1
|
Ullah H, Dacrema M, Buccato DG, Fayed MAA, De Lellis LF, Morone MV, Di Minno A, Baldi A, Daglia M. A Narrative Review on Plant Extracts for Metabolic Syndrome: Efficacy, Safety, and Technological Advances. Nutrients 2025; 17:877. [PMID: 40077747 PMCID: PMC11901876 DOI: 10.3390/nu17050877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Metabolic syndrome, a global health concern, is characterized by visceral obesity, hyperglycemia, dyslipidemia, hypertension, and chronic low-grade inflammation. Current therapeutic options are limited by their varying efficacy and significantly adverse side effects, fueling interest in natural products, particularly plant extracts, as potential preventive interventions for high-risk individuals. This review examines the role of plant extracts in mitigating metabolic syndrome risk factors, addressing safety concerns and exploring associated technological advancements. The literature indicates that plant extracts hold promise for addressing the pathophysiology of metabolic dysfunction. However, challenges such as safety concerns, a lack of standardized regulation, and potential drug-plant interactions currently limit their clinical application. Rigorous, long-term clinical trials are necessary to confirm the efficacy and safety of plant extracts before they can be established as a preventive strategy for managing metabolic syndrome.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (D.G.B.); (L.F.D.L.); (A.D.M.); (A.B.)
- School of Medicine, Xi’an International University, Xi’an 710077, China
| | - Marco Dacrema
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (D.G.B.); (L.F.D.L.); (A.D.M.); (A.B.)
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (D.G.B.); (L.F.D.L.); (A.D.M.); (A.B.)
| | - Marwa A. A. Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat 32897, Egypt;
| | - Lorenza Francesca De Lellis
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (D.G.B.); (L.F.D.L.); (A.D.M.); (A.B.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (D.G.B.); (L.F.D.L.); (A.D.M.); (A.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Alessandra Baldi
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (D.G.B.); (L.F.D.L.); (A.D.M.); (A.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (D.G.B.); (L.F.D.L.); (A.D.M.); (A.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Yibcharoenporn C, Kongkaew T, Worakajit N, Khumjiang R, Saetang P, Satitsri S, Rukachaisirikul V, Muanprasat C. Inhibition of CFTR-mediated intestinal chloride secretion by nornidulin: Cellular mechanisms and anti-secretory efficacy in human intestinal epithelial cells and human colonoids. PLoS One 2024; 19:e0314723. [PMID: 39715175 DOI: 10.1371/journal.pone.0314723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
Secretory diarrhea, a major global health concern, particularly among young children, is often characterized by excessive chloride secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) channel. Nornidulin, a fungus-derived natural product from Aspergillus unguis, has previously been shown to inhibit cAMP-induced Cl- secretion in T84 cells (human intestinal cell lines). However, the cellular mechanism of nornidulin in inhibiting cAMP-induced Cl- secretion and its anti-secretory efficacy is still unknown especially in a human colonoid model, a preclinical model recapitulating intestinal physiology in humans. This research study aimed to examine the mechanism of nornidulin to inhibit cAMP-induced chloride secretion and assess its ability to reduce fluid secretion in both T84 cells and human colonoid models. Apical Cl- current analyses showed that nornidulin inhibited CFTR-mediated Cl- current in T84 cells with IC50 of ~1.5 μM. Nornidulin treatment had no effect on CFTR protein expression. Additionally, the inhibitory effects of nornidulin on CFTR-mediated chloride currents were unaffected by the presence of compounds that inhibit negative regulators of CFTR function, such as protein phosphatases, AMP-activated protein kinases, and phosphodiesterases. Interestingly, nornidulin suppressed the increase in intracellular cAMP levels caused by forskolin, an activator of adenylate cyclases, in T84 cells. Using human colonoid models, we found that nornidulin significantly suppressed the forskolin and cholera toxin-induced fluid secretion, indicating that nornidulin exerted an anti-secretory effect in human intestinal epithelia. Collectively, nornidulin represents a novel class of fungus-derived inhibitors of CFTR-mediated Cl- secretion, potentially making it a promising candidate for the development of anti-secretory treatments.
Collapse
Affiliation(s)
- Chamnan Yibcharoenporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, Thailand
| | - Thidarat Kongkaew
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, Thailand
| | - Nichakorn Worakajit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, Thailand
- Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rungtiwa Khumjiang
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, Thailand
| | - Praphatsorn Saetang
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Saravut Satitsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, Thailand
| | - Vatcharin Rukachaisirikul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, Thailand
| |
Collapse
|
3
|
Tiwari DD, Thorat VM, Pakale PV, Patil S. Effects of Berberis asiatica, Withania somnifera, and Their Combination on Body Weight in Streptozotocin-Nicotinamide-Induced Type 2 Diabetes in Wistar Rats. Cureus 2024; 16:e68295. [PMID: 39350820 PMCID: PMC11441830 DOI: 10.7759/cureus.68295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance, impaired insulin secretion, and beta cell dysfunction, often leading to chronic hyperglycemia and associated complications. Berberis asiatica (BA) and Withania somnifera (WS) are ancient medicinal plants with a reputation for having potential therapeutic effects in diabetes management. The purpose of this study was to look into how body weight (BW) was affected in streptozotocin-nicotinamide (STZ-NIC) induced T2DM in Wistar rats by BA, WS, and their polyherbal combination (PHC). Materials and methods Seventy-eight Wistar rats of both sexes were divided into 13 groups, with six rats in each group, including normal and diabetic controls, and treated with varying doses of BA, WS, and PHC. The rats were under observation over the course of 35 days for any change in BW. The Organization for Economic Co-operation and Development (OECD) rules and guidelines were followed in the conduct of acute toxicity tests. One-way analysis of variance (ANOVA), followed by Tukey-Kramer post hoc tests, was used for statistical analysis. Results The findings indicated that the highest dose of BA (1000 mg/kg) significantly improved BW in diabetic rats, approaching that of the normal control group. The combination of BA and WS also demonstrated significant improvements in BW, suggesting a synergistic effect. The standard antidiabetic drugs, metformin and glimepiride, were effective in increasing BW in diabetic rats. Conclusion The study concludes that BA, WS, and their combination have a positive impact on BW management in T2DM rats, with the combination therapy showing enhanced effects. These findings support the potential utilization of these herbs in managing BW and other T2DM-associated metabolic disturbances and abnormalities.
