1
|
Berger-Kulemann V, Prayer D, Sieberer N, Kasprian G, Dovjak G, Harreiter J, Kautzky-Willer A, Weber M, Krššák M, Scharrer A, Stuempflen M. Assessment of fetal hepatic lipid content by magnetic resonance imaging and association of results with clinical maternal and fetal parameters. Eur J Radiol 2025; 186:112061. [PMID: 40138805 DOI: 10.1016/j.ejrad.2025.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
PURPOSE To quantify hepatocellular lipids in the fetal liver, we tested the feasibility of the multiecho mDixon Quant sequence (chemical shift encoded magnetic resonance imaging (MRI)) during clinically routine fetal whole-body MRI and investigated the correlation of hepatocellular lipids with different clinical maternal and fetal parameters. METHODS The livers of 155 fetuses were prospectively investigated with multiecho CSE-MRI sequences during clinically indicated whole-body MRI, performed between gestational weeks 19 and 38 on a 1.5 Tesla scanner. The hepatocellular lipids were quantified by measuring the proton density fat fraction in the left and right liver lobe. Results of the right liver lobe were correlated with the maternal body mass index, maternal age, presence of maternal diabetes, gestational age at assessment, estimated fetal weight, fetal sex, and birth weight. RESULTS Quantification of fetal hepatocellular lipids was feasible in 151/155 (97.4 %) fetuses. Four examinations were excluded due to strong motion artifacts and poor image quality. The proton density fat fraction values ranged from 0 % to 5.7 % (mean 2.26; SD 1.37). Hepatocellular lipids were associated with the presence of maternal diabetes (p = 0.027). No association was found between hepatocellular lipids and maternal body mass index (p = 0.306), maternal age (p = 0.582), gestational age (p = 0.456), estimated fetal weight (p = 0.176), fetal sex (p = 0.181), or birth weight (p = 0.957). CONCLUSION Quantification of fetal hepatocellular lipids is feasible and may routinely be performed during whole-body MRI to detect early liver fat accumulation, particularly in the presence of maternal diabetes.
Collapse
Affiliation(s)
- Vanessa Berger-Kulemann
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Nina Sieberer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gregor Dovjak
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Jürgen Harreiter
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Martin Krššák
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | - Anke Scharrer
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Marlene Stuempflen
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Zhuang M, Wang B, Shi Y, Zhou Z. Multiorgan Regulation Mechanisms and Nutritional Intervention Strategies in Gestational Diabetes Mellitus. J Nutr 2025:S0022-3166(25)00192-0. [PMID: 40222585 DOI: 10.1016/j.tjnut.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
Gestational diabetes mellitus (GDM) affects millions of pregnant women worldwide and leads to both short- and long-term complications for mothers and their fetuses. Managing GDM through diet, physical activity, and medical interventions can significantly reduce these risks. Studies have identified the individual and combined roles of organs regulated by placental hormones, cytokines, and gut microbiota as key pathways contributing to impaired glucose homeostasis. In this context, placental hormones mediate the crosstalk among the placenta, pancreas, and adipose tissue, stimulating endocrine pancreas adaptation and adipose tissue expansion. However, insufficient maternal physiological adaptations, such as dysregulated adipocytokines, adipokines, and oxidative stress in the pancreas, can create an environment conducive to the onset of GDM. Furthermore, gut dysbiosis implies potential mechanisms of gut-host interaction associated with the occurrence of GDM, with short-chain fatty acids possibly serving as crucial targets. Nutritional therapy is recognized as the first-line approach for managing GDM, encompassing dietary guidance and supplementation with micro- and macronutrients as well as bioactive components. Importantly, combined interventions involving multiple nutrients, such as probiotics and prebiotics with vitamins or minerals, may exert stronger beneficial effects on the prevention and treatment of GDM and its complications. This review paper discusses the regulatory role of multiorgans in GDM and the implementation of nutritional therapy for its prevention and management, along with associated complications.
Collapse
Affiliation(s)
- Min Zhuang
- College of Food Science, Shihezi University, Shihezi, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Bing Wang
- Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW, Australia.
| | - Yanchuan Shi
- Neuroendocrinology Group, Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Zhongkai Zhou
- College of Food Science, Shihezi University, Shihezi, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China; Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW, Australia.
| |
Collapse
|
3
|
Mileti LN, Baleja JD. The Role of Purine Metabolism and Uric Acid in Postnatal Neurologic Development. Molecules 2025; 30:839. [PMID: 40005150 PMCID: PMC11858483 DOI: 10.3390/molecules30040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
This review explores the essential roles of purine metabolism including the catabolic product, uric acid, in the development of dopaminergic neurons of the substantia nigra pars compacta. The high energy requirements of the substantia nigra pars compacta alongside necessary purinergic neurotransmission and the influence of oxidative stress during development makes these neurons uniquely susceptible to changes in purine metabolism. Uric acid's role as a central nervous system antioxidant may help to ameliorate these effects in utero. Understanding the mechanisms by which purines and uric acid influence development of the substantia nigra pars compacta can help further explain neurologic consequences of inborn errors of purine metabolism, such as Lesch-Nyhan disease.
Collapse
Affiliation(s)
| | - James D. Baleja
- Master’s Program in Biomedical Sciences, Departments of Medical Education and Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA;
| |
Collapse
|
4
|
Stathi D, Lee FN, Dhar M, Bobotis S, Arsenaki E, Agrawal T, Triantafyllidis KK, Kechagias KS. Diabetic Ketoacidosis in Pregnancy: A Systematic Review of the Reported Cases. Clin Med Insights Endocrinol Diabetes 2025; 18:11795514241312849. [PMID: 39822589 PMCID: PMC11733887 DOI: 10.1177/11795514241312849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
Background Diabetic ketoacidosis (DKA) is a rare but serious complication that can develop during pregnancy, with up to 30% of patients presenting with euglycemia, making prompt recognition challenging. It is associated with increased perinatal mortality rates, although the exact risk of maternal mortality remains unclear. The purpose of this systematic review was to examine the available literature and provide an overview of reported cases of DKA during pregnancy. Methods PubMed, Web of Science and Scopus library databases were screened from inception until January 2024. Included studies provided data on classic or euglycemic DKA during pregnancy. All study designs were considered eligible for inclusion. Results We identified 66 eligible articles, which included 57 case reports and case series with individual patient data, and 9 studies without individual patient data. The mean age at diagnosis was 28.8 years, and the average gestational age at diagnosis was 29.5 weeks. The majority of women had type 1 diabetes mellitus (T1DM) (45.9%), followed by gestational diabetes (GDM) (40.5%). Most cases were classified as classic DKA (70.3%), with nearly one-third developing euglycemic DKA (29.7%). The most common trigger factors were infections (28%), followed by poor adherence to treatment (13.5%). The most frequent symptoms included nausea (32.4%), vomiting (32.4%), osmotic symptoms (21.6%), and abdominal pain (20.2%). All cases were treated with intravenous insulin and fluids. The vast majority (98.9%) of women eventually fully recovered, with only 1 reported death due to organ failure (1.3%). Intrauterine death or stillbirth occurred in one-third of cases (35.2%), including 1 instance of a twin pregnancy. Conclusions DKA is a condition that clinicians may encounter during pregnancy. Although rare, increased awareness and early recognition are crucial for optimal management and improved maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Dimitra Stathi
- Department of Endocrinology and Diabetes, King’s College Hospital NHS Trust, London, UK
| | - Florence Ning Lee
- Department of Endocrinology and Diabetes, King’s College Hospital NHS Trust, London, UK
| | - Mili Dhar
- Department of Endocrinology and Diabetes, St Bartholomew’s Hospital, London, UK
| | - Stergios Bobotis
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Elisavet Arsenaki
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
| | - Taruna Agrawal
- Department of Obstetrics and Gynaecology, The Hillingdon Hospitals NHS Foundation Trust, Uxbridge, UK
| | | | - Konstantinos S Kechagias
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, UK
- Department of Obstetrics and Gynaecology, The Hillingdon Hospitals NHS Foundation Trust, Uxbridge, UK
| |
Collapse
|
5
|
Zieleniak A, Zurawska-Klis M, Laszcz K, Bulash K, Pacyga D, Cypryk K, Wozniak L, Wojcik M. Assessment of Changes in the Expression of Genes Involved in Insulin Signaling and Glucose Transport in Leukocytes of Women with Gestational Diabetes During Pregnancy and in the Postpartum Period. Int J Mol Sci 2024; 25:13094. [PMID: 39684804 DOI: 10.3390/ijms252313094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Not much is currently known about disturbances in insulin signaling and glucose transport in leukocytes of women with gestational diabetes mellitus (GDM) during and after pregnancy. In this study, the expression of insulin signaling (INSR, IRS1, IRS2 and PIK3R1)- and glucose transporter (SLC2A1, SLC2A3 and SLC2A4)-related genes in the leukocytes of 92 pregnant women was assayed using quantitative RT-PCR. The cohort consisted of 44 women without GDM (NGT group) and 48 with GDM (GDM group) at 24-28 weeks of gestation. GDM women were then tested again one year after childbirth (pGDM group: 14 women (29.2%) with abnormal glucose tolerance (AGT) and 34 women (70.8%) with normoglycemia). The GDM and NGT groups were closely matched for gestational age and parameters of obesity, such as pre-pregnancy body mass index (BMI), pregnancy weight, and gestational weight gain (GWG) (p > 0.05). Compared to the NGT group, the GDM and pGDM groups were hyperglycemic, but the GDM group featured a more highly insulin-resistant condition than the pGDM group, as reflected by higher fasting insulin (FI) levels and the values of the homeostasis model assessment for insulin resistance (HOMA-IR) (p < 0.05). In leukocytes from the GDM and pGDM groups, PIK3R1, SLC2A1, and SLC2A3 were upregulated and IRS1 was downregulated, with a larger magnitude in fold change (FC) values for PIK3R1 and IRS1 in the GDM group and for SLC2A1 and SLC2A3 in the pGDM group. The expression of SLC2A4 was unchanged in the GDM group but upregulated in the pGDM group, where it was inversely correlated with HOMA-IR (rho = -0.48; p = 0.007). Although the INSR and IRS2 levels did not significantly differ between the groups, the IRS2 transcript positively correlated with pregnancy weight, fasting plasma glucose, FI, and HOMA-IR in the GDM group. Our findings indicate that pronounced quantitative changes exist between the GDM and pGDM groups with respect to the expression of certain genes engaged in insulin signaling and glucose transport in leukocytes, with insulin resistance of a variable degree. These data also highlight the relationship of leukocyte SLC2A4 expression with insulin resistance in the postpartum period.
Collapse
Affiliation(s)
- Andrzej Zieleniak
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Monika Zurawska-Klis
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Karolina Laszcz
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Krystsina Bulash
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Dagmara Pacyga
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Lucyna Wozniak
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Marzena Wojcik
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
6
|
Ning J, Huai J, Wang S, Yan J, Su R, Zhang M, Liu M, Yang H. METTL3 regulates glucose transporter expression in placenta exposed to hyperglycemia through the mTOR signaling pathway. Chin Med J (Engl) 2024; 137:1563-1575. [PMID: 37963715 PMCID: PMC11230790 DOI: 10.1097/cm9.0000000000002840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Alterations in the placental expression of glucose transporters (GLUTs), the crucial maternal-fetal nutrient transporters, have been found in women with hyperglycemia in pregnancy (HIP). However, there is still uncertainty about the underlying effect of the high-glucose environment on placental GLUTs expression in HIP. METHODS We quantitatively evaluated the activity of mammalian target of rapamycin (mTOR) and expression of GLUTs (GLUT1, GLUT3, and GLUT4) in the placenta of women with normal pregnancies (CTRL, n = 12) and pregnant women complicated with poorly controlled type 2 diabetes mellitus (T2DM, n = 12) by immunohistochemistry. In addition, BeWo cells were treated with different glucose concentrations to verify the regulation of hyperglycemia. Then, changes in the expression of GLUTs following the activation or suppression of the mTOR pathway were also assessed using MHY1485/rapamycin (RAPA) treatment or small interfering RNA (siRNA)-mediated silencing approaches. Moreover, we further explored the alteration and potential upstream regulatory role of methyltransferase-like 3 (METTL3) when exposed to hyperglycemia. RESULTS mTOR, phosphorylated mTOR (p-mTOR), and GLUT1 protein levels were upregulated in the placenta of women with T2DM compared with those CTRL. In BeWo cells, mTOR activity increased with increasing glucose concentration, and the expression of GLUT1, GLUT3, and GLUT4 as well as GLUT1 cell membrane translocation were upregulated by hyperglycemia to varying degrees. Both the drug-mediated and genetic depletion of mTOR signaling in BeWo cells suppressed GLUTs expression, whereas MHY1485-induced mTOR activation upregulated GLUTs expression. Additionally, high glucose levels upregulated METTL3 expression and nuclear translocation, and decreasing METTL3 levels suppressed GLUTs expression and mTOR activity and vice versa . Furthermore, in METTL3 knockdown BeWo cells, the inhibitory effect on GLUTs expression was eliminated by activating the mTOR signaling pathway using MHY1485. CONCLUSION High-glucose environment-induced upregulation of METTL3 in trophoblasts regulates the expression of GLUTs through mTOR signaling, contributing to disordered nutrient transport in women with HIP.
Collapse
Affiliation(s)
- Jie Ning
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Maternal Foetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
- Peking University, Beijing 100034, China
| | - Jing Huai
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Maternal Foetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
- Peking University, Beijing 100034, China
| | - Shuxian Wang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Maternal Foetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
- Peking University, Beijing 100034, China
| | - Jie Yan
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Maternal Foetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
| | - Rina Su
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Maternal Foetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
| | - Muqiu Zhang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Maternal Foetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
- Peking University, Beijing 100034, China
| | - Mengtong Liu
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Maternal Foetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
- Peking University, Beijing 100034, China
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China
- Beijing Key Laboratory of Maternal Foetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
- Peking University, Beijing 100034, China
| |
Collapse
|
7
|
Del Campo-Rota IM, Delgado-Casillas OM, Ibarra A. Cognitive Impairment Induced by Gestational Diabetes: The Role of Oxidative Stress. Arch Med Res 2024; 55:103016. [PMID: 38870549 DOI: 10.1016/j.arcmed.2024.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Cognitive impairment is defined as a neurological condition that alters multiple cerebral functions such as reasoning, memory, concentration, and association, among others. It has found to be widely correlated with several factors such as oxidative stress. The latter could be induced by numerous pathological conditions characterized by increased levels of free radicals and decreased levels of antioxidants. Pregnancy is a period when women undergo a physiological state of oxidative stress due to hormonal changes and increased oxygen requirements to maintain pregnancy. However, when oxidative stress exceeds antioxidant capacity, this leads to cellular damage that promotes a diabetogenic state. Recent studies suggest a possible association between gestational diabetes and cognitive impairment, but the underlying mechanisms remain unclear. AIMS We aim to explore the pathophysiological relationship between cognitive impairment and oxidative stress, focusing on the possible involvement of oxidative stress as the inducing mechanism. METHODS We performed a comprehensive literature review through PubMed and Google Scholar. Our keywords were "neuroinflammation", "cognitive impairment", "gestational diabetes", "oxidative stress", "antioxidants", and "free radicals". RESULTS From the initial 400 records identified, a total of 78 studies were analyzed and included in our study. CONCLUSION Oxidative stress plays a fundamental role in the development of cognitive impairment. Understanding this correlation is essential to the development of targeted medical interventions and, ultimately, promote research and prevention that will benefit the mother-child binomial in the short and long term.
Collapse
Affiliation(s)
- Isabel Martin Del Campo-Rota
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo. de México, Mexico
| | - Oscar Mario Delgado-Casillas
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo. de México, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac México, Campus Norte, Huixquilucan, Edo. de México, Mexico; Secretaría de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Ustianowski Ł, Czerewaty M, Kiełbowski K, Bakinowska E, Tarnowski M, Safranow K, Pawlik A. Placental Expression of Glucose and Zinc Transporters in Women with Gestational Diabetes. J Clin Med 2024; 13:3500. [PMID: 38930029 PMCID: PMC11204946 DOI: 10.3390/jcm13123500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: Gestational diabetes (GDM) is a metabolic disorder with altered glucose levels diagnosed in pregnant women. The pathogenesis of GDM is not fully known, but it is thought to be caused by impaired insulin production and insulin resistance induced by diabetogenic factors. The placenta may play an important role in the development of GDM. Glucose transporters (GLUTs) are responsible for the delivery of glucose into the foetal circulation. Placental zinc transporters regulate insulin and glucagon secretion, as well as gluconeogenesis and glycolysis. The aim of this study was to investigate the placental expression of GLUT3, GLUT4, GLUT7 and SLC30A8 in women with GDM. Furthermore, we evaluated whether the expression profiles of these transporters were correlated with clinical parameters. Methods: This study included 26 patients with GDM and 28 patients with normal glucose tolerance (NGT). Results: The placental expression of GLUT3 was significantly reduced in the GDM group, while the placental expression of GLUT4, GLUT7 and SLC30A8 was significantly upregulated in the GDM group. GLUT3 expression correlated significantly with body mass index (BMI) increase during pregnancy and body mass increase during pregnancy, while GLUT4 expression correlated negatively with BMI at birth. Conclusions: These results suggest the involvement of GLUT3 and GLUT4, GLUT7 and SLC30A8 in the pathogenesis of GDM.
Collapse
Affiliation(s)
- Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (M.C.); (K.K.); (E.B.)
| | - Michał Czerewaty
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (M.C.); (K.K.); (E.B.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (M.C.); (K.K.); (E.B.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (M.C.); (K.K.); (E.B.)
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University, 70-210 Szczecin, Poland;
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (Ł.U.); (M.C.); (K.K.); (E.B.)
| |
Collapse
|
9
|
Castorino K, Osumili B, Lakiang T, Banerjee KK, Goldyn A, Piras de Oliveira C. Insulin Use During Gestational and Pre-existing Diabetes in Pregnancy: A Systematic Review of Study Design. Diabetes Ther 2024; 15:929-1045. [PMID: 38494573 PMCID: PMC11043323 DOI: 10.1007/s13300-024-01541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/01/2024] [Indexed: 03/19/2024] Open
Abstract
INTRODUCTION Insulin is the first-line pharmacologic therapy for women with diabetes in pregnancy. However, conducting well-designed randomized clinical trials (RCTs) and achieving recommended glycemic targets remains a challenge for this unique population. This systematic literature review (SLR) aimed to understand the evidence for insulin use in pregnancy and the outcome metrics most often used to characterize its effect on glycemic, maternal and fetal outcomes in gestational diabetes mellitus (GDM) and in pregnant women with diabetes. METHODS An SLR was conducted using electronic databases in Medline, EMBASE via Ovid platform, evidence-based medicine reviews (2010-2020) and conference proceedings (2018-2019). Studies were included if they assessed the effect of insulin treatment on glycemic, maternal or fetal outcomes in women with diabetes in pregnancy. Studies on any type of diabetes other than gestational or pre-existing diabetes as well as non-human studies were excluded. RESULTS In women diagnosed with GDM or pre-existing diabetes, most studies compared treatment of insulin with metformin (n = 35) followed by diet along with lifestyle intervention (n = 24) and glibenclamide (n = 12). Most studies reporting on glycemic outcomes compared insulin with metformin (n = 22) and glibenclamide (n = 4). Fasting blood glucose was the most reported clinical outcome of interest. Among the studies reporting maternal outcomes, method of delivery and delivery complications were most commonly reported. Large for gestational age, stillbirth and perinatal mortality were the most common fetal outcomes reported. CONCLUSION This SLR included a total of 108 clinical trials and observational studies with diverse populations and treatment arms. Outcomes varied across the studies, and a lack of consistent outcome measures to manage diabetes in pregnant women was observed. This elucidates a need for global consensus on study design and standardized clinical, maternal and fetal outcomes metrics.
Collapse
|
10
|
Takahashi N, Ichii O, Hiraishi M, Namba T, Otani Y, Nakamura T, Kon Y. Phenotypes of streptozotocin-induced gestational diabetes mellitus in mice. PLoS One 2024; 19:e0302041. [PMID: 38626157 PMCID: PMC11020761 DOI: 10.1371/journal.pone.0302041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/27/2024] [Indexed: 04/18/2024] Open
Abstract
Gestational diabetes mellitus (GDM) in human patients disrupts glucose metabolism post-pregnancy, affecting fetal development. Although obesity and genetic factors increase GDM risk, a lack of suitable models impedes a comprehensive understanding of its pathology. To address this, we administered streptozotocin (STZ, 75 mg/kg) to C57BL/6N mice for two days before pregnancy, establishing a convenient GDM model. Pregnant mice exposed to STZ (STZ-pregnant) were compared with STZ-injected virgin mice (STZ-virgin), citrate buffer-injected virgin mice (CB-virgin), and pregnant mice injected with citrate buffer (CB-pregnant). STZ-pregnant non-obese mice exhibited elevated blood glucose levels on gestational day 15.5 and impaired glucose tolerance. They also showed fewer normal fetuses compared to CB-pregnant mice. Additionally, STZ-pregnant mice had the highest plasma C-peptide levels, with decreased pancreatic islets or increased alpha cells compared to CB-pregnant mice. Kidneys isolated from STZ-pregnant mice did not display histological alterations or changes in gene expression for the principal glucose transporters (GLUT2 and SGLT2) and renal injury-associated markers. Notably, STZ-pregnant mice displayed decreased gene expression of insulin-receiving molecules (ISNR and IGFR1), indicating heightened insulin resistance. Liver histology in STZ-pregnant mice remained unchanged except for a pregnancy-related increase in lipid droplets within hepatocytes. Furthermore, the duodenum of STZ-pregnant mice exhibited increased gene expression of ligand-degradable IGFR2 and decreased expression of GLUT5 and GLUT12 (fructose and glucose transporters, respectively) compared to STZ-virgin mice. Thus, STZ-pregnant mice displayed GDM-like symptoms, including fetal abnormalities, while organs adapted to impaired glucose metabolism by altering glucose transport and insulin reception without histopathological changes. STZ-pregnant mice offer a novel model for studying mild onset non-obese GDM and species-specific differences in GDM features between humans and animals.
Collapse
Affiliation(s)
- Narumi Takahashi
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Masaya Hiraishi
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Teppei Nakamura
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Jafari-Rastegar N, Hosseininia HS, Mousavi-Niri N, Khakpai F, Naseroleslami M. Tyrosol-loaded Nano-niosomes Attenuate Diabetic Injury by TargetingGlucose Metabolism, Inflammation, and Glucose Transfer. Pharm Nanotechnol 2024; 12:351-364. [PMID: 37927074 DOI: 10.2174/0122117385251271231018104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION The increasing prevalence of type 2 diabetes, has become a global concern, making it imperative to control. Chemical drugs commonly recommended for diabetes treatment cause many complications and drug resistance over time. METHODS The polyphenol tyrosol has many health benefits, including anti-diabetes properties. Tyrosol's efficacy can be significantly increased when it is used as a niosome in the treatment of diabetes. In this study, Tyrosol and nano-Tyrosol are examined for their effects on genes implicated in type 2 diabetes in streptozotocin-treated rats. Niosome nanoparticles containing 300 mg surfactant (span60: tween60) and 10 mg cholesterol were hydrated in thin films with equal molar ratios. After 72 hours, nano-niosomal formulas were assessed for their physicochemical properties. MTT assays were conducted on HFF cells to assess the cellular toxicity of the nano niosome contacting optimal Tyrosol. Finally, the expression of PEPCK, GCK, TNF-ɑ, IL6, GLUT2 and GLUT9 was measured by real-time PCR. Physiochemical properties of the SEM images of niosomes loaded with Tyrosol revealed the nanoparticles had a vehicular structure. RESULTS In this study, there were two stages of release: initial release (8 hours) and sustainable release (72 hours). Meanwhile, free-form drugs were considerably more toxic than niosomal drugs in terms of their cellular toxicity. An in vivo comparison of oral Tyrosol gavage with nano-Tyrosol showed a significant increase in GCK (P < 0.001), GLUT2 (P < 0.001), and GLUT9 (P < 0.001). Furthermore, nano-Tyrosol decreased the expression of TNF-ɑ (P < 0.05), PEPCK (P < 0.001), and IL-6 (P < 0.05) which had been increased by diabetes mellitus. The results confirmed nano-Tyrosol's anti-diabetes and anti-inflammatory effects. CONCLUSION These findings suggest that nano-Tyrosol has potential applications in diabetes treatment and associated inflammation. Further research is needed to better understand the mechanism of action.
Collapse
Affiliation(s)
- Nima Jafari-Rastegar
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Herbal Pharmacology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Haniyeh Sadat Hosseininia
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Cytotech & Bioinformatics Research Group, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Shi L, Kang K, Wang Z, Wang J, Xiao J, Peng Q, Hu R, Zhou J, Zhang X, Yue Z, Zou H, Xue B, Wang L. Glucose Regulates Glucose Transport and Metabolism via mTOR Signaling Pathway in Bovine Placental Trophoblast Cells. Animals (Basel) 2023; 14:40. [PMID: 38200771 PMCID: PMC10778405 DOI: 10.3390/ani14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
It has been confirmed that improving the energy level of the diet contributed to the greater reproductive performance and birth weight of calves in periparturient dairy cows. To investigate the effect of glucose on nutrient transport during fetal development, the bovine placental trophoblast cells (BPTCs) were cultured in media with different glucose concentrations (1, 2, 4, 8, or 16 mg/mL). Subsequently, the BPTCs were cultured in media with 1, 8 mg/mL glucose and 8 mg/mL glucose plus 100 nmol/L rapamycin (the inhibitor of mTOR pathway). Compared with the 1 mg/mL glucose, the addition of 8 mg/mL glucose stimulated cell proliferation, upregulated the mRNA abundance of the glucose transporter GLUT1 and GLUT4, and increased the activity of glucose metabolism-related enzyme glucose-6-phosphate dehydrogenease (G6PD), lactate dehydrogenase (LDHA) and phosphoglycerate kinase 1 (PGK1), as well as adenosine-triphosphate (ATP) content (p < 0.05).Furthermore, compared with the treatment of 1 mg/mL glucose, adding 8 mg/mL of glucose-upregulated gene expression in the mTOR signaling pathway, including phosphatidylinositol3-kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR) and 70 kDa ribosomal protein S6 kinase 2 (P70S6K) (p < 0.05).The supplementation of rapamycin downregulated the gene and protein expression of the mTOR signaling pathway, including mTOR, P70S6K, EIF4E-binding protein 1 (4EBP1), hypoxia-inducible factor 1-alpha (HIF-1α) and gene expression of glucose transporter upregulated by 8 mg/mL glucose (p < 0.05). Thus, these results indicated that the addition of 8 mg/mL glucose regulated the glucose transport and metabolism in BPTCs through the mTOR signaling pathway, thereby promoting the supply of nutrients to fetus.
