of the general population. Although knowledge of pathogenesis has become more refined, laboratory diagnosis more accurate, and therapy more effective, the reasons for the female preponderance of these conditions remain unclear. The most intriguing theory to explain the female preponderance is currently related to sex chromosomes, as women with autoimmune diseases manifest a higher rate of circulating cells with a single X chromosome (i.e. X monosomy). In addition, there have been several reports on the role of X chromosome gene dosage through inactivation or duplication in autoimmunity. Taken together, sex chromosome changes might constitute the common trait of the susceptibility to autoimmune diseases.
Collapse
Affiliation(s)
- Pietro Invernizzi
- Division of Internal Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Milan, Italy.
| | | | | | | | | |
Collapse
|
44
|
Selmi C. The X in sex: how autoimmune diseases revolve around sex chromosomes. Best Pract Res Clin Rheumatol 2009; 22:913-22. [PMID: 19028371 DOI: 10.1016/j.berh.2008.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent estimates suggest that autoimmune diseases cumulatively affect 5-10% of the general population worldwide. Although the etiology and pathogenesis remain poorly understood in most cases, similarities between diseases outnumber differences in the initiation and perpetuation of the autoimmune injury. One major example is the predominance of affected women, and perhaps its most intriguing putative mechanism is related to sex chromosomes, based on the recent observation that women with autoimmune diseases manifest a higher rate of circulating leukocytes with a single X chromosome. In a complementary fashion, there have been several reports on a role of X chromosome gene dosage through inactivation or duplication in autoimmunity. It is important not to overlook men with autoimmune diseases, who might manifest a more frequent loss of the Y chromosome in circulating leukocytes. Taken together, sex chromosome changes might constitute the common trait of autoimmunity.
Collapse
Affiliation(s)
- Carlo Selmi
- Department of Internal Medicine, IRCCS-Istituto Clinico Humanitas, University of Milan, Rozzano, Milan, Italy.
| |
Collapse
|
45
|
Current world literature. Curr Opin Rheumatol 2008; 20:729-35. [PMID: 18946335 DOI: 10.1097/bor.0b013e328317a234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Vasculitis: Current Status and Future Directions. Clin Rev Allergy Immunol 2008; 35:1-4. [DOI: 10.1007/s12016-007-8061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Uz E, Loubiere LS, Gadi VK, Ozbalkan Z, Stewart J, Nelson JL, Ozcelik T. Skewed X-chromosome inactivation in scleroderma. Clin Rev Allergy Immunol 2008; 34:352-5. [PMID: 18157513 PMCID: PMC2716291 DOI: 10.1007/s12016-007-8044-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Scleroderma is a female-prevalent autoimmune disease of unclear etiology. Two fundamental gender differences, skewed X-chromosome inactivation (XCI) and pregnancy-related microchimerism, have been implicated in scleroderma. We investigated the XCI patterns of female scleroderma patients and the parental origin of the inactive X chromosome in those patients having skewed XCI patterns (>80%). In addition, we investigated whether a correlation exists between XCI patterns and microchimerism in a well-characterized cohort. About 195 female scleroderma patients and 160 female controls were analyzed for the androgen receptor locus to assess XCI patterns in the DNA extracted from peripheral blood cells. Skewed XCI was observed in 67 (44.9%) of 149 informative patients and in 10 of 124 healthy controls (8.0%) [odds ratio (OR) = 9.3 (95% confidence interval (CI) 4.3-20.6, P < 0.0001)]. Extremely skewed XCI (>90%) was present in 44 of 149 patients (29.5%) but only in 3 of 124 controls (2.4%; OR = 16.9; 95% CI 4.8-70.4, P < 0.0001). Parental origin of the inactive X chromosome was investigated for ten patients for whom maternal DNA was informative, and the inactive X chromosome was of maternal origin in eight patients and of paternal origin in two patients. Skewed XCI mosaicism could be considered as an important risk factor in scleroderma.
Collapse
Affiliation(s)
- Elif Uz
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
| | - Laurence S Loubiere
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Vijayakrishna K. Gadi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Zeynep Ozbalkan
- Rheumatology Department, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | | | - J. Lee Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey
- Institute for Materials Science and Nanotechnology (UNAM), Bilkent University, Ankara, Turkey
| |
Collapse
|
48
|
Sherer Y, Matthias T, Shoenfeld Y. Cutting Edge Issues in Autoimmunity. Clin Rev Allergy Immunol 2008; 34:275-8. [DOI: 10.1007/s12016-007-8047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|