Collapse
Affiliation(s)
- Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Prathamesh V Pakale
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Sarika Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
4
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
5
|
Gasmi A, Asghar F, Zafar S, Oliinyk P, Khavrona O, Lysiuk R, Peana M, Piscopo S, Antonyak H, Pen JJ, Lozynska I, Noor S, Lenchyk L, Muhammad A, Vladimirova I, Dub N, Antoniv O, Tsal O, Upyr T, Bjørklund G. Berberine: Pharmacological Features in Health, Disease and Aging. Curr Med Chem 2024; 31:1214-1234. [PMID: 36748808 DOI: 10.2174/0929867330666230207112539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Berberine is the main active compound of different herbs and is defined as an isoquinoline quaternary botanical alkaloid found in barks and roots of numerous plants. It exhibits a wide range of pharmacological effects, such as anti-obesity and antidiabetic effects. Berberine has antibacterial activity against a variety of microbiota, including many bacterial species, protozoa, plasmodia, fungi, and trypanosomes. OBJECTIVE This review describes the role of berberine and its metabolic effects. It also discusses how it plays a role in glucose metabolism, fat metabolism, weight loss, how it modulates the gut microbiota, and what are its antimicrobial properties along with its potential side effects with maximal tolerable dosage. METHODS Representative studies were considered and analyzed from different scientific databases, including PubMed and Web of Science, for the years 1982-2022. RESULTS Literature analysis shows that berberine affects many biochemical and pharmacological pathways that theoretically yield a positive effect on health and disease. Berberine exhibits neuroprotective properties in various neurodegenerative and neuropsychological ailments. Despite its low bioavailability after oral administration, berberine is a promising tool for several disorders. A possible hypothesis would be the modulation of the gut microbiome. While the evidence concerning the aging process in humans is more limited, preliminary studies have shown positive effects in several models. CONCLUSION Berberine could serve as a potential candidate for the treatment of several diseases. Previous literature has provided a basis for scientists to establish clinical trials in humans. However, for obesity, the evidence appears to be sufficient for hands-on use.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Farah Asghar
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, Lahore, Pakistan
| | - Saba Zafar
- Department of Research, The Women University, Multan, Pakistan
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Khavrona
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Iryna Lozynska
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Akram Muhammad
- Department of Research, Government College University, Faisalabad, Pakistan
| | - Inna Vladimirova
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | - Olha Antoniv
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Tsal
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Taras Upyr
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
6
|
Suciu I, Delp J, Gutbier S, Suess J, Henschke L, Celardo I, Mayer TU, Amelio I, Leist M. Definition of the Neurotoxicity-Associated Metabolic Signature Triggered by Berberine and Other Respiratory Chain Inhibitors. Antioxidants (Basel) 2023; 13:49. [PMID: 38247474 PMCID: PMC10812665 DOI: 10.3390/antiox13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
To characterize the hits from a phenotypic neurotoxicity screen, we obtained transcriptomics data for valinomycin, diethylstilbestrol, colchicine, rotenone, 1-methyl-4-phenylpyridinium (MPP), carbaryl and berberine (Ber). For all compounds, the concentration triggering neurite degeneration correlated with the onset of gene expression changes. The mechanistically diverse toxicants caused similar patterns of gene regulation: the responses were dominated by cell de-differentiation and a triggering of canonical stress response pathways driven by ATF4 and NRF2. To obtain more detailed and specific information on the modes-of-action, the effects on energy metabolism (respiration and glycolysis) were measured. Ber, rotenone and MPP inhibited the mitochondrial respiratory chain and they shared complex I as the target. This group of toxicants was further evaluated by metabolomics under experimental conditions that did not deplete ATP. Ber (204 changed metabolites) showed similar effects as MPP and rotenone. The overall metabolic situation was characterized by oxidative stress, an over-abundance of NADH (>1000% increase) and a re-routing of metabolism in order to dispose of the nitrogen resulting from increased amino acid turnover. This unique overall pattern led to the accumulation of metabolites known as biomarkers of neurodegeneration (saccharopine, aminoadipate and branched-chain ketoacids). These findings suggest that neurotoxicity of mitochondrial inhibitors may result from an ensemble of metabolic changes rather than from a simple ATP depletion. The combi-omics approach used here provided richer and more specific MoA data than the more common transcriptomics analysis alone. As Ber, a human drug and food supplement, mimicked closely the mode-of-action of known neurotoxicants, its potential hazard requires further investigation.
Collapse
Affiliation(s)
- Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
- Graduate School of Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Johannes Delp
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Simon Gutbier
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Julian Suess
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Lars Henschke
- Graduate School of Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
- Department of Molecular Genetics, University of Konstanz, 78464 Konstanz, Germany
| | - Ivana Celardo
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Thomas U. Mayer
- Department of Molecular Genetics, University of Konstanz, 78464 Konstanz, Germany
| | - Ivano Amelio
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
7
|
Um JH, Lee KM, Kim YY, Lee DY, Kim E, Kim DH, Yun J. Berberine Induces Mitophagy through Adenosine Monophosphate-Activated Protein Kinase and Ameliorates Mitochondrial Dysfunction in PINK1 Knockout Mouse Embryonic Fibroblasts. Int J Mol Sci 2023; 25:219. [PMID: 38203389 PMCID: PMC10779002 DOI: 10.3390/ijms25010219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Mitophagy stimulation has been shown to have a therapeutic effect on various neurodegenerative diseases. However, nontoxic mitophagy inducers are still very limited. In this study, we found that the natural alkaloid berberine exhibited mitophagy stimulation activity in various human cells. Berberine did not interfere with mitochondrial function, unlike the well-known mitophagy inducer carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and subsequently induced mitochondrial biogenesis. Berberine treatment induced the activation of adenosine monophosphate-activated protein kinase (AMPK), and the AMPK inhibitor compound C abolished berberine-induced mitophagy, suggesting that AMPK activation is essential for berberine-induced mitophagy. Notably, berberine treatment reversed mitochondrial dysfunction in PINK1 knockout mouse embryonic fibroblasts. Our results suggest that berberine is a mitophagy-specific inducer and can be used as a therapeutic treatment for neurodegenerative diseases, including Parkinson's disease, and that natural alkaloids are potential sources of mitophagy inducers.
Collapse
Affiliation(s)
- Jee-Hyun Um
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Kang-Min Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Young-Yeon Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Da-Ye Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Eunmi Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Dong-Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea;
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| |
Collapse
|
8
|
Shrivastava S, Sharma A, Saxena N, Bhamra R, Kumar S. Addressing the preventive and therapeutic perspective of berberine against diabetes. Heliyon 2023; 9:e21233. [PMID: 38027723 PMCID: PMC10663750 DOI: 10.1016/j.heliyon.2023.e21233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes has emerged as one the leading detrimental factors for human life expectancy worldwide. The disease is mainly considered as outcome of dysregulation in glucose metabolism, resulting in consistent high glucose concentration in blood. At initial stages, the diabetes particularly type 2 diabetes, is manageable by lifestyle interventions such as regular physical activity and diet with less carbohydrates. However, in advance stage, regular intake of external insulin dose and medicines like metformin are recommended. The long-term consumption of metformin is associated with several side effects such as nausea, vomiting, diarrhoea, lectic acidosis etc., In this scenario, several plant-based medicines have shown promising potential for the prevention and treatment of diabetes. Berberine is the bioactive compound present in the different plant parts of berberis family. Biochemical studies have shown that berberine improve insulin sensitivity and insulin secretion. Additionally, berberine induces glucose metabolism by activating AMPK signaling and inhibition of inflammation. A series of studies have demonstrated the antidiabetic potential of berberine at in vitro, pre-clinical and clinical trials. This review provides comprehensive details of preventive and therapeutic potential of berberine against diabetes.
Collapse
Affiliation(s)
- Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Anamika Sharma
- National Institute of Pharmaceutical and Education and Research 500037, Hyderabad, India
| | - Nishant Saxena
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| | - Rashmi Bhamra
- Global Research Institute of Pharmacy, Radour-135133, Haryana, India
| | - Sandeep Kumar
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur-482003, India
| |
Collapse
|
9
|
Lu M, Wang Y, Jiang Y, Zhang C, Wang H, Sha W, Chen L, Lei T, Liu L. Berberine inhibits gluconeogenesis in spontaneous diabetic rats by regulating the AKT/MAPK/NO/cGMP/PKG signaling pathway. Mol Cell Biochem 2023; 478:2013-2027. [PMID: 36598615 DOI: 10.1007/s11010-022-04604-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/28/2022] [Indexed: 01/05/2023]
Abstract
This work was aimed to investigate the action mechanism of berberine (BBR) on gluconeogenesis. The effects of BBR were examined in rat primary hepatocytes and confirmed in vivo in spontaneous diabetic rats. Protein levels were assessed by Western blot. Immunofluorescence staining was utilized for visualizing protein expression, while qRT-PCR helped for the determination of gene expression at the mRNA level. Besides, cGMP concentration was measured using ELISA, whereas NO level was assessed by spectrophotometry. BBR inhibited gluconeogenesis by downregulating G6Pase and PEPCK via inhibition of CREB phosphorylation. Moreover, BBR enhanced NO and cGMP concentrations, leading to the activation of the NO/cGMP/PKG signaling via activating AKT1/MAPK axis. The in vivo experiments were consistent with the findings obtained in vitro. Hence, BBR represents a drug candidate for diabetic patients and its mechanism of action may be driven via the AKT/MAPK/NO/cGMP/PKG pathway.
Collapse
Affiliation(s)
- Ming Lu
- Department of Endocrinology Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
- Department of Endocrinology & Metabolism, Shanghai Putuo District Liqun Hospital, 910 Taopu Road, Shanghai, 200333, China
| | - Yanpeng Wang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Cuiping Zhang
- Department of Endocrinology Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Hongping Wang
- Department of Endocrinology Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Wenjun Sha
- Department of Endocrinology Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Lin Chen
- Department of Endocrinology Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Tao Lei
- Department of Endocrinology Metabolism, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
| | - Limei Liu
- Department of Endocrinology & Metabolism, Shanghai Diabetes Institute, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
10
|
Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules 2023; 28:1294. [PMID: 36770960 PMCID: PMC9919506 DOI: 10.3390/molecules28031294] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia caused by resistance to insulin action, inadequate insulin secretion, or excessive glucagon production. Numerous studies have linked diabetes mellitus and oxidative stress. People with diabetes usually exhibit high oxidative stress due to persistent and chronic hyperglycemia, which impairs the activity of the antioxidant defense system and promotes the formation of free radicals. Recently, several studies have focused on exploring natural antioxidants to improve diabetes mellitus. Fibraurea tinctoria has long been known as the native Borneo used in traditional medicine to treat diabetes. Taxonomically, this plant is part of the Menispermaceae family, widely known for producing various alkaloids. Among them are protoberberine alkaloids such as berberine. Berberine is an isoquinoline alkaloid with many pharmacological activities. Berberine is receiving considerable interest because of its antidiabetic and antioxidant activities, which are based on many biochemical pathways. Therefore, this review explores the pharmacological effects of Fibraurea tinctoria and its active constituent, berberine, against oxidative stress and diabetes, emphasizing its mechanistic aspects. This review also summarizes the pharmacokinetics and toxicity of berberine and in silico studies of berberine in several diseases and its protein targets.
Collapse
Affiliation(s)
- Indah Purwaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
11
|
Ionescu OM, Frincu F, Mehedintu A, Plotogea M, Cirstoiu M, Petca A, Varlas V, Mehedintu C. Berberine-A Promising Therapeutic Approach to Polycystic Ovary Syndrome in Infertile/Pregnant Women. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010125. [PMID: 36676074 PMCID: PMC9864590 DOI: 10.3390/life13010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a disorder with an unknown etiology that features a wide range of endocrine and metabolic abnormalities that hamper fertility. PCOS women experience difficulties getting pregnant, and if pregnant, they are prone to miscarriage, gestational diabetes, pregnancy-induced hypertension and preeclampsia, high fetal morbidity, and perinatal mortality. Insulin, the pancreatic hormone best known for its important role in glucose metabolism, has an underrated position in reproduction. PCOS women who have associated insulin resistance (with consequent hyperinsulinemia) have fertility issues and adverse pregnancy outcomes. Lowering the endogen insulin levels and insulin resistance appears to be a target to improve fertility and pregnancy outcomes in those women. Berberine is an alkaloid with a high concentration in various medicinal herbs that exhibits a hypoglycaemic effect alongside a broad range of other therapeutic activities. Its medical benefits may stand up for treating different conditions, including diabetes mellitus. So far, a small number of pharmacological/clinical trials available in the English language draw attention towards the good results of berberine's use in PCOS women with insulin resistance for improving fertility and pregnancy outcomes. Our study aims to uncover how berberine can counteract the negative effect of insulin resistance in PCOS women and improve fertility and pregnancy outcomes.
Collapse
Affiliation(s)
- Oana-Maria Ionescu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Francesca Frincu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
- Correspondence:
| | - Andra Mehedintu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Mihaela Plotogea
- Department of Obstetrics and Gynecology, “Nicolae Malaxa” Clinical Hospital, 022441 Bucharest, Romania
| | - Monica Cirstoiu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Aida Petca
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Valentin Varlas
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Claudia Mehedintu
- Faculty of Medicine “Carol Davila”, University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
12
|
Liu Y, Mu Y, Li Z, Yong VW, Xue M. Extracellular matrix metalloproteinase inducer in brain ischemia and intracerebral hemorrhage. Front Immunol 2022; 13:986469. [PMID: 36119117 PMCID: PMC9471314 DOI: 10.3389/fimmu.2022.986469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence from preclinical and clinical studies link neuroinflammation to secondary brain injury after stroke, which includes brain ischemia and intracerebral hemorrhage (ICH). Extracellular matrix metalloproteinase inducer (EMMPRIN), a cell surface transmembrane protein, is a key factor in neuroinflammation. It is widely elevated in several cell types after stroke. The increased EMMPRIN appears to regulate the expression of matrix metalloproteinases (MMPs) and exacerbate the pathology of stroke-induced blood-brain barrier dysfunction, microvascular thrombosis and neuroinflammation. In light of the neurological effects of EMMPRIN, we present in this review the complex network of roles that EMMPRIN has in brain ischemia and ICH. We first introduce the structural features and biological roles of EMMPRIN, followed by a description of the increased expression of EMMPRIN in brain ischemia and ICH. Next, we discuss the pathophysiological roles of EMMPRIN in brain ischemia and ICH. In addition, we summarize several important treatments for stroke that target the EMMPRIN signaling pathway. Finally, we suggest that EMMPRIN may have prospects as a biomarker of stroke injury. Overall, this review collates experimental and clinical evidence of the role of EMMPRIN in stroke and provides insights into its pathological mechanisms.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanling Mu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- *Correspondence: Voon Wee Yong, ; Mengzhou Xue,
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Intracerebral Hemorrhage and Brain Injury, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Voon Wee Yong, ; Mengzhou Xue,
| |
Collapse
|
13
|
Wang H, Zhang H, Gao Z, Zhang Q, Gu C. The mechanism of berberine alleviating metabolic disorder based on gut microbiome. Front Cell Infect Microbiol 2022; 12:854885. [PMID: 36093200 PMCID: PMC9452888 DOI: 10.3389/fcimb.2022.854885] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
With socioeconomic advances and improved living standards, metabolic syndrome has increasingly come into the attention. In recent decades, a growing number of studies have shown that the gut microbiome and its metabolites are closely related to the occurrence and development of many metabolic diseases, and play an important role that cannot be ignored, for instance, obesity, type 2 diabetes (T2DM), non-alcoholic fatty liver disease (NAFLD), cardiovascular disease and others. The correlation between gut microbiota and metabolic disorder has been widely recognized. Metabolic disorder could cause imbalance in gut microbiota, and disturbance of gut microbiota could aggravate metabolic disorder as well. Berberine (BBR), as a natural ingredient, plays an important role in the treatment of metabolic disorder. Studies have shown that BBR can alleviate the pathological conditions of metabolic disorders, and the mechanism is related to the regulation of gut microbiota: gut microbiota could regulate the absorption and utilization of berberine in the body; meanwhile, the structure and function of gut microbiota also changed after intervention by berberine. Therefore, we summarize relevant mechanism research, including the expressions of nitroreductases-producing bacteria to promote the absorption and utilization of berberine, strengthening intestinal barrier function, ameliorating inflammation regulating bile acid signal pathway and axis of bacteria-gut-brain. The aim of our study is to clarify the therapeutic characteristics of berberine further and provide the theoretical basis for the regulation of metabolic disorder from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezheng Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqi Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengjuan Gu
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Chengjuan Gu,
| |
Collapse
|
14
|
Pu Z, Sun Y, Jiang H, Hou Q, Yan H, Wen H, Li G. Effects of Berberine on Gut Microbiota in Patients with Mild Metabolic Disorders Induced by Olanzapine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 49:1949-1963. [PMID: 34961418 DOI: 10.1142/s0192415x21500920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Secondary metabolic disturbances in patients with schizophrenia or bipolar disorder may be attributed to olanzapine. It is important to prevent mild metabolic disorders progressing to metabolic syndrome. This study aims to investigate the effects of berberine on intestinal flora in patients with mild metabolic disorders induced by olanzapine. A total of 132 patients with schizophrenia, bipolar disorder, or schizoaffective psychosis that had been treated with olanzapine for at least 9 months were randomly assigned ([Formula: see text] = 66 each) to receive berberine or placebo tablets for 12 weeks. Metabolic assessments and intestinal flora were quantified at baseline and after 4, 8, and 12 weeks of treatment. Incidence rates of adverse reactions were recorded. FPG, FPI, HOMA-IR, HbA1, TG, BMI, and WC were significantly lower in patients who received berberine compared to placebo after 12 weeks of treatment ([Formula: see text]< 0.05). The abundance of firmicutes and coliform were significantly lower and the abundance of bacteroides significantly higher in patients who received berberine compared to placebo after 12 weeks of treatment ([Formula: see text]< 0.05). In patients who received berberine, the abundance of firmicutes was significantly decreased, and the abundance of bacteroides was significantly increased, and in patients who received placebo, the abundance of firmicutes was significantly increased post-treatment, compared to baseline (both [Formula: see text]< 0.05). In conclusions, berberine may regulate intestinal flora and metabolism in patients with schizophrenia or bipolar disorder and mild metabolic disturbances induced by olanzapine.
Collapse
Affiliation(s)
- Zhengping Pu
- Shanghai Mental Health Center, Shanghai Jiao Tong, University School of Medicine, Xuhui 200030, Shanghai, P. R. China.,Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, P. R. China
| | - Yunying Sun
- Endocrinology Department, First People's Hospital of Haining, Haining 314400, Zhejiang, P. R. China
| | - Hongxia Jiang
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, P. R. China
| | - Qingmei Hou
- Department of Clinical Psychology, The Second Specialized Hospital of Hegang, Hegang 154102, Heilongjiang, P. R. China
| | - Hui Yan
- Department of Psychiatry, Second People's Hospital of Taizhou, Tiantai 317200, Zhejiang, P. R. China
| | - Hui Wen
- Department of Traditional Chinese Medicine, Second People's Hospital of Tongxiang, Tongxiang 314500, Zhejiang, P. R. China
| | - Guorong Li
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, P. R. China
| |
Collapse
|
15
|
Fang X, Wu H, Wei J, Miao R, Zhang Y, Tian J. Research progress on the pharmacological effects of berberine targeting mitochondria. Front Endocrinol (Lausanne) 2022; 13:982145. [PMID: 36034426 PMCID: PMC9410360 DOI: 10.3389/fendo.2022.982145] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Berberine is a natural active ingredient extracted from the rhizome of Rhizoma Coptidis, which interacts with multiple intracellular targets and exhibits a wide range of pharmacological activities. Previous studies have preliminarily confirmed that the regulation of mitochondrial activity is related to various pharmacological actions of berberine, such as regulating blood sugar and lipid and inhibiting tumor progression. However, the mechanism of berberine's regulation of mitochondrial activity remains to be further studied. This paper summarizes the molecular mechanism of the mitochondrial quality control system and briefly reviews the targets of berberine in regulating mitochondrial activity. It is proposed that berberine mainly regulates glycolipid metabolism by regulating mitochondrial respiratory chain function, promotes tumor cell apoptosis by regulating mitochondrial apoptosis pathway, and protects cardiac function by promoting mitophagy to alleviate mitochondrial dysfunction. It reveals the mechanism of berberine's pharmacological effects from the perspective of mitochondria and provides a scientific basis for the application of berberine in the clinical treatment of diseases.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiaxing Tian,
| |
Collapse
|
16
|
Potencjalne możliwości wykorzystania berberyny w przeciwdziałaniu insulinooporności i w cukrzycy typu 2. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Insulinooporność to stan zmniejszonej wrażliwości tkanek docelowych na działanie insuliny, mimo jej prawidłowego lub podwyższonego stężenia w surowicy krwi. Jest ważnym czynnikiem w patogenezie zespołu metabolicznego, w tym stanu przedcukrzycowego i cukrzycy typu 2, a także chorób sercowo-naczyniowych oraz zespołu policystycznych jajników. Wzrasta zainteresowanie wykorzystaniem środków pochodzenia roślinnego w leczeniu pacjentów z chorobami metabolicznymi. Jednymi z nich są rośliny z rodziny berberysowatych zawierające alkaloidy izochinolinowe, takie jak berberyna. Sugeruje się, iż berberyna może wpływać na zmniejszenie insulinooporności, gospodarkę węglowodanową oraz metabolizm lipidów. Naukowcy wykazali, że ten roślinny alkaloid może tłumić różnicowanie adipocytów i wspomagać redukcję masy ciała. Inne właściwości berberyny obejmują działanie hipotensyjne oraz ochronne wobec śródbłonka naczyniowego. W artykule skoncentrowano się przede wszystkim na przedstawieniu potencjalnych możliwości wykorzystania berberyny w przeciwdziałaniu insulinooporności w cukrzycy typu 2.
Collapse
|
17
|
Nam SW, Kim MS, Han Y, Lee KY. WJCPR11 reverses the TNF-α-induced inhibition of adipocyte differentiation and glucose uptake. Biochem Biophys Res Commun 2021; 578:150-156. [PMID: 34562655 DOI: 10.1016/j.bbrc.2021.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022]
Abstract
Berberine is a natural isoquinoline alkaloid present in various herbs and is effective against metabolic syndrome in the pre-diabetic stage and high insulin resistance. The present study aimed to determine the effectiveness of WJCPR11, a berberine derivative that is commonly used for diabetes treatment, in ameliorating insulin resistance and diabetes treatment. WJCPR11 promoted adipocyte differentiation to a higher extent than other berberine derivatives and showed no noticeable toxicity in its effective concentration range. It increased the mRNA expression levels and protein abundance of adipogenic markers, including peroxisome proliferator-activated receptor γ (PPARγ), glucose transporter type 4 (GluT4), and fatty acid synthase (FAS), and markedly enhanced the level of adiponectin, a distinct marker of insulin sensitivity. Meanwhile, the mRNA levels of inflammatory markers such as plasminogen activator inhibitor-1 (PAI-1), monocyte chemoattractant protein-1 (MCP-1), and interleukin 6 (IL-6) were reduced after WJCPR11 treatment. Furthermore, the tumor necrosis factor-α (TNF-α)-induced inhibition of adipocyte differentiation and downregulation of glucose uptake were markedly reversed by WJCPR11 treatment. Collectively, the findings of this study indicate that WJCPR11 has great potential for diabetes treatment.
Collapse
Affiliation(s)
- Seo Woo Nam
- Department of Engineering, College of Carbon Convergence Engineering, Wonkwang University, Iksan, 54538, Republic of Korea.
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Younho Han
- Department of Oral Pharmacology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, 54538, Republic of Korea.
| | - Kwang Youl Lee
- College of Pharmacy & Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
18
|
Ren YR, Ye YL, Feng Y, Xu TF, Shen Y, Liu J, Huang SL, Shen JH, Leng Y. SL010110, a lead compound, inhibits gluconeogenesis via SIRT2-p300-mediated PEPCK1 degradation and improves glucose homeostasis in diabetic mice. Acta Pharmacol Sin 2021; 42:1834-1846. [PMID: 33574568 PMCID: PMC8563938 DOI: 10.1038/s41401-020-00609-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022]
Abstract
Suppression of excessive hepatic gluconeogenesis is an effective strategy for controlling hyperglycemia in type 2 diabetes (T2D). In the present study, we screened our compounds library to discover the active molecules inhibiting gluconeogenesis in primary mouse hepatocytes. We found that SL010110 (5-((4-allyl-2-methoxyphenoxy) methyl) furan-2-carboxylic acid) potently inhibited gluconeogenesis with 3 μM and 10 μM leading to a reduction of 45.5% and 67.5%, respectively. Moreover, SL010110 caused suppression of gluconeogenesis resulted from downregulating the protein level of phosphoenolpyruvate carboxykinase 1 (PEPCK1), but not from affecting the gene expressions of PEPCK, glucose-6-phosphatase, and fructose-1,6-bisphosphatase. Furthermore, SL010110 increased PEPCK1 acetylation, and promoted PEPCK1 ubiquitination and degradation. SL010110 activated p300 acetyltransferase activity in primary mouse hepatocytes. The enhanced PEPCK1 acetylation and suppressed gluconeogenesis caused by SL010110 were blocked by C646, a histone acetyltransferase p300 inhibitor, suggested that SL010110 inhibited gluconeogenesis by activating p300. SL010110 decreased NAD+/NADH ratio, inhibited SIRT2 activity, and further promoted p300 acetyltransferase activation and PEPCK1 acetylation. These effects were blocked by NMN, an NAD+ precursor, suggested that SL010110 inhibited gluconeogenesis by inhibiting SIRT2, activating p300, and subsequently promoting PEPCK1 acetylation. In type 2 diabetic ob/ob mice, single oral dose of SL010110 (100 mg/kg) suppressed gluconeogenesis accompanied by the suppressed hepatic SIRT2 activity, increased p300 activity, enhanced PEPCK1 acetylation and degradation. Chronic oral administration of SL010110 (15 or 50 mg/kg) significantly reduced the blood glucose levels in ob/ob and db/db mice. This study reveals that SL010110 is a lead compound with a distinct mechanism of suppressing gluconeogenesis via SIRT2-p300-mediated PEPCK1 degradation and potent anti-hyperglycemic activity for the treatment of T2D.
Collapse
Affiliation(s)
- Yu-Ran Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Liang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ti-Fei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Su-Ling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jian-Hua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Pharmacokinetics and Pharmacological Activities of Berberine in Diabetes Mellitus Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9987097. [PMID: 34471420 PMCID: PMC8405293 DOI: 10.1155/2021/9987097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has good clinical application prospects in diabetes treatment. In addition, TCM is less toxic and/or has fewer side effects and provides various therapeutic effects. Berberine (BBR) is isolated as the main component in many TCM kinds (e.g., Rhizoma Coptidis and Berberidis Cortex). Furthermore, BBR can reduce blood sugar and blood fat, alleviate inflammation, and improve the state of patients. Based on the recent study results of BBR in diabetes treatment, the BBR pharmacokinetics and mechanism on diabetes are mainly studied, and the specific molecular mechanism of related experimental BBR is systematically summarized and analyzed. Clinical studies have proved that BBR has a good therapeutic effect on diabetes, suggesting that BBR may be a promising drug candidate for diabetes. More detailed BBR mechanisms and pathways of BBR need to be studied further in depth, which will help understand the BBR pharmacology in diabetes treatment.
Collapse
|
20
|
Wang Y, Liu Q, Kang SG, Huang K, Tong T. Dietary Bioactive Ingredients Modulating the cAMP Signaling in Diabetes Treatment. Nutrients 2021; 13:nu13093038. [PMID: 34578916 PMCID: PMC8467569 DOI: 10.3390/nu13093038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
As the prevalence of diabetes increases progressively, research to develop new therapeutic approaches and the search for more bioactive compounds are attracting more attention. Over the past decades, studies have suggested that cyclic adenosine monophosphate (cAMP), the important intracellular second messenger, is a key regulator of metabolism and glucose homeostasis in diverse physiopathological states in multiple organs including the pancreas, liver, gut, skeletal muscle, adipose tissues, brain, and kidney. The multiple characteristics of dietary compounds and their favorable influence on diabetes pathogenesis, as well as their intersections with the cAMP signaling pathway, indicate that these compounds have a beneficial effect on the regulation of glucose homeostasis. In this review, we outline the current understanding of the diverse functions of cAMP in different organs involved in glucose homeostasis and show that a diversity of bioactive ingredients from foods activate or inhibit cAMP signaling, resulting in the improvement of the diabetic pathophysiological process. It aims to highlight the diabetes-preventative or -therapeutic potential of dietary bioactive ingredients targeting cAMP signaling.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Qing Liu
- Jilin Green Food Engineering Research Institute, Changchun 130022, China;
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun 58554, Korea;
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
- Correspondence: (K.H.); (T.T.)
| | - Tao Tong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Correspondence: (K.H.); (T.T.)
| |
Collapse
|
21
|
Xu J, Kitada M, Koya D. NAD + Homeostasis in Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:703076. [PMID: 34368195 PMCID: PMC8333862 DOI: 10.3389/fmed.2021.703076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023] Open
Abstract
The redox reaction and energy metabolism status in mitochondria is involved in the pathogenesis of metabolic related disorder in kidney including diabetic kidney disease (DKD). Nicotinamide adenine dinucleotide (NAD+) is a cofactor for redox reactions and energy metabolism in mitochondria. NAD+ can be synthesized from four precursors through three pathways. The accumulation of NAD+ may ameliorate oxidative stress, inflammation and improve mitochondrial biosynthesis via supplementation of precursors and intermediates of NAD+ and activation of sirtuins activity. Conversely, the depletion of NAD+ via NAD+ consuming enzymes including Poly (ADP-ribose) polymerases (PARPs), cADPR synthases may contribute to oxidative stress, inflammation, impaired mitochondrial biosynthesis, which leads to the pathogenesis of DKD. Therefore, homeostasis of NAD+ may be a potential target for the prevention and treatment of kidney diseases including DKD. In this review, we focus on the regulation of the metabolic balance of NAD+ on the pathogenesis of kidney diseases, especially DKD, highlight benefits of the potential interventions targeting NAD+-boosting in the treatment of these diseases.
Collapse
Affiliation(s)
- Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
22
|
Malhotra B, Kulkarni GT, Dhiman N, Joshi D, Chander S, Kharkwal A, Sharma AK, Kharkwal H. Recent advances on Berberis aristata emphasizing berberine alkaloid including phytochemistry, pharmacology and drug delivery system. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Lu L, Huang J, Xue X, Wang T, Huang Z, Li J. Berberine Regulated miR150-5p to Inhibit P2X7 Receptor, EMMPRIN and MMP-9 Expression in oxLDL Induced Macrophages. Front Pharmacol 2021; 12:639558. [PMID: 33959010 PMCID: PMC8093865 DOI: 10.3389/fphar.2021.639558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
Elevated extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-9 (MMP-9) in oxidized low density lipoprotein (oxLDL)-induced macrophages leads to the progression of vulnerable plaques by degradation of the extracellular matrix. Our previous report showed that berberine regulates the expression of both EMMPRIN and MMP-9. In addition, P2X7 receptor (P2X7R) upregulation plays a crucial role in the development of atherosclerosis. However, it is unclear whether berberine regulated P2X7R level to inhibit both EMMPRIN and MMP-9 expession in macrophages. In the present study, we investigated the impact of berberine on P2X7R expression and the regulation of P2X7R in the expression of EMMPRIN and MMP-9 in oxLDL-induced macrophages. We found that P2X7R expression was increased, miR150-5p was reduced in oxLDL-induced macrophages, relatively. And A-438079 (a P2X7R inhibitor) or miR150-5p mimic treatment greatly reversed the upregulation of EMMPRIN and MMP-9 expression. Moreover, A-438079 significantly reduced oxLDL-induced AMP-activated protein kinase-α (AMPK-α) phosphorylation and reversed the activation of mitogen-activated protein kinase (MAPK), which in turn decreased the expression of EMMPRIN and MMP-9. These findings illustrate that P2X7R suppresses EMMPRIN and MMP-9 expression by inhibiting the AMPK-α/MAPK pathway in oxLDL-induced macrophages. Accordingly, exposure to berberine markedly upregulated miR150-5p, decreased P2X7R expression and downregulated MMP-9 and EMMPRIN levels in oxLDL-induced macrophages, resulting in AMPK-α/MAPK (JNK, p38, and ERK) inactivation. Overall, these results indicate that berberine increased miR150-5p level, subsequently inhibits P2X7R-mediated EMMPRIN and MMP-9 expression by suppressing AMPK-α and MAPK signaling in oxLDL-induced macrophages.
Collapse
Affiliation(s)
- Lin Lu
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, Wenzhou, China
| | - Jianjian Huang
- Department of Anesthesiology, Wenzhou Medical University, Wenzhou, China
| | - Xia Xue
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, Wenzhou, China
| | - Ting Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, Wenzhou, China
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, Wenzhou, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of WenZhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Zhang Y, Wang J, Hou D, Yan S, Dang S. To assess the effective and safety of berberine hydrochloride in ulcerative colitis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23482. [PMID: 33285751 PMCID: PMC7717748 DOI: 10.1097/md.0000000000023482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease characterized by a relapsing and remitting course, and the curative medical therapy of UC is not yet available with its precise etiology unknown. Berberine hydrochloride, one of the main alkaloids in rhizomes of Coptis chinensis, has been reported the efficacy in patients with UC. However, there is no systematic review related to berberine hydrochloride for UC published. In this work, we will systematically evaluate the effectiveness and safety of berberine hydrochloride for UC by a meta-analysis method to provide a substantial conclusion for clinical practice. METHODS AND ANALYSIS In this study, we will search the Chinese and English databases by electronic and manual search to find the related literature of berberine hydrochloride in the treatment of UC published from the inception date of each predefined database up to October 2020. Databases include PubMed, Embase, MEDLINE, Cochrane Library Central Register of Controlled Trials, China National Knowledge Infrastructure (CNKI) database, Wanfang Data Knowledge Service Platform, the VIP information resource integration service platform (cqvip), China Biology Medicine Disc (Sino Med), the Chinese Clinical Trial Registry (ChiCTR), and ClinicalTrials.gov. The 2 professional trained authors will independently select the qualified studies for data extraction and assess the risk of bias in included studies. Then the synthesis and analyses of data will be carried out in RevMan 5.4. The heterogeneity of statistics will be assessed by a heterogeneity X test and I tests. Sensitivity analysis is used to evaluate whether the outcomes of systematic review or meta-analysis are robust and reliable. The funnel plot is the main method to evaluate the bias of reporting. Finally, we will use The Grading of Recommendations Assessment, Development and Evaluation to evaluate the quality of evidence. RESULTS The results of this study will be published in a peer-reviewed journal. CONCLUSION Whether berberine hydrochloride is an effectiveness and safety for patients with UC will be judged in the conclusion of this systematic review. OSF REGISTRATION NUMBER 10.17605/OSF.IO/X57U3.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Gastroenterology, Sichuan Second Chinese Medicine Hospital, Chengdu
| | - Jin Wang
- Chengdu University, Chengdu, Sichuan
| | - Daorui Hou
- Department of Traditional Chinese Medicine Oncology, The First People's Hospital of Xiangtan City, China
| | - Shuguang Yan
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi
| | - Sijie Dang
- Department of Gastroenterology, Sichuan Second Chinese Medicine Hospital, Chengdu
| |
Collapse
|
25
|
Li Y, Zhou J, Qiu J, Huang Z, Wang W, Wu P, Feng A. Berberine reduces gut-vascular barrier permeability via modulation of ApoM/S1P pathway in a model of polymicrobial sepsis. Life Sci 2020; 261:118460. [PMID: 32961234 DOI: 10.1016/j.lfs.2020.118460] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/29/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
AIMS The hyperpermeability of gut-vascular barrier (GVB) plays a role in gut-derived sepsis. The goal of this study was to evaluate if berberine might improve hepatic apolipoprotein M (ApoM) generation and raise plasma ApoM level to protect the compromised GVB. MATERIALS AND METHODS The compromised GVB was induced by sepsis. Hepatic ApoM mRNA and phosphoenolpyruvate carboxykinase (PEPCK) mRNA and plasma ApoM level were assayed by qRT-PCR and ELISA, respectively. The permeability of intestinal capillary in vivo and of rat intestinal microvascular endothelial cells (RIMECs) in vitro was assayed by FITC-dextran. The blood glucose was detected by a glucometer. Plasma insulin, TNF-α and IL-1β were assayed by ELISA. The plasmalemma vesicle-associated protein-1 (PV1), β-catenin and occludin in RIMECs were assayed by Western blot. KEY FINDINGS Sepsis decreased hepatic ApoM mRNA and plasma ApoM level, but raised hepatic PEPCK mRNA and plasma glucose, insulin, TNF-α, and IL-1β levels. The increased vascular endothelial permeability was abrogated by recombinant rat ApoM in vivo or ApoM-bound S1P in vitro. ApoM-bound S1P decreased PV1 but increased occludin and β-catenin expression in LPS-treated RIMECs. Berberine in a dose-dependent manner raised hepatic ApoM mRNA and plasma ApoM level, but decreased septic hyperglycemia, insulin resistance and plasma TNF-α and IL-1β levels. Berberine reduced sepsis-induced PEPCK and TLR4 mRNA overexpression in the liver. SIGNIFICANCE This study demonstrated berberine inhibited TLR4-mediated hyperglycemia, insulin resistance and proinflammatory molecule production, thereby increasing ApoM gene expression and plasma ApoM. Berberine protected the damaged GVB via modulation of ApoM/S1P pathway.
Collapse
Affiliation(s)
- Yanning Li
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming Clinical Medical College, Guangdong Medical University, Guangdong Province, China
| | - Jun Zhou
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming Clinical Medical College, Guangdong Medical University, Guangdong Province, China
| | - Jiasheng Qiu
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming Clinical Medical College, Guangdong Medical University, Guangdong Province, China
| | - Zudong Huang
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming Clinical Medical College, Guangdong Medical University, Guangdong Province, China
| | - Weiwei Wang
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming Clinical Medical College, Guangdong Medical University, Guangdong Province, China
| | - Ping Wu
- Department of Gastroenterology, Maoming People's Hospital, Maoming Clinical Medical School, Guangdong Medical University, Guangdong Province, China
| | - Aiwen Feng
- Department of Gastrointestinal Surgery, Maoming People's Hospital, Maoming Clinical Medical College, Guangdong Medical University, Guangdong Province, China.
| |
Collapse
|
26
|
Dietary berberine regulates lipid metabolism in muscle and liver of black sea bream ( Acanthopagrus schlegelii) fed normal or high-lipid diets. Br J Nutr 2020; 125:481-493. [PMID: 32718379 DOI: 10.1017/s0007114520003025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present study investigated the influence of berberine (BBR) supplementation in normal and high-lipid (HL) diets on lipid metabolism and accumulation in black sea bream (Acanthopagrus schlegelii). BBR was supplemented at 50 mg/kg to control (Con, 11·1 % crude lipid) and high-lipid (HL, 20·2 % crude lipid) diets and named as ConB and HLB, respectively. After the 8-week feeding trial, fish body length and specific growth rate were significantly reduced by HL diets (P < 0·05). Muscle and whole-body crude lipid contents were significantly influenced by both BBR supplementation and dietary lipid level. Fish fed the HLB diet had significantly lower serum TAG, LDL-cholesterol contents and alanine aminotransferase activity compared with the HL group. The HL group presented vast lipid accumulation in the liver, and hypertrophied hepatocytes along with large lipid droplets, and translocation of nuclear to the cell periphery. These abnormalities in black sea bream were alleviated in the HLB group. BBR supplementation in the HL diet significantly down-regulated the hepatic expression levels of acetyl-CoA carboxylase α, sterol regulatory element-binding protein-1, 6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase and pparγ, whereas the lipoprotein lipase, hormone-sensitive lipase and carnitine palmitoyltransferase 1a expression levels were significantly up-regulated. However, the expression levels of these genes showed opposite trends in muscle (except for pparγ). In conclusion, dietary BBR supplementation in the HL diet reduced hepatic lipid accumulation by down-regulating lipogenesis gene expression and up-regulating lipolysis gene expression, and it increased muscle lipid contents with opposite trends of the mechanism observed in the liver.
Collapse
|
27
|
Effect of Berberine on Glycation, Aldose Reductase Activity, and Oxidative Stress in the Lenses of Streptozotocin-Induced Diabetic Rats In Vivo-A Preliminary Study. Int J Mol Sci 2020; 21:ijms21124278. [PMID: 32560082 PMCID: PMC7349706 DOI: 10.3390/ijms21124278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus affects the eye lens, leading to cataract formation by glycation, osmotic stress, and oxidative stress. Berberine, an isoquinoline alkaloid, is a natural compound that has been reported to counteract all these pathological processes in various tissues and organs. The goal of this study was to evaluate whether berberine administered at a dose of 50 mg/kg by oral gavage for 28 days to rats with streptozotocin-induced diabetes reveals such effects on the biochemical parameters in the lenses. For this purpose, the following lenticular parameters were studied: concentrations of soluble protein, non-protein sulfhydryl groups (NPSH), advanced oxidation protein products (AOPP), advanced glycation end-products (AGEs), thiobarbituric acid reactive substances (TBARS), and activities of aldose reductase (AR), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Diabetes induced unfavorable changes in the majority of the examined parameters. The administration of berberine resulted in an increased soluble protein level, decreased activity of AR, and lowered AOPP and AGEs levels. The results suggest that berberine administered orally positively affects the lenses of diabetic rats, and should be further examined with regard to its anticataract potential.
Collapse
|
28
|
Liu X, Wang K, Zhou J, Sullivan MA, Liu Y, Gilbert RG, Deng B. Metformin and Berberine suppress glycogenolysis by inhibiting glycogen phosphorylase and stabilizing the molecular structure of glycogen in db/db mice. Carbohydr Polym 2020; 243:116435. [PMID: 32532388 DOI: 10.1016/j.carbpol.2020.116435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/18/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023]
Abstract
Glycogen is a branched glucose polymer involved in sustaining blood glucose homeostasis. Liver glycogen comprises α particles (up to 300 nm in diameter) made of joined β particles (∼20 nm in diameter). Glycogen α particles in a mouse model for diabetes are molecularly fragile, breaking down into smaller β particles more readily than in healthy mice. Glycogen phosphorylase (GP), a rate-limiting enzyme in glycogen degradation, is overexpressed in diabetic mice. This study shows that Metformin and Berberine, two common drugs, two common drugs used to treat diabetes, are able to revert the liver glycogen of diabetic mice to the stable structure seen in non-diabetic mice. It is also shown that these drugs reduce the GP level via the cAMP/PKA signaling pathway in diabetic livers and decrease the affinity of GP with the glycogen of db/db mice. These effects of these drugs may slow down the degradation of liver glycogen and improve glucose homeostasis.
Collapse
Affiliation(s)
- Xiaocui Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Jing Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Mitchell A Sullivan
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland, 4072, Australia
| | - Yage Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Robert G Gilbert
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, 225009, Yangzhou, Jiangsu Province, China; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
29
|
Zhang GZ, Deng YJ, Xie QQ, Ren EH, Ma ZJ, He XG, Gao YC, Kang XW. Sirtuins and intervertebral disc degeneration: Roles in inflammation, oxidative stress, and mitochondrial function. Clin Chim Acta 2020; 508:33-42. [PMID: 32348785 DOI: 10.1016/j.cca.2020.04.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which seriously reduces the quality of life of patients and places a heavy economic burden on their families. Cellular senescence is considered to be an important factor leading to IDD, and inflammatory response, oxidative stress, and mitochondrial dysfunction are closely related to intervertebral disc (IVD) senescence. Therefore, inhibition of the inflammatory response and oxidative stress, along with maintaining mitochondrial function, may be useful in treating IDD. The sirtuins are a family of evolutionarily conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, which are the major molecules mediating life extension or delay of aging-related diseases. The sirtuin protein family consist of seven members (SIRT1 - 7), which are mainly involved in various aging-related diseases by regulating inflammation, oxidative stress, and mitochondrial function. Among them, SIRT1, SIRT2, SIRT3, and SIRT6 are closely related to IDD. In addition, some activators of sirtuin proteins, such as resveratrol, melatonin, magnolol, 1,4-dihydropyridine (DHP), SRT1720, and nicotinamide mononucleotide (NMN), have been evaluated in preclinical studies for their effects in preventing IDD. This review described the biological functions of sirtuins and the important roles of SIRT1, SIRT2, SIRT3, and SIRT6 in IDD by regulating oxidative stress, inflammatory response, and mitochondrial function. In addition, we introduce the status of some sirtuin activators in IDD preclinical studies. This review will provide a background for further clarification of the molecular mechanism underlying IDD and the development of potential therapeutic drugs.
Collapse
Affiliation(s)
- Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ya-Jun Deng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Qi-Qi Xie
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - En-Hui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xue-Gang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yi-Cheng Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xue-Wen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China; The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu 730000, PR China.
| |
Collapse
|
30
|
Belwal T, Bisht A, Devkota HP, Ullah H, Khan H, Pandey A, Bhatt ID, Echeverría J. Phytopharmacology and Clinical Updates of Berberis Species Against Diabetes and Other Metabolic Diseases. Front Pharmacol 2020; 11:41. [PMID: 32132921 PMCID: PMC7040237 DOI: 10.3389/fphar.2020.00041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023] Open
Abstract
The incidences of diabetic mellitus and other metabolic diseases such as hypertension and hyperlipidemia are increasing worldwide; however, the current treatment is not able to control the rapidly increasing trend in diabetes mortality and morbidity. Studies related to the effectiveness of extracts and pure compounds obtained from plants have shown promising responses in preclinical and clinical studies related to these metabolic diseases. Plants belonging to the genus Berberis (Family: Berberidaceae) are widely distributed with nearly 550 species worldwide. Extracts and compounds obtained from Berberis species, especially Berberine alkaloid, showed effectiveness in the management of diabetes and other metabolic diseases. Various pharmacological experiments have been performed to evaluate the effects of Berberis extracts, berberine, and its natural and chemically synthesized derivatives against various cell and animal disease models with promising results. Various clinical trials conducted so far also showed preventive effects of Berberis extracts and berberine against metabolic diseases. The present review focuses on i) research updates on traditional uses, ii) phytopharmacology and clinical studies on Berberis species, and iii) active metabolites in the prevention and treatment of diabetes and other metabolic diseases with a detailed mechanism of action. Furthermore, the review critically analyzes current research gaps in the therapeutic use of Berberis species and berberine and provides future recommendations.
Collapse
Affiliation(s)
- Tarun Belwal
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Aarti Bisht
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Aseesh Pandey
- Centre for Biodiversity Conservation and Management, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Sikkim Regional Centre, Pangthang, Gangtok, India
| | - Indra Dutt Bhatt
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Javier Echeverría
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
31
|
Shinjyo N, Parkinson J, Bell J, Katsuno T, Bligh A. Berberine for prevention of dementia associated with diabetes and its comorbidities: A systematic review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:125-151. [PMID: 32005442 DOI: 10.1016/j.joim.2020.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND A growing number of epidemiological studies indicate that metabolic syndrome (MetS) and its associated features play a key role in the development of certain degenerative brain disorders, including Alzheimer's disease and vascular dementia. Produced by several different medicinal plants, berberine is a bioactive alkaloid with a wide range of pharmacological effects, including antidiabetic effects. However, it is not clear whether berberine could prevent the development of dementia in association with diabetes. OBJECTIVE To give an overview of the therapeutic potential of berberine as a treatment for dementia associated with diabetes. SEARCH STRATEGY Database searches A and B were conducted using PubMed and ScienceDirect. In search A, studies on berberine's antidementia activities were identified using "berberine" and "dementia" as search terms. In search B, recent studies on berberine's effects on diabetes were surveyed using "berberine" and "diabetes" as search terms. INCLUSION CRITERIA Clinical and preclinical studies that investigated berberine's effects associated with MetS and cognitive dysfunction were included. DATA EXTRACTION AND ANALYSIS Data from studies were extracted by one author, and checked by a second; quality assessments were performed independently by two authors. RESULTS In search A, 61 articles were identified, and 22 original research articles were selected. In search B, 458 articles were identified, of which 101 were deemed relevant and selected. Three duplicates were removed, and a total of 120 articles were reviewed for this study. The results demonstrate that berberine exerts beneficial effects directly in the brain: enhancing cholinergic neurotransmission, improving cerebral blood flow, protecting neurons from inflammation, limiting hyperphosphorylation of tau and facilitating β-amyloid peptide clearance. In addition, evidence is growing that berberine is effective against diabetes and associated disorders, such as atherosclerosis, cardiomyopathy, hypertension, hepatic steatosis, diabetic nephropathy, gut dysbiosis, retinopathy and neuropathy, suggesting indirect benefits for the prevention of dementia. CONCLUSION Berberine could impede the development of dementia via multiple mechanisms: preventing brain damages and enhancing cognition directly in the brain, and indirectly through alleviating risk factors such as metabolic dysfunction, and cardiovascular, kidney and liver diseases. This study provided evidence to support the value of berberine in the prevention of dementia associated with MetS.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan.
| | - James Parkinson
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom
| | - Jimmy Bell
- Department of Life Sciences, Faculty of Science and Technology at the University of Westminster, London W1W 6UW, United Kingdom.
| | - Tatsuro Katsuno
- Kashiwanoha Clinic of East Asian Medicine, Chiba University Hospital, Kashiwa, Chiba 277-0882, Japan
| | - Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Tseung Kwan O, NT 999077, Hong Kong, China.
| |
Collapse
|
32
|
Berberine Attenuates Hyperglycemia by Inhibiting the Hepatic Glucagon Pathway in Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6210526. [PMID: 31976031 PMCID: PMC6961611 DOI: 10.1155/2020/6210526] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/05/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
Dysregulated glucagon drives hyperfunction in hepatic glucose output, which is the main cause of persistent hyperglycemia in type 2 diabetes. Berberine (Zhang et al., 2010) has been used as a hypoglycemic agent, yet the mechanism by which BBR inhibits hepatic gluconeogenesis remains incompletely understood. In this study, we treated diabetic mice with BBR, tested blood glucose levels, and then performed insulin, glucose lactate, and glucagon tolerance tests. Intracellular cAMP levels in hepatocytes were determined by ELISA, hepatic gluconeogenetic genes were assayed by RT-qPCR, and the phosphorylation of CREB, which is the transcriptional factor controlling the expression of gluconeogenetic genes, was detected by western blot. BBR reduced blood glucose levels, improved insulin and glucose tolerance, and suppressed lactate- and glucagon-induced hepatic gluconeogenesis in ob/ob and STZ-induced diabetic mice. Importantly, BBR blunted glucagon-induced glucose production and gluconeogenic gene expression in hepatocytes, presumably through reducing cAMP, which resulted in the phosphorylation of CREB. By utilizing a cAMP analogue, adenylate cyclase (AC), to activate cAMP synthetase, and an inhibitor of the cAMP degradative enzyme, phosphodiesterase (PDE), we revealed that BBR accelerates intracellular cAMP degradation. BBR reduces the intracellular cAMP level by activating PDE, thus blocking activation of downstream CREB and eventually downregulating gluconeogenic genes to restrain hepatic glucose production.
Collapse
|
33
|
Wang ZC, Wang J, Chen H, Tang J, Bian AW, Liu T, Yu LF, Yi Z, Yang F. Synthesis and anticancer activity of novel 9,13-disubstituted berberine derivatives. Bioorg Med Chem Lett 2020; 30:126821. [DOI: 10.1016/j.bmcl.2019.126821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/16/2019] [Accepted: 11/10/2019] [Indexed: 12/14/2022]
|
34
|
Berberine increases glucose uptake and intracellular ROS levels by promoting Sirtuin 3 ubiquitination. Biomed Pharmacother 2019; 121:109563. [PMID: 31706105 DOI: 10.1016/j.biopha.2019.109563] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/11/2019] [Accepted: 10/20/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Berberine improves insulin sensitivity and ovulation function in PCOS patients. However, the mechanism by which berberine initiates glucose metabolism-related signaling pathways in ovarian cells remains unknown. This study unveiled a new mechanism by which berberine promotes ovarian cell glucose uptake, and demonstrated that SIRT3 ubiquitination is involved in the insulin sensitizing effect of berberine. METHODS Berberine was used at different concentrations to treat cultured KGN cells. Then, cell viability, cell apoptosis, intracