1
|
Chi X, Yin S, Sun Y, Kou L, Zou W, Wang Y, Jin Z, Wang T, Xia Y. Astrocyte-neuron communication through the complement C3-C3aR pathway in Parkinson's disease. Brain Behav Immun 2025; 123:229-243. [PMID: 39288893 DOI: 10.1016/j.bbi.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024] Open
Abstract
Neuroinflammation and autoimmunity are pivotal in the pathogenesis of neurodegenerative diseases. Complement activation and involvement of astrocyte-neuron C3/C3aR pathway have been observed, yet the mechanisms influencing α-synuclein (α-syn) pathology and neurodegeneration remain unclear. In this study, elevated levels of complement C3 were detected in the plasma of α-syn PFF-induced mice and the substantia nigra of A53T transgenic mice. Colocalization of complement C3 with astrocytes was also observed. Overexpression of complement C3 exacerbated motor dysfunction, dopaminergic neuron loss, and phosphorylated α-syn expression in mice injected with α-syn preformed fibrils (α-syn PFFs). Conversely, downregulation of complement C3 protected α-syn PFF-induced mice. Molecular investigations revealed that inhibition of Toll-like receptor 2 (TLR2) or NF-κB reduced complement C3 expression in primary astrocytes following α-syn PFF treatment. Astrocyte-neuron communication via the C3/C3aR pathway influenced α-syn PFF-induced neuronal apoptosis and α-syn pathology, potentially through modulation of GSK3β. These findings underscore the critical role of astrocyte-neuron communication via the C3/C3aR pathway in PD pathogenesis, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Roodveldt C, Bernardino L, Oztop-Cakmak O, Dragic M, Fladmark KE, Ertan S, Aktas B, Pita C, Ciglar L, Garraux G, Williams-Gray C, Pacheco R, Romero-Ramos M. The immune system in Parkinson's disease: what we know so far. Brain 2024; 147:3306-3324. [PMID: 38833182 PMCID: PMC11449148 DOI: 10.1093/brain/awae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Parkinson's disease is characterized neuropathologically by the degeneration of dopaminergic neurons in the ventral midbrain, the accumulation of α-synuclein (α-syn) aggregates in neurons and chronic neuroinflammation. In the past two decades, in vitro, ex vivo and in vivo studies have consistently shown the involvement of inflammatory responses mediated by microglia and astrocytes, which may be elicited by pathological α-syn or signals from affected neurons and other cell types, and are directly linked to neurodegeneration and disease development. Apart from the prominent immune alterations seen in the CNS, including the infiltration of T cells into the brain, more recent studies have demonstrated important changes in the peripheral immune profile within both the innate and adaptive compartments, particularly involving monocytes, CD4+ and CD8+ T cells. This review aims to integrate the consolidated understanding of immune-related processes underlying the pathogenesis of Parkinson's disease, focusing on both central and peripheral immune cells, neuron-glia crosstalk as well as the central-peripheral immune interaction during the development of Parkinson's disease. Our analysis seeks to provide a comprehensive view of the emerging knowledge of the mechanisms of immunity in Parkinson's disease and the implications of this for better understanding the overall pathogenesis of this disease.
Collapse
Affiliation(s)
- Cintia Roodveldt
- Centre for Molecular Biology and Regenerative Medicine-CABIMER, University of Seville-CSIC, Seville 41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville 41009, Spain
| | - Liliana Bernardino
- Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Ozgur Oztop-Cakmak
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Department of Molecular Biology and Endocrinology, ‘VINČA’ Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Kari E Fladmark
- Department of Biological Science, University of Bergen, 5006 Bergen, Norway
| | - Sibel Ertan
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur 15200, Turkey
| | - Carlos Pita
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Lucia Ciglar
- Center Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria
| | - Gaetan Garraux
- Movere Group, Faculty of Medicine, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580702, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia 7510156, Santiago, Chile
| | - Marina Romero-Ramos
- Department of Biomedicine & The Danish Research Institute of Translational Neuroscience—DANDRITE, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Baridjavadi Z, Mahmoudi M, Abdollahi N, Ebadpour N, Mollazadeh S, Haghmorad D, Esmaeili SA. The humoral immune landscape in Parkinson's disease: Unraveling antibody and B cell changes. Cell Biochem Funct 2024; 42:e4109. [PMID: 39189398 DOI: 10.1002/cbf.4109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) in the brain and progressive loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Although the role of neuroinflammation and cellular immunity in PD has been extensively studied, the involvement of humoral immunity mediated by antibodies and B cells has received less attention. This article provides a comprehensive review of the current understanding of humoral immunity in PD. Here, we discuss alterations in B cells in PD, including changes in their number and phenotype. Evidence mostly indicates a decrease in the quantity of B cells in PD, accompanied by a shift in the population from naïve to memory cells. Furthermore, the existence of autoantibodies that target several antigens in PD has been investigated (i.e., anti-α-syn autoantibodies, anti-glial-derived antigen antibodies, anti-Tau antibodies, antineuromelanin antibodies, and antibodies against the renin-angiotensin system). Several autoantibodies are generated in PD, which may either provide protection or have harmful effects on disease progression. Furthermore, we have reviewed studies focusing on the utilization of antibodies as a potential treatment for PD, both in animal and clinical trials. This review sheds light on the intricate interplay between antibodies and the pathological processes in PD, including complement system activation.
Collapse
Affiliation(s)
- Zahra Baridjavadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Abdollahi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Vroom MM, Dodart JC. Active Immunotherapy for the Prevention of Alzheimer's and Parkinson's Disease. Vaccines (Basel) 2024; 12:973. [PMID: 39340005 PMCID: PMC11435640 DOI: 10.3390/vaccines12090973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases (ND) give rise to significant declines in motor, autonomic, behavioral, and cognitive functions. Of these conditions, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most prevalent, impacting over 55 million people worldwide. Given the staggering financial toll on the global economy and their widespread manifestation, NDs represent a critical issue for healthcare systems worldwide. Current treatment options merely seek to provide symptomatic relief or slow the rate of functional decline and remain financially inaccessible to many patients. Indeed, no therapy has yet demonstrated the potential to halt the trajectory of NDs, let alone reverse them. It is now recognized that brain accumulation of pathological variants of AD- or PD-associated proteins (i.e., amyloid-β, Tau, α-synuclein) begins years to decades before the onset of clinical symptoms. Accordingly, there is an urgent need to pursue therapies that prevent the neurodegenerative processes associated with pathological protein aggregation long before a clinical diagnosis can be made. These therapies must be safe, convenient, and affordable to ensure broad coverage in at-risk populations. Based on the need to intervene long before clinical symptoms appear, in this review, we present a rationale for greater investment to support the development of active immunotherapy for the prevention of the two most common NDs based on their safety profile, ability to specifically target pathological proteins, as well as the significantly lower costs associated with manufacturing and distribution, which stands to expand accessibility to millions of people globally.