Collapse
Affiliation(s)
| | | | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (K.K.); (J.W.); (J.X.); (Q.P.); (R.H.); (J.Z.); (X.Z.); (Z.Y.); (H.Z.); (B.X.); (L.W.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Guadix P, Corrales I, Vilariño-García T, Rodríguez-Chacón C, Sánchez-Jiménez F, Jiménez-Cortegana C, Dueñas JL, Sánchez-Margalet V, Pérez-Pérez A. Expression of nutrient transporters in placentas affected by gestational diabetes: role of leptin. Front Endocrinol (Lausanne) 2023; 14:1172831. [PMID: 37497352 PMCID: PMC10366688 DOI: 10.3389/fendo.2023.1172831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most frequent pathophysiological state of pregnancy, which in many cases produces fetuses with macrosomia, requiring increased nutrient transport in the placenta. Recent studies by our group have demonstrated that leptin is a key hormone in placental physiology, and its expression is increased in placentas affected by GDM. However, the effect of leptin on placental nutrient transport, such as transport of glucose, amino acids, and lipids, is not fully understood. Thus, we aimed to review literature on the leptin effect involved in placental nutrient transport as well as activated leptin signaling pathways involved in the expression of placental transporters, which may contribute to an increase in placental nutrient transport in human pregnancies complicated by GDM. Leptin appears to be a relevant key hormone that regulates placental transport, and this regulation is altered in pathophysiological conditions such as gestational diabetes. Adaptations in the placental capacity to transport glucose, amino acids, and lipids may underlie both under- or overgrowth of the fetus when maternal nutrient and hormone levels are altered due to changes in maternal nutrition or metabolic disease. Implementing new strategies to modulate placental transport may improve maternal health and prove effective in normalizing fetal growth in cases of intrauterine growth restriction and fetal overgrowth. However, further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Pilar Guadix
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Isabel Corrales
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Teresa Vilariño-García
- Clinical Biochemistry Service, Virgen del Rocio University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Carmen Rodríguez-Chacón
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Flora Sánchez-Jiménez
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - José L. Dueñas
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
14
|
Raets L, Van Doninck L, Van Crombrugge P, Moyson C, Verhaeghe J, Vandeginste S, Verlaenen H, Vercammen C, Maes T, Dufraimont E, Roggen N, De Block C, Jacquemyn Y, Mekahli F, De Clippel K, Van Den Bruel A, Loccufier A, Laenen A, Devlieger R, Mathieu C, Benhalima K. Normal glucose tolerant women with low glycemia during the oral glucose tolerance test have a higher risk to deliver a low birth weight infant. Front Endocrinol (Lausanne) 2023; 14:1186339. [PMID: 37334297 PMCID: PMC10272607 DOI: 10.3389/fendo.2023.1186339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Background Data are limited on pregnancy outcomes of normal glucose tolerant (NGT) women with a low glycemic value measured during the 75g oral glucose tolerance test (OGTT). Our aim was to evaluate maternal characteristics and pregnancy outcomes of NGT women with low glycemia measured at fasting, 1-hour or 2-hour OGTT. Methods The Belgian Diabetes in Pregnancy-N study was a multicentric prospective cohort study with 1841 pregnant women receiving an OGTT to screen for gestational diabetes (GDM). We compared the characteristics and pregnancy outcomes in NGT women according to different groups [(<3.9mmol/L), (3.9-4.2mmol/L), (4.25-4.4mmol/L) and (>4.4mmol/L)] of lowest glycemia measured during the OGTT. Pregnancy outcomes were adjusted for confounding factors such as body mass index (BMI) and gestational weight gain. Results Of all NGT women, 10.7% (172) had low glycemia (<3.9 mmol/L) during the OGTT. Women in the lowest glycemic group (<3.9mmol/L) during the OGTT had compared to women in highest glycemic group (>4.4mmol/L, 29.9%, n=482), a better metabolic profile with a lower BMI, less insulin resistance and better beta-cell function. However, women in the lowest glycemic group had more often inadequate gestational weight gain [51.1% (67) vs. 29.5% (123); p<0.001]. Compared to the highest glycemia group, women in the lowest group had more often a birth weight <2.5Kg [adjusted OR 3.41, 95% CI (1.17-9.92); p=0.025]. Conclusion Women with a glycemic value <3.9 mmol/L during the OGTT have a higher risk for a neonate with birth weight < 2.5Kg, which remained significant after adjustment for BMI and gestational weight gain.
Collapse
Affiliation(s)
- Lore Raets
- Department of Endocrinology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | | | - Paul Van Crombrugge
- Department of Endocrinology, Onze-Lieve-Vrouwziekenhuis (OLV) Ziekenhuis Aalst-Asse-Ninove, Aalst, Belgium
| | - Carolien Moyson
- Department of Endocrinology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Johan Verhaeghe
- Department of Obstetrics & Gynecology, Universitair Ziekenhuis (UZ) Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Sofie Vandeginste
- Department of Obstetrics & Gynecology, Onze-Lieve-Vrouwziekenhuis (OLV) Ziekenhuis Aalst-Asse-Ninove, Aalst, Belgium
| | - Hilde Verlaenen
- Department of Obstetrics & Gynecology, Onze-Lieve-Vrouwziekenhuis (OLV) Ziekenhuis Aalst-Asse-Ninove, Aalst, Belgium
| | - Chris Vercammen
- Department of Endocrinology, Imelda Ziekenhuis, Bonheiden, Belgium
| | - Toon Maes
- Department of Endocrinology, Imelda Ziekenhuis, Bonheiden, Belgium
| | - Els Dufraimont
- Department of Obstetrics & Gynecology, Imelda Ziekenhuis, Bonheiden, Belgium
| | - Nele Roggen
- Department of Obstetrics & Gynecology, Imelda Ziekenhuis, Bonheiden, Belgium
| | - Christophe De Block
- Department of Endocrinology-Diabetology-Metabolism, Antwerp University Hospital, Edegem, Belgium
| | - Yves Jacquemyn
- Department of Obstetrics & Gynecology, Antwerp University Hospital, Edegem, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC) and Global Health Institute (GHI), Antwerp University University of Antwerp (UA), Antwerp, Belgium
| | - Farah Mekahli
- Department of Endocrinology, Kliniek St-Jan Brussel, Brussel, Belgium
| | - Katrien De Clippel
- Department of Obstetrics & Gynecology, Kliniek St-Jan Brussel, Brussel, Belgium
| | - Annick Van Den Bruel
- Department of Endocrinology, Algemeen Ziekenhuis (AZ) St. Jan Brugge, Brugge, Belgium
| | - Anne Loccufier
- Department of Obstetrics & Gynecology, Algemeen Ziekenhuis (AZ) St. Jan Brugge, Brugge, Belgium
| | - Annouschka Laenen
- Center of Biostatics and Statistical bioinformatics, KU Leuven, Leuven, Belgium
| | - Roland Devlieger
- Department of Obstetrics & Gynecology, Universitair Ziekenhuis (UZ) Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Department of Endocrinology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Katrien Benhalima
- Department of Endocrinology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Basu T, Sehar U, Selman A, Reddy AP, Reddy PH. Support Provided by Caregivers for Community-Dwelling Obesity Individuals: Focus on Elderly and Hispanics. Healthcare (Basel) 2023; 11:1442. [PMID: 37239728 PMCID: PMC10218002 DOI: 10.3390/healthcare11101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity is a chronic disease marked by the buildup of extra adipose tissue and a higher chance of developing concomitant illnesses such as heart disease, diabetes, high blood pressure, and some malignancies. Over the past few decades, there has been a global increase in the prevalence of obesity, which now affects around one-third of the world's population. According to recent studies, a variety of factors, including genetics and biology as well as environmental, physiological, and psychosocial factors, may have a role in the development of obesity. The prevalence of obesity is often higher among Hispanic American groups than among White people in the U.S. Obesity is a widespread condition with a high risk of morbidity and death, and it is well-recognized that the prevalence of comorbidities rises with rising levels of obesity or body mass index. To combat the rising prevalence of obesity in the USA, especially among Hispanics, one of the fastest-growing racial/ethnic groups in the country, there is an urgent need for obesity therapies. The exact cause of this disparity is unclear, but some responsible factors are a lack of education, high unemployment rates, high levels of food insecurity, an unhealthy diet, inadequate access to physical activity resources, a lack of health insurance, and constricted access to culturally adequate healthcare. Additionally, managing obesity and giving needed/timely support to obese people is a difficult responsibility for medical professionals and their loved ones. The need for caregivers is increasing with the increased number of individuals with obesity, particularly Hispanics. Our article summarizes the status of obesity, focusing on Hispanic populations, and we also highlight specific factors that contribute to obesity, including genetics, epigenetics, biological, physiological, and psychosocial factors, medication and disease, environment, and socio-demographics. This article also reviews caregiver duties and challenges associated with caring for people with obesity.
Collapse
Affiliation(s)
- Tanisha Basu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.B.)
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.B.)
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.B.)
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.B.)
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
16
|
Aldahmash W, Harrath AH, Aljerian K, Sabr Y, Alwasel S. Expression of Glucose Transporters 1 and 3 in the Placenta of Pregnant Women with Gestational Diabetes Mellitus. Life (Basel) 2023; 13:life13040993. [PMID: 37109521 PMCID: PMC10143906 DOI: 10.3390/life13040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The annual prevalence of gestational diabetes mellitus-characterized by an increase in blood glucose in pregnant women-has been increasing worldwide. The goal of this study was to evaluate the expression of glucose transporter 1 (GLUT1) and glucose transporter 3 (GLUT3) in the placenta of women with gestational diabetes mellitus. METHODS Sixty-five placentas from women admitted to the King Saud University Medical City, Riyadh, Saudi Arabia, were analyzed; 34 and 31 placentas were from healthy pregnant women and women with gestational diabetes, respectively. The expressions of GLUT1 and GLUT3 were assessed using RT-PCR, Western blotting, and immunohistochemical methods. The degree of apoptosis in the placental villi was estimated via a TUNEL assay. RESULTS The results of the protein expression assays and immunohistochemical staining showed that the levels of GLUT1 and GLUT3 were significantly higher in the placentas of pregnant women with gestational diabetes than those in the placentas of healthy pregnant women. In addition, the findings showed an increase in apoptosis in the placenta of pregnant women with gestational diabetes compared to that in the placenta of healthy pregnant women. However, the results of gene expression assays showed no significant difference between the two groups. CONCLUSIONS Based on these results, we conclude that gestational diabetes mellitus leads to an increased incidence of apoptosis in the placental villi and alters the level of GLUT1 and GLUT3 protein expressions in the placenta of women with gestational diabetes. Understanding the conditions in which the fetus develops in the womb of a pregnant woman with gestational diabetes may help researchers understand the underlying causes of the development of chronic diseases later in life.
Collapse
Affiliation(s)
- Waleed Aldahmash
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Khaldoon Aljerian
- Pathology Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasser Sabr
- Obstetrics and Gynaecology Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Ding Z, McCauley N, Qin Y, Lawless L, Guo S, Zhang L, Zhang KK, Xie L. FoxO1 Deficiency Enhances Cell Proliferation and Survival Under Normoglycemia and Promotes Angiogenesis Under Hyperglycemia in the Placenta. J Transl Med 2023; 103:100017. [PMID: 36748194 PMCID: PMC11890199 DOI: 10.1016/j.labinv.2022.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/18/2023] Open
Abstract
FoxO1 is an important transcriptional factor that regulates cell survival and metabolism in many tissues. Deleting FoxO1 results in embryonic death due to failure of chorioallantoic fusion at E8.5; however, its role in placental development during mid-late gestation is unclear. In both human patients with gestational diabetes and pregnant mice with hyperglycemia, placental FoxO1 expression was significantly increased. Using FoxO1+/- mice, the effects of FoxO1 haploinsufficiency on placental development under normoglycemia and hyperglycemia were investigated. With FoxO1 haploinsufficiency, the term placental weight increased under both normal and hyperglycemic conditions. Under normoglycemia, this weight change was associated with a general enlargement of the labyrinth, along with increased cell proliferation, decreased cell apoptosis, and decreased expression of p21, p27, Casp3, Casp8, and Rip3. However, under hyperglycemia, the placental weight change was associated with increased fetal blood space, VEGFA overexpression, and expression changes of the angiogenic markers, Eng and Tsp1. In conclusion, FoxO1 plays a role in regulating cell proliferation, cell survival, or angiogenesis, depending on blood glucose levels, during placenta development.
Collapse
Affiliation(s)
- Zehuan Ding
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Naomi McCauley
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Yushu Qin
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Lauren Lawless
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Shaodong Guo
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Lanjing Zhang
- Department of Pathology, Princeton Medical Center, Plainsboro, New Jersey; Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Ke K Zhang
- Department of Nutrition, Texas A&M University, College Station, Texas; Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, Texas
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, Texas.
| |
Collapse
|
18
|
Xu P, Zheng Y, Liao J, Hu M, Yang Y, Zhang B, Kilby MD, Fu H, Liu Y, Zhang F, Xiong L, Liu X, Jin H, Wu Y, Huang J, Han T, Wen L, Gao R, Fu Y, Fan X, Qi H, Baker PN, Tong C. AMPK regulates homeostasis of invasion and viability in trophoblasts by redirecting glucose metabolism: Implications for pre-eclampsia. Cell Prolif 2022; 56:e13358. [PMID: 36480593 PMCID: PMC9890534 DOI: 10.1111/cpr.13358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/13/2022] Open
Abstract
Pre-eclampsia (PE) is deemed an ischemia-induced metabolic disorder of the placenta due to defective invasion of trophoblasts during placentation; thus, the driving role of metabolism in PE pathogenesis is largely ignored. Since trophoblasts undergo substantial glycolysis, this study aimed to investigate its function and regulatory mechanism by AMPK in PE development. Metabolomics analysis of PE placentas was performed by gas chromatography-mass spectrometry (GC-MS). Trophoblast-specific AMPKα1-deficient mouse placentas were generated to assess morphology. A mouse PE model was established by Reduced Uterine Perfusion Pressure, and placental AMPK was modulated by nanoparticle-delivered A769662. Trophoblast glucose uptake was measured by 2-NBDG and 2-deoxy-d-[3 H] glucose uptake assays. Cellular metabolism was investigated by the Seahorse assay and GC-MS.PE complicated trophoblasts are associated with AMPK hyperactivation due not to energy deficiency. Thereafter, AMPK activation during placentation exacerbated PE manifestations but alleviated cell death in the placenta. AMPK activation in trophoblasts contributed to GLUT3 translocation and subsequent glucose metabolism, which were redirected into gluconeogenesis, resulting in deposition of glycogen and accumulation of phosphoenolpyruvate; the latter enhanced viability but compromised trophoblast invasion. However, ablation of AMPK in the mouse placenta resulted in decreased glycogen deposition and structural malformation. These data reveal a novel homeostasis between invasiveness and viability in trophoblasts, which is mechanistically relevant for switching between the 'go' and 'grow' cellular programs.
Collapse
Affiliation(s)
- Ping Xu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina,Biochemistry and Molecular BiologyUniversity of Texas McGovern Medical SchoolHoustonTexasUSA
| | - Yangxi Zheng
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina,Department of Stem Cell Transplantation and Cell TherapyMD Anderson Cancer CenterHoustonTexasUSA
| | - Jiujiang Liao
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Mingyu Hu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Yike Yang
- Department of Gynecology and ObstetricsPeking University Third HospitalBeijingChina
| | - Baozhen Zhang
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| | - Mark D. Kilby
- Institute of Metabolism and System ResearchUniversity of BirminghamEdgbastonUK
| | - Huijia Fu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Yamin Liu
- Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Fumei Zhang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Liling Xiong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Xiyao Liu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Huili Jin
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Yue Wu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Jiayu Huang
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Tingli Han
- Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Li Wen
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and ManagementChongqing Medical UniversityChongqingChina
| | - Yong Fu
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| | - Xiujun Fan
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdongChina
| | - Hongbo Qi
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina,Department of ObstetricsWomen and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | | | - Chao Tong
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina,Ministry of Education‐International Collaborative Laboratory of Reproduction and DevelopmentChongqing Medical UniversityChongqingChina
| |
Collapse
|
19
|
Immunohistochemical evaluation of glucose transporter protein-1 density in the placenta in preeclampsia patients and its association with intrauterine growth retardation. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.7347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background/Aim: Preeclampsia (PE) complicates 2–8% of all pregnancies worldwide. Placental malperfusion and dysfunction are observed in PE. The supply of glucose, the main energy substrate for the fetus and placenta, is regulated by placental expression and activity of specific glucose transporter proteins (GLUTs), primarily GLUT1. GLUT1 expression is affected by uteroplacental malperfusion and oxidative stress, which are important components of PE. Very few studies have investigated GLUT1 expression in preeclamptic placentas. In this study, we aimed to compare GLUT1 staining intensity in the terminal villi of the placenta in healthy subjects and patients with E-PE or L-PE and determine whether there was a relationship between GLUT1 staining intensity and IUGR.
Methods: This case-control study was carried out in our hospital’s gynecology and obstetrics clinic, a tertiary center for perinatology cases. A total of 94 placentas, 47 of which were preeclamptic and 47 were from uneventful pregnancies (controls), were included in the study. PE was diagnosed according to the American College of Obstetrics and Gynecologists 2019 diagnostic criteria for gestational hypertension and PE. Placentas in the control group were obtained from pregnancies without maternal, placental, or fetal pathology and resulted in spontaneous idiopathic preterm or term delivery. The PE group was divided into two subgroups as early onset PE (E-PE [≤33+6 gestational week]) and late-onset PE (L-PE [≥34+0 gestational week]), according to the gestational week of PE onset. Sections prepared from placental tissues were stained for GLUT-1 by immunohistochemical method. Slides were evaluated by light microscopy, and each slide was scored from 0 to 4 to determine the staining intensity. The results were compared between the control and PE group/PE sub-groups.
Results: GLUT1 scores were significantly higher in both early- and late-onset PE subgroups compared to controls (P < 0.001 for both). In the late-onset PE subgroup, GLUT1 scores were significantly higher in those with severe PE features than those without them (P = 0.039). While intrauterine growth restriction (IUGR) was not found in any cases in the control group, IUGR was present in 11 (23.4%) of 47 pregnant women with PE, including eight (53.3%) of the 15 pregnant women with early-onset PE and 3 (9.38%) of the 32 pregnant women with late-onset PE. GLUT1 scores were similar in placentas obtained from pregnant women who had PE with and without IUGR (P = 0.756). In the late-onset PE subgroup, GLUT1 scores were correlated negatively with maternal body mass index (r = -0.377, P = 0.033) and positively with placental weight-to-fetal weight ratio (r = 0.444, P = 0.011).
Conclusions: Our findings show that GLUT1 expression might be increased due to placental adaptation to new conditions in PE and, thus, is unlikely to be the main factor in PE-related IUGR.
Collapse
|
20
|
Wang S, Ning J, Huai J, Yang H. Hyperglycemia in Pregnancy-Associated Oxidative Stress Augments Altered Placental Glucose Transporter 1 Trafficking via AMPKα/p38MAPK Signaling Cascade. Int J Mol Sci 2022; 23:ijms23158572. [PMID: 35955706 PMCID: PMC9369398 DOI: 10.3390/ijms23158572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
GLUT1, being a ubiquitous transporter isoform, is considered primarily responsible for glucose uptake during glycolysis. However, there is still uncertainty about the regulatory mechanisms of GLUT1 in hyperglycemia in pregnancy (HIP, PGDM, and GDM) accompanied by abnormal oxidative stress responses. In the present study, it was observed that the glycolysis was enhanced in GDM and PGDM pregnancies. In line with this, the antioxidant system was disturbed and GLUT1 expression was increased due to diabetes impairment in both placental tissues and in vitro BeWo cells. GLUT1 responded to high glucose stimulation through p38MAPK in an AMPKα-dependent manner. Both the medical-mediated and genetic depletion of p38MAPK in BeWo cells could suppress GLUT1 expression and OS-induced proapoptotic effects. Furthermore, blocking AMPKα with an inhibitor or siRNA strategy promoted p38MAPK, GLUT1, and proapoptotic molecules expression and vice versa. In general, a new GLUT1 regulation pathway was identified, which could exert effects on placental transport function through the AMPKα-p38MAPK pathway. AMPKα may be a therapeutic target in HIP for alleviating diabetes insults.
Collapse
Affiliation(s)
- Shuxian Wang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China; (S.W.); (J.N.); (J.H.)
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
| | - Jie Ning
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China; (S.W.); (J.N.); (J.H.)
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
| | - Jing Huai
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China; (S.W.); (J.N.); (J.H.)
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing 100034, China; (S.W.); (J.N.); (J.H.)
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing 100034, China
- Correspondence:
| |
Collapse
|
21
|
Sibiak R, Ozegowska K, Wender-Ozegowska E, Gutaj P, Mozdziak P, Kempisty B. Fetomaternal Expression of Glucose Transporters (GLUTs)-Biochemical, Cellular and Clinical Aspects. Nutrients 2022; 14:2025. [PMID: 35631166 PMCID: PMC9146575 DOI: 10.3390/nu14102025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
Several types of specialized glucose transporters (GLUTs) provide constant glucose transport from the maternal circulation to the developing fetus through the placental barrier from the early stages of pregnancy. GLUT1 is a prominent protein isoform that regulates placental glucose transfer via glucose-facilitated diffusion. The GLUT1 membrane protein density and permeability of the syncytial basal membrane (BM) are the main factors limiting the rate of glucose diffusion in the fetomaternal compartment in physiological conditions. Besides GLUT1, the GLUT3 and GLUT4 isoforms are widely expressed across the human placenta. Numerous medical conditions and molecules, such as hormones, adipokines, and xenobiotics, alter the GLUT's mRNA and protein expression. Diabetes upregulates the BM GLUT's density and promotes fetomaternal glucose transport, leading to excessive fetal growth. However, most studies have found no between-group differences in GLUTs' placental expression in macrosomic and normal control pregnancies. The fetomaternal GLUTs expression may also be influenced by several other conditions, such as chronic hypoxia, preeclampsia, and intrahepatic cholestasis of pregnancy.
Collapse
Affiliation(s)
- Rafal Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, 60-701 Poznan, Poland
| | - Katarzyna Ozegowska
- Department of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (E.W.-O.); (P.G.)
| | - Pawel Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (E.W.-O.); (P.G.)
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-701 Poznan, Poland;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Anatomy, Poznan University of Medical Sciences, 60-701 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
22
|
Stanirowski PJ, Szukiewicz D, Majewska A, Wątroba M, Pyzlak M, Bomba‐Opoń D, Wielgoś M. Placental expression of glucose transporters GLUT-1, GLUT-3, GLUT-8 and GLUT-12 in pregnancies complicated by gestational and type 1 diabetes mellitus. J Diabetes Investig 2022; 13:560-570. [PMID: 34555239 PMCID: PMC8902395 DOI: 10.1111/jdi.13680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
AIMS/INTRODUCTION The aim of the present study was to evaluate the placental expression of glucose transporters GLUT-1, GLUT-3, GLUT-8 and GLUT-12 in term pregnancies complicated by well-controlled gestational (GDM) and type 1 pregestational diabetes mellitus (PGDM). MATERIALS AND METHODS A total of 103 placental samples were obtained from patients diagnosed with GDM (n = 60), PGDM (n = 20) and a non-diabetic control group (n = 23). Computer-assisted quantitative morphometry of stained placental sections was performed to determine the expression of selected GLUT proteins. RESULTS Immunohistochemical techniques used for the identification of GLUT-1, GLUT-3, GLUT-8 and GLUT-12 revealed the presence of all glucose transporters in the placental tissue. Morphometric evaluation performed for the vascular density-matched placental samples demonstrated a significant increase in the expression of GLUT-1 protein in patients with PGDM as compared to GDM and control groups (P < 0.05). With regard to the expression of the other GLUT isoforms, no statistically significant differences were observed between patients from the diabetic and control populations. Positive correlations between fetal birthweight and the expression of GLUT-1 protein in the PGDM group (rho = 0.463, P < 0.05) and GLUT-12 in the control group (rho = 0.481, P < 0.05) were noted. CONCLUSIONS In term pregnancies complicated by well-controlled GDM/PGDM, expression of transporters GLUT-3, GLUT-8 and GLUT-12 in the placenta remains unaffected. Increased expression of GLUT-1 among women with type 1 PGDM might contribute to a higher rate of macrosomic fetuses in this population.
Collapse
Affiliation(s)
| | - Dariusz Szukiewicz
- Department of Biophysics and Human Physiology, Faculty of Health SciencesMedical University of WarsawWarsawPoland
| | - Agata Majewska
- 1st Department of Obstetrics and GynecologyMedical University of WarsawWarsawPoland
| | - Mateusz Wątroba
- Department of Biophysics and Human Physiology, Faculty of Health SciencesMedical University of WarsawWarsawPoland
| | - Michał Pyzlak
- Department of Biophysics and Human Physiology, Faculty of Health SciencesMedical University of WarsawWarsawPoland
| | - Dorota Bomba‐Opoń
- 1st Department of Obstetrics and GynecologyMedical University of WarsawWarsawPoland
| | - Mirosław Wielgoś
- 1st Department of Obstetrics and GynecologyMedical University of WarsawWarsawPoland
| |
Collapse
|
23
|
Ortega MA, Sáez MA, Fraile-Martínez O, Álvarez-Mon MA, García-Montero C, Guijarro LG, Asúnsolo Á, Álvarez-Mon M, Bujan J, García-Honduvilla N, De León-Luis JA, Bravo C. Overexpression of glycolysis markers in placental tissue of pregnant women with chronic venous disease: a histological study. Int J Med Sci 2022; 19:186-194. [PMID: 34975312 PMCID: PMC8692115 DOI: 10.7150/ijms.65419] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic Venous Disease (CVD) refers to a wide variety of venous disorders being the varicose veins its most common manifestation. It is well-established the link between pregnancy and the risk of suffering CVD, due to hormonal or haematological factors, especially during the third trimester. In the same manner, previous studies have demonstrated the detrimental effect of this condition in the placental tissue of pregnant women, including in the normal physiology and the metabolomic profile of this organ. In this context, the aim of this study was to evaluate the glucose homeostasis in the placental tissue of women presenting CVD. Through immunohistochemistry, we studied the protein expression of the glucose transporter 1 (GLUT-1), Phosphoglycerate kinase 1 (PGK1), aldolase (ALD), Glyceraldehyde-3-phosphate dehydrogenase (GA3PDH) and lactate dehydrogenase (LDH). Our results have reported a significative increase in the expression of GLUT-1, PGK1, ALD, GA3PDH and the isoenzyme LDHA in placentas of women with CVD. This work has proven for the first-time an altered glucose metabolism in the placental tissue of women affected by CVD, what may aid to understand the pathophysiological mechanisms of this condition in more distant organs such as placenta. Furthermore, our research also supports the basis for further studies in the metabolic phenotyping of the human placenta due to CVD, which may be considered during the late pregnancy in these women.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, Alcalá de Henares, Spain
| | - Miguel A Sáez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Miguel A Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology and Oncology Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Juan A De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, Madrid 28009, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, Madrid 28009, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| |
Collapse
|
24
|
Differential Expression of Glucose Transporter Proteins GLUT-1, GLUT-3, GLUT-8 and GLUT-12 in the Placenta of Macrosomic, Small-for-Gestational-Age and Growth-Restricted Foetuses. J Clin Med 2021; 10:jcm10245833. [PMID: 34945129 PMCID: PMC8705605 DOI: 10.3390/jcm10245833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Placental transfer of glucose constitutes one of the major determinants of the intrauterine foetal growth. The objective of the present study was to evaluate the expression of glucose transporter proteins GLUT-1, GLUT-3, GLUT-8 and GLUT-12 in the placenta of macrosomic, small-for-gestational-age (SGA) and growth-restricted foetuses (FGR). A total of 70 placental tissue samples were collected from women who delivered macrosomic ≥4000 g (n = 26), SGA (n = 11), growth-restricted (n = 13) and healthy control neonates (n = 20). Computer-assisted quantitative morphometry of stained placental sections was performed to determine the expression of selected GLUT proteins. Immunohistochemical staining identified the presence of all glucose transporters in the placental tissue. Quantitative morphometric analysis performed for the vascular density-matched placental samples revealed a significant decrease in GLUT-1 and increase in GLUT-3 protein expression in pregnancies complicated by FGR as compared to other groups (p < 0.05). In addition, expression of GLUT-8 was significantly decreased among SGA foetuses (p < 0.05). No significant differences in GLUTs expression were observed in women delivering macrosomic neonates. In the SGA group foetal birth weight (FBW) was negatively correlated with GLUT-3 (rho = −0.59, p < 0.05) and positively with GLUT-12 (rho = 0.616, p < 0.05) placental expression. In addition, a positive correlation between FBW and GLUT-12 expression in the control group (rho = 0.536, p < 0.05) was noted. In placentas derived from FGR-complicated pregnancies the expression of two major glucose transporters GLUT-1 and GLUT-3 is altered. On the contrary, idiopathic foetal macrosomia is not associated with changes in the placental expression of GLUT-1, GLUT-3, GLUT-8 and GLUT-12 proteins.
Collapse
|
25
|
Zhang L, Yu X, Wu Y, Fu H, Xu P, Zheng Y, Wen L, Yang X, Zhang F, Hu M, Wang H, Liu X, Qiao J, Peng C, Gao R, Saffery R, Fu Y, Qi H, Tong C, Kilby MD, Baker PN. Gestational Diabetes Mellitus-Associated Hyperglycemia Impairs Glucose Transporter 3 Trafficking in Trophoblasts Through the Downregulation of AMP-Activated Protein Kinase. Front Cell Dev Biol 2021; 9:722024. [PMID: 34796169 PMCID: PMC8593042 DOI: 10.3389/fcell.2021.722024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is an important regulator of glucose metabolism, and glucose transporter 3 (GLUT3) is an efficient glucose transporter in trophoblasts. Whether placental AMPK and GLUT3 respond accordingly to gestational diabetes mellitus (GDM) remains uncertain. Here, we explored the regulatory role of AMPK in the GLUT3-dependent uptake of glucose by placental trophoblasts and the viability of the cells. In this study, the level of glycolysis in normal and GDM-complicated placentas was assessed by LC-MS/MS. The trophoblast hyperglycemia model was induced by the incubation of HTR8/SVneo cells with a high glucose concentration. GDM animal models were generated with db/ + mice and C57BL/6J mice fed a high-fat diet, and AMPK was manipulated by the oral administration of metformin. The uptake of glucose by trophoblasts was assessed using 2-NBDG or 2-deoxy-D-[3H] glucose. The results showed that GDM is associated with impaired glycolysis, AMPK activity, GLUT3 expression in the plasma membrane (PM) and cell survival in the placenta. Hyperglycemia induced similar changes in trophoblasts, and these changes were rescued by AMPK activation. Both hyperglycemic db/ + and high-fat diet-induced GDM mice exhibited a compromised AMPK–GLUT3 axis and suppressed cell viability in the placenta as well as excessive fetal growth, and all of these effects were partially alleviated by metformin. Taken together, our findings support the notion that AMPK activation upregulates trophoblast glucose uptake by stimulating GLUT3 translocation, which is beneficial for viability. Thus, the modulation of glucose metabolism in trophoblasts by targeting AMPK might ameliorate the adverse intrauterine environment caused by GDM.
Collapse
Affiliation(s)
- Li Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xinyang Yu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Huijia Fu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ping Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Yangxi Zheng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, TX, United States.,Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaotao Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Fumei Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mingyu Hu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiyao Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Juan Qiao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Rufei Gao
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Richard Saffery
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Paediatrics, Cancer, Disease and Developmental Epigenetics, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia
| | - Yong Fu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mark D Kilby
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Philip N Baker
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
26
|
Raviv S, Wilkof-Segev R, Maor-Sagie E, Naeh A, Yoeli Y, Hallak M, Gabbay-Benziv R. Hypoglycemia during the oral glucose tolerance test in pregnancy-maternal characteristics and neonatal outcomes. Int J Gynaecol Obstet 2021; 158:585-591. [PMID: 34796491 DOI: 10.1002/ijgo.14037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/06/2021] [Accepted: 11/17/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To evaluate maternal and neonatal outcomes in pregnancies complicated by hypoglycemia on 100-g oral glucose tolerance test (OGTT). METHODS A retrospective cohort analysis of all live-born deliveries in a single medical center during 2018 and 2019 with available OGTT results and birth outcomes. Preterm deliveries (<34 weeks), multiple pregnancies and major anomalies were excluded. Hypoglycemia during OGTT was defined as at least one glucose value below 60 mg/dl. Maternal characteristics and perinatal outcomes were compared between three groups: Hypoglycemia on OGTT, Normal OGTT and Abnormal OGTT. Univariate followed by multivariate analyses were used to control for confounders. RESULTS Overall, 2079 women were entered into the analysis. Of these, 216 (10.4%) had at least one hypoglycemic value, 1072 (51.6%) had normal OGTTs and 791 (38%) abnormal OGTTs. Hypoglycemia in OGTT was more prevalent in multiparous women and was associated with fetal male gender. Absolute birth weight, low birth weight and small for gestational age differed between groups; however, there was no difference between groups in overall birth weight centiles (60.1 ± 26.8 versus 63 ± 26 versus 60.9 ± 27; P > 0.05). Following adjustment of confounders, hypoglycemia was not associated with rates of low birth weight or small for gestational age (P < 0.05). There were no other differences in perinatal outcomes between groups. CONCLUSION Hypoglycemia in OGTT is not associated with maternal or neonatal adverse outcomes.
Collapse
Affiliation(s)
- Shira Raviv
- Hillel Yaffe Medical Center, Hadera, Israel.,The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Renana Wilkof-Segev
- Hillel Yaffe Medical Center, Hadera, Israel.,The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Esther Maor-Sagie
- Hillel Yaffe Medical Center, Hadera, Israel.,The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Amir Naeh
- Hillel Yaffe Medical Center, Hadera, Israel.,The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yochai Yoeli
- Hillel Yaffe Medical Center, Hadera, Israel.,The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Mordechai Hallak
- Hillel Yaffe Medical Center, Hadera, Israel.,The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Rinat Gabbay-Benziv
- Hillel Yaffe Medical Center, Hadera, Israel.,The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
27
|
Zhao S, Wang D, Li Z, Xu S, Chen H, Ding W, Yang J, Zhao W, Sun B, Wang Z. FGF15/FGF19 alleviates insulin resistance and upregulates placental IRS1/GLUT expression in pregnant mice fed a high-fat diet. Placenta 2021; 112:81-88. [PMID: 34329971 DOI: 10.1016/j.placenta.2021.07.286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/04/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION This study aimed to evaluate whether FGF19 can alleviate insulin resistance and change the expression of placental IRS1/GLUTs. METHODS Mice transgenic for Fgf15 (the murine homologue of human FGF19) were constructed, and human recombinant FGF19 was administered to pregnant high-fat diet mice. Then, glycolipid metabolism parameters and the weight of foetus and placenta were observed. The expression levels of key molecules of the insulin signalling pathway and glucose transporters in placentae were detected by qRT-PCR and western blotting. Primary trophoblasts and JAR cells were cultured in high-glucose medium, and FGF19 was added to observe its regulatory effects on IRS1/GLUTs. RESULTS Overexpressing FGF15 or exogenously administering FGF19 reduced the levels of fasting blood glucose, HOMA-IR, triglycerides, and free fatty acids in pregnant high-fat diet mice compared to control mice (P < 0.05). FGF15/FGF19 did not significantly affect placental weight, foetal weight or litter size (P > 0.05). In addition, FGF15/FGF19 upregulated the expression of p-IRS1 and GLUT4 in the placentae of high-fat diet mice and upregulated GLUT1 levels in the placentae of normal diet-fed mice (P < 0.05), while it did not significantly alter total IRS1 and GLUT3 levels (P > 0.05). Consistent with the results of the animal experiments, FGF19 increased the expression of p-IRS1 and GLUT4 in trophoblast cells cultured in high-glucose medium (P < 0.05). DISCUSSION Overexpressing FGF15 or administering FGF19 to pregnant high-fat diet mice can improve glycolipid metabolism and alleviate systemic and local insulin resistance. The possible underlying mechanism may involve upregulation of placental expression of p-IRS1 and GLUT4.
Collapse
Affiliation(s)
- Shanshan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Dongyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhuyu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shuqia Xu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Haitian Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wenjing Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Juan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Weihua Zhao
- Department of Obstetrics and Gynecology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Bo Sun
- Department of Obstetrics and Gynecology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Mandal AK, Leask MP, Estiverne C, Choi HK, Merriman TR, Mount DB. Genetic and Physiological Effects of Insulin on Human Urate Homeostasis. Front Physiol 2021; 12:713710. [PMID: 34408667 PMCID: PMC8366499 DOI: 10.3389/fphys.2021.713710] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Insulin and hyperinsulinemia reduce renal fractional excretion of urate (FeU) and play a key role in the genesis of hyperuricemia and gout, via uncharacterized mechanisms. To explore this association further we studied the effects of genetic variation in insulin-associated pathways on serum urate (SU) levels and the physiological effects of insulin on urate transporters. We found that urate-associated variants in the human insulin (INS), insulin receptor (INSR), and insulin receptor substrate-1 (IRS1) loci associate with the expression of the insulin-like growth factor 2, IRS1, INSR, and ZNF358 genes; additionally, we found genetic interaction between SLC2A9 and the three loci, most evident in women. We also found that insulin stimulates the expression of GLUT9 and increases [14C]-urate uptake in human proximal tubular cells (PTC-05) and HEK293T cells, transport activity that was effectively abrogated by uricosurics or inhibitors of protein tyrosine kinase (PTK), PI3 kinase, MEK/ERK, or p38 MAPK. Heterologous expression of individual urate transporters in Xenopus oocytes revealed that the [14C]-urate transport activities of GLUT9a, GLUT9b, OAT10, OAT3, OAT1, NPT1 and ABCG2 are directly activated by insulin signaling, through PI3 kinase (PI3K)/Akt, MEK/ERK and/or p38 MAPK. Given that the high-capacity urate transporter GLUT9a is the exclusive basolateral exit pathway for reabsorbed urate from the renal proximal tubule into the blood, that insulin stimulates both GLUT9 expression and urate transport activity more than other urate transporters, and that SLC2A9 shows genetic interaction with urate-associated insulin-signaling loci, we postulate that the anti-uricosuric effect of insulin is primarily due to the enhanced expression and activation of GLUT9.
Collapse
Affiliation(s)
- Asim K. Mandal
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan P. Leask
- Biochemistry Department, University of Otago, Dunedin, New Zealand
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham, AL, United States
| | - Christopher Estiverne
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Hyon K. Choi
- Division of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tony R. Merriman
- Biochemistry Department, University of Otago, Dunedin, New Zealand
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham, AL, United States
| | - David B. Mount
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Renal Division, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
Joshi NP, Mane AR, Sahay AS, Sundrani DP, Joshi SR, Yajnik CS. Role of Placental Glucose Transporters in Determining Fetal Growth. Reprod Sci 2021; 29:2744-2759. [PMID: 34339038 DOI: 10.1007/s43032-021-00699-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
Maternal nutrient availability and its transport through the placenta are crucial for fetal development. Nutrients are transported to the fetus via specific transporters present on the microvillous (MVM) and basal membrane (BM) of the placenta. Glucose is the most abundant nutrient transferred to the fetus and plays a key role in the fetal growth and development. The transfer of glucose across the human placenta is directly proportional to maternal glucose concentrations, and is mediated by glucose transporter family proteins (GLUTs). Maternal glucose concentration influences expression and activity of GLUTs in the MVM (glucose uptake) and BM (glucose delivery). Alteration in the number and function of these transporters may affect the growth and body composition of the fetus. The thin-fat phenotype of the Indian baby (low ponderal index, high adiposity) is proposed as a harbinger of future metabolic risk. We propose that placental function mediated through nutrient transporters contributes to the phenotype of the baby, specifically that glucose transporters will influence neonatal fat. This review discusses the role of various glucose transporters in the placenta in determining fetal growth and body composition, in light of the above hypothesis.
Collapse
Affiliation(s)
- Nikita P Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Aditi R Mane
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Akriti S Sahay
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India.
| | | |
Collapse
|
30
|
Olmos-Ortiz A, Flores-Espinosa P, Díaz L, Velázquez P, Ramírez-Isarraraz C, Zaga-Clavellina V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta. Int J Mol Sci 2021; 22:8087. [PMID: 34360849 PMCID: PMC8348825 DOI: 10.3390/ijms22158087] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a transitory metabolic condition caused by dysregulation triggered by intolerance to carbohydrates, dysfunction of beta-pancreatic and endothelial cells, and insulin resistance during pregnancy. However, this disease includes not only changes related to metabolic distress but also placental immunoendocrine adaptations, resulting in harmful effects to the mother and fetus. In this review, we focus on the placenta as an immuno-endocrine organ that can recognize and respond to the hyperglycemic environment. It synthesizes diverse chemicals that play a role in inflammation, innate defense, endocrine response, oxidative stress, and angiogenesis, all associated with different perinatal outcomes.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico; (A.O.-O.); (P.F.-E.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Pilar Velázquez
- Departamento de Ginecología y Obstetricia, Hospital Ángeles México, Ciudad de México 11800, Mexico;
| | - Carlos Ramírez-Isarraraz
- Clínica de Urología Ginecológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico;
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (INPer), Ciudad de México 11000, Mexico
| |
Collapse
|
31
|
Castillo-Castrejon M, Yamaguchi K, Rodel RL, Erickson K, Kramer A, Hirsch NM, Rolloff K, Jansson T, Barbour LA, Powell TL. Effect of type 2 diabetes mellitus on placental expression and activity of nutrient transporters and their association with birth weight and neonatal adiposity. Mol Cell Endocrinol 2021; 532:111319. [PMID: 33989714 PMCID: PMC8206039 DOI: 10.1016/j.mce.2021.111319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022]
Abstract
AIMS Infants born to women with Type 2 Diabetes Mellitus (T2DM) are at risk of being born large for gestational age due to excess fetal fat accretion. Placental nutrient transport determines fetal nutrient availability, impacting fetal growth. The aims of the study were to evaluate the effect of T2DM on placental insulin signaling, placental nutrient transporters and neonatal adiposity. METHODS Placentas were collected from BMI-matched normoglycemic controls (NGT, n = 9) and T2DM (n = 9) women. Syncytiotrophoblast microvillous (MVM) and basal (BM) plasma membranes were isolated. Expression of glucose (GLUT1, -4), fatty acid (FATP2, -4, -6, FAT/CD36), amino acid (SNAT1, -2, -4, LAT1, -2) transporters, insulin signaling, and System A transporter activity was determined. Neonatal fat mass (%) was measured in a subset of neonates born to T2DM women. RESULTS GLUT1 protein expression was increased (p = 0.001) and GLUT4 decreased (p = 0.006) in BM from T2DM. MVM FATP6 expression was increased (p = 0.02) and correlated with birth weight in both T2DM and NGT groups (r = 0.65, p = 0.02). BM FATP6 expression was increased (p = 0.01) in T2DM. In MVM of T2DM placentas, SNAT1 expression was increased (p = 0.05) and correlated with birth weight (r = 0.84, p = 0.004); SNAT2 was increased (p = 0.01), however System A transporter activity was not different between groups. MVM LAT1 expression was increased (p = 0.01) in T2DM and correlated with birth weight (r = 0.59, p = 0.04) and neonatal fat mass (r = 0.76, p = 0.06). CONCLUSION In pregnancies complicated by T2DM placental protein expression of transporters for glucose, amino acids and fatty acids is increased, which may contribute to increased fetal growth and neonatal adiposity.
Collapse
Affiliation(s)
- Marisol Castillo-Castrejon
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Kyohei Yamaguchi
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Rachel L Rodel
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kathryn Erickson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Anita Kramer
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nicole M Hirsch
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kristy Rolloff
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Linda A Barbour
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Theresa L Powell
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
32
|
Nakano H, Fajardo VM, Nakano A. The role of glucose in physiological and pathological heart formation. Dev Biol 2021; 475:222-233. [PMID: 33577830 PMCID: PMC8107118 DOI: 10.1016/j.ydbio.2021.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cells display distinct metabolic characteristics depending on its differentiation stage. The fuel type of the cells serves not only as a source of energy but also as a driver of differentiation. Glucose, the primary nutrient to the cells, is a critical regulator of rapidly growing embryos. This metabolic change is a consequence as well as a cause of changes in genetic program. Disturbance of fetal glucose metabolism such as in diabetic pregnancy is associated with congenital heart disease. In utero hyperglycemia impacts the left-right axis establishment, migration of cardiac neural crest cells, conotruncal formation and mesenchymal formation of the cardiac cushion during early embryogenesis and causes cardiac hypertrophy in late fetal stages. In this review, we focus on the role of glucose in cardiogenesis and the molecular mechanisms underlying heart diseases associated with hyperglycemia.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Viviana M Fajardo
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
33
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
34
|
Long Y, Wang YC, Yuan DZ, Dai XH, Liao LC, Zhang XQ, Zhang LX, Ma YD, Lei Y, Cui ZH, Zhang JH, Nie L, Yue LM. GLUT4 in Mouse Endometrial Epithelium: Roles in Embryonic Development and Implantation. Front Physiol 2021; 12:674924. [PMID: 34248664 PMCID: PMC8267529 DOI: 10.3389/fphys.2021.674924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
GLUT4 is involved in rapid glucose uptake among various kinds of cells to contribute to glucose homeostasis. Prior data have reported that aberrant glucose metabolism by GLUT4 dysfunction in the uterus could be responsible for infertility and increased miscarriage. However, the expression and precise functions of GLUT4 in the endometrium under physiological conditions remain unknown or controversial. In this study, we observed that GLUT4 exhibits a spatiotemporal expression in mouse uterus on pregnant days 1–4; its expression especially increased on pregnant day 4 during the window of implantation. We also determined that estrogen, in conjunction with progesterone, promotes the expression of GLUT4 in the endometrial epithelium in vivo or in vitro. GLUT4 is an important transporter that mediates glucose transport in endometrial epithelial cells (EECs) in vitro or in vivo. In vitro, glucose uptake decreased in mouse EECs when the cells were treated with GLUT4 small interfering RNA (siRNA). In vivo, the injection of GLUT4-siRNA into one side of the mouse uterine horns resulted in an increased glucose concentration in the uterine fluid on pregnant day 4, although it was still lower than in blood, and impaired endometrial receptivity by inhibiting pinopode formation and the expressions of leukemia inhibitory factor (LIF) and integrin ανβ3, finally affecting embryonic development and implantation. Overall, the obtained results indicate that GLUT4 in the endometrial epithelium affects embryo development by altering glucose concentration in the uterine fluid. It can also affect implantation by impairing endometrial receptivity due to dysfunction of GLUT4.
Collapse
Affiliation(s)
- Yun Long
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Department of Physiology, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yi-Cheng Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Dong-Zhi Yuan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xin-Hua Dai
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lin-Chuan Liao
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xue-Qin Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Li-Xue Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yong-Dan Ma
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Lei
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhi-Hui Cui
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jin-Hu Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Li Nie
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Li-Min Yue
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Bedell S, Hutson J, de Vrijer B, Eastabrook G. Effects of Maternal Obesity and Gestational Diabetes Mellitus on the Placenta: Current Knowledge and Targets for Therapeutic Interventions. Curr Vasc Pharmacol 2021; 19:176-192. [PMID: 32543363 DOI: 10.2174/1570161118666200616144512] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023]
Abstract
Obesity and gestational diabetes mellitus (GDM) are becoming more common among pregnant women worldwide and are individually associated with a number of placenta-mediated obstetric complications, including preeclampsia, macrosomia, intrauterine growth restriction and stillbirth. The placenta serves several functions throughout pregnancy and is the main exchange site for the transfer of nutrients and gas from mother to fetus. In pregnancies complicated by maternal obesity or GDM, the placenta is exposed to environmental changes, such as increased inflammation and oxidative stress, dyslipidemia, and altered hormone levels. These changes can affect placental development and function and lead to abnormal fetal growth and development as well as metabolic and cardiovascular abnormalities in the offspring. This review aims to summarize current knowledge on the effects of obesity and GDM on placental development and function. Understanding these processes is key in developing therapeutic interventions with the goal of mitigating these effects and preventing future cardiovascular and metabolic pathology in subsequent generations.
Collapse
Affiliation(s)
- Samantha Bedell
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Janine Hutson
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| | - Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, ON N6A 3B4, Canada
| |
Collapse
|
36
|
Tezuka K, Fuchi N, Okuma K, Tsukiyama T, Miura S, Hasegawa Y, Nagata A, Komatsu N, Hasegawa H, Sasaki D, Sasaki E, Mizukami T, Kuramitsu M, Matsuoka S, Yanagihara K, Miura K, Hamaguchi I. HTLV-1 targets human placental trophoblasts in seropositive pregnant women. J Clin Invest 2021; 130:6171-6186. [PMID: 33074247 DOI: 10.1172/jci135525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is mainly transmitted vertically through breast milk. The rate of mother-to-child transmission (MTCT) through formula feeding, although significantly lower than through breastfeeding, is approximately 2.4%-3.6%, suggesting the possibility of alternative transmission routes. MTCT of HTLV-1 might occur through the uterus, birth canal, or placental tissues; the latter is known as transplacental transmission. Here, we found that HTLV-1 proviral DNA was present in the placental villous tissues of the fetuses of nearly half of pregnant carriers and in a small number of cord blood samples. An RNA ISH assay showed that HTLV-1-expressing cells were present in nearly all subjects with HTLV-1-positive placental villous tissues, and their frequency was significantly higher in subjects with HTLV-1-positive cord blood samples. Furthermore, placental villous trophoblasts expressed HTLV-1 receptors and showed increased susceptibility to HTLV-1 infection. In addition, HTLV-1-infected trophoblasts expressed high levels of viral antigens and promoted the de novo infection of target T cells in a humanized mouse model. In summary, during pregnancy of HTLV-1 carriers, HTLV-1 was highly expressed in placental villous tissues, and villous trophoblasts showed high HTLV-1 sensitivity, suggesting that MTCT of HTLV-1 occurs through the placenta.
Collapse
Affiliation(s)
- Kenta Tezuka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Fuchi
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazu Okuma
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Tsukiyama
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shoko Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuri Hasegawa
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ai Nagata
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nahoko Komatsu
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sahoko Matsuoka
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
37
|
Hu M, Li J, Baker PN, Tong C. Revisiting preeclampsia: a metabolic disorder of the placenta. FEBS J 2021; 289:336-354. [PMID: 33529475 DOI: 10.1111/febs.15745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
Preeclampsia (PE) is a leading cause of maternal and neonatal mortality and morbidity worldwide, impacting the long-term health of both mother and offspring. PE has long been characterized by deficient trophoblast invasion into the uterus and consequent placental hypoperfusion, yet the upstream causative factors and effective interventional targets for PE remain unknown. Alterations in the metabolism of preeclamptic placentas are thought to result from placental ischemia, while disturbances of the metabolism and of metabolites in PE pathogenesis are largely ignored. In fact, as one of the largest fetal organs at birth, the placenta consumes a considerable amount of glucose and fatty acid. Increasing evidence suggests glucose and fatty acid exist as energy substrates and regulate placental development through bioactive derivates. Moreover, recent findings have revealed that the placental metabolism adapts readily to environmental changes, altering its response to nutrients and endocrine signals; this adaptability optimizes pregnancy outcomes by diversifying available carbon sources for energy production, hormone synthesis, angiogenesis, immune activation, and tolerance, and fetoplacental growth. These observations raise the possibility that carbohydrate and lipid metabolism abnormalities play a role in both the etiology and clinical progression of PE, sparking a renewed interest in the interrelationship between PE and metabolic dysregulation. This review will focus on key metabolic substrates and regulatory molecules in the placenta and aim to provide novel insights with respect to the metabolism's role in modulating placental development and functions. Further investigations from this perspective are poised to decipher the etiology of PE and suggest potential therapies.
Collapse
Affiliation(s)
- Mingyu Hu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
38
|
Song TR, Su GD, Chi YL, Wu T, Xu Y, Chen CC. Dysregulated miRNAs contribute to altered placental glucose metabolism in patients with gestational diabetes via targeting GLUT1 and HK2. Placenta 2021; 105:14-22. [PMID: 33517149 DOI: 10.1016/j.placenta.2021.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Dysregulated genes in glucose transport and metabolize pathways have been found in patients with Gestational diabetes (GDM), but the underlying mechanisms were still unclear. MATERIALS AND METHODS Placental villous samples were collected from 31 patients with GDM and 20 healthy controls. The expression of GLUT1, GLUT4, GLUT9 and HK2 was examined by immunoblotting and qRT-PCR. The miRNAs have the potential targeting GLUT1 and HK2 were predicted using online bioinformatics tool: TargetScan. The interaction between miRNAs and target genes were confirmed by dual luciferase assay and immunoblotting. The function of miR-9 and miR-22 on glucose metabolism was examined by glucose uptake assay and lactate secretion assay. RESULTS GLUT1 and HK2 proteins level was found upregulated in patients with GDM, but the mRNA level was not significantly changed. Predicted by using bioinformatics tools and confirmed by dual luciferase assay and immunoblotting, GLUT1 was identified as a target of miR-9 and miR-22, whereas HK2 was identified as a target of miR-9. MiR-9 and miR-22 level was found reduced in the placenta villous and negatively correlated with the expression of GLUT1 and HK2. Functional studies indicated that miR-9 and miR-22 inhibitors upregulated the expression of GLUT1 and HK2, and then increased the glucose uptake, lactate secretion, cell viability and repressed apoptosis in primary syncytiotrophoblasts (STBs) and HTR8/SVneo cells. DISCUSSION The upregulation of GLUT1 and HK2 in the placenta, which is induced by miR-9 and miR-22 reduction, contributes to the disordered glucose metabolism in patients with GDM.
Collapse
Affiliation(s)
- Tian-Rong Song
- Obstetrics and Gynecology Department, University of Hong Kong Shenzhen Hospital, 518000, Shenzhen, Guangdong, China.
| | - Gui-Dong Su
- Obstetrics and Gynecology Department, Nanfang Hospital Affiliated to Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Ya-Li Chi
- Obstetrics and Gynecology Department, Nanfang Hospital Affiliated to Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Ting Wu
- Obstetrics and Gynecology Department, University of Hong Kong Shenzhen Hospital, 518000, Shenzhen, Guangdong, China
| | - Yue Xu
- Obstetrics and Gynecology Department, University of Hong Kong Shenzhen Hospital, 518000, Shenzhen, Guangdong, China
| | - Chun-Chun Chen
- Obstetrics and Gynecology Department, University of Hong Kong Shenzhen Hospital, 518000, Shenzhen, Guangdong, China
| |
Collapse
|
39
|
Mohammadi E, Behnam B, Mohammadinejad R, Guest PC, Simental-Mendía LE, Sahebkar A. Antidiabetic Properties of Curcumin: Insights on New Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:151-164. [PMID: 34331689 DOI: 10.1007/978-3-030-56153-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Plant extracts have been used to treat a wide range of human diseases. Curcumin, a bioactive polyphenol derived from Curcuma longa L., exhibits therapeutic effects against diabetes while only negligible adverse effects have been observed. Antioxidant and anti-inflammatory properties of curcumin are the main and well-recognized pharmacological effects that might explain its antidiabetic effects. Additionally, curcumin may regulate novel signaling molecules and enzymes involved in the pathophysiology of diabetes, including glucagon-like peptide-1, dipeptidyl peptidase-4, glucose transporters, alpha-glycosidase, alpha-amylase, and peroxisome proliferator-activated receptor gamma (PPARγ). Recent findings from in vitro and in vivo studies on novel signaling pathways involved in the potential beneficial effects of curcumin for the treatment of diabetes are discussed in this review.
Collapse
Affiliation(s)
- Elahe Mohammadi
- Student Research Committee, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Behnam
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Reza Mohammadinejad
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
- Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
40
|
Watkins OC, Yong HEJ, Sharma N, Chan SY. A review of the role of inositols in conditions of insulin dysregulation and in uncomplicated and pathological pregnancy. Crit Rev Food Sci Nutr 2020; 62:1626-1673. [PMID: 33280430 DOI: 10.1080/10408398.2020.1845604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositols, a group of 6-carbon polyols, are highly bioactive molecules derived from diet and endogenous synthesis. Inositols and their derivatives are involved in glucose and lipid metabolism and participate in insulin-signaling, with perturbations in inositol processing being associated with conditions involving insulin resistance, dysglycemia and dyslipidemia such as polycystic ovary syndrome and diabetes. Pregnancy is similarly characterized by substantial and complex changes in glycemic and lipidomic regulation as part of maternal adaptation and is also associated with physiological alterations in inositol processing. Disruptions in maternal adaptation are postulated to have a critical pathophysiological role in pregnancy complications such as gestational diabetes and pre-eclampsia. Inositol supplementation has shown promise as an intervention for the alleviation of symptoms in conditions of insulin resistance and for gestational diabetes prevention. However, the mechanisms behind these affects are not fully understood. In this review, we explore the role of inositols in conditions of insulin dysregulation and in pregnancy, and identify priority areas for research. We particularly examine the role and function of inositols within the maternal-placental-fetal axis in both uncomplicated and pathological pregnancies. We also discuss how inositols may mediate maternal-placental-fetal cross-talk, and regulate fetal growth and development, and suggest that inositols play a vital role in promoting healthy pregnancy.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
41
|
Let-7a-5p inhibits triple-negative breast tumor growth and metastasis through GLUT12-mediated warburg effect. Cancer Lett 2020; 495:53-65. [PMID: 32946964 DOI: 10.1016/j.canlet.2020.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is known for its aggressive phenotype with limited treatment modalities and poor prognosis. The Warburg effect (aerobic glycolysis) is a hallmark of cancer that serves as a promising target for diagnosis and therapy. However, how aerobic glycolysis regulates TNBC remains largely unknown. Here, we show that the glucose transporter (GLUT) family member GLUT12 promotes TNBC tumor growth and metastasis in vitro and in vivo through regulating aerobic glycolysis. MicroRNA let-7a-5p, a tumor suppressor, inhibited GLUT12 expression by targeting its 3'-untranslated region, and suppressed GLUT12-mediated TNBC tumor growth, metastasis, and glycolytic function, including alterations of glucose uptake, lactate production, ATP generation, extracellular acidification rate, and oxygen consumption rate. Inhibiting aerobic glycolysis abolished the ability of let-7a-5p and GLUT12 to regulate TNBC cell proliferation, migration and invasion. In TNBC patients, GLUT12 was significantly upregulated, and let-7a-5p expression was inversely correlated with GLUT12 expression. High expression of let-7a-5p and GLUT12 predicted better and worse clinical outcomes, respectively. Taken together, our results indicate that the let-7a-5p/GLUT12 axis plays key roles in TNBC tumor growth and metastasis, and aerobic glycolysis, and is a potential target for TNBC treatment.
Collapse
|
42
|
Physical Activity During Pregnancy Is Associated with Increased Placental FATP4 Protein Expression. Reprod Sci 2020; 27:1909-1919. [PMID: 32519158 DOI: 10.1007/s43032-020-00210-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Placental function is of utmost importance to ensure proper fetal development in utero. Among the placenta's many roles includes the passage of sufficient macronutrients, such as glucose, amino acids, and fatty acids, to the fetus. Macronutrients are carried from maternal circulation to the fetus across transporters within the placenta. The objective of this study was to examine the impact of (i) an acute bout of exercise and (ii) chronic exercise participation on placenta nutrient transporter expression and localization. To investigate the effect of acute exercise, pre- and post-exercise serum was collected from pregnant (n = 5) and non-pregnant (n = 5) women who underwent a moderate-intensity exercise session and used to treat BeWo cells. To assess chronic physical activity, we analyzed term placenta from women categorized as active (n = 10) versus non-active (n = 10). Protein expression and localization for the transporters GLUT1, SNAT1, and FATP4 were examined for both groups. GLUT1 expression in BeWo cells treated with serum from pregnant women was higher compared with that from non-pregnant, independent of exercise. FATP4 protein expression was elevated in the term placenta of active women. Immunohistochemistry analysis of term placenta illustrated increased staining of FATP4 in placental tissue from active women and differential staining pattern of GLUT1 depending on physical activity status. Chronic exercise during pregnancy increases the expression of placental FATP4 in vivo, suggesting greater metabolism and usage of fatty acids. Additionally, serum from pregnant women could contain factors that increase GLUT1 protein expression in vitro. BeWo cells treated with pre- and post-exercise serum from pregnant women resulted in greater GLUT1 expression compared with those treated with pre- and post-exercise serum from non-pregnant women. Physical activity appears to differentially impact key placental transporters involved in the transfer and availability of nutrients from mother to fetus. Future research ought to examine the mechanisms involved in regulating these changes and their impact on fetal growth and health.
Collapse
|
43
|
Rizzo HE, Escaname EN, Alana NB, Lavender E, Gelfond J, Fernandez R, Hibbs MA, King JM, Carr NR, Blanco CL. Maternal diabetes and obesity influence the fetal epigenome in a largely Hispanic population. Clin Epigenetics 2020; 12:34. [PMID: 32075680 PMCID: PMC7031937 DOI: 10.1186/s13148-020-0824-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/05/2020] [Indexed: 01/12/2023] Open
Abstract
Background Obesity and diabetes mellitus are directly implicated in many adverse health consequences in adults as well as in the offspring of obese and diabetic mothers. Hispanic Americans are particularly at risk for obesity, diabetes, and end-stage renal disease. Maternal obesity and/or diabetes through prenatal programming may alter the fetal epigenome increasing the risk of metabolic disease in their offspring. The aims of this study were to determine if maternal obesity or diabetes mellitus during pregnancy results in a change in infant methylation of CpG islands adjacent to targeted genes specific for obesity or diabetes disease pathways in a largely Hispanic population. Methods Methylation levels in the cord blood of 69 newborns were determined using the Illumina Infinium MethylationEPIC BeadChip. Over 850,000 different probe sites were analyzed to determine whether maternal obesity and/or diabetes mellitus directly attributed to differential methylation; epigenome-wide and regional analyses were performed for significant CpG sites. Results Following quality control, agranular leukocyte samples from 69 newborns (23 normal term (NT), 14 diabetes (DM), 23 obese (OB), 9 DM/OB) were analyzed for over 850,000 different probe sites. Contrasts between the NT, DM, OB, and DM/OB were considered. After correction for multiple testing, 15 CpGs showed differential methylation from the NT, associated with 10 differentially methylated genes between the diabetic and non-diabetic subgroups, CCDC110, KALRN, PAG1, GNRH1, SLC2A9, CSRP2BP, HIVEP1, RALGDS, DHX37, and SCNN1D. The effects of diabetes were partly mediated by the altered methylation of HOOK2, LCE3C, and TMEM63B. The effects of obesity were partly mediated by the differential methylation of LTF and DUSP22. Conclusions The presented data highlights the associated altered methylation patterns potentially mediated by maternal diabetes and/or obesity. Larger studies are warranted to investigate the role of both the identified differentially methylated loci and the effects on newborn body composition and future health risk factors for metabolic disease. Additional future consideration should be targeted to the role of Hispanic inheritance. Potential future targeting of transgenerational propagation and developmental programming may reduce population obesity and diabetes risk.
Collapse
Affiliation(s)
- Heather E Rizzo
- Department of Biology, Trinity University, 1 Trinity Place, San Antonio, TX, 78212, USA
| | - Elia N Escaname
- Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.,University Health System, San Antonio, TX, USA
| | - Nicholas B Alana
- Department of Biology, Trinity University, 1 Trinity Place, San Antonio, TX, 78212, USA.,University Health System, San Antonio, TX, USA
| | - Elizabeth Lavender
- Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.,University Health System, San Antonio, TX, USA
| | | | | | - Matthew A Hibbs
- Department of Biology, Trinity University, 1 Trinity Place, San Antonio, TX, 78212, USA
| | - Jonathan M King
- Department of Biology, Trinity University, 1 Trinity Place, San Antonio, TX, 78212, USA.
| | - Nicholas R Carr
- Department of Neonatal Medicine, Brooke Army Medical Center, San Antonio, TX, USA
| | - Cynthia L Blanco
- Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.,University Health System, San Antonio, TX, USA
| |
Collapse
|
44
|
Study of the target effect of mannose modified liposomes on diabetic rat kidney based on GLUT. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Bayraktar B, Balıkoğlu M, Kanmaz AG. Pregnancy outcomes of women with hypoglycemia in the oral glucose tolerance test. J Gynecol Obstet Hum Reprod 2020; 49:101703. [PMID: 32018048 DOI: 10.1016/j.jogoh.2020.101703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the effects of hypoglycemia measured using 2-h 75-g oral glucose tolerance test (OGTT) on neonatal biometrics (birth weight, head circumference and body length of newborns) and perinatal outcomes. MATERIALS AND METHODS According to the definition of hypoglycemia by the American Diabetes Association, women with blood glucose levels of ≤70 mg/dL after fasting or at 1 or 2 h after eating measured using on 2-h 75-g OGTT were grouped into a hypoglycemia group. In accordance with the criteria of World Health Organization and the International Association of Diabetes and Pregnancy Study Groups, as per the 2-h 75-g OGTT performed in the second trimester, women with gestational diabetes and were excluded from the study. Also, women meeting the following criteria were excluded from the study: missing records, aged <19 or ≥35 years, multiple pregnancies, delivery before the 24th gestational week, and ≤500-g newborn. Other exclusion criteria included pregnant women with known type 1 and type 2 diabetes mellitus, gestational or essential hypertension, cigarette and/or alcohol abuse, thyroid disease, BMI of <19 and >30, placental abnormalities with variation and/or dysfunction, intrauterine growth restriction, and abnormalities of the umbilical cord. RESULTS A total of 625 pregnant women who met the inclusion criteria were included in the study. Hypoglycemia was found in 71 pregnant women according to 2-h 75-g OGTT. The remaining 554 women were grouped into the normoglycemia group. The birth weight, head circumference, and body length of newborns were significantly lower in the hypoglycemia group (p < 0.001, p = 0.004, and p = 0.006, respectively). There was no significant difference between both groups in terms of body mass index, parity, fetal sex, delivery type, and Apgar scores. CONCLUSIONS Glycemia with blood glucose levels of ≤70 mg/dL measured using 75-g OGTT during pregnancy is associated with lower birth weight, small head circumference, and short body length in newborns compared to the normoglycemic group. Hence, pregnant women who are diagnosed with blood glucose levels of ≤70 mg/dL using 2-h 75-g OGTT should be carefully managed.
Collapse
Affiliation(s)
- Burak Bayraktar
- Department of Obstetrics and Gynecology, Tepecik Training and Research Hospital Izmir, 35170, Turkey.
| | - Meriç Balıkoğlu
- Department of Obstetrics and Gynecology, Tepecik Training and Research Hospital Izmir, 35170, Turkey.
| | - Ahkam Göksel Kanmaz
- Department of Obstetrics and Gynecology, Tepecik Training and Research Hospital Izmir, 35170, Turkey.
| |
Collapse
|
46
|
Stanirowski PJ, Lipa M, Bomba-Opoń D, Wielgoś M. Expression of placental glucose transporter proteins in pregnancies complicated by fetal growth disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:95-131. [PMID: 33485490 DOI: 10.1016/bs.apcsb.2019.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During pregnancy fetal growth disorders, including fetal macrosomia and fetal growth restriction (FGR) are associated with numerous maternal-fetal complications, as well as due to the adverse effect of the intrauterine environment lead to an increased morbidity in adult life. Accumulating evidence suggests that occurrence of fetal macrosomia or FGR, may be associated with alterations in the transfer of nutrients across the placenta, in particular of glucose. The placental expression and activity of specific GLUT transporters are the main regulatory factors in the process of maternal-fetal glucose exchange. This review article summarizes the results of previous studies on the expression of GLUT transporters in the placenta, concentrating on human pregnancies complicated by intrauterine fetal growth disorders. Characteristics of each transporter protein found in the placenta is presented, alterations in the location and expression of GLUT isoforms observed in individual placental compartments are described, and the factors regulating the expression of selected GLUT proteins are examined. Based on the above data, the potential function of each GLUT isoform in the maternal-fetal glucose transfer is determined. Further on, a detailed analysis of changes in the expression of glucose transporters in pregnancies complicated by fetal growth disorders is given, and significance of these modifications for the pathogenesis of fetal macrosomia and FGR is discussed. In the final part novel interventional approaches that might reduce the risk associated with abnormalities of intrauterine fetal growth through modifications of placental GLUT-mediated glucose transfer are explored.
Collapse
Affiliation(s)
- Paweł Jan Stanirowski
- 1(st) Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland; Club 35. Polish Society of Gynecologists and Obstetricians, Warsaw, Poland
| | - Michał Lipa
- 1(st) Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland; Club 35. Polish Society of Gynecologists and Obstetricians, Warsaw, Poland
| | - Dorota Bomba-Opoń
- 1(st) Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Mirosław Wielgoś
- 1(st) Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
47
|
Sarina, Li DF, Feng ZQ, Du J, Zhao WH, Huang N, Jia JC, Wu ZY, Alamusi, Wang YY, Ji XL, Yu L. Mechanism of Placenta Damage in Gestational Diabetes Mellitus by Investigating TXNIP of Patient Samples and Gene Functional Research in Cell Line. Diabetes Ther 2019; 10:2265-2288. [PMID: 31654346 PMCID: PMC6848504 DOI: 10.1007/s13300-019-00713-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is a gestational complication that affects maternal and child health. The placenta provides the fetus with the necessary nutrition and oxygen and takes away the metabolic waste. Patients with GDM are diagnosed and treated merely on the basis of the blood glucose level; this approach does nothing to help evaluate the status of the placenta, which is worth noting in GDM. The purpose of this research was to clarify the relation between thioredoxin-interacting protein (TXNIP) and reactive oxygen species (ROS) in the placenta of patients with GDM, which has thus far remained unclear. METHODS The expression of TXNIP in the placentas of 10 patients with GDM and 10 healthy puerperae (control group) was investigated via immunofluorescence. The relation among TXNIP, ROS, and the function of mitochondria was explored in HTR-8/SVneo cells stimulated by high glucose (HG). RESULTS The results showed the expression of TXNIP in the placentas of patients with GDM was higher than that in the control group, and the expression of TXNIP in HTR-8/SVneo cells treated with HG was higher than that in the control group, causing the accumulation of ROS and changes of mitochondria, promoting apoptosis and inhibition of migration. CONCLUSIONS High expression of TXNIP caused by HG mediates the increasing ROS and the mitochondria dysfunction in GDM; this impairs the function of the placenta and is the basis for the prediction of perinatal outcome.
Collapse
Affiliation(s)
- Sarina
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Dong Fang Li
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Zong Qi Feng
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jie Du
- Department of Gynecology and Obstetrics, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Wen Hua Zhao
- Department of Gynecology and Obstetrics, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Na Huang
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Jian Chao Jia
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Zhou Ying Wu
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Alamusi
- Department of Ophthalmology, Inner Mongolia International Mongolian Hospital, Hohhot, 010000, China
| | - Yong Yun Wang
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Xiao Li Ji
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China
| | - Lan Yu
- Department of Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, 010010, China.
| |
Collapse
|
48
|
Kappen C, Kruger C, Jones S, Herion NJ, Salbaum JM. Maternal diet modulates placental nutrient transporter gene expression in a mouse model of diabetic pregnancy. PLoS One 2019; 14:e0224754. [PMID: 31774824 PMCID: PMC6881028 DOI: 10.1371/journal.pone.0224754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
Diabetes in the mother during pregnancy is a risk factor for birth defects and perinatal complications and can affect long-term health of the offspring through developmental programming of susceptibility to metabolic disease. We previously showed that Streptozotocin-induced maternal diabetes in mice is associated with altered cell differentiation and with smaller size of the placenta. Placental size and fetal size were affected by maternal diet in this model, and maternal diet also modulated the risk for neural tube defects. In the present study, we sought to determine the extent to which these effects might be mediated through altered expression of nutrient transporters, specifically glucose and fatty acid transporters in the placenta. Our results demonstrate that expression of several transporters is modulated by both maternal diet and maternal diabetes. Diet was revealed as the more prominent determinant of nutrient transporter expression levels, even in pregnancies with uncontrolled diabetes, consistent with the role of diet in placental and fetal growth. Notably, the largest changes in nutrient transporter expression levels were detected around midgestation time points when the placenta is being formed. These findings place the critical time period for susceptibility to diet exposures earlier than previously appreciated, implying that mechanisms underlying developmental programming can act on placenta formation.
Collapse
Affiliation(s)
- Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
- * E-mail:
| | - Claudia Kruger
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Sydney Jones
- Baton Rouge, Louisiana, United States of America Regulation of Gene Expression Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Nils J. Herion
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
- Baton Rouge, Louisiana, United States of America Regulation of Gene Expression Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - J. Michael Salbaum
- Baton Rouge, Louisiana, United States of America Regulation of Gene Expression Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
49
|
Patel OV, Casey T, Plaut K. Profiling solute-carrier transporters in key metabolic tissues during the postpartum evolution of mammary epithelial cells from nonsecretory to secretory. Physiol Genomics 2019; 51:539-552. [PMID: 31545931 DOI: 10.1152/physiolgenomics.00058.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modifications in the abundance of solute-carrier (SLC) transcripts in tandem with adjustments in genes-associated with energy homeostasis during the postpartum transition of the mammary epithelial cells (MEC) from nonsecretory to secretory is pivotal for supporting milk synthesis. The goal of this study was to identify differentially expressed SLC genes across key metabolic tissues between late pregnancy and onset of lactation. Total RNA was isolated from the mammary, liver, and adipose tissues collected from rat dams on day 20 of pregnancy (P20) and day 1 of lactation (L1) and gene expression was measured with Rat 230 2.0 Affymetrix GeneChips. LIMMA was utilized to identify the differential gene expression patterns between P20 and L1 tissues. Transcripts engaged in conveying anions, cations, carboxylates, sugars, amino acids, metals, nucleosides, vitamins, and fatty acids were significantly increased (P < 0.05) in MEC during the P20 to L1 shift. Downregulated (P < 0.05) genes in the mammary during the physiological transition included GLUT8 and SLC45a3. In the liver, SLC genes encoding for anion, carbonyl, and nucleotide sugar transporters were upregulated (P < 0.05) at L1. while genes facilitating transportation of anions and hexose were increased (P < 0.05), from P20 to L1 in the adipose tissue. GLUT1 and GLUT4 in the liver, along with GLUT4 and SGLT2 in the adipose tissue, were repressed (P < 0.05) at L1. Our results illustrate that MEC exhibit dynamic molecular plasticity during the nonsecretory to secretory transition and increase biosynthetic capacity through a coordinated tissue specific SLC transcriptome modification to facilitate substrate transfer.
Collapse
Affiliation(s)
- Osman V Patel
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
50
|
Euglycemic Diabetic Ketoacidosis in Pregnancy: A Case Report and Review of Current Literature. Case Rep Crit Care 2019; 2019:8769714. [PMID: 31531246 PMCID: PMC6721267 DOI: 10.1155/2019/8769714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/23/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetic ketoacidosis (DKA) in pregnancy is associated with high fetal mortality rates. A small percentage of DKA occurs in the absence of high glucose levels seen in traditional DKA. Prompt recognition and management is crucial. We report a case of a 30-year-old pregnant woman with type 1 diabetes mellitus admitted with euglycemic DKA (blood glucose <200 mg/dL). Initial laboratory testing revealed a severe anion gap acidosis with pH 7.11, anion gap 23, elevated β-hydroxybutyric acid of 9.60 mmol/L, and a blood glucose of 183 mg/dL—surprisingly low given her severe acidosis. The ketoacidosis persisted despite high doses of glucose and insulin infusions. Due to nonresolving acidosis, her hospital course was complicated by spontaneous intrauterine fetal demise. Euglycemia and severe acidosis continued to persist until delivery of fetus and placenta occurred. It was observed that the insulin sensitivity dramatically increased after delivery of fetus and placenta leading to rapid correction of ketoacidosis. This case highlights that severe ketonemia can occur despite the absence of severely elevated glucose levels. We discuss the mechanism that leads to this pathophysiologic state and summarize previously published case reports about euglycemic DKA in pregnancy.
Collapse
|