1
|
Paiva BS, Neves D, Tomé D, Costa FJ, Bruno IC, Trigo D, Silva RM, Almeida RD. Neuroprotection by Mitochondrial NAD Against Glutamate-Induced Excitotoxicity. Cells 2025; 14:582. [PMID: 40277908 PMCID: PMC12025592 DOI: 10.3390/cells14080582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Excitotoxicity is a pathological process that occurs in many neurological diseases, such as stroke or epilepsy, and is characterized by the extracellular accumulation of high concentrations of glutamate or other excitatory amino acids (EAAs). Nicotinamide adenine dinucleotide (NAD) depletion is an early event following excitotoxicity in many in vitro and in vivo excitotoxic-related models and contributes to the deregulation of energy homeostasis. However, the interplay between glutamate excitotoxicity and the NAD biosynthetic pathway is not fully understood. To address this question, we used a primary culture of rat cortical neurons and found that an excitotoxic glutamate insult alters the expression of the NAD biosynthetic enzymes. Additionally, using a fluorescent NAD mitochondrial sensor, we observed that glutamate induces a significant decrease in the mitochondrial NAD pool, which was reversed when exogenous NAD was added. We also show that exogenous NAD protects against the glutamate-induced decrease in mitochondrial membrane potential (MMP). Glutamate excitotoxicity changed mitochondrial retrograde transport in neurites, which seems to be reversed by NAD addition. Finally, we show that NAD and NAD precursors protect against glutamate-induced cell death. Together, our results demonstrate that glutamate-induced excitotoxicity acts by compromising the NAD biosynthetic pathway, particularly in the mitochondria. These results also uncover a potential role for mitochondrial NAD as a tool for central nervous system (CNS) regenerative therapies.
Collapse
Affiliation(s)
- Bruna S. Paiva
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
| | - Diogo Neves
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
| | - Diogo Tomé
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CiBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-504 Coimbra, Portugal
| | - Filipa J. Costa
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
| | - Inês C. Bruno
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
| | - Diogo Trigo
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
| | - Raquel M. Silva
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
- Center for Interdisciplinary Research in Health, Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | - Ramiro D. Almeida
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (B.S.P.); (D.N.); (D.T.); (F.J.C.); (I.C.B.); (D.T.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CiBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-504 Coimbra, Portugal
| |
Collapse
|
2
|
Policastro PF, Schneider CA, Winkler CW, Leung JM, Peterson KE. Retinoic acid-induced differentiation and oxidative stress inhibitors increase resistance of human neuroblastoma cells to La Crosse virus-induced cell death. J Virol 2024; 98:e0030024. [PMID: 39382324 PMCID: PMC11575257 DOI: 10.1128/jvi.00300-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024] Open
Abstract
La Crosse Virus (LACV) encephalitis patients are at risk for long-term deficits in cognitive function due to neuronal apoptosis following virus infection. However, the specific etiology underlying neuronal damage remains elusive. In this study, we examined how differentiation and mitotic inhibition of neuroblastoma cells influence their susceptibility to LACV infection and cell death. Treatment of SH-SY5Y cells with retinoic acid induced a neuronal cell phenotype which was similarly susceptible to LACV infection as untreated cells but had significantly delayed virus-induced cell death. Protein and RNA transcript analysis showed that retinoic acid-treated cells had decreased oxidative stress responses to LACV infection compared to untreated cells. Modulation of oxidative stress in untreated cells with specific compounds also delayed cell death, without substantially impacting virus production. Thus, the oxidative stress response of neurons to virus infection may be a key component of neuronal susceptibility to virus-induced cell death. IMPORTANCE Encephalitic viruses like La Crosse Virus (LACV) infect and kill neurons. Disease onset and progression is rapid meaning the time frame to treat patients before significant and long-lasting damage occurs is limited. Examining how neurons, the primary cells infected by LACV in the brain, resist virus-induced cell death can provide avenues for determining which pathways to target for effective treatments. In the current study, we studied how changing neuroblastoma growth and metabolism with retinoic acid treatment impacted their susceptibility to LACV-induced cell death. We utilized this information to test compounds for preventing death in these cells.
Collapse
Affiliation(s)
- Paul F Policastro
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Hamilton, Montana, USA
| | - Christine A Schneider
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Hamilton, Montana, USA
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Hamilton, Montana, USA
| | - Clayton W Winkler
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Hamilton, Montana, USA
| | - Jacqueline M Leung
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Hamilton, Montana, USA
| | - Karin E Peterson
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Hamilton, Montana, USA
| |
Collapse
|
3
|
Martínez-Torres NI, Cárdenas-Bedoya J, Torres-Mendoza BM. Acute Combined Cerebrolysin and Nicotinamide Administration Promote Cognitive Recovery Through Neuronal Changes in the Hippocampus of Rats with Permanent Middle Cerebral Artery Occlusion. Neuroscience 2024; 549:76-83. [PMID: 38734304 DOI: 10.1016/j.neuroscience.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Stroke is one of the leading causes of disability worldwide, where the Hippocampus (HPC) is affected. HPC organizes memory, which is a cognitive domain compromised after a stroke, where cerebrolysin (CBL) and Nicotinamide (NAM) have been recognized as potentially therapeutic. In this study, we aimed to evaluate the efficacy of a combined administration of CBL and NAM in a rat stroke model. Male Sprague-Dawley rats (n = 36) were divided into four groups: saline (pMCAO - Saline), CBL (pMCAO + CBL), NAM (pMCAO + NAM), and experimental (pMCAO + CBL-NAM) (n = 9 per group). A permanent middle cerebral artery occlusion (pMCAO) was induced through electrocauterization of the middle cerebral artery, followed by the administration of CBL (2.5 ml/kg), NAM (500 mg/kg) or combined immediately after skin suture, as well as at 24, 48, and 72 h post-surgery. The rats were evaluated in the novel object recognition test; hippocampal infarct area measurement; reconstruction of neurons from CA1 for Sholl analysis; and, measurement of brain-derived neurotrophic factor (BDNF) levels near the infarct zone. Our findings revealed that the administration of CBL or NAM induced infarct reduction, improved cognition, and increased BDNF levels. Moreover, a combination of CBL and NAM increased dendritic intersection in CA1 pyramidal neurons. Thus, the combined administration of CBL and NAM can promote cognitive recovery after a stroke, with infarct reduction, cytoarchitectural changes in HPC CA1 neurons, and BDNF increase. Our findings suggest that this combination therapy could be a promising intervention strategy for stroke.
Collapse
Affiliation(s)
- Nestor I Martínez-Torres
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico; Centro Universitario del Norte, Departamento de Bienestar y Desarrollo Sustentable, Universidad de Guadalajara, Colotlán, Jalisco, Mexico
| | - Jhonathan Cárdenas-Bedoya
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico; Centro Universitario de Ciencias de la Salud, Departamento de Disciplinas Filósofico, Metodológicas e Instrumentales, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Blanca Miriam Torres-Mendoza
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico; Centro Universitario de Ciencias de la Salud, Departamento de Disciplinas Filósofico, Metodológicas e Instrumentales, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
4
|
Nie L, Wang C, Huang M, Liu X, Feng X, Tang M, Li S, Hang Q, Teng H, Shen X, Ma L, Gan B, Chen J. DePARylation is critical for S phase progression and cell survival. eLife 2024; 12:RP89303. [PMID: 38578205 PMCID: PMC10997334 DOI: 10.7554/elife.89303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Poly(ADP-ribose)ylation or PARylation by PAR polymerase 1 (PARP1) and dePARylation by poly(ADP-ribose) glycohydrolase (PARG) are equally important for the dynamic regulation of DNA damage response. PARG, the most active dePARylation enzyme, is recruited to sites of DNA damage via pADPr-dependent and PCNA-dependent mechanisms. Targeting dePARylation is considered an alternative strategy to overcome PARP inhibitor resistance. However, precisely how dePARylation functions in normal unperturbed cells remains elusive. To address this challenge, we conducted multiple CRISPR screens and revealed that dePARylation of S phase pADPr by PARG is essential for cell viability. Loss of dePARylation activity initially induced S-phase-specific pADPr signaling, which resulted from unligated Okazaki fragments and eventually led to uncontrolled pADPr accumulation and PARP1/2-dependent cytotoxicity. Moreover, we demonstrated that proteins involved in Okazaki fragment ligation and/or base excision repair regulate pADPr signaling and cell death induced by PARG inhibition. In addition, we determined that PARG expression is critical for cellular sensitivity to PARG inhibition. Additionally, we revealed that PARG is essential for cell survival by suppressing pADPr. Collectively, our data not only identify an essential role for PARG in normal proliferating cells but also provide a potential biomarker for the further development of PARG inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHoustonUnited States
| |
Collapse
|
5
|
Latorre J, de Vera N, Santalucía T, Balada R, Marazuela-Duque A, Vaquero A, Planas AM, Petegnief V. Lack of the Histone Deacetylase SIRT1 Leads to Protection against Endoplasmic Reticulum Stress through the Upregulation of Heat Shock Proteins. Int J Mol Sci 2024; 25:2856. [PMID: 38474102 DOI: 10.3390/ijms25052856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Histone deacetylase SIRT1 represses gene expression through the deacetylation of histones and transcription factors and is involved in the protective cell response to stress and aging. However, upon endoplasmic reticulum (ER) stress, SIRT1 impairs the IRE1α branch of the unfolded protein response (UPR) through the inhibition of the transcriptional activity of XBP-1 and SIRT1 deficiency is beneficial under these conditions. We hypothesized that SIRT1 deficiency may unlock the blockade of transcription factors unrelated to the UPR promoting the synthesis of chaperones and improving the stability of immature proteins or triggering the clearance of unfolded proteins. SIRT1+/+ and SIRT1-/- fibroblasts were exposed to the ER stress inducer tunicamycin and cell survival and expression of heat shock proteins were analyzed 24 h after the treatment. We observed that SIRT1 loss significantly reduced cell sensitivity to ER stress and showed that SIRT1-/- but not SIRT1+/+ cells constitutively expressed high levels of phospho-STAT3 and heat shock proteins. Hsp70 silencing in SIRT1-/- cells abolished the resistance to ER stress. Furthermore, accumulation of ubiquitinated proteins was lower in SIRT1-/- than in SIRT1+/+ cells. Our data showed that SIRT1 deficiency enabled chaperones upregulation and boosted the proteasome activity, two processes that are beneficial for coping with ER stress.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
| | - Nuria de Vera
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
| | - Tomàs Santalucía
- Department of Fundamental and Clinical Nursing, School of Nursing, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Rafel Balada
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
| | - Anna Marazuela-Duque
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Valérie Petegnief
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
6
|
Gordon-Blake J, Ratia K, Weidig V, Velma GR, Ackerman-Berrier M, Penton C, Musku SR, Alves ET, Driver T, Tai L, Thatcher GRJ. Nicotinamide Phosphoribosyltransferase Positive Allosteric Modulators Attenuate Neuronal Oxidative Stress. ACS Med Chem Lett 2024; 15:205-214. [PMID: 38352833 PMCID: PMC10860701 DOI: 10.1021/acsmedchemlett.3c00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/02/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
Evidence supports boosting nicotinamide adenine dinucleotide (NAD+) to counteract oxidative stress in aging and neurodegenerative disease. One approach is to enhance the activity of nicotinamide phosphoribosyltransferase (NAMPT). Novel NAMPT positive allosteric modulators (N-PAMs) were identified. A cocrystal structure confirmed N-PAM binding to the NAMPT rear channel. Early hit-to-lead efforts led to a 1.88-fold maximum increase in the level of NAD+ in human THP-1 cells. Select N-PAMs were assessed for mitigation of reactive oxygen species (ROS) in HT-22 neuronal cells subject to inflammatory stress using tumor necrosis factor alpha (TNFα). N-PAMs that increased NAD+ more effectively in THP-1 cells attenuated TNFα-induced ROS more effectively in HT-22 cells. The most efficacious N-PAM completely attenuated ROS elevation in glutamate-stressed HT-22 cells, a model of neuronal excitotoxicity. This work demonstrates for the first time that N-PAMs are capable of mitigating elevated ROS in neurons stressed with TNFα and glutamate and provides support for further N-PAM optimization for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jesse Gordon-Blake
- Department
of Pharmaceutical Sciences, Research Resources Center, Department of Chemistry, and Department of
Anatomy and Cell Biology, University of
Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Kiira Ratia
- Department
of Pharmaceutical Sciences, Research Resources Center, Department of Chemistry, and Department of
Anatomy and Cell Biology, University of
Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Victoria Weidig
- Department
of Pharmaceutical Sciences, Research Resources Center, Department of Chemistry, and Department of
Anatomy and Cell Biology, University of
Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Ganga Reddy Velma
- Department
of Pharmacology & Toxicology, R Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Martha Ackerman-Berrier
- Department
of Pharmacology & Toxicology, R Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Penton
- Department
of Pharmacology & Toxicology, R Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Soumya Reddy Musku
- Department
of Pharmacology & Toxicology, R Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Erick T.M. Alves
- Department
of Pharmacology & Toxicology, R Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Tom Driver
- Department
of Pharmaceutical Sciences, Research Resources Center, Department of Chemistry, and Department of
Anatomy and Cell Biology, University of
Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Leon Tai
- Department
of Pharmaceutical Sciences, Research Resources Center, Department of Chemistry, and Department of
Anatomy and Cell Biology, University of
Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, R Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Nie L, Wang C, Huang M, Liu X, Feng X, Tang M, Li S, Hang Q, Teng H, Shen X, Ma L, Gan B, Chen J. DePARylation is critical for S phase progression and cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551317. [PMID: 37577639 PMCID: PMC10418084 DOI: 10.1101/2023.07.31.551317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Poly(ADP-ribose)ylation or PARylation by PAR polymerase 1 (PARP1) and dePARylation by poly(ADP-ribose) glycohydrolase (PARG) are equally important for the dynamic regulation of DNA damage response. PARG, the most active dePARylation enzyme, is recruited to sites of DNA damage via pADPr-dependent and PCNA-dependent mechanisms. Targeting dePARylation is considered an alternative strategy to overcome PARP inhibitor resistance. However, precisely how dePARylation functions in normal unperturbed cells remains elusive. To address this challenge, we conducted multiple CRISPR screens and revealed that dePARylation of S phase pADPr by PARG is essential for cell viability. Loss of dePARylation activity initially induced S phase-specific pADPr signaling, which resulted from unligated Okazaki fragments and eventually led to uncontrolled pADPr accumulation and PARP1/2-dependent cytotoxicity. Moreover, we demonstrated that proteins involved in Okazaki fragment ligation and/or base excision repair regulate pADPr signaling and cell death induced by PARG inhibition. In addition, we determined that PARG expression is critical for cellular sensitivity to PARG inhibition. Additionally, we revealed that PARG is essential for cell survival by suppressing pADPr. Collectively, our data not only identify an essential role for PARG in normal proliferating cells but also provide a potential biomarker for the further development of PARG inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Siting Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Kristian T, Russell JW. NAD + Precursors Reverse Experimental Diabetic Neuropathy in Mice. Int J Mol Sci 2024; 25:1102. [PMID: 38256175 PMCID: PMC10816262 DOI: 10.3390/ijms25021102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Abnormal NAD+ signaling has been implicated in axonal degeneration in diabetic peripheral neuropathy (DPN). We hypothesized that supplementing NAD+ precursors could alleviate DPN symptoms through increasing the NAD+ levels and activating the sirtuin-1 (SIRT1) protein. To test this, we exposed cultured Dorsal Root Ganglion neurons (DRGs) to Nicotinamide Riboside (NR) or Nicotinamide Mononucleotide (NMN), which increased the levels of NAD+, the SIRT1 protein, and the deacetylation activity that is associated with increased neurite growth. A SIRT1 inhibitor blocked the neurite growth induced via NR or NMN. We then induced neuropathy in C57BL6 mice with streptozotocin (STZ) or a high fat diet (HFD) and administered NR or NMN for two months. Both the STZ and HFD mice developed neuropathy, which was reversed through the NR or NMN administration: sensory function improved, nerve conduction velocities normalized, and intraepidermal nerve fibers were restored. The NAD+ levels and SIRT1 activity were reduced in the DRGs from diabetic mice but were preserved with the NR or NMN treatment. We also tested the effect of NR or NMN administration in mice that overexpress the SIRT1 protein in neurons (nSIRT1 OE) and found no additional benefit from the addition of the drug. These findings suggest that supplementing with NAD+ precursors or activating SIRT1 may be a promising treatment for DPN.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Neda Najimi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Avinash R. Sagi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Sushuma Yarlagadda
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Muhammed Ikbal Arvas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Ahmad F. Hedayat
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Anand Kadakia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - James W. Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- CAMC Institute for Academic Medicine, 415 Morris Street Suite 300, Charleston, WV 25301, USA
| |
Collapse
|
9
|
Rice J, Lautrup S, Fang EF. NAD + Boosting Strategies. Subcell Biochem 2024; 107:63-90. [PMID: 39693020 DOI: 10.1007/978-3-031-66768-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nicotinamide adenine dinucleotide (oxidized form, NAD+) serves as a co-substrate and co-enzyme in cells to execute its key roles in cell signalling pathways and energetic metabolism, arbitrating cell survival and death. It was discovered in 1906 by Arthur Harden and William John Young in yeast extract which could accelerate alcohol fermentation. NAD acts as an electron acceptor and cofactor throughout the processes of glycolysis, Tricarboxylic Acid Cycle (TCA), β oxidation, and oxidative phosphorylation (OXPHOS). NAD has two forms: NAD+ and NADH. NAD+ is the oxidising coenzyme that is reduced when it picks up electrons. NAD+ levels steadily decline with age, resulting in an increase in vulnerability to chronic illness and perturbed cellular metabolism. Boosting NAD+ levels in various model organisms have resulted in improvements in healthspan and lifespan extension. These results have prompted a search for means by which NAD+ levels in the body can be augmented by both internal and external means. The aim of this chapter is to provide an overview of NAD+, appraise clinical evidence of its importance and success in potentially extending health- and lifespan, as well as to explore NAD+ boosting strategies.
Collapse
Affiliation(s)
- Jared Rice
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
10
|
Qu W, Ralto KM, Qin T, Cheng Y, Zong W, Luo X, Perez-Pinzon M, Parikh SM, Ayata C. NAD + precursor nutritional supplements sensitize the brain to future ischemic events. J Cereb Blood Flow Metab 2023; 43:37-48. [PMID: 37434361 PMCID: PMC10638999 DOI: 10.1177/0271678x231156500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 10/09/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a redox cofactor critical for oxidative phosphorylation. Nicotinamide (NAM) and nicotinamide riboside (NR) are NAD+ precursors widely used as nutritional supplements to augment oxidative phosphorylation. Indeed, NAD+ precursors have been reported to improve outcomes in ischemic stroke when administered as a rescue therapy after stroke onset. However, we have also reported that enhanced reliance on oxidative phosphorylation before ischemia onset might worsen outcomes. To address the paradox, we examined how NAD+ precursors modulate the outcome of middle cerebral artery occlusion in mice, when administered either 20 minutes after reperfusion or daily for three days before ischemia onset. A single post-ischemic dose of NAM or NR indeed improved tissue and neurologic outcomes examined at 72 hours. In contrast, pre-ischemic treatment for three days enlarged the infarcts and worsened neurological deficits. As a possible explanation for the diametric outcomes, a single dose of NAM or NR augmented tissue AMPK, PGC1α, SIRT1, and ATP in both naïve and ischemic brains, while the multiple-dose paradigm failed to do so. Our data suggest that NAD+ precursor supplements may sensitize the brain to subsequent ischemic events, despite their neuroprotective effect when administered after ischemia onset.
Collapse
Affiliation(s)
- Wensheng Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kenneth M Ralto
- Division of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Nephrology and Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yinhong Cheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weifeng Zong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miguel Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Laboratories, Department of Neurology, The University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Samir M Parikh
- Division of Nephrology and Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Chen LC, Mokgautsi N, Kuo YC, Wu ATH, Huang HS. In Silico Evaluation of HN-N07 Small Molecule as an Inhibitor of Angiogenesis and Lymphangiogenesis Oncogenic Signatures in Non-Small Cell Lung Cancer. Biomedicines 2023; 11:2011. [PMID: 37509650 PMCID: PMC10376976 DOI: 10.3390/biomedicines11072011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor angiogenesis and lymphangiogenesis pathways have been identified as important therapeutic targets in non-small cell lung cancer (NSCLC). Bevacizumab, which is a monoclonal antibody, was the initial inhibitor of angiogenesis and lymphangiogenesis that received approval for use in the treatment of advanced non-small cell lung cancer (NSCLC) in combination with chemotherapy. Despite its usage, patients may still develop resistance to the treatment, which can be attributed to various histological subtypes and the initiation of treatment at advanced stages of cancer. Due to their better specificity, selectivity, and safety compared to chemotherapy, small molecules have been approved for treating advanced NSCLC. Based on the development of multiple small-molecule antiangiogenic drugs either in house and abroad or in other laboratories to treat NSCLC, we used a quinoline-derived small molecule-HN-N07-as a potential target drug for NSCLC. Accordingly, we used computational simulation tools and evaluated the drug-likeness properties of HN-N07. Moreover, we identified target genes, resulting in the discovery of the target BIRC5/HIF1A/FLT4 pro-angiogenic genes. Furthermore, we used in silico molecular docking analysis to determine whether HN-N07 could potentially inhibit BIRC5/HIF1A/FLT4. Interestingly, the results of docking HN-N07 with the BIRC5, FLT4, and HIF1A oncogenes revealed unique binding affinities, which were significantly higher than those of standard inhibitors. In summary, these results indicate that HN-N07 shows promise as a potential inhibitor of oncogenic signaling pathways in NSCLC. Ongoing studies that involve in vitro experiments and in vivo investigations using tumor-bearing mice are in progress, aiming to evaluate the therapeutic effectiveness of the HN-N07 small molecule.
Collapse
Affiliation(s)
- Lung-Ching Chen
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Narne P, Phanithi PB. Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2023; 43:1719-1768. [PMID: 36180651 PMCID: PMC11412205 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
13
|
Waddell J, Khatoon R, Kristian T. Cellular and Mitochondrial NAD Homeostasis in Health and Disease. Cells 2023; 12:1329. [PMID: 37174729 PMCID: PMC10177113 DOI: 10.3390/cells12091329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The mitochondrion has a unique position among other cellular organelles due to its dynamic properties and symbiotic nature, which is reflected in an active exchange of metabolites and cofactors between the rest of the intracellular compartments. The mitochondrial energy metabolism is greatly dependent on nicotinamide adenine dinucleotide (NAD) as a cofactor that is essential for both the activity of respiratory and TCA cycle enzymes. The NAD level is determined by the rate of NAD synthesis, the activity of NAD-consuming enzymes, and the exchange rate between the individual subcellular compartments. In this review, we discuss the NAD synthesis pathways, the NAD degradation enzymes, and NAD subcellular localization, as well as NAD transport mechanisms with a focus on mitochondria. Finally, the effect of the pathologic depletion of mitochondrial NAD pools on mitochondrial proteins' post-translational modifications and its role in neurodegeneration will be reviewed. Understanding the physiological constraints and mechanisms of NAD maintenance and the exchange between subcellular compartments is critical given NAD's broad effects and roles in health and disease.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rehana Khatoon
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tibor Kristian
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Notoginseng leaf triterpenes ameliorates mitochondrial oxidative injury via the NAMPT-SIRT1/2/3 signaling pathways in cerebral ischemic model rats. J Ginseng Res 2023; 47:199-209. [PMID: 36926612 PMCID: PMC10014186 DOI: 10.1016/j.jgr.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/17/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Due to the interrupted blood supply in cerebral ischemic stroke (CIS), ischemic and hypoxia results in neuronal depolarization, insufficient NAD+, excessive levels of ROS, mitochondrial damages, and energy metabolism disorders, which triggers the ischemic cascades. Currently, improvement of mitochondrial functions and energy metabolism is as a vital therapeutic target and clinical strategy. Hence, it is greatly crucial to look for neuroprotective natural agents with mitochondria protection actions and explore the mediated targets for treating CIS. In the previous study, notoginseng leaf triterpenes (PNGL) from Panax notoginseng stems and leaves was demonstrated to have neuroprotective effects against cerebral ischemia/reperfusion injury. However, the potential mechanisms have been not completely elaborate. Methods: The model of middle cerebral artery occlusion and reperfusion (MCAO/R) was adopted to verify the neuroprotective effects and potential pharmacology mechanisms of PNGL in vivo. Antioxidant markers were evaluated by kit detection. Mitochondrial function was evaluated by ATP content measurement, ATPase, NAD and NADH kits. And the transmission electron microscopy (TEM) and pathological staining (H&E and Nissl) were used to detect cerebral morphological changes and mitochondrial structural damages. Western blotting, ELISA and immunofluorescence assay were utilized to explore the mitochondrial protection effects and its related mechanisms in vivo. Results: In vivo, treatment with PNGL markedly reduced excessive oxidative stress, inhibited mitochondrial injury, alleviated energy metabolism dysfunction, decreased neuronal loss and apoptosis, and thus notedly raised neuronal survival under ischemia and hypoxia. Meanwhile, PNGL significantly increased the expression of nicotinamide phosphoribosyltransferase (NAMPT) in the ischemic regions, and regulated its related downstream SIRT1/2/3-MnSOD/PGC-1α pathways. Conclusion: The study finds that the mitochondrial protective effects of PNGL are associated with the NAMPT-SIRT1/2/3-MnSOD/PGC-1α signal pathways. PNGL, as a novel candidate drug, has great application prospects for preventing and treating ischemic stroke.
Collapse
|
15
|
Mokgautsi N, Kuo YC, Huang YJ, Chen CH, Mukhopadhyay D, Wu ATH, Huang HS. Preclinical Evaluation of a Novel Small Molecule LCC-21 to Suppress Colorectal Cancer Malignancy by Inhibiting Angiogenic and Metastatic Signatures. Cells 2023; 12:cells12020266. [PMID: 36672201 PMCID: PMC9856425 DOI: 10.3390/cells12020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, and it frequently metastasizes to the liver and lymph nodes. Despite major advances in treatment modalities, CRC remains a poorly characterized biological malignancy, with high reported cases of deaths globally. Moreover, cancer stem cells (CSCs) and their microenvironment have been widely shown to promote colon cancer development, progression, and metastasis. Therefore, an understanding of the underlying mechanisms that contribute to the maintenance of CSCs and their markers in CRC is crucial in efforts to treat cancer metastasis and develop specific therapeutic targets for augmenting current standard treatments. Herein, we applied computational simulations using bioinformatics to identify potential theranostic markers for CRC. We identified the overexpression of vascular endothelial growth factor-α (VEGFA)/β-catenin/matrix metalloproteinase (MMP)-7/Cluster of Differentiation 44 (CD44) in CRC to be associated with cancer progression, stemness, resistance to therapy, metastasis, and poor clinical outcomes. To further investigate, we explored in silico molecular docking, which revealed potential inhibitory activities of LCC-21 as a potential multitarget small molecule for VEGF-A/CTNNB1/MMP7/CD44 oncogenic signatures, with the highest binding affinities displayed. We validated these finding in vitro and demonstrated that LCC-21 inhibited colony and sphere formation, migration, and invasion, and these results were further confirmed by a Western blot analysis in HCT116 and DLD-1 cells. Thus, the inhibitory effects of LCC-21 on these angiogenic and onco-immunogenic signatures could be of translational relevance as potential CRC biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yan-Jiun Huang
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chien-Hsin Chen
- Division of Colorectal Surgery, Department of Surgery, WanFang Hospital, Taipei Medical University, No. 111 Sec. 3 Xinglong Rd., Wenshan Dist., Taipei 11031, Taiwan
| | | | - Alexander T. H. Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- The Ph.D. Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.); Tel.: +886-2-2697-2035 (ext. 112) (A.T.H.W.); +886-2-6638-2736 (ext. 1377) (H.-S.H.)
| | - Hsu-Shan Huang
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11031, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (A.T.H.W.); (H.-S.H.); Tel.: +886-2-2697-2035 (ext. 112) (A.T.H.W.); +886-2-6638-2736 (ext. 1377) (H.-S.H.)
| |
Collapse
|
16
|
Helman T, Braidy N. Importance of NAD+ Anabolism in Metabolic, Cardiovascular and Neurodegenerative Disorders. Drugs Aging 2023; 40:33-48. [PMID: 36510042 DOI: 10.1007/s40266-022-00989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/14/2022]
Abstract
The role of nicotinamide adenine dinucleotide (NAD+) in ageing has emerged as a critical factor in understanding links to a wide range of chronic diseases. Depletion of NAD+, a central redox cofactor and substrate of numerous metabolic enzymes, has been detected in many major age-related diseases. However, the mechanisms behind age-associated NAD+ decline remains poorly understood. Despite limited conclusive evidence, supplements aimed at increasing NAD+ levels are becoming increasingly popular. This review provides renewed insights regarding the clinical utility and benefits of NAD+ precursors, namely nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline and phenotypic characterization of age-related disorders, including metabolic, cardiovascular and neurodegenerative diseases. While it is anticipated that NAD+ precursors can play beneficial protective roles in several conditions, they vary in their ability to promote NAD+ anabolism with differing adverse effects. Careful evaluation of the role of NAD+, whether friend or foe in ageing, should be considered.
Collapse
Affiliation(s)
- Tessa Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, NPI, Euroa Centre, Prince of Wales Hospital, University of New South Wales, Barker Street, Randwick, Sydney, NSW, 2031, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, NPI, Euroa Centre, Prince of Wales Hospital, University of New South Wales, Barker Street, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|
17
|
Zhu X, Cheng J, Yu J, Liu R, Ma H, Zhao Y. Nicotinamide mononucleotides alleviated neurological impairment via anti-neuroinflammation in traumatic brain injury. Int J Med Sci 2023; 20:307-317. [PMID: 36860678 PMCID: PMC9969499 DOI: 10.7150/ijms.80942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the main factors of death and disability in adults with a high incidence worldwide. Nervous system injury, as the most common and serious secondary injury after TBI, determines the prognosis of TBI patients. NAD+ has been confirmed to have neuroprotective effects in neurodegenerative diseases, but its role in TBI remains to be explored. In our study, nicotinamide mononucleotides (NMN), a direct precursor of NAD+, was used to explore the specific role of NAD+ in rats with TBI. Our results showed that NMN administration markedly attenuated histological damages, neuronal death, brain edema, and improved neurological and cognitive deficits in TBI rats. Moreover, NMN treatment significantly suppressed activated astrocytes and microglia after TBI, and further inhibited the expressions of inflammatory factor. Besides, RNA sequencing was used to access the differently expressed genes (DEGs) and their enriched (Kyoto Encyclopedia of Genes and Genomes) KEGG pathways between Sham, TBI, and TBI+NMN. We found that 1589 genes were significantly changed in TBI and 792 genes were reversed by NMN administration. For example, inflammatory factor CCL2, toll like receptors TLR2 and TLR4, proinflammatory cytokines IL-6, IL-11 and IL1rn which were activated after TBI and were decreased by NMN treatment. GO analysis also demonstrated that inflammatory response was the most significant biological process reversed by NMN treatment. Moreover, the reversed DEGs were typically enriched in NF-Kappa B signaling pathway, Jak-STAT signaling pathway and TNF signaling pathway. Taken together, our data showed that NMN alleviated neurological impairment via anti-neuroinflammation in traumatic brain injury and the mechanisms may involve TLR2/4-NF-κB signaling.
Collapse
Affiliation(s)
- Xiaolu Zhu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin Cheng
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiangtao Yu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ruining Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haoli Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Kawamura T, Singh Mallah G, Ardalan M, Chumak T, Svedin P, Jonsson L, Jabbari Shiadeh SM, Goretta F, Ikeda T, Hagberg H, Sandberg M, Mallard C. Therapeutic Effect of Nicotinamide Mononucleotide for Hypoxic-Ischemic Brain Injury in Neonatal Mice. ASN Neuro 2023; 15:17590914231198983. [PMID: 37787108 PMCID: PMC10548811 DOI: 10.1177/17590914231198983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/04/2023] Open
Abstract
SUMMARY STATEMENT Neonatal hypoxia-ischemia reduces nicotinamide adenine dinucleotide (NAD+) and SIRT6 levels in the injured hippocampus.Hippocampal high mobility group box-1 (HMGB1) release is significantly increased after neonatal hypoxia-ischemia.Nicotinamide mononucleotide (NMN) treatment normalizes hippocampal NAD+ and SIRT6 levels, with significant decrease in caspase-3 activity and HMGB1 release.NMN improves early developmental behavior, as well as motor and memory function.
Collapse
Affiliation(s)
- Takuya Kawamura
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Gagandeep Singh Mallah
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maryam Ardalan
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tetyana Chumak
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lina Jonsson
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fanny Goretta
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Hu G, Ling C, Chi L, Thind MK, Furse S, Koulman A, Swann JR, Lee D, Calon MM, Bourdon C, Versloot CJ, Bakker BM, Gonzales GB, Kim PK, Bandsma RHJ. The role of the tryptophan-NAD + pathway in a mouse model of severe malnutrition induced liver dysfunction. Nat Commun 2022; 13:7576. [PMID: 36481684 PMCID: PMC9732354 DOI: 10.1038/s41467-022-35317-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Mortality in children with severe malnutrition is strongly related to signs of metabolic dysfunction, such as hypoglycemia. Lower circulating tryptophan levels in children with severe malnutrition suggest a possible disturbance in the tryptophan-nicotinamide adenine dinucleotide (TRP-NAD+) pathway and subsequently in NAD+ dependent metabolism regulator sirtuin1 (SIRT1). Here we show that severe malnutrition in weanling mice, induced by 2-weeks of low protein diet feeding from weaning, leads to an impaired TRP-NAD+ pathway with decreased NAD+ levels and affects hepatic mitochondrial turnover and function. We demonstrate that stimulating the TRP-NAD+ pathway with NAD+ precursors improves hepatic mitochondrial and overall metabolic function through SIRT1 modulation. Activating SIRT1 is sufficient to induce improvement in metabolic functions. Our findings indicate that modulating the TRP-NAD+ pathway can improve liver metabolic function in a mouse model of severe malnutrition. These results could lead to the development of new interventions for children with severe malnutrition.
Collapse
Affiliation(s)
- Guanlan Hu
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, M5G 1A8 Toronto, Canada ,grid.42327.300000 0004 0473 9646Translational Medicine Program, The Hospital for Sick Children, M5G 0A4 Toronto, Canada
| | - Catriona Ling
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, M5G 1A8 Toronto, Canada ,grid.42327.300000 0004 0473 9646Translational Medicine Program, The Hospital for Sick Children, M5G 0A4 Toronto, Canada
| | - Lijun Chi
- grid.42327.300000 0004 0473 9646Translational Medicine Program, The Hospital for Sick Children, M5G 0A4 Toronto, Canada
| | - Mehakpreet K. Thind
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, M5G 1A8 Toronto, Canada ,grid.42327.300000 0004 0473 9646Translational Medicine Program, The Hospital for Sick Children, M5G 0A4 Toronto, Canada
| | - Samuel Furse
- grid.5335.00000000121885934Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-Metabolic Research Laboratories, Institute of Metabolic Sciences, University of Cambridge, CB2 0QQ Cambridge, UK ,grid.4903.e0000 0001 2097 4353Biological Chemistry Group, Royal Botanic Gardens, Kew, Kew Green, TW9 3AE Richmond, UK
| | - Albert Koulman
- grid.5335.00000000121885934Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-Metabolic Research Laboratories, Institute of Metabolic Sciences, University of Cambridge, CB2 0QQ Cambridge, UK
| | - Jonathan R. Swann
- grid.5491.90000 0004 1936 9297School of Human Development and Health, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK ,grid.7445.20000 0001 2113 8111Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - Dorothy Lee
- grid.42327.300000 0004 0473 9646Translational Medicine Program, The Hospital for Sick Children, M5G 0A4 Toronto, Canada
| | - Marjolein M. Calon
- grid.42327.300000 0004 0473 9646Translational Medicine Program, The Hospital for Sick Children, M5G 0A4 Toronto, Canada
| | - Celine Bourdon
- grid.42327.300000 0004 0473 9646Translational Medicine Program, The Hospital for Sick Children, M5G 0A4 Toronto, Canada ,grid.511677.3The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Christian J. Versloot
- grid.4494.d0000 0000 9558 4598Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Barbara M. Bakker
- grid.4494.d0000 0000 9558 4598Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Bryan Gonzales
- grid.42327.300000 0004 0473 9646Translational Medicine Program, The Hospital for Sick Children, M5G 0A4 Toronto, Canada ,grid.4818.50000 0001 0791 5666Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Peter K. Kim
- grid.17063.330000 0001 2157 2938Department of Biochemistry, University of Toronto, M5S 1A8 Toronto, Canada ,grid.42327.300000 0004 0473 9646Cell Biology Program, The Hospital for Sick Children, M5G 0A4 Toronto, Canada
| | - Robert H. J. Bandsma
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, M5G 1A8 Toronto, Canada ,grid.42327.300000 0004 0473 9646Translational Medicine Program, The Hospital for Sick Children, M5G 0A4 Toronto, Canada ,grid.511677.3The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya ,grid.4494.d0000 0000 9558 4598Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ,grid.42327.300000 0004 0473 9646Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, M5G 0A4 Toronto, Canada
| |
Collapse
|
20
|
Tang Y, Xie J, Chen X, Sun L, Xu L, Chen X. A novel link between silent information regulator 1 and autophagy in cerebral ischemia-reperfusion. Front Neurosci 2022; 16:1040182. [PMID: 36507335 PMCID: PMC9726917 DOI: 10.3389/fnins.2022.1040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of death and disability worldwide. Although revascularization via reperfusion combined with advanced anticoagulant therapy is currently a gold standard treatment for patients, the reperfusion itself also results in a serious dysfunction termed cerebral ischemia-reperfusion (I/R) injury. Silent information regulator 1 (sirtuin 1, SIRT1), is a classic NAD+-dependent deacetylase, which has been proposed as an important mediator in the alleviation of cerebral ischemia through modulating multiple physiological processes, including apoptosis, inflammation, DNA repair, oxidative stress, and autophagy. Recent growing evidence suggests that SIRT1-mediated autophagy plays a key role in the pathophysiological process of cerebral I/R injury. SIRT1 could both activate and inhibit the autophagy process by mediating different autophagy pathways, such as the SIRT1-FOXOs pathway, SIRT1-AMPK pathway, and SIRT1-p53 pathway. However, the autophagic roles of SIRT1 in cerebral I/R injury have not been systematically summarized. Here, in this review, we will first introduce the molecular mechanisms and effects of SIRT1 in cerebral ischemia and I/R injury. Next, we will discuss the involvement of autophagy in the pathogenesis of cerebral I/R injury. Finally, we will summarize the latest advances in the interaction between SIRT1 and autophagy in cerebral I/R injury. A good understanding of these relationships would serve to consolidate a framework of mechanisms underlying SIRT1's neuroprotective effects and provides evidence for the development of drugs targeting SIRT1.
Collapse
|
21
|
KANG JB, KOH PO. Identification of changed proteins by retinoic acid in cerebral ischemic damage: a proteomic study. J Vet Med Sci 2022; 84:1194-1204. [PMID: 35831120 PMCID: PMC9523306 DOI: 10.1292/jvms.22-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022] Open
Abstract
Ischemic stroke is a severe neurodegenerative disease with a high mortality rate. Retinoic acid is a representative metabolite of vitamin A. It has many beneficial effects including anti-inflammatory, anti-apoptotic, and neuroprotective effects. The purpose of this study is to identify specific proteins that are regulated by retinoic acid in ischemic stroke. Middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected intraperitoneally into male rats for four days prior to MCAO operation. Neurobehavioral tests were performed 24 hr after MCAO and the cerebral cortex was collected for proteomic study. Retinoic acid alleviates neurobehavioral deficits and histopathological changes caused by MCAO. Furthermore, we identified various proteins that were altered by retinoic acid in MCAO damage. Among these identified proteins, adenosylhomocysteinase, isocitrate dehydrogenase [NAD+] subunit α, glycerol-3-phosphate dehydrogenase, Rab GDP dissociation inhibitor β, and apolipoprotein A1 were down-regulated in MCAO animals with vehicle treatment, whereas retinoic acid treatment alleviated these reductions. However, heat shock protein 60 was up-regulated in MCAO animals with vehicle, while retinoic acid treatment attenuated this increase. The changes in these expressions were confirmed by reverse transcription-PCR. These proteins regulate cell metabolism and mediate stress responses. Our results demonstrated that retinoic acid attenuates the neuronal damage by MCAO and regulates the various protein expressions that are involved in the survival of cells. Thus, we can suggest that retinoic acid exerts neuroprotective effects on focal cerebral ischemia by modulation of specific proteins.
Collapse
Affiliation(s)
- Ju-Bin KANG
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Phil-Ok KOH
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
22
|
Campbell JM. Supplementation with NAD + and Its Precursors to Prevent Cognitive Decline across Disease Contexts. Nutrients 2022; 14:nu14153231. [PMID: 35956406 PMCID: PMC9370773 DOI: 10.3390/nu14153231] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The preservation of cognitive ability by increasing nicotinamide adenine dinucleotide (NAD+) levels through supplementation with NAD+ precursors has been identified as a promising treatment strategy for a number of conditions; principally, age-related cognitive decline (including Alzheimer’s disease and vascular dementia), but also diabetes, stroke, and traumatic brain injury. Candidate factors have included NAD+ itself, its reduced form NADH, nicotinamide (NAM), nicotinamide mononucleotide (NMN), nicotinamide riboside (NR), and niacin (or nicotinic acid). This review summarises the research findings for each source of cognitive impairment for which NAD+ precursor supplementation has been investigated as a therapy. The findings are mostly positive but have been made primarily in animal models, with some reports of null or adverse effects. Given the increasing popularity and availability of these factors as nutritional supplements, further properly controlled clinical research is needed to provide definitive answers regarding this strategy’s likely impact on human cognitive health when used to address different sources of impairment.
Collapse
Affiliation(s)
- Jared M Campbell
- Graduate School of Biomedical Engineering, University of New South Wales Sydney, Sydney 2052, Australia
| |
Collapse
|
23
|
Goyal S, Tiwari S, Seth B, Phoolmala, Tandon A, Kumar Chaturvedi R. Bisphenol-A Mediated Impaired DRP1-GFER Axis and Cognition Restored by PGC-1α Upregulation Through Nicotinamide in the Rat Brain Hippocampus. Mol Neurobiol 2022; 59:4761-4775. [PMID: 35612786 DOI: 10.1007/s12035-022-02862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
The regulatory network of mitochondrial biogenesis and dynamics is vital for mitochondrial functions and cellular homeostasis. Any impairment in the mitochondrial network leads to neurodegenerative disorders. Our earlier studies suggest that environmental toxicant Bisphenol-A (BPA) exposure reduces neurogenesis by abnormal mitochondrial dynamics and mitochondrial biogenesis through impairment of mitochondrial fission factor dynamin-related protein (DRP1) and mitochondrial import protein GFER, which leads to demyelination, neurodegeneration, and cognitive deficits in the rats. In the present study, we found that chronic BPA exposure reduces PGC-1α levels (master regulator of mitochondrial biogenesis), alters mitochondrial localization of DRP1 and GFER, and reduces the number of PGC-1α/NeuN+ and PGC-1α/β-tubulin+ neurons in the rat hippocampus, suggesting reduced PGC-1α-mediated neurogenesis. Nicotinamide significantly increased PGC-1α protein levels, PGC-1α/NeuN+ co-labeled cells in BPA-treated rat hippocampus and PGC-1α/β-tubulin+ co-labeled cells in neuron culture derived from hippocampal neural stem cells. Interestingly, PGC-1α upregulation by nicotinamide also resulted in increased GFER levels and restored mitochondrial localization of GFER (increased GFER/TOMM20 co-labeled cells) in vitro and in vivo following BPA treatment. Nicotinamide also reduced DRP1 levels and prevented DRP1 mitochondrial localization in BPA-treated neuronal cultures and hippocampus, suggesting reduced mitochondrial fission. This resulted in reduced cytochrome c levels in neuronal culture and reduced hippocampal neurodegeneration (reduced caspase-3/NeuN+ co-labeled neurons) following nicotinamide treatment in BPA-treated group. Consequently, activation of PGC-1α by nicotinamide restored BPA-mediated cognitive deficits in rats. Results suggest that the treatment of nicotinamide has therapeutic potential and rescues BPA-mediated neuronal death and cognitive deficits by upregulating the PGC-1α and GFER-DRP1 link, thus balancing mitochondrial homeostasis.
Collapse
Affiliation(s)
- Shweta Goyal
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Tiwari
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Brashket Seth
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Phoolmala
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ankit Tandon
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, 226 028, U.P, India
| | - Rajnish Kumar Chaturvedi
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
24
|
Wang R, Wu Y, Liu R, Liu M, Li Q, Ba Y, Huang H. Deciphering therapeutic options for neurodegenerative diseases: insights from SIRT1. J Mol Med (Berl) 2022; 100:537-553. [PMID: 35275221 DOI: 10.1007/s00109-022-02187-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD +)-dependent protein deacetylase that exerts biological effects through nucleoplasmic transfer. Recent studies have highlighted that SIRT1 deacetylates protein substrates to exert its neuroprotective effects, including decreased oxidative stress and inflammatory, increases autophagy, increases levels of nerve growth factors (correlated with behavioral changes), and maintains neural integrity (affects neuronal development and function) in aging or neurological disorder. In this review, we highlight the molecular mechanisms underlying the protective role of SIRT1 in modulating neurodegeneration, focusing on protein homeostasis, aging-related signaling pathways, neurogenesis, and synaptic plasticity. Meanwhile, the potential of targeting SIRT1 to block the occurrence and progression of neurodegenerative diseases is also discussed. Taken together, this review provides an up-to-date evaluation of our current understanding of the neuroprotective mechanisms of SIRT1 and also be involved in the potential therapeutic opportunities of AD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China. .,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China.
| |
Collapse
|
25
|
BrPARP1, a Poly (ADP-Ribose) Polymerase Gene, Is Involved in Root Development in Brassica rapa under Drought Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PARP proteins are highly conserved homologs among the eukaryotic poly (ADP-ribose) polymerases. After activation, ADP-ribose polymers are synthesized on a series of ribozymes that use NAD+ as a substrate. PARPs participate in the regulation of various important biological processes, such as plant growth, development, and stress response. In this study, we characterized the homologue of PARP1 in B. rapa using RNA interference (RNAi) to reveal the underlying mechanism responding to drought stress. Bioinformatics and expression pattern analyses demonstrated that two copy numbers of PARP1 genes (BrPARP1.A03 and BrPARP1.A05) in B. rapa following a whole-genome triplication (WGT) event were retained compared with Arabidopsis, but only BrPARP1.A03 was predominantly transcribed in plant roots. Silencing of BrPARP1 could markedly promote root growth and development, probably via regulating cell division, and the transgenic Brassica lines showed more tolerance under drought treatment, accompanied with substantial alterations including accumulated proline contents, significantly reduced malondialdehyde, and increased antioxidative enzyme activity. In addition, the findings showed that the expression of stress-responsive genes, as well as reactive oxygen species (ROS)-scavenging related genes, was largely reinforced in the transgenic lines under drought stress. In general, these results indicated that BrPARP1 likely responds to drought stress by regulating root growth and the expression of stress-related genes to cope with adverse conditions in B. rapa.
Collapse
|
26
|
Demyanenko S, Dzreyan V, Sharifulina S. Histone Deacetylases and Their Isoform-Specific Inhibitors in Ischemic Stroke. Biomedicines 2021; 9:biomedicines9101445. [PMID: 34680562 PMCID: PMC8533589 DOI: 10.3390/biomedicines9101445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia is the second leading cause of death in the world and multimodal stroke therapy is needed. The ischemic stroke generally reduces the gene expression due to suppression of acetylation of histones H3 and H4. Histone deacetylases inhibitors have been shown to be effective in protecting the brain from ischemic damage. Histone deacetylases inhibitors induce neurogenesis and angiogenesis in damaged brain areas promoting functional recovery after cerebral ischemia. However, the role of different histone deacetylases isoforms in the survival and death of brain cells after stroke is still controversial. This review aims to analyze the data on the neuroprotective activity of nonspecific and selective histone deacetylase inhibitors in ischemic stroke.
Collapse
|
27
|
Samaiya PK, Krishnamurthy S, Kumar A. Mitochondrial dysfunction in perinatal asphyxia: role in pathogenesis and potential therapeutic interventions. Mol Cell Biochem 2021; 476:4421-4434. [PMID: 34472002 DOI: 10.1007/s11010-021-04253-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/20/2021] [Indexed: 01/13/2023]
Abstract
Perinatal asphyxia (PA)-induced brain injury may present as hypoxic-ischemic encephalopathy in the neonatal period, and long-term sequelae such as spastic motor deficits, intellectual disability, seizure disorders and learning disabilities. The brain injury is secondary to both the hypoxic-ischemic event and oxygenation-reperfusion following resuscitation. Following PA, a time-dependent progression of neuronal insult takes place in terms of transition of cell death from necrosis to apoptosis. This transition is the result of time-dependent progression of pathomechanisms which involve excitotoxicity, oxidative stress, and ultimately mitochondrial dysfunction in developing brain. More precisely mitochondrial respiration is suppressed and calcium signalling is dysregulated. Consequently, Bax-dependent mitochondrial permeabilization occurs leading to release of cytochrome c and activation of caspases leading to transition of cell death in developing brain. The therapeutic window lies within this transition process. At present, therapeutic hypothermia (TH) is the only clinical treatment available for treating moderate as well as severe asphyxia in new-born as it attenuates secondary loss of high-energy phosphates (ATP) (Solevåg et al. in Free Radic Biol Med 142:113-122, 2019; Gunn et al. in Pediatr Res 81:202-209, 2017), improving both short- and long-term outcomes. Mitoprotective therapies can offer a new avenue of intervention alone or in combination with therapeutic hypothermia for babies with birth asphyxia. This review will explore these mitochondrial pathways, and finally will summarize past and current efforts in targeting these pathways after PA, as a means of identifying new avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Puneet K Samaiya
- Department of Pharmacy, Shri G.S. Institute of Technology and Science, Indore, MP, 452003, India.
| | - Sairam Krishnamurthy
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, BHU, Varanasi, UP, India
| |
Collapse
|
28
|
Esmayel IM, Hussein S, Gohar EA, Ebian HF, Mousa MM. Plasma levels of sirtuin-1 in patients with cerebrovascular stroke. Neurol Sci 2021; 42:3843-3850. [PMID: 33507417 DOI: 10.1007/s10072-021-05074-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/18/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND In Egypt, circulatory system diseases are responsible for one-third of the annual deaths. Stroke comes 3rd after heart diseases and liver diseases. Stroke includes two types: ischemic and hemorrhagic. The sirtuins (SIRTs) are a family of histone deacetylases that are nicotinamide adenine dinucleotide (NAD)+ dependent. They are activated under conditions of decreased cellular energy stores and are involved in the control of several physiological processes. OBJECTIVES To measure the plasma levels of SIRT1 in acute cerebrovascular stroke, to assess its role as a possible biomarker in predicting the risk of acute cerebrovascular stroke, to compare its levels between the two groups of stroke patients, and to evaluate the association between its levels and the severity of stroke. Also, to assess the correlations between the plasma SIRT1 levels and the variables that might play a role in the severity of acute cerebrovascular stroke. METHODS This is a case-control study carried out on one hundred and eight participants. The participants were divided into two groups: group A (control group) included fifty-four individuals. Group B (acute cerebrovascular stroke group) included fifty-four stroke patients of two subgroups: B1: twenty-eight patients suffering from acute ischemic stroke and B2: twenty-six patients suffering from acute hemorrhagic stroke. Measurement of the plasma levels of SIRT1 was performed using the enzyme-linked immunosorbent assay (ELISA). RESULTS Regarding SIRT1 levels, acute stroke groups were significantly lower than the control group with no significant difference between ischemic and hemorrhagic groups. There were positive correlations between SIRT1 levels and each of the hemoglobin levels and serum potassium levels. There were negative correlations between SIRT1 levels and each of triglycerides (TG) and stroke score. CONCLUSION Plasma levels of SIRT1 are lower in patients with acute cerebrovascular stroke than in control. Furthermore, SIRT1 may act as a possible biomarker for predicting the risk of acute cerebrovascular stroke.
Collapse
Affiliation(s)
- Imam M Esmayel
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Ehab A Gohar
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Huda F Ebian
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mayada M Mousa
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
29
|
Obrador E, Salvador-Palmer R, López-Blanch R, Dellinger RW, Estrela JM. NAD + Precursors and Antioxidants for the Treatment of Amyotrophic Lateral Sclerosis. Biomedicines 2021; 9:1000. [PMID: 34440204 PMCID: PMC8394119 DOI: 10.3390/biomedicines9081000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
Charcot first described amyotrophic lateral sclerosis (ALS) between 1865 and 1874 as a sporadic adult disease resulting from the idiopathic progressive degeneration of the motor neuronal system, resulting in rapid, progressive, and generalized muscle weakness and atrophy. There is no cure for ALS and no proven therapy to prevent it or reverse its course. There are two drugs specifically approved for the treatment of ALS, riluzol and edaravone, and many others have already been tested or are following clinical trials. However, at the present moment, we still cannot glimpse a true breakthrough in the treatment of this devastating disease. Nevertheless, our understanding of the pathophysiology of ALS is constantly growing. Based on this background, we know that oxidative stress, alterations in the NAD+-dependent metabolism and redox status, and abnormal mitochondrial dynamics and function in the motor neurons are at the core of the problem. Thus, different antioxidant molecules or NAD+ generators have been proposed for the therapy of ALS. This review analyzes these options not only in light of their use as individual molecules, but with special emphasis on their potential association, and even as part of broader combined multi-therapies.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.-P.); (R.L.-B.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.-P.); (R.L.-B.)
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.-P.); (R.L.-B.)
| | | | - José M. Estrela
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.-P.); (R.L.-B.)
| |
Collapse
|
30
|
Protective Features of Calorie Restriction on Cuprizone-induced Demyelination via Modulating Microglial Phenotype. J Chem Neuroanat 2021; 116:102013. [PMID: 34391881 DOI: 10.1016/j.jchemneu.2021.102013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 01/21/2023]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disorder in the central nervous system (CNS) with no definitive treatment, but it can be alleviated by changing life habits. Calorie restriction (CR) is effective in preventing or treating metabolic and autoimmune disorders. CR is one of the helpful approaches to control the progression of MS. In the present study, we investigated the preventive effect of caloric restriction on cuprizone induced-demyelination, a model of multiple sclerosis. To induce acute demyelination in C57/BL6 mice, we added 0.2% Cuprizone (CPZ) to their diet for 6 weeks. To induce calorie restriction, 10% Carboxymethyl cellulose (CMC) was added to the diet as a dietary cellulose fiber for 6 weeks. Remyelination was studied by luxol fast blue (LFB) staining. Microglia activity, M1 and M2 microglial/macrophage phenotypes were assessed by immunohistochemistry of Iba-1, iNOS and Arg-1, respectively. The expression of targeted genes was assessed by the real-time polymerase chain reaction. Luxol fast blue (LFB) staining showed that the CR regimen could decrease the cuprizone-induced demyelination process (p < 0.01). Moreover, the CR application could improve balance and motor performance in cuprizone-intoxicated mice by significantly enhancing protein and gene expression of Sirt1, M2 microglial phenotype marker (Arg-1) and Akt1 gene expression, also decreased M1 microglial phenotype marker (iNOS), Akt2 and P53 gene expressions (p < 0.05). Cumulatively, it can be concluded that caloric restriction was able to counteract MS symptoms through alleviating inflammatory responses.
Collapse
|
31
|
Tan Q, Liang N, Zhang X, Li J. Dynamic Aging: Channeled Through Microenvironment. Front Physiol 2021; 12:702276. [PMID: 34366891 PMCID: PMC8334186 DOI: 10.3389/fphys.2021.702276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Aging process is a complicated process that involves deteriorated performance at multiple levels from cellular dysfunction to organ degeneration. For many years research has been focused on how aging changes things within cell. However, new findings suggest that microenvironments, circulating factors or inter-tissue communications could also play important roles in the dynamic progression of aging. These out-of-cell mechanisms pass on the signals from the damaged aging cells to other healthy cells or tissues to promote systematic aging phenotypes. This review discusses the mechanisms of how senescence and their secretome, NAD+ metabolism or circulating factors change microenvironments to regulate systematic aging, as well as the potential therapeutic strategies based on these findings for anti-aging interventions.
Collapse
Affiliation(s)
- Qing Tan
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Liang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqian Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
de Guia RM, Hassing AS, Ma T, Plucinska K, Holst B, Gerhart-Hines Z, Emanuelli B, Treebak JT. Ablation of Nampt in AgRP neurons leads to neurodegeneration and impairs fasting- and ghrelin-mediated food intake. FASEB J 2021; 35:e21450. [PMID: 33788980 DOI: 10.1096/fj.202002740r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Agouti-related protein (AgRP) neurons in the arcuate nucleus of the hypothalamus regulates food intake and whole-body metabolism. NAD+ regulates multiple cellular processes controlling energy metabolism. Yet, its role in hypothalamic AgRP neurons to control food intake is poorly understood. Here, we aimed to assess whether genetic deletion of nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme in NAD+ production, affects AgRP neuronal function to impact whole-body metabolism and food intake. Metabolic parameters during fed and fasted states, and upon systemic ghrelin and leptin administration were studied in AgRP-specific Nampt knockout (ARNKO) mice. We monitored neuropeptide expression levels and density of AgRP neurons in ARNKO mice from embryonic to adult age. NPY cells were used to determine effects of NAMPT inhibition on neuronal viability, energy status, and oxidative stress in vitro. In these cells, NAD+ depletion reduced ATP levels, increased oxidative stress, and promoted cell death. Agrp expression in the hypothalamus of ARNKO mice gradually decreased after weaning due to progressive AgRP neuron degeneration. Adult ARNKO mice had normal glucose and insulin tolerance, but exhibited an elevated respiratory exchange ratio (RER) when fasted. Remarkably, fasting-induced food intake was unaffected in ARNKO mice when evaluated in metabolic cages, but fasting- and ghrelin-induced feeding and body weight gain decreased in ARNKO mice when evaluated outside metabolic cages. Collectively, deletion of Nampt in AgRP neurons causes progressive neurodegeneration and impairs fasting and ghrelin responses in a context-dependent manner. Our data highlight an essential role of Nampt in AgRP neuron function and viability.
Collapse
Affiliation(s)
- Roldan Medina de Guia
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Plucinska
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Integrative Metabolism and Environmental Influences, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Liu S, Luo W, Wang Y. Emerging role of PARP-1 and PARthanatos in ischemic stroke. J Neurochem 2021; 160:74-87. [PMID: 34241907 DOI: 10.1111/jnc.15464] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/10/2021] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
Cell death is a key feature of neurological diseases, including stroke and neurodegenerative disorders. Studies in a variety of ischemic/hypoxic mouse models demonstrate that poly(ADP-ribose) polymerase 1 (PARP-1)-dependent cell death, also named PARthanatos, plays a pivotal role in ischemic neuronal cell death and disease progress. PARthanatos has its unique triggers, processors, and executors that convey a highly orchestrated and programmed signaling cascade. In addition to its role in gene transcription, DNA damage repair, and energy homeostasis through PARylation of its various targets, PARP-1 activation in neuron and glia attributes to brain damage following ischemia/reperfusion. Pharmacological inhibition or genetic deletion of PARP-1 reduces infarct volume, eliminates inflammation, and improves recovery of neurological functions in stroke. Here, we reviewed the role of PARP-1 and PARthanatos in stroke and their therapeutic potential.
Collapse
Affiliation(s)
- Shuiqiao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weibo Luo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yingfei Wang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
34
|
Brewer GJ, Herrera RA, Philipp S, Sosna J, Reyes-Ruiz JM, Glabe CG. Age-Related Intraneuronal Aggregation of Amyloid-β in Endosomes, Mitochondria, Autophagosomes, and Lysosomes. J Alzheimers Dis 2021; 73:229-246. [PMID: 31771065 PMCID: PMC7029321 DOI: 10.3233/jad-190835] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work provides new insight into the age-related basis of Alzheimer’s disease (AD), the composition of intraneuronal amyloid (iAβ), and the mechanism of an age-related increase in iAβ in adult AD-model mouse neurons. A new end-specific antibody for Aβ45 and another for aggregated forms of Aβ provide new insight into the composition of iAβ and the mechanism of accumulation in old adult neurons from the 3xTg-AD model mouse. iAβ levels containing aggregates of Aβ45 increased 30-50-fold in neurons from young to old age and were further stimulated upon glutamate treatment. iAβ was 8 times more abundant in 3xTg-AD than non-transgenic neurons with imaged particle sizes following the same log-log distribution, suggesting a similar snow-ball mechanism of intracellular biogenesis. Pathologically misfolded and mislocalized Alz50 tau colocalized with iAβ and rapidly increased following a brief metabolic stress with glutamate. AβPP-CTF, Aβ45, and aggregated Aβ colocalized most strongly with mitochondria and endosomes and less with lysosomes and autophagosomes. Differences in iAβ by sex were minor. These results suggest that incomplete carboxyl-terminal trimming of long Aβs by gamma-secretase produced large intracellular deposits which limited completion of autophagy in aged neurons. Understanding the mechanism of age-related changes in iAβ processing may lead to application of countermeasures to prolong dementia-free health span.
Collapse
Affiliation(s)
- Gregory J Brewer
- MIND Institute, Center for Neurobiology of Learning and Memory, Irvine, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Robert A Herrera
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Stephan Philipp
- Department of Molecular Biology, University of California Irvine, Irvine, CA, USA
| | - Justyna Sosna
- Department of Molecular Biology, University of California Irvine, Irvine, CA, USA
| | | | - Charles G Glabe
- MIND Institute, Center for Neurobiology of Learning and Memory, Irvine, CA, USA.,Department of Molecular Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
35
|
Rehman IU, Ahmad R, Khan I, Lee HJ, Park J, Ullah R, Choi MJ, Kang HY, Kim MO. Nicotinamide Ameliorates Amyloid Beta-Induced Oxidative Stress-Mediated Neuroinflammation and Neurodegeneration in Adult Mouse Brain. Biomedicines 2021; 9:biomedicines9040408. [PMID: 33920212 PMCID: PMC8070416 DOI: 10.3390/biomedicines9040408] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) is the most predominant age-related neurodegenerative disease, pathologically characterized by the accumulation of aggregates of amyloid beta Aβ1–42 and tau hyperphosphorylation in the brain. It is considered to be the primary cause of cognitive dysfunction. The aggregation of Aβ1–42 leads to neuronal inflammation and apoptosis. Since vitamins are basic dietary nutrients that organisms need for their growth, survival, and other metabolic functions, in this study, the underlying neuroprotective mechanism of nicotinamide (NAM) Vitamin B3 against Aβ1–42 -induced neurotoxicity was investigated in mouse brains. Intracerebroventricular (i.c.v.) Aβ1–42 injection elicited neuronal dysfunctions that led to memory impairment and neurodegeneration in mouse brains. After 24 h after Aβ1–42 injection, the mice were treated with NAM (250 mg/kg intraperitoneally) for 1 week. For biochemical and Western blot studies, the mice were directly sacrificed, while for confocal and “immunohistochemical staining”, mice were perfused transcardially with 4% paraformaldehyde. Our biochemical, immunofluorescence, and immunohistochemical results showed that NAM can ameliorate neuronal inflammation and apoptosis by reducing oxidative stress through lowering malondialdehyde and 2,7-dichlorofluorescein levels in an Aβ1–42-injected mouse brains, where the regulation of p-JNK further regulated inflammatory marker proteins (TNF-α, IL-1β, transcription factor NF-kB) and apoptotic marker proteins (Bax, caspase 3, PARP1). Furthermore, NAM + Aβ treatment for 1 week increased the amount of survival neurons and reduced neuronal cell death in Nissl staining. We also analyzed memory dysfunction via behavioral studies and the analysis showed that NAM could prevent Aβ1–42 -induced memory deficits. Collectively, the results of this study suggest that NAM may be a potential preventive and therapeutic candidate for Aβ1–42 -induced reactive oxygen species (ROS)-mediated neuroinflammation, neurodegeneration, and neurotoxicity in an adult mouse model.
Collapse
Affiliation(s)
- Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Riaz Ahmad
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Ibrahim Khan
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Hyeon Jin Lee
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Jungsung Park
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Rahat Ullah
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Myeong Jun Choi
- Research and Development Center, Axceso Bio-pharma co, Anyang 14056, Korea;
| | - Hee Young Kang
- Department of Neurology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52828, Korea;
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
36
|
Hacioglu C, Kar F, Kanbak G. Ex Vivo Investigation of Bexarotene and Nicotinamide Function as a Protectıve Agent on Rat Synaptosomes Treated with Aβ(1-42). Neurochem Res 2021; 46:804-818. [PMID: 33428094 DOI: 10.1007/s11064-020-03216-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
In this study, we were aimed to investigate the neuroprotective effects of bexarotene and nicotinamide in synaptosomes incubated with amyloid-beta (Aβ). Our study consists of 2 parts, in vivo and in vitro. In the in vivo section, twenty-four Wistar albino male rats were divided into 4 groups (control, dimethyl sulfoxide (DMSO), nicotinamide and bexarotene) with six animals in each group. DMSO(1%), nicotinamide(100 mg/kg) and bexarotene(0.1 mg/kg) were administered intraperitoneally to animals in the experimental groups for seven days. In the in vitro part of our study, three different isolation methods were used to obtain the synaptosomes from the brain tissue. Total antioxidant capacity(TAS), total oxidant capacity(TOS), cleaved caspase 3(CASP3), cytochrome c(Cyt c), sirtuin 1(SIRT1), peroxisome proliferator-activated receptor gamma(PPARγ) and poly(ADP-ribose) polymerase-1(PARP-1) levels in the synaptosomes incubated with a concentration of 10 µM Aβ(1-42) were measured by enzyme-linked immunosorbent assay method. Biochemical analysis and histopathological examinations in serum and brain samples showed that DMSO, nicotinamide and bexarotene treatments did not cause any damage to the rat brain tissue. We found that in vitro Aβ(1-42) administration decreased TAS, SIRT1 and PPARγ levels in synaptosomes while increasing TOS, CASP3, Cyt c, and PARP1 levels. Nicotinamide treatment suppressed oxidative stress and apoptosis by supporting antioxidant capacity and increased PPARγ through SIRT1 activation, causing PARP1 to decrease. On the other hand, bexarotene caused a moderate increase in SIRT1 levels with PPARγ activation. Consequently, we found that nicotinamide can be more effective than bexarotene in AD pathogenesis by regulating mitochondrial functions in synaptosomes.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey.
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gungor Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
37
|
Yeong KY, Berdigaliyev N, Chang Y. Sirtuins and Their Implications in Neurodegenerative Diseases from a Drug Discovery Perspective. ACS Chem Neurosci 2020; 11:4073-4091. [PMID: 33280374 DOI: 10.1021/acschemneuro.0c00696] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sirtuins are class III histone deacetylase (HDAC) enzymes that target both histone and non-histone substrates. They are linked to different brain functions and the regulation of different isoforms of these enzymes is touted to be an emerging therapy for the treatment of neurodegenerative diseases (NDs), including Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). The level of sirtuins affects brain health as many sirtuin-regulated pathways are responsible for the progression of NDs. Certain sirtuins are also implicated in aging, which is a risk factor for many NDs. In addition to SIRT1-3, it has been suggested that the less studied sirtuins (SIRT4-7) also play critical roles in brain health. This review delineates the role of each sirtuin isoform in NDs from a disease centric perspective and provides an up-to-date overview of sirtuin modulators and their potential use as therapeutics in these diseases. Furthermore, the future perspectives for sirtuin modulator development and their therapeutic application in neurodegeneration are outlined in detail, hence providing a research direction for future studies.
Collapse
Affiliation(s)
- Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Nurken Berdigaliyev
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Yuin Chang
- Faculty of Applied Sciences, Tunku Abdul Rahman University College (TARUC), Jalan Genting Kelang, 53300 Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Nicotinamide Prevents Apolipoprotein B-Containing Lipoprotein Oxidation, Inflammation and Atherosclerosis in Apolipoprotein E-Deficient Mice. Antioxidants (Basel) 2020; 9:antiox9111162. [PMID: 33233455 PMCID: PMC7700561 DOI: 10.3390/antiox9111162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
The potential of nicotinamide (NAM) to prevent atherosclerosis has not yet been examined. This study investigated the effect of NAM supplementation on the development of atherosclerosis in a mouse model of the disease. The development of aortic atherosclerosis was significantly reduced (NAM low dose: 45%; NAM high dose: 55%) in NAM-treated, apolipoprotein (Apo)E-deficient mice challenged with a Western diet for 4 weeks. NAM administration significantly increased (1.8-fold) the plasma concentration of proatherogenic ApoB-containing lipoproteins in NAM high-dose (HD)-treated mice compared with untreated mice. However, isolated ApoB-containing lipoproteins from NAM HD mice were less prone to oxidation than those of untreated mice. This result was consistent with the decreased (1.5-fold) concentration of oxidized low-density lipoproteins in this group. Immunohistochemical staining of aortas from NAM-treated mice showed significantly increased levels of IL-10 (NAM low-dose (LD): 1.3-fold; NAM HD: 1.2-fold), concomitant with a significant decrease in the relative expression of TNFα (NAM LD: −44%; NAM HD: −57%). An improved anti-inflammatory pattern was reproduced in macrophages cultured in the presence of NAM. Thus, dietary NAM supplementation in ApoE-deficient mice prevented the development of atherosclerosis and improved protection against ApoB-containing lipoprotein oxidation and aortic inflammation.
Collapse
|
39
|
Badawy AB. Immunotherapy of COVID-19 with poly (ADP-ribose) polymerase inhibitors: starting with nicotinamide. Biosci Rep 2020; 40:BSR20202856. [PMID: 33063092 PMCID: PMC7601349 DOI: 10.1042/bsr20202856] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 induces a proinflammatory environment that is stronger in patients requiring intensive care. The cytokine components of this environment may determine efficacy or otherwise of glucocorticoid therapy. The immunity modulators, the aryl hydrocarbon receptor (AhR) and the nuclear NAD+-consuming enzyme poly (ADP-ribose) polymerase 1 (PARP 1) may play a critical role in COVID-19 pathophysiology. The AhR is overexpressed in coronaviruses, including COVID-19 and, as it regulates PARP gene expression, the latter is likely to be activated in COVID-19. PARP 1 activation leads to cell death mainly by depletion of NAD+ and adenosine triphosphate (ATP), especially when availability of these energy mediators is compromised. PARP expression is enhanced in other lung conditions: the pneumovirus respiratory syncytial virus (RSV) and chronic obstructive pulmonary disease (COPD). I propose that PARP 1 activation is the terminal point in a sequence of events culminating in patient mortality and should be the focus of COVID-19 immunotherapy. Potent PARP 1 inhibitors are undergoing trials in cancer, but a readily available inhibitor, nicotinamide (NAM), which possesses a highly desirable biochemical and activity profile, merits exploration. It conserves NAD+ and prevents ATP depletion by PARP 1 and Sirtuin 1 (silent mating type information regulation 2 homologue 1) inhibition, enhances NAD+ synthesis, and hence that of NADP+ which is a stronger PARP inhibitor, reverses lung injury caused by ischaemia/reperfusion, inhibits proinflammatory cytokines and is effective against HIV infection. These properties qualify NAM for therapeutic use initially in conjunction with standard clinical care or combined with other agents, and subsequently as an adjunct to stronger PARP 1 inhibitors or other drugs.
Collapse
Affiliation(s)
- Abdulla A.-B. Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, U.K
| |
Collapse
|
40
|
Rodríguez M, Valez V, Cimarra C, Blasina F, Radi R. Hypoxic-Ischemic Encephalopathy and Mitochondrial Dysfunction: Facts, Unknowns, and Challenges. Antioxid Redox Signal 2020; 33:247-262. [PMID: 32295425 DOI: 10.1089/ars.2020.8093] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Hypoxic-ischemic events due to intrapartum complications represent the second cause of neonatal mortality and initiate an acute brain disorder known as hypoxic-ischemic encephalopathy (HIE). In HIE, the brain undergoes primary and secondary energy failure phases separated by a latent phase in which partial neuronal recovery is observed. A hypoxic-ischemic event leads to oxygen restriction causing ATP depletion, neuronal oxidative stress, and cell death. Mitochondrial dysfunction and enhanced oxidant formation in brain cells are characteristic phenomena associated with energy failure. Recent Advances: Mitochondrial sources of oxidants in neurons include complex I of the mitochondrial respiratory chain, as a key contributor to O2•- production via succinate by a reverse electron transport mechanism. The reaction of O2•- with nitric oxide (•NO) yields peroxynitrite, a mitochondrial and cellular toxin. Quantitation of the redox state of cytochrome c oxidase, through broadband near-infrared spectroscopy, represents a promising monitoring approach to evaluate mitochondrial dysfunction in vivo in humans, in conjunction with the determination of cerebral oxygenation and their correlation with the severity of brain injury. Critical Issues: The energetic failure being a key phenomenon in HIE connected with the severity of the encephalopathy, measurement of mitochondrial dysfunction in vivo provides an approach to assess evolution, prognosis, and adequate therapies. Restoration of mitochondrial redox homeostasis constitutes a key therapeutic goal. Future Directions: While hypothermia is the only currently accepted therapy in clinical management to preserve mitochondrial function, other mitochondria-targeted and/or redox-based treatments are likely to synergize to ensure further efficacy.
Collapse
Affiliation(s)
- Marianela Rodríguez
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay.,Departamento de Neonatología, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Valeria Valez
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Carolina Cimarra
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Fernanda Blasina
- Departamento de Neonatología, Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO) and Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
41
|
Mehmel M, Jovanović N, Spitz U. Nicotinamide Riboside-The Current State of Research and Therapeutic Uses. Nutrients 2020; 12:E1616. [PMID: 32486488 PMCID: PMC7352172 DOI: 10.3390/nu12061616] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide riboside (NR) has recently become one of the most studied nicotinamide adenine dinucleotide (NAD+) precursors, due to its numerous potential health benefits mediated via elevated NAD+ content in the body. NAD+ is an essential coenzyme that plays important roles in various metabolic pathways and increasing its overall content has been confirmed as a valuable strategy for treating a wide variety of pathophysiological conditions. Accumulating evidence on NRs' health benefits has validated its efficiency across numerous animal and human studies for the treatment of a number of cardiovascular, neurodegenerative, and metabolic disorders. As the prevalence and morbidity of these conditions increases in modern society, the great necessity has arisen for a rapid translation of NR to therapeutic use and further establishment of its availability as a nutritional supplement. Here, we summarize currently available data on NR effects on metabolism, and several neurodegenerative and cardiovascular disorders, through to its application as a treatment for specific pathophysiological conditions. In addition, we have reviewed newly published research on the application of NR as a potential therapy against infections with several pathogens, including SARS-CoV-2. Additionally, to support rapid NR translation to therapeutics, the challenges related to its bioavailability and safety are addressed, together with the advantages of NR to other NAD+ precursors.
Collapse
Affiliation(s)
- Mario Mehmel
- Biosynth Carbosynth, Rietlistrasse 4, 9422 Staad, Switzerland;
| | - Nina Jovanović
- Faculty of Biology, Department of Biochemistry and Molecular Biology, Institute of Physiology and Biochemistry, University of Belgrade, Studentski Trg 1, 11000 Belgrade, Serbia;
| | - Urs Spitz
- Biosynth Carbosynth, Axis House, High Street, Compton, Berkshire RG20 6NL, UK
| |
Collapse
|
42
|
Kim H, Kim B, Kim HS, Cho JY. Nicotinamide attenuates the decrease in dendritic spine density in hippocampal primary neurons from 5xFAD mice, an Alzheimer's disease animal model. Mol Brain 2020; 13:17. [PMID: 32033569 PMCID: PMC7006216 DOI: 10.1186/s13041-020-0565-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by memory loss and the presence of amyloid plaques and neurofibrillary tangles in the patients’ brains. In this study, we investigated the alterations in metabolite profiles of the hippocampal tissues from 6, 8, and 12 month-old wild-type (WT) and 5xfamiliar AD (5xFAD) mice, an AD mouse model harboring 5 early-onset familiar AD mutations, which shows memory loss from approximately 5 months of age, by exploiting the untargeted metabolomics profiling. We found that nicotinamide and adenosine monophosphate levels have been significantly decreased while lysophosphatidylcholine (LysoPC) (16:0), LysoPC (18:0), and lysophosphatidylethanolamine (LysoPE) (16:0) levels have been significantly increased in the hippocampi from 5xFAD mice at 8 months or 12 months of age, compared to those from age-matched wild-type mice. In the present study, we focused on the role of nicotinamide and examined if replenishment of nicotinamide exerts attenuating effects on the reduction in dendritic spine density in hippocampal primary neurons from 5xFAD mice. Treatment with nicotinamide attenuated the deficits in spine density in the hippocampal primary neurons derived from 5xFAD mice, indicating a potential role of nicotinamide in the pathogenesis of AD. Taken together, these findings suggest that the decreased hippocampal nicotinamide level could be linked with AD pathogenesis and be a useful therapeutic target for AD.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea
| | - Bora Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.,Kidney Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea. .,Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea. .,Seoul National University College of Medicine, Bundang Hospital, Bundang-Gu, Sungnam, Republic of Korea. .,Department of Pharmacology and Biomedical Sciences, Neuroscience Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University, 103 Daehakro, Jongro-gu, Seoul, Republic of Korea. .,Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
43
|
Klimova N, Fearnow A, Long A, Kristian T. NAD + precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms. Exp Neurol 2019; 325:113144. [PMID: 31837320 DOI: 10.1016/j.expneurol.2019.113144] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022]
Abstract
Global cerebral ischemia depletes brain tissue NAD+, an essential cofactor for mitochondrial and cellular metabolism, leading to bioenergetics failure and cell death. The post-ischemic NAD+ levels can be replenished by the administration of nicotinamide mononucleotide (NMN), which serves as a precursor for NAD+ synthesis. We have shown that NMN administration shows dramatic protection against ischemic brain damage and inhibits post-ischemic hippocampal mitochondrial fragmentation. To understand the mechanism of NMN-induced modulation of mitochondrial dynamics and neuroprotection we used our transgenic mouse models that express mitochondria targeted yellow fluorescent protein in neurons (mito-eYFP) and mice that carry knockout of mitochondrial NAD+-dependent deacetylase sirt3 gene (SIRT3KO). Following ischemic insult, the mitochondrial NAD+ levels were depleted leading to an increase in mitochondrial protein acetylation, high reactive oxygen species (ROS) production, and excessive mitochondrial fragmentation. Administration of a single dose of NMN normalized hippocampal mitochondria NAD+ pools, protein acetylation, and ROS levels. These changes were dependent on SIRT3 activity, which was confirmed using SIRT3KO mice. Ischemia induced increase in acetylation of the key mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2) that resulted in inhibition of its activity. This was reversed after NMN treatment followed by reduction of ROS generation and suppression of mitochondrial fragmentation. Specifically, we found that the interaction of mitochondrial fission protein, pDrp1(S616), with neuronal mitochondria was inhibited in NMN treated ischemic mice. Our data thus provide a novel link between mitochondrial NAD+ metabolism, ROS production, and mitochondrial fragmentation. Using NMN to target these mechanisms could represent a new therapeutic approach for treatment of acute brain injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nina Klimova
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adam Fearnow
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| | - Aaron Long
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA; Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
44
|
Wang X, Zhang Z, Zhang N, Li H, Zhang L, Baines CP, Ding S. Subcellular NAMPT-mediated NAD + salvage pathways and their roles in bioenergetics and neuronal protection after ischemic injury. J Neurochem 2019; 151:732-748. [PMID: 31553812 DOI: 10.1111/jnc.14878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
Abstract
NAD+ is a cofactor required for glycolysis, tricarboxylic acid cycle, and complex I enzymatic reaction. In mammalian cells, NAD+ is predominantly synthesized through the salvage pathway, where nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme. Previously, we demonstrated that NAMPT exerts a neuroprotective effect in ischemia through the suppression of mitochondrial dysfunction. Mammalian cells maintain distinct NAD+ pools in the cytosol, mitochondria, and nuclei. However, it is unknown whether mitochondria have an intact machinery for NAD+ salvage, and if so, whether it plays a dominant role in bioenergetics, mitochondrial function, and neuronal protection after ischemia. Here, using mouse primary cortical neuron and cortical tissue preparations, and multiple technologies including cytosolic and mitochondrial subfractionation, viral over-expression of transgenes, molecular biology, and confocal microscopy, we provided compelling evidence that neuronal mitochondria possess an intact machinery of NAMPT-mediated NAD+ salvage pathway, and that NAMPT and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3) are localized in the mitochondrial matrix. By knocking down NMNAT1-3 and NAMPT with siRNA, we found that NMNAT3 has a larger effect on basal and ATP production-related mitochondrial respiration than NMNAT1-2 in primary cultured neurons, while NMNAT1-2 have a larger effect on glycolytic flux than NMNAT3. Using an oxygen glucose deprivation model, we found that mitochondrial, cytoplasmic, and non-subcellular compartmental over-expressions of NAMPT have a comparable effect on neuronal protection and suppression of apoptosis-inducing factor translocation. The current study provides novel insights into the roles of subcellular compartmental NAD+ salvage pathways in NAD+ homeostasis, bioenergetics, and neuronal protection in ischemic conditions.
Collapse
Affiliation(s)
- Xiaowan Wang
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Zhe Zhang
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Nannan Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Hailong Li
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Li Zhang
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Christopher P Baines
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Biomedical Science, University of Missouri, Columbia, Missouri, USA
| | - Shinghua Ding
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
45
|
Niacin Protects against Butyrate-Induced Apoptosis in Rumen Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2179738. [PMID: 31737165 PMCID: PMC6815573 DOI: 10.1155/2019/2179738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/04/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
The effects and underlying mechanisms of butyrate and butyrate+niacin on apoptosis in sheep rumen epithelial cells were investigated. Cells were exposed to butyrate (0-140 mM) for 6 h. A low concentration (20 mM) of butyrate increased cell viability and promoted growth whereas high concentrations (40-140 mM) inhibited proliferation. Cells were then cocultured with 120 mM butyrate and niacin (0-100 mM) for 6 h. Niacin addition attenuated butyrate-induced cellular damage and promoted proliferation at 20-80 mM; 40 mM presented the optimal effect. Higher concentrations (100 mM) of niacin resulted in low cell viability. Subsequent experiments confirmed that 120 mM butyrate increased intracellular reactive oxygen species (ROS) production and reduced the intracellular total antioxidant capacity (T-AOC) versus the untreated control. Compared with 120 mM butyrate, cotreatment with 40 mM niacin significantly reduced the intracellular ROS content and increased the intracellular T-AOC. Flow cytometry analysis revealed that 120 mM butyrate increased the proportion of apoptotic cells by 17.8% versus the untreated control, and 120 mM butyrate+40 mM niacin treatment reduced the proportion of apoptotic cells by 28.6% and 39.4% versus the untreated control and butyrate treatment, respectively. Treatment with 120 mM butyrate increased caspase-9 and p53 mRNA levels and decreased the expression of Bcl-2 and Bax, and the Bcl-2/Bax ratio versus the untreated control. Treatment with 120 mM butyrate+40 mM niacin downregulated the expression of caspase-3 and p53 and increased the expression of Bcl-2 and Bax versus butyrate treatment alone but had no effect on the Bcl-2/Bax ratio. Thus, high concentrations of butyrate may induce rumen epithelial cell apoptosis by increasing oxidative stress and inducing caspase-9 and p53 expression. Cotreatment with niacin regulates apoptosis-related gene expression by reducing intracellular ROS production and DNA damage and downregulating caspase-3 and p53 expressions to protect rumen epithelial cells against butyrate-induced apoptosis.
Collapse
|
46
|
Zilliox LA, Russell JW. Physical activity and dietary interventions in diabetic neuropathy: a systematic review. Clin Auton Res 2019; 29:443-455. [PMID: 31076938 PMCID: PMC6697618 DOI: 10.1007/s10286-019-00607-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/09/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Diabetic neuropathy is a common and disabling disorder, and there are currently no proven effective disease-modifying treatments. Physical activity and dietary interventions in patients with diabetes and diabetic neuropathy have multiple beneficial effects and are generally low risk, which makes lifestyle interventions an attractive treatment option. We reviewed the literature on the effects of physical activity and dietary interventions on length-dependent peripheral neuropathy and cardiac autonomic neuropathy in diabetes. METHODS The electronic database PubMed was systematically searched for original human and mouse model studies examining the effect of either dietary or physical activity interventions in subjects with diabetes, prediabetes, or metabolic syndrome. RESULTS Twenty studies are included in this review. Fourteen studies were human studies and six were in mice. Studies were generally small with few controlled trials, and there are no widely agreed upon outcome measures. CONCLUSIONS Recent research indicates that dietary interventions are effective in modifying diabetic neuropathy in animal models, and there are promising data that they may also ameliorate diabetic neuropathy in humans. It has been known for some time that lifestyle interventions can prevent the development of diabetic neuropathy in type 2 diabetes mellitus subjects. However, there is emerging evidence that lifestyle interventions are effective in individuals with established diabetic neuropathy. In addition to the observed clinical value of lifestyle interventions, there is emerging evidence of effects on biochemical pathways that improve muscle function and affect other organ systems, including the peripheral nerve. However, data from randomized controlled trials are needed.
Collapse
Affiliation(s)
- Lindsay A Zilliox
- Department of Neurology, School of Medicine, University of Maryland, 3S-129, 110 South Paca Street, Baltimore, MD, 21201-1595, USA
- Maryland VA Healthcare System, Baltimore, MD, USA
| | - James W Russell
- Department of Neurology, School of Medicine, University of Maryland, 3S-129, 110 South Paca Street, Baltimore, MD, 21201-1595, USA.
- Maryland VA Healthcare System, Baltimore, MD, USA.
| |
Collapse
|
47
|
Klimova N, Long A, Kristian T. Nicotinamide mononucleotide alters mitochondrial dynamics by SIRT3-dependent mechanism in male mice. J Neurosci Res 2019; 97:975-990. [PMID: 30801823 PMCID: PMC6565489 DOI: 10.1002/jnr.24397] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 01/02/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is a central signaling molecule and enzyme cofactor that is involved in a variety of fundamental biological processes. NAD+ levels decline with age, neurodegenerative conditions, acute brain injury, and in obesity or diabetes. Loss of NAD+ results in impaired mitochondrial and cellular functions. Administration of NAD+ precursor, nicotinamide mononucleotide (NMN), has shown to improve mitochondrial bioenergetics, reverse age-associated physiological decline, and inhibit postischemic NAD+ degradation and cellular death. In this study, we identified a novel link between NAD+ metabolism and mitochondrial dynamics. A single dose (62.5 mg/kg) of NMN, administered to male mice, increases hippocampal mitochondria NAD+ pools for up to 24 hr posttreatment and drives a sirtuin 3 (SIRT3)-mediated global decrease in mitochondrial protein acetylation. This results in a reduction of hippocampal reactive oxygen species levels via SIRT3-driven deacetylation of mitochondrial manganese superoxide dismutase. Consequently, mitochondria in neurons become less fragmented due to lower interaction of phosphorylated fission protein, dynamin-related protein 1 (pDrp1 [S616]), with mitochondria. In conclusion, manipulation of mitochondrial NAD+ levels by NMN results in metabolic changes that protect mitochondria against reactive oxygen species and excessive fragmentation, offering therapeutic approaches for pathophysiologic stress conditions.
Collapse
Affiliation(s)
- Nina Klimova
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), Baltimore, Maryland 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Aaron Long
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), Baltimore, Maryland 21201, USA
| |
Collapse
|
48
|
Yanez M, Jhanji M, Murphy K, Gower RM, Sajish M, Jabbarzadeh E. Nicotinamide Augments the Anti-Inflammatory Properties of Resveratrol through PARP1 Activation. Sci Rep 2019; 9:10219. [PMID: 31308445 PMCID: PMC6629694 DOI: 10.1038/s41598-019-46678-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023] Open
Abstract
Resveratrol (RSV) and nicotinamide (NAM) have garnered considerable attention due to their anti-inflammatory and anti-aging properties. NAM is a transient inhibitor of class III histone deacetylase SIRTs (silent mating type information regulation 2 homologs) and SIRT1 is an inhibitor of poly-ADP-ribose polymerase-1 (PARP1). The debate on the relationship between RSV and SIRT1 has precluded the use of RSV as a therapeutic drug. Recent work demonstrated that RSV facilitates tyrosyl-tRNA synthetase (TyrRS)-dependent activation of PARP1. Moreover, treatment with NAM is sufficient to facilitate the nuclear localization of TyrRS that activates PARP1. RSV and NAM have emerged as potent agonists of PARP1 through inhibition of SIRT1. In this study, we evaluated the effects of RSV and NAM on pro-inflammatory macrophages. Our results demonstrate that treatment with either RSV or NAM attenuates the expression of pro-inflammatory markers. Strikingly, the combination of RSV with NAM, exerts additive effects on PARP1 activation. Consistently, treatment with PARP1 inhibitor antagonized the anti-inflammatory effect of both RSV and NAM. For the first time, we report the ability of NAM to augment PARP1 activation, induced by RSV, and its associated anti-inflammatory effects mediated through the induction of BCL6 with the concomitant down regulation of COX-2.
Collapse
Affiliation(s)
- Maria Yanez
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Kendall Murphy
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - R Michael Gower
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Ehsan Jabbarzadeh
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
49
|
Durgalakshmi D, Ajay Rakkesh R, Kamil S, Karthikeyan S, Balakumar S. Rapid Dilapidation of Alcohol Using Magnesium Oxide and Magnesium Aspartate based Nanostructures: A Raman Spectroscopic and Molecular Simulation Approach. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Ren Z, He H, Zuo Z, Xu Z, Wei Z, Deng J. The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol Biol Lett 2019; 24:36. [PMID: 31164908 PMCID: PMC6543624 DOI: 10.1186/s11658-019-0158-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/09/2019] [Indexed: 01/07/2023] Open
Abstract
Common environmental pollutants and drugs encountered in everyday life can cause toxic damage to the body through oxidative stress, inflammatory stimulation, induction of apoptosis, and inhibition of energy metabolism. Silent information regulator 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, is a member of the evolutionarily highly conserved Sir2 (silent information regulator 2) superprotein family, which is located in the nucleus and cytoplasm. It can deacetylate protein substrates in various signal transduction pathways to regulate gene expression, cell apoptosis and senescence, participate in the process of neuroprotection, energy metabolism, inflammation and the oxidative stress response in living organisms, and plays an important role in toxic damage caused by toxicants and in the process of SIRT1 activator/inhibitor antagonized toxic damage. This review summarizes the role that SIRT1 plays in toxic damage caused by toxicants via its interactions with protein substrates in certain signaling pathways.
Collapse
Affiliation(s)
- Zhihua Ren
- 1Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Hongyi He
- 1Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Zhicai Zuo
- 1Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Zhiwen Xu
- 1Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Zhanyong Wei
- 2The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan Province China
| | - Junliang Deng
- 1Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| |
Collapse
|