Collapse
Affiliation(s)
- Madeline M Vroom
- Vaxxinity, Inc., Space Life Sciences Lab, 505 Odyssey Way, Merritt Island, FL 32953, USA
| | - Jean-Cosme Dodart
- Vaxxinity, Inc., Space Life Sciences Lab, 505 Odyssey Way, Merritt Island, FL 32953, USA
| |
Collapse
|
5
|
Folke J, Skougaard M, Korsholm TL, Laursen ALS, Salvesen L, Hejl AM, Bech S, Løkkegaard A, Brudek T, Ditlev SB, Aznar S. Assessing serum anti-nuclear antibodies HEp-2 patterns in synucleinopathies. Immun Ageing 2024; 21:49. [PMID: 39026277 PMCID: PMC11256463 DOI: 10.1186/s12979-024-00453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
This study investigates the presence of antinuclear antibodies (ANA) in three primary synucleinopathies - Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), compared to healthy controls. Autoinflammatory disorders typically involve the immune system mistakenly attacking the body's own cells and start producing ANA. There is an increasing body of evidence that immune-mediated inflammation is a pathological feature linked to synucleinopathies. To investigate whether this could be autoimmune mediated we analyzed for ANA in the plasma of 25 MSA, 25 PD, and 17 DLB patients, along with 25 healthy controls, using the ANA HEp-2 indirect immunofluorescence antibody assay (ANA HEp-2 IFA). Contrary to initial expectations, results showed ANA HEp-2 positivity in 12% of PD, 8% of MSA patients, 18% of DLB patients, and 17% of healthy controls, indicating no increased prevalence of ANA in synucleinopathies compared to age-matched healthy individuals. Various ANA HEp-2 patterns were identified, but no specific pattern was associated with individual synucleinopathies. We conclude hereby that synucleinopathies are not associated with detectable presence of ANA in plasma.
Collapse
Affiliation(s)
- Jonas Folke
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Skougaard
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Trine-Line Korsholm
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Line Strange Laursen
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Sara Bech
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Annemette Løkkegaard
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen Ø, DK-2100, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sisse Bolm Ditlev
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Susana Aznar
- Centre for Neuroscience & Stereology, Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
6
|
Garmendia JV, De Sanctis CV, Das V, Annadurai N, Hajduch M, De Sanctis JB. Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond. Curr Neuropharmacol 2024; 22:1080-1109. [PMID: 37898823 PMCID: PMC10964103 DOI: 10.2174/1570159x22666231017141636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 10/30/2023] Open
Abstract
Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/ vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Marián Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| |
Collapse
|
7
|
Arévalo B, Serafín V, Garranzo-Asensio M, Montero-Calle A, Barderas R, Yáñez-Sedeño P, Campuzano S, Pingarrón JM. Anti-double stranded DNA antibodies: Electrochemical isotyping in autoimmune and neurological diseases. Anal Chim Acta 2023; 1257:341153. [PMID: 37062567 DOI: 10.1016/j.aca.2023.341153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023]
Abstract
This work reports the first amperometric biosensor for the simultaneous determination of the single or total content of the most relevant human immunoglobulin isotypes (hIgs) of anti-dsDNA antibodies, dsDNA-hIgG, dsDNA-hIgM, dsDNA-hIgA and dsDNA-three hIgs, which are considered relevant biomarkers in prevalent autoimmune diseases such as systemic lupus erythematosus (SLE) as well as of interest in neurodegenerative diseases such as Alzheimer's disease (AD). The bioplatform involves the use of neutravidin-functionalized magnetic microparticles (NA-MBs) modified with a laboratory-prepared biotinylated human double-stranded DNA (b-dsDNA) for the efficient capture of specific autoantibodies that are enzymatically labeled with horseradish peroxidase (HRP) enzyme using specific secondary antibodies for each isotype or a mixture of secondary antibodies for the total content of the three isotypes. Transduction was performed by amperometry (-0.20 V vs. the Ag pseudo-reference electrode) using the H2O2/hydroquinone (HQ) system after trapping the resulting magnetic bioconjugates on each of the four working electrodes of a disposable quadruple transduction platform (SP4CEs). The bioplatform demonstrated attractive operational characteristics for clinical application and was employed to determine the individual or total hIgs classes in serum from healthy individuals and from patients diagnosed with SLE and AD. The target concentrations in AD patients are provided for the first time in this work. In addition, the results for SLE patients and control individuals agree with those obtained by applying ELISA tests as well as with the clinical ranges reported by other authors, using individual detection methodologies restricted to centralized settings or clinical laboratories.
Collapse
Affiliation(s)
- Beatriz Arévalo
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014, Madrid, Spain
| | - Verónica Serafín
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014, Madrid, Spain
| | - Maria Garranzo-Asensio
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Paloma Yáñez-Sedeño
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014, Madrid, Spain.
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014, Madrid, Spain.
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014, Madrid, Spain
| |
Collapse
|
8
|
Zhao H, Wang W, Lin T, Gong L. Serum Metabolomics of Benign Essential Blepharospasm Using Liquid Chromatography and Orbitrap Mass Spectrometry. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6876327. [PMID: 36452462 PMCID: PMC9704060 DOI: 10.1155/2022/6876327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 01/19/2024]
Abstract
Background Benign essential blepharospasm (BEB) is a form of focal dystonia that causes excessive involuntary spasms of the eyelids. Currently, the pathogenesis of BEB remains unclear. This study is aimed at investigating the serum metabolites profiles in patients with BEB and healthy control and to identify the mechanism and biomarkers of this disease. Methods 30 patients with BEB and 33 healthy controls were recruited for this study. We conducted the quantitative and nontargeted metabolomics analysis of the serum samples from 63 subjects by using liquid chromatography and Orbitrap mass spectrometry (LC-Orbitrap MS). Multivariate statistical analysis was performed to detect and identify different metabolites between the two groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and receiver operating characteristic (ROC) curve analysis of the altered metabolites were performed. Results A total of 134 metabolites were found and identified. The metabolites belonged to several metabolic pathways including phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arginine biosynthesis, linoleic acid metabolism, tryptophan metabolism, aminoacyl-tRNA biosynthesis, sphingolipid metabolism, glycosphingolipid biosynthesis, leucine and isoleucine biosynthesis, and vitamin B6 metabolism. Eight metabolites were identified as the potential biomarkers. Conclusions These results demonstrated that serum metabolic profiling of BEB patients was significantly different from healthy controls based on LC-Orbitrap MS. Besides, metabolomics might provide useful information for a better understanding of BEB.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Fudan University, Shanghai 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, China
| |
Collapse
|
9
|
Plasma autoantibodies to glial fibrillary acidic protein (GFAP) react with brain areas according to Braak staging of Parkinson's disease. J Neural Transm (Vienna) 2022; 129:545-555. [PMID: 35364741 PMCID: PMC9188503 DOI: 10.1007/s00702-022-02495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/24/2022] [Indexed: 10/26/2022]
Abstract
Idiopathic Parkinson's disease (PD) is characterized by a progredient degeneration of the brain, starting at deep subcortical areas such as the dorsal motor nucleus of the glossopharyngeal and vagal nerves (DM) (stage 1), followed by the coeruleus-subcoeruleus complex; (stage 2), the substantia nigra (SN) (stage 3), the anteromedial temporal mesocortex (MC) (stage 4), high-order sensory association areas and prefrontal fields (HC) (stage 5) and finally first-order sensory association areas, premotor areas, as well as primary sensory and motor field (FC) (stage 6). Autoimmunity might play a role in PD pathogenesis. Here we analyzed whether anti-brain autoantibodies differentially recognize different human brain areas and identified autoantigens that correlate with the above-described dissemination of PD pathology in the brain. Brain tissue was obtained from deceased individuals with no history of neurological or psychiatric disease and no neuropathological abnormalities. Tissue homogenates from different brain regions (DM, SN, MC, HC, FC) were subjected to SDS-PAGE and Western blot. Blots were incubated with plasma samples from 30 PD patients and 30 control subjects and stained with anti-IgG antibodies to detect anti-brain autoantibodies. Signals were quantified. Prominent autoantigens were identified by 2D-gel-coupled mass spectrometry sequencing. Anti-brain autoantibodies are frequent and occur both in healthy controls and individuals with PD. Glial fibrillary acidic protein (GFAP) was identified as a prominent autoantigen recognized in all plasma samples. GFAP immunoreactivity was highest in DM areas and lowest in FC areas with no significant differences in anti-GFAP autoantibody titers between healthy controls and individuals with PD. The anti-GFAP autoimmunoreactivity of different brain areas correlates with the dissemination of histopathological neurodegeneration in PD. We hypothesize that GFAP autoantibodies are physiological but might be involved as a cofactor in PD pathogenesis secondary to a leakage of the blood-brain barrier.
Collapse
|
10
|
Wang N, Li R, Feng B, Cheng Y, Guo Y, Qian H. Chicoric Acid Prevents Neuroinflammation and Neurodegeneration in a Mouse Parkinson’s Disease Model: Immune Response and Transcriptome Profile of the Spleen and Colon. Int J Mol Sci 2022; 23:ijms23042031. [PMID: 35216146 PMCID: PMC8874631 DOI: 10.3390/ijms23042031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Chicoric acid (CA), a polyphenolic acid compound extracted from chicory and echinacea, possesses antiviral, antioxidative and anti-inflammatory activities. Growing evidence supports the pivotal roles of brain–spleen and brain–gut axes in neurodegenerative diseases, including Parkinson’s disease (PD), and the immune response of the spleen and colon is always the active participant in the pathogenesis and development of PD. In this study, we observe that CA prevented dopaminergic neuronal lesions, motor deficits and glial activation in PD mice, along with the increment in striatal brain-derived neurotrophic factor (BDNF), dopamine (DA) and 5-hydroxyindoleacetic acid (5-HT). Furthermore, CA reversed the level of interleukin-17(IL-17), interferon-gamma (IFN-γ) and transforming growth factor-beta (TGF-β) of PD mice, implicating its regulatory effect on the immunological response of spleen and colon. Transcriptome analysis revealed that 22 genes in the spleen (21 upregulated and 1 downregulated) and 306 genes (190 upregulated and 116 downregulated) in the colon were significantly differentially expressed in CA-pretreated mice. These genes were functionally annotated with GSEA, GO and KEGG pathway enrichment, providing the potential target genes and molecular biological mechanisms for the modulation of CA on the spleen and gut in PD. Remarkably, CA restored some gene expressions to normal level. Our results highlighted that the neuroprotection of CA might be associated with the manipulation of CA on brain–spleen and brain–gut axes in PD.
Collapse
Affiliation(s)
- Ning Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (N.W.); (Y.C.)
| | - Rui Li
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Bainian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China;
| | - Yuliang Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (N.W.); (Y.C.)
| | - Yahui Guo
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (N.W.); (Y.C.)
- Correspondence: (Y.G.); (H.Q.)
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (N.W.); (Y.C.)
- Correspondence: (Y.G.); (H.Q.)
| |
Collapse
|
11
|
Badanjak K, Fixemer S, Smajić S, Skupin A, Grünewald A. The Contribution of Microglia to Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2021; 22:4676. [PMID: 33925154 PMCID: PMC8125756 DOI: 10.3390/ijms22094676] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
With the world's population ageing, the incidence of Parkinson's disease (PD) is on the rise. In recent years, inflammatory processes have emerged as prominent contributors to the pathology of PD. There is great evidence that microglia have a significant neuroprotective role, and that impaired and over activated microglial phenotypes are present in brains of PD patients. Thereby, PD progression is potentially driven by a vicious cycle between dying neurons and microglia through the instigation of oxidative stress, mitophagy and autophagy dysfunctions, a-synuclein accumulation, and pro-inflammatory cytokine release. Hence, investigating the involvement of microglia is of great importance for future research and treatment of PD. The purpose of this review is to highlight recent findings concerning the microglia-neuronal interplay in PD with a focus on human postmortem immunohistochemistry and single-cell studies, their relation to animal and iPSC-derived models, newly emerging technologies, and the resulting potential of new anti-inflammatory therapies for PD.
Collapse
Affiliation(s)
- Katja Badanjak
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
| | - Sonja Fixemer
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
- Luxembourg Centre for Neuropathology (LCNP), L-3555 Dudelange, Luxembourg
| | - Semra Smajić
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
- Department of Neuroscience, University California San Diego, La Jolla, CA 92093, USA
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Esch-sur-Alzette, Luxembourg; (K.B.); (S.F.); (S.S.); (A.S.)
- Institute of Neurogenetics, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
12
|
Wang BY, Ye YY, Qian C, Zhang HB, Mao HX, Yao LP, Sun X, Lu GH, Zhang SZ. Stress increases MHC-I expression in dopaminergic neurons and induces autoimmune activation in Parkinson's disease. Neural Regen Res 2021; 16:2521-2527. [PMID: 33907043 PMCID: PMC8374590 DOI: 10.4103/1673-5374.313057] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The expression of major histocompatibility complex class I (MHC-I), a key antigen-presenting protein, can be induced in dopaminergic neurons in the substantia nigra, thus indicating its possible involvement in the occurrence and development of Parkinson's disease. However, it remains unclear whether oxidative stress induces Parkinson's disease through the MHC-I pathway. In the present study, polymerase chain reaction and western blot assays were used to determine the expression of MHC-I in 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. The findings revealed that MHC-I was expressed in both models. To detect whether the expression of MHC-I was able to trigger the infiltration of cytotoxic T cells, immunofluorescence staining was used to detect cytotoxic cluster of differentiation 8 (CD8)+ T cell infiltration in the substantia nigra of MPTP-treated mice. The results indicated that the presentation of MHC-I in dopaminergic neurons was indeed accompanied by an increase in the number of CD8+ T cells. Moreover, in MPTP-induced Parkinson's disease model mice, the genetic knockdown of endogenous MHC-I, which was caused by injecting specific adenovirus into the substantia nigra, led to a significant reduction in CD8+ T cell infiltration and alleviated dopaminergic neuronal death. To further investigate the molecular mechanisms of oxidative stress-induced MHC-I presentation, the expression of PTEN-induced kinase 1 (PINK1) was silenced in MPP+-treated SH-SY5Y cells using specific small interfering RNA (siRNA), and there was more presentation of MHC-I in these cells compared with control siRNA-treated cells. Taken together, MPP+-/MPTP-induced oxidative stress can trigger MHC-I presentation and autoimmune activation, thus rendering dopaminergic neurons susceptible to immune cells and degeneration. This may be one of the mechanisms of oxidative stress-induced Parkinson's disease, and implies the potential neuroprotective role of PINK1 in oxidative stress-induced MHC-I presentation. All animal experiments were approved by the Southern Medical University Ethics Committee (No. 81802040, approved on February 25, 2018).
Collapse
Affiliation(s)
- Bao-Yan Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yong-Yi Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Chen Qian
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hong-Bo Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Heng-Xu Mao
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Long-Ping Yao
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiang Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guo-Hui Lu
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Shi-Zhong Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Bonam SR, Muller S. Parkinson's disease is an autoimmune disease: A reappraisal. Autoimmun Rev 2020; 19:102684. [PMID: 33131704 DOI: 10.1016/j.autrev.2020.102684] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023]
Abstract
Parkinson's disease (PD) is a common, age-related, neurodegenerative disorder characterized by motor deficits and a cognitive decline. In the large majority of cases, it is associated with cytoplasmic aggregation of α-synuclein/SNCA and the formation of Lewy bodies in the dopamine neurons in the substantia nigra pars compacta. The etiopathogenesis of PD remains poorly understood. The disease results from an interplay of genetic and environmental factors, including pharmacological molecules, which destroy dopaminergic neurons. Recently, several notable data have highlighted various immune alterations underlying that PD is associated to autoimmune features and could be considered as an autoimmune disease. In this short article, we briefly review key elements participating to this emerging viewpoint.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Laboratory of Excellence Medalis, Strasbourg, France; Institut national de la santé et de la recherche médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.
| | - Sylviane Muller
- CNRS, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Laboratory of Excellence Medalis, Strasbourg, France; Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study, Strasbourg, France.
| |
Collapse
|
14
|
Sim KY, Im KC, Park SG. The Functional Roles and Applications of Immunoglobulins in Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5295. [PMID: 32722559 PMCID: PMC7432158 DOI: 10.3390/ijms21155295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Natural autoantibodies, immunoglobulins (Igs) that target self-proteins, are common in the plasma of healthy individuals; some of the autoantibodies play pathogenic roles in systemic or tissue-specific autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Recently, the field of autoantibody-associated diseases has expanded to encompass neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), with related studies examining the functions of Igs in the central nervous system (CNS). Recent evidence suggests that Igs have various effects in the CNS; these effects are associated with the prevention of neurodegeneration, as well as induction. Here, we summarize the functional roles of Igs with respect to neurodegenerative disease (AD and PD), focusing on the target antigens and effector cell types. In addition, we review the current knowledge about the roles of these antibodies as diagnostic markers and immunotherapies.
Collapse
Affiliation(s)
| | | | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (K.-Y.S.); (K.C.I.)
| |
Collapse
|
15
|
Blossom SJ, Melnyk SB, Simmen FA. Complex epigenetic patterns in cerebellum generated after developmental exposure to trichloroethylene and/or high fat diet in autoimmune-prone mice. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:583-594. [PMID: 31894794 PMCID: PMC7350281 DOI: 10.1039/c9em00514e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trichloroethylene (TCE) is an environmental contaminant associated with immune-mediated inflammatory disorders and neurotoxicity. Based on known negative effects of developmental overnutrition on neurodevelopment, we hypothesized that developmental exposure to high fat diet (HFD) consisting of 40% kcal fat would enhance neurotoxicity of low-level (6 μg per kg per day) TCE exposure in offspring over either stressor alone. Male offspring were evaluated at ∼6 weeks of age after exposure beginning 4 weeks preconception in the dams until weaning. TCE, whether used as a single exposure or together with HFD, appeared to be more robust than HFD alone in altering one-carbon metabolites involved in glutathione redox homeostasis and methylation capacity. In contrast, opposing effects of expression of key enzymes related to DNA methylation related to HFD and TCE exposure were observed. The mice generated unique patterns of anti-brain antibodies detected by western blotting attributable to both TCE and HFD. Taken together, developmental exposure to TCE and/or HFD appear to act in complex ways to alter brain biomarkers in offspring.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, AR 72202, USA.
| | | | | |
Collapse
|
16
|
Antiphospholipid antibodies predict post-stroke depression after acute ischemic stroke. J Affect Disord 2019; 257:160-165. [PMID: 31301618 DOI: 10.1016/j.jad.2019.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/24/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Antiphospholipid activity was reported to be increased in depressive patients, while the impact of antiphospholipid antibodies (aPLs) on post-stroke depression (PSD) is unclear. We aimed to investigate the associations of aPLs, including antiphosphatidylserine (aPS) and anticardiolipin (aCL) antibodies with depression after acute ischemic stroke. METHODS aPS and aCL were measured in 497 ischemic stroke patients recruited from 7 of 26 participating hospitals of China Antihypertensive Trial in Acute Ischemic Stroke. 24-item Hamilton Depression Rating Scale was used to evaluate PSD status at 3 months after stroke. RESULTS Compared with aPS-negative or aCL-negative, the adjusted odds ratios (ORs) [95% confidence intervals (CIs)] associated with aPS-positive or aCL-positive were 1.77 (1.07-2.92) or 2.06 (1.11-3.80) for risk of PSD. On continuous analyses, per 1-SD increment of aPS and aCL were associated with 29% (OR 1.29, 95% CI 1.06-1.58) and 30% (OR 1.30, 95% CI 1.06-1.60) increased risks for PSD, respectively. Adding aPLs to conventional risk factors models significantly improved risk reclassification for PSD (net reclassification improvement index = 21.87%, P = 0.016 for aPS; net reclassification improvement index = 32.24%, P = 0.0004 for aCL). LIMITATIONS aPLs levels were tested only at baseline without serial measurements, and we were unable to detect the association between aPLs changes and PSD. CONCLUSIONS Higher aPS and aCL levels in the acute phase of ischemic stroke were associated with increased risk of 3-month PSD, suggesting that aPLs may play an important role in post-stroke depression prediction.
Collapse
|
17
|
Ju UH, Liu FC, Lin CS, Huang WY, Lin TY, Shen CH, Chou YC, Lin CL, Lin KT, Kao CH, Chen CH, Yang TY. Risk of Parkinson disease in Sjögren syndrome administered ineffective immunosuppressant therapies: A nationwide population-based study. Medicine (Baltimore) 2019; 98:e14984. [PMID: 30946325 PMCID: PMC6455855 DOI: 10.1097/md.0000000000014984] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
To determine the incidence and risk of Parkinson disease (PD) in patients with Sjögren syndrome (SS) according to a nationwide population-based database.In total, 12,640 patients in the SS cohort and 50,560 in the non-SS cohort were enrolled from Taiwan's National Health Insurance Research Database from 2000 to 2010. We used the Cox multivariable proportional hazards model to determine the risk factors for PD in the SS cohort.We observed an increased incidence of PD in patients with SS, with a crude hazard ratio (HR) of 1.40 and an adjusted HR (aHR) of 1.23. The cumulative incidence of PD was 1.95% higher in the SS cohort than in the non-SS cohort. The SS cohort had an elevated HR under medication use, namely cevimeline and pilocarpine (crude HR, 1.28), hydroxychloroquine (crude HR, 1.43; aHR, 1.46), and methylprednisolone (crude HR, 2.21; aHR, 1.49). Patients receiving other non-hydroxychloroquine immunosuppressant therapies had a lower risk (aHR, 0.86) of PD. Furthermore, patients with SS aged 20 to 49 years had a 1.93-fold higher risk of PD than did those without SS (aHR, 1.93). The risk of PD was higher (aHR, 2.20) in patients with SS without comorbidities than in those with comorbidities. The aHR of PD significantly increased when the follow-up period exceeded 9 years (aHR, 1.93).We determined an increased risk of PD in patients with SS. Further investigation is warranted to determine the possible underlying mechanisms and the potential role of non-hydroxychloroquine immunosuppressants in ameliorating PD.
Collapse
Affiliation(s)
- Uei-Han Ju
- Division of Rheumatology/Immunology and Allergy
| | | | | | | | - Te-Yu Lin
- Department of Radiation Oncology
- Division of Infectious disease, Department of Internal Medicine
| | - Chih-Hao Shen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei
| | - Cheng-Li Lin
- College of Medicine, China Medical University
- Management Office for Health Data, China Medical University Hospital
| | | | - Chia-Hung Kao
- Department of Nuclear Medicine and PET Center, China Medical University Hospital
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University
- Department of Bioinformatics and Medical Engineering, Asia University
| | - Chao-Hsien Chen
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung
| | - Tse-Yen Yang
- Department of Medical Research, China Medical University HsinChu Hospital, HsinChu County, China Medical University
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung
- Molecular and Genomic Epidemiology Center, China Medical University Hospital, Taichung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
18
|
Jiang T, Li G, Xu J, Gao S, Chen X. The Challenge of the Pathogenesis of Parkinson's Disease: Is Autoimmunity the Culprit? Front Immunol 2018; 9:2047. [PMID: 30319601 PMCID: PMC6170625 DOI: 10.3389/fimmu.2018.02047] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
The role of autoimmunity in Parkinson's disease (PD), as one of the most popular research subjects, has been intensively investigated in recent years. Although the ultimate cause of PD is unknown, one major area of interest remains identifying new therapeutic targets and options for patients suffering from PD. Herein, we present a comprehensive review of the impacts of autoimmunity in neurodegenerative diseases, especially PD, and we have composed a logical argument to substantiate that autoimmunity is actively involved in the pathogenesis of PD through several proteins, including α-synuclein, DJ-1, PINK1, and Parkin, as well as immune cells, such as dendritic cells, microglia, T cells, and B cells. Furthermore, a detailed analysis of the relevance of autoimmunity to the clinical symptoms of PD provides strong evidence for the close correlation of autoimmunity with PD. In addition, the previously identified relationships between other autoimmune diseases and PD help us to better understand the disease pattern, laying the foundation for new therapeutic solutions to PD. In summary, this review aims to integrate and present currently available data to clarify the pathogenesis of PD and discuss some controversial but innovative research perspectives on the involvement of autoimmunity in PD, as well as possible novel diagnostic methods and treatments based on autoimmunity targets.
Collapse
Affiliation(s)
- Tianfang Jiang
- Department of Neurology, Shanghai Eighth People's Hospital Affiliated to Jiang Su University, Shanghai, China
| | - Gen Li
- Department of Neurology & Institute of Neurology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Xu
- East Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Shane Gao
- East Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Xu Chen
- Department of Neurology, Shanghai Eighth People's Hospital Affiliated to Jiang Su University, Shanghai, China
| |
Collapse
|
19
|
Abstract
Although serum from Parkinson’s disease (PD) patients displays elevated levels of numerous pro-inflammatory cytokines including IL-6, TNFα, IL-1β, and IFNβ1, whether inflammation contributes to or is a consequence of neuronal loss remains unknown1. Mutations in Parkin, an E3 ubiquitin ligase, and PINK1, a ubiquitin kinase, cause early-onset PD2,3. Working in the same biochemical pathway, PINK1 and Parkin remove damaged mitochondria from cells in culture and in animal models via a selective form of autophagy, called mitophagy4. The role of mitophagy in vivo, however, is unclear in part because mice lacking PINK1 or Parkin have no substantial PD-relevant phenotypes5–7. As mitochondrial stress can lead to the release of damage-associated molecular patterns (DAMPs) that can activate innate immunity8–12, mitophagy may mitigate inflammation. Here we report a strong inflammatory phenotype in both Parkin−/− and PINK1−/− mice following exhaustive exercise (EE) and in Parkin−/−;Mutator mice, which accumulate mitochondrial DNA mutations with age13,14. Inflammation resulting from both EE and mtDNA mutation is completely rescued by concurrent loss of STING, a central regulator of the type I Interferon response to cytosolic DNA15,16. The loss of dopaminergic (DA) neurons from the substantia nigra pars compacta (SNc) and the motor defect observed in aged Parkin−/−;Mutator mice are also rescued by loss of STING, suggesting that inflammation facilitates this phenotype. Humans with mono- and biallelic Parkin mutations also display elevated cytokines. These results support a role for PINK1- and Parkin-mediated mitophagy in restraining innate immunity.
Collapse
|
20
|
The possible role of an autoimmune mechanism in the etiopathogenesis of Parkinson’s disease. J Clin Neurosci 2018; 54:63-68. [DOI: 10.1016/j.jocn.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/29/2018] [Accepted: 06/03/2018] [Indexed: 11/22/2022]
|
21
|
Drori T, Givaty G, Chapman J, Lidar M, Langevitz P, Shoenfeld Y, Cohen OS. Extrapyramidal signs in neurosarcoidosis versus multiple sclerosis: Is TNF alpha the link? Immunobiology 2017; 223:259-263. [PMID: 29054587 DOI: 10.1016/j.imbio.2017.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 10/14/2017] [Indexed: 12/13/2022]
Abstract
Specific inflammatory pathways and specifically Tumor Necrosis Factor alpha (TNF-α) have been associated with the neurodegeneration in Parkinson's disease (PD). TNFα is also known to play an important role in the pathogenesis of sarcoidosis and TNF blockers can ameliorate the disease. In contrast, multiple sclerosis (MS) is clearly exacerbated by anti- TNF-α medications. We have therefore hypothesized that Parkinson-like disease would be more common in neurosarcoidosis (NS) compared to MS. The aim of this case-control study was therefore to assess the frequency of extrapyramidal signs in patients with NS compared to MS patients. In order to do so the medical records of NS patients and of age and gender matched MS patients were reviewed and data regarding the clinical features, ancillary tests performed, treatment, and outcome were documented. Patients were then examined in a uniform manner for the presence of extrapyramidal signs. We found that in the NS group 8 patients had minor signs, one had mild functional disability and 3 subjects had significant extrapyramidal signs compatible with the diagnosis of Parkinson's disease. All extrapyramidal signs found in 5 of the MS group were minor. The proportional severity of extrapyramidal signs was significantly higher (p=0.045, chi square test) in the NS group compared to the MS group. We conclude that the specificity of extrapyramidal to NS raises the intriguing question of whether specific inflammatory pathways involving TNF-α play a role in the pathogenesis of PD and therefore may be a therapeutic target.
Collapse
Affiliation(s)
- Tali Drori
- Department of Neurology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Gili Givaty
- Department of Neurology, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joab Chapman
- Department of Neurology, Chaim Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Merav Lidar
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Rheumatology Unit, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Pnina Langevitz
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Rheumatology Unit, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Yehuda Shoenfeld
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Zabludowicz Center of Autoimmunity, Chaim Sheba Medical Center, Tel- Hashomer, Israel
| | - Oren S Cohen
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Neurology, Assaf Harofeh Medical Center, Zerifin, Israel.
| |
Collapse
|
22
|
Mehta SH, Tanner CM. Role of Neuroinflammation in Parkinson Disease: The Enigma Continues. Mayo Clin Proc 2016; 91:1328-1330. [PMID: 27712631 DOI: 10.1016/j.mayocp.2016.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/25/2016] [Indexed: 01/10/2023]
Affiliation(s)
| | - Caroline M Tanner
- San Francisco Veterans Affairs Medical Center and Department of Neurology, University of California, San Francisco, CA
| |
Collapse
|
23
|
Sung YF, Liu FC, Lin CC, Lee JT, Yang FC, Chou YC, Lin CL, Kao CH, Lo HY, Yang TY. Reduced Risk of Parkinson Disease in Patients With Rheumatoid Arthritis: A Nationwide Population-Based Study. Mayo Clin Proc 2016; 91:1346-1353. [PMID: 27712633 DOI: 10.1016/j.mayocp.2016.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the association between rheumatoid arthritis (RA) and the risk of developing Parkinson disease (PD). PATIENTS AND METHODS This retrospective cohort study was conducted from January 1, 1998, through December 31, 2010, using data from the Taiwan National Health Insurance Research Database. We identified 33,221 patients with newly diagnosed RA and 132,884 randomly selected age- and sex-matched patients without RA. A multivariable Cox proportional hazards regression model was used to evaluate the risk of developing PD in the RA cohort. RESULTS The multivariable Cox proportional hazards regression analysis revealed an adjusted hazard ratio of 0.65 (95% CI, 0.58-0.73) for the development of PD in the RA cohort relative to the non-RA cohort. The cumulative incidence of PD was 2.42% lower in the RA cohort than in the non-RA cohort. The risk reduction of PD development in patients affected with RA was independent of treatment with disease-modifying antirheumatic drugs (DMARDs); subgroup analysis of patients treated with biologic DMARDs revealed further risk reduction (adjusted hazard ratio, 0.57; 95% CI, 0.41-0.79). CONCLUSION Patients with RA have a reduced risk of developing PD. This risk reduction was independent of treatment with DMARDs; however, biologic DMARDs appear to further reduce this risk. Further research is necessary to explore the underlying mechanism.
Collapse
Affiliation(s)
- Yueh-Feng Sung
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Chieh Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Li Lin
- School of Medicine, Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Department of Nuclear Medicine and PET Center, China Medical University, Taichung, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan; Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hung Kao
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medicine Science and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tse-Yen Yang
- Molecular and Genomic Epidemiology Center, and Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
24
|
De Virgilio A, Greco A, Fabbrini G, Inghilleri M, Rizzo MI, Gallo A, Conte M, Rosato C, Ciniglio Appiani M, de Vincentiis M. Parkinson's disease: Autoimmunity and neuroinflammation. Autoimmun Rev 2016; 15:1005-11. [PMID: 27497913 DOI: 10.1016/j.autrev.2016.07.022] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parkinson's disease is a neurodegenerative disease that causes the death of dopaminergic neurons in the substantia nigra. The resulting dopamine deficiency in the basal ganglia leads to a movement disorder that is characterized by classical parkinsonian motor symptoms. Parkinson's disease is recognized as the most common neurodegenerative disorder after Alzheimer's disease. PD ethiopathogenesis remains to be elucidated and has been connected to genetic, environmental and immunologic conditions. The past decade has provided evidence for a significant role of the immune system in PD pathogenesis, either through inflammation or an autoimmune response. Several autoantibodies directed at antigens associated with PD pathogenesis have been identified in PD patients. This immune activation may be the cause of, rather than a response to, the observed neuronal loss. Parkinsonian motor symptoms include bradykinesia, muscular rigidity and resting tremor. The non-motor features include olfactory dysfunction, cognitive impairment, psychiatric symptoms and autonomic dysfunction. Microscopically, the specific degeneration of dopaminergic neurons in the substantia nigra and the presence of Lewy bodies, which are brain deposits containing a substantial amount of α-synuclein, have been recognized. The progression of Parkinson's disease is characterized by a worsening of motor features; however, as the disease progresses, there is an emergence of complications related to long-term symptomatic treatment. The available therapies for Parkinson's disease only treat the symptoms of the disease. A major goal of Parkinson's disease research is the development of disease-modifying drugs that slow or stop the neurodegenerative process. Drugs that enhance the intracerebral dopamine concentrations or stimulate dopamine receptors remain the mainstay treatment for motor symptoms. Immunomodulatory therapeutic strategies aiming to attenuate PD neurodegeneration have become an attractive option and warrant further investigation.
Collapse
Affiliation(s)
- Armando De Virgilio
- Department Organs of Sense, ENT Section, 'Sapienza' University of Rome, Viale del Policlinico 155, 00100, Rome, Italy; Department of Surgical Science, 'Sapienza' University of Rome, Viale del Policlinico 155, 00100, Rome, Italy
| | - Antonio Greco
- Department Organs of Sense, ENT Section, 'Sapienza' University of Rome, Viale del Policlinico 155, 00100, Rome, Italy
| | - Giovanni Fabbrini
- Department of Neurology and Psychiatry, 'Sapienza' University of Rome, Viale del Policlinico 155, 00100, Rome, Italy
| | - Maurizio Inghilleri
- Department of Neurology and Psychiatry, 'Sapienza' University of Rome, Viale del Policlinico 155, 00100, Rome, Italy
| | - Maria Ida Rizzo
- Department Organs of Sense, ENT Section, 'Sapienza' University of Rome, Viale del Policlinico 155, 00100, Rome, Italy; Department of Surgical Science, 'Sapienza' University of Rome, Viale del Policlinico 155, 00100, Rome, Italy.
| | - Andrea Gallo
- Department of Medico-Surgical Sciences and Biotechnologies, Otorhinolaryngology Section, 'Sapienza' University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy
| | - Michela Conte
- Department Organs of Sense, ENT Section, 'Sapienza' University of Rome, Viale del Policlinico 155, 00100, Rome, Italy
| | - Chiara Rosato
- Department of Medico-Surgical Sciences and Biotechnologies, Otorhinolaryngology Section, 'Sapienza' University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy
| | - Mario Ciniglio Appiani
- Department Organs of Sense, ENT Section, 'Sapienza' University of Rome, Viale del Policlinico 155, 00100, Rome, Italy; Department of Surgical Science, 'Sapienza' University of Rome, Viale del Policlinico 155, 00100, Rome, Italy
| | - Marco de Vincentiis
- Department Organs of Sense, ENT Section, 'Sapienza' University of Rome, Viale del Policlinico 155, 00100, Rome, Italy
| |
Collapse
|
25
|
Liu FC, Huang WY, Lin TY, Shen CH, Chou YC, Lin CL, Lin KT, Kao CH. Inverse Association of Parkinson Disease With Systemic Lupus Erythematosus: A Nationwide Population-based Study. Medicine (Baltimore) 2015; 94:e2097. [PMID: 26579824 PMCID: PMC4652833 DOI: 10.1097/md.0000000000002097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The effects of the inflammatory mediators involved in systemic lupus erythematous (SLE) on subsequent Parkinson disease have been reported, but no relevant studies have focused on the association between the 2 diseases. This nationwide population-based study evaluated the risk of Parkinson disease in patients with SLE.We identified 12,817 patients in the Taiwan National Health Insurance database diagnosed with SLE between 2000 and 2010 and compared the incidence rate of Parkinson disease among these patients with that among 51,268 randomly selected age and sex-matched non-SLE patients. A Cox multivariable proportional-hazards model was used to evaluate the risk factors of Parkinson disease in the SLE cohort.We observed an inverse association between a diagnosis of SLE and the risk of subsequent Parkinson disease, with the crude hazard ratio (HR) being 0.60 (95% confidence interval 0.45-0.79) and adjusted HR being 0.68 (95% confidence interval 0.51-0.90). The cumulative incidence of Parkinson disease was 0.83% lower in the SLE cohort than in the non-SLE cohort. The adjusted HR of Parkinson disease decreased as the follow-up duration increased and was decreased among older lupus patients with comorbidity.We determined that patients with SLE had a decreased risk of subsequent Parkinson disease. Further research is required to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Feng-Cheng Liu
- From the Rheumatology/Immunology and Allergy, Department of Medicine (F-CL); Department of Radiation Oncology (W-YH, K-TL); Department of Infectious Disease (T-YL); Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center (C-HS); School of Public Health, National Defense Medical Center, Taipei (Y-CC); School of Medicine (C-LL); Management Office for Health Data (C-LL); Department of Nuclear Medicine and PET Center, China Medical University Hospital (C-HK); and Graduate Institute of Clinical Medicine Science and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan (C-HK)
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Morris G, Berk M, Walder K, Maes M. Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses. BMC Med 2015; 13:28. [PMID: 25856766 PMCID: PMC4320458 DOI: 10.1186/s12916-014-0259-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The genesis of severe fatigue and disability in people following acute pathogen invasion involves the activation of Toll-like receptors followed by the upregulation of proinflammatory cytokines and the activation of microglia and astrocytes. Many patients suffering from neuroinflammatory and autoimmune diseases, such as multiple sclerosis, Parkinson's disease and systemic lupus erythematosus, also commonly suffer from severe disabling fatigue. Such patients also present with chronic peripheral immune activation and systemic inflammation in the guise of elevated proinflammtory cytokines, oxidative stress and activated Toll-like receptors. This is also true of many patients presenting with severe, apparently idiopathic, fatigue accompanied by profound levels of physical and cognitive disability often afforded the non-specific diagnosis of chronic fatigue syndrome. DISCUSSION Multiple lines of evidence demonstrate a positive association between the degree of peripheral immune activation, inflammation and oxidative stress, gray matter atrophy, glucose hypometabolism and cerebral hypoperfusion in illness, such as multiple sclerosis, Parkinson's disease and chronic fatigue syndrome. Most, if not all, of these abnormalities can be explained by a reduction in the numbers and function of astrocytes secondary to peripheral immune activation and inflammation. This is also true of the widespread mitochondrial dysfunction seen in otherwise normal tissue in neuroinflammatory, neurodegenerative and autoimmune diseases and in many patients with disabling, apparently idiopathic, fatigue. Given the strong association between peripheral immune activation and neuroinflammation with the genesis of fatigue the latter group of patients should be examined using FLAIR magnetic resonance imaging (MRI) and tested for the presence of peripheral immune activation. SUMMARY It is concluded that peripheral inflammation and immune activation, together with the subsequent activation of glial cells and mitochondrial damage, likely account for the severe levels of intractable fatigue and disability seen in many patients with neuroimmune and autoimmune diseases.This would also appear to be the case for many patients afforded a diagnosis of Chronic Fatigue Syndrome.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW Wales UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, Orygen, The National Centre of Excellence in Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
27
|
Labrador-Garrido A, Cejudo-Guillén M, Klippstein R, De Genst EJ, Tomas-Gallardo L, Leal MM, Villadiego J, Toledo-Aral JJ, Dobson CM, Pozo D, Roodveldt C. Chaperoned amyloid proteins for immune manipulation: α-Synuclein/Hsp70 shifts immunity toward a modulatory phenotype. IMMUNITY INFLAMMATION AND DISEASE 2014; 2:226-38. [PMID: 25866630 PMCID: PMC4386917 DOI: 10.1002/iid3.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/23/2014] [Accepted: 10/20/2014] [Indexed: 01/02/2023]
Abstract
α-Synuclein (αSyn) is a 140-residue amyloid-forming protein whose aggregation is linked to Parkinson's disease (PD). It has also been found to play a critical role in the immune imbalance that accompanies disease progression, a characteristic that has prompted the search for an effective αSyn-based immunotherapy. In this study, we have simultaneously exploited two important features of certain heat-shock proteins (HSPs): their classical “chaperone” activities and their recently discovered and diverse “immunoactive” properties. In particular, we have explored the immune response elicited by immunization of C57BL/6 mice with an αSyn/Hsp70 protein combination in the absence of added adjuvant. Our results show differential effects for mice immunized with the αSyn/Hsp70 complex, including a restrained αSyn-specific (IgM and IgG) humoral response as well as minimized alterations in the Treg (CD4+CD25+Foxp3+) and Teff (CD4+Foxp3−) cell populations, as opposed to significant changes in mice immunized with αSyn and Hsp70 alone. Furthermore, in vitro-stimulated splenocytes from immunized mice showed the lowest relative response against αSyn challenge for the “αSyn/Hsp70” experimental group as measured by IFN-γ and IL-17 secretion, and higher IL-10 levels when stimulated with LPS. Finally, serum levels of Th1-cytokine IFN-γ and immunomodulatory IL-10 indicated a unique shift toward an immunomodulatory/immunoprotective phenotype in mice immunized with the αSyn/Hsp70 complex. Overall, we propose the use of functional “HSP-chaperoned amyloid/aggregating proteins” generated with appropriate HSP-substrate protein combinations, such as the αSyn/Hsp70 complex, as a novel strategy for immune-based intervention against synucleinopathies and other amyloid or “misfolding” neurodegenerative disorders.
Collapse
Affiliation(s)
- Adahir Labrador-Garrido
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain ; Department of Medical Biochemistry Molecular Biology and Immunology School of Medicine, University of Seville Spain
| | - Marta Cejudo-Guillén
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain ; Department of Medical Biochemistry Molecular Biology and Immunology School of Medicine, University of Seville Spain
| | - Rebecca Klippstein
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain ; Department of Medical Biochemistry Molecular Biology and Immunology School of Medicine, University of Seville Spain
| | | | | | - María M Leal
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain
| | - Javier Villadiego
- IBiS Institute of Biomedicine of Seville, University Hospital Virgen del Rocío-CSIC-University of Seville Spain ; Department of Medical Physiology and Biophysics School of Medicine, University of Seville Spain ; CIBERNED, Centers for Networked Biomedical Research in Neurodegenerative Diseases Spain
| | - Juan J Toledo-Aral
- IBiS Institute of Biomedicine of Seville, University Hospital Virgen del Rocío-CSIC-University of Seville Spain ; Department of Medical Physiology and Biophysics School of Medicine, University of Seville Spain ; CIBERNED, Centers for Networked Biomedical Research in Neurodegenerative Diseases Spain
| | | | - David Pozo
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain ; Department of Medical Biochemistry Molecular Biology and Immunology School of Medicine, University of Seville Spain
| | - Cintia Roodveldt
- CABIMER, Andalusian Center for Molecular Biology and Regenerative Medicine Seville, Spain
| |
Collapse
|
28
|
Ogundele OM, Okunnuga AA, Fabiyi TD, Olajide OJ, Akinrinade ID, Adeniyi PA, Ojo AA. NMDA-R inhibition affects cellular process formation in Tilapia melanocytes; a model for pigmented adrenergic neurons in process formation and retraction. Metab Brain Dis 2014; 29:541-51. [PMID: 24242214 DOI: 10.1007/s11011-013-9447-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022]
Abstract
Parkinson's disease has long been described to be a product of dopamine and (or) melanin loss in the substanstia nigra (SN). Although most studies have focused on dopaminergic neurons, it is important to consider the role of pigment cells in the etiology of the disease and to create an in vitro live cell model for studies involving pigmented adrenergic cells of the SN in Parkinsonism. The Melanocytes share specific features with the pigmented adrenergic neurons as both cells are pigmented, contain adrenergic receptors and have cellular processes. Although the melanocyte cellular processes are relatively short and observable only when stimulated appropriately by epinephrine and other factors or molecules. This study employs the manipulation of N-Methyl-D-Aspartate Receptor (NMDA-R), a major receptor in neuronal development, in the process formation pattern of the melanocyte in order to create a suitable model to depict cellular process elongation and shortening in pigmented adrenergic cells. NMDA-R is an important glutamate receptor implicated in neurogenesis, neuronal migration, maturation and cell death, thus we investigated the role of NMDA-R potentiation by glutamate/KCN and its inhibition by ketamine in the behavior of fish scale melanocytes in vitro. This is aimed at establishing the regulatory role of NMDA-R in this cell type (melanocytes isolated form Tilapia) in a similar manner to what is observable in the mammalian neurons. In vitro live cell culture was prepared in modified Ringer's solution following which the cells were treated as follows; Control, Glutamate, Ketamine, Glutamate + Ketamine, KCN + Ketamine and KCN. The culture was maintained for 10 min and the changes were captured in 3D-Time frame at 0, 5 and 10 min for the control and 5, 7 and 10 min for each of the treatment category. Glutamate treatment caused formation of short cellular processes localized directly on the cell body while ketamine treatment (inhibition of NMDA-R) facilitated elongation of secondary cellular processes (highly branched) from primary major processes (Less branched); co-incubation of glutamate and ketamine induced short and highly branched process formation. Cyanide toxicity induced degeneration and reduction of cell size while co-treatment of cyanide and ketamine gave changes similar to that observed in glutamate-ketamine co-incubation. NMDA-R is present in the melanocytes. Activation of the receptor reduced elongation process, while inhibition of the receptor facilitated cell process elongation and branching. This confirms that like pigmented adrenergic cells of the nervous system, this cell contains NMDA-R and this receptor also regulates cell process elongation. The study also showed that inhibition of NMDA-R in melanocytes gave opposite outcomes to the role of the receptor in developing neurons; a function that is protective in adult neurons.
Collapse
Affiliation(s)
- Olalekan Michael Ogundele
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria,
| | | | | | | | | | | | | |
Collapse
|
29
|
Romero-Ramos M, von Euler Chelpin M, Sanchez-Guajardo V. Vaccination strategies for Parkinson disease: induction of a swift attack or raising tolerance? Hum Vaccin Immunother 2014; 10:852-67. [PMID: 24670306 DOI: 10.4161/hv.28578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson disease is the second most common neurodegenerative disease in the world, but there is currently no available cure for it. Current treatments only alleviate some of the symptoms for a few years, but they become ineffective in the long run and do not stop the disease. Therefore it is of outmost importance to develop therapeutic strategies that can prevent, stop, or cure Parkinson disease. A very promising target for these therapies is the peripheral immune system due to its probable involvement in the disease and its potential as a tool to modulate neuroinflammation. But for such strategies to be successful, we need to understand the particular state of the peripheral immune system during Parkinson disease in order to avoid its weaknesses. In this review we examine the available data regarding how dopamine regulates the peripheral immune system and how this regulation is affected in Parkinson disease; the specific cytokine profiles observed during disease progression and the alterations documented to date in patients' peripheral blood mononuclear cells. We also review the different strategies used in Parkinson disease animal models to modulate the adaptive immune response to salvage dopaminergic neurons from cell death. After analyzing the evidence, we hypothesize the need to prime the immune system to restore natural tolerance against α-synuclein in Parkinson disease, including at the same time B and T cells, so that T cells can reprogram microglia activation to a beneficial pattern and B cell/IgG can help neurons cope with the pathological forms of α-synuclein.
Collapse
Affiliation(s)
- Marina Romero-Ramos
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Marianne von Euler Chelpin
- CNS disease modeling group; Department of Biomedicine; Aarhus University; Aarhus, Denmark; NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| | - Vanesa Sanchez-Guajardo
- NEURODIN; Department of Biomedicine; Aarhus University; Aarhus, Denmark; Neuroimmunology of Degenerative Diseases group; Department of Biomedicine; Aarhus University; Aarhus, Denmark
| |
Collapse
|
30
|
Puentes F, van der Star BJ, Victor M, Kipp M, Beyer C, Peferoen-Baert R, Ummenthum K, Pryce G, Gerritsen W, Huizinga R, Reijerkerk A, van der Valk P, Baker D, Amor S. Characterization of immune response to neurofilament light in experimental autoimmune encephalomyelitis. J Neuroinflammation 2013; 10:118. [PMID: 24053384 PMCID: PMC3856490 DOI: 10.1186/1742-2094-10-118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/08/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Autoimmunity to neuronal proteins occurs in several neurological syndromes, where cellular and humoral responses are directed to surface as well as intracellular antigens. Similar to myelin autoimmunity, pathogenic immune response to neuroaxonal components such as neurofilaments may contribute to neurodegeneration in multiple sclerosis. METHODS We studied the immune response to the axonal protein neurofilament light (NF-L) in the experimental autoimmune encephalomyelitis animal model of multiple sclerosis. To examine the association between T cells and axonal damage, pathology studies were performed on NF-L immunized mice. The interaction of T cells and axons was analyzed by confocal microscopy of central nervous system tissues and T-cell and antibody responses to immunodominant epitopes identified in ABH (H2-Ag7) and SJL/J (H2-As) mice. These epitopes, algorithm-predicted peptides and encephalitogenic motifs within NF-L were screened for encephalitogenicity. RESULTS Confocal microscopy revealed both CD4+ and CD8+ T cells alongside damaged axons in the lesions of NF-L immunized mice. CD4+ T cells dominated the areas of axonal injury in the dorsal column of spastic mice in which the expression of granzyme B and perforin was detected. Identified NF-L epitopes induced mild neurological signs similar to the observed with the NF-L protein, yet distinct from those characteristic of neurological disease induced with myelin oligodendrocyte glycoprotein. CONCLUSIONS Our data suggest that CD4+ T cells are associated with spasticity, axonal damage and neurodegeneration in NF-L immunized mice. In addition, defined T-cell epitopes in the NF-L protein might be involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Fabiola Puentes
- Neuroimmunology Unit, Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tyurina YY, Winnica DE, Kapralova VI, Kapralov AA, Tyurin VA, Kagan VE. LC/MS characterization of rotenone induced cardiolipin oxidation in human lymphocytes: implications for mitochondrial dysfunction associated with Parkinson's disease. Mol Nutr Food Res 2013; 57:1410-22. [PMID: 23650208 PMCID: PMC3810210 DOI: 10.1002/mnfr.201200801] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 02/06/2023]
Abstract
SCOPE Rotenone is a toxicant believed to contribute to the development of Parkinson's disease. METHODS AND RESULTS Using human peripheral blood lymphocytes we demonstrated that exposure to rotenone resulted in disruption of electron transport accompanied by the production of reactive oxygen species, development of apoptosis and elevation of peroxidase activity of mitochondria. Employing LC/MS-based lipidomics/oxidative lipidomics we characterized molecular species of cardiolipin (CL) and its oxidation/hydrolysis products formed early in apoptosis and associated with the rotenone-induced mitochondrial dysfunction. CONCLUSION The major oxidized CL species - tetra-linoleoyl-CL - underwent oxidation to yield epoxy-C18:2 and dihydroxy-C18:2 derivatives predominantly localized in sn-1 and sn-2 positions, respectively. In addition, accumulation of mono-lyso-CL species and oxygenated free C18:2 were detected in rotenone-treated lymphocytes. These oxidation/hydrolysis products may be useful for the development of new biomarkers of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Daniel E. Winnica
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valentina I. Kapralova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Alexandr A. Kapralov
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, Graduate School of Public Health; University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
32
|
Immunoglobulin-Mediated Neuro-Cognitive Impairment: New Data and a Comprehensive Review. Clin Rev Allergy Immunol 2013; 45:248-55. [DOI: 10.1007/s12016-013-8357-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Identification of key pathways and transcription factors related to Parkinson disease in genome wide. Mol Biol Rep 2012; 39:10881-7. [PMID: 23076523 DOI: 10.1007/s11033-012-1985-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Parkinson disease (PD) is a common neurodegenerative disease. Most people with PD are idiopathic, with no specific known cause. Recently, several studies have indicated small proportion of PD cases may result from a mutation in some specific genes. However, the involved pathways of these genes and the co-expression patterns of associated pathways still remain unclear. Here, we aimed to systematically investigate PD related pathways by using microarray dataset GSE7621 from the public database library of gene expression omnibus and gene set enrichment analysis on the datasets. Furthermore, candidate transcription factors were also explored by distant regulatory elements software. As a result, 11 up-regulated pathways (such as glycosaminoglycan degradation) and 24 down-regulated pathways (such as ErbB signaling pathway and Long-term depression) were identified as PD related. Most of them were classified into the maps of human diseases, organismal system, and metabolism with no previous reports. Finally, we constructed co-expression networks of related pathways with the significant core genes and transcription factors, such as OCT and HNF3. All of these may be helpful to better understand the molecular mechanisms of human PD in genome wide.
Collapse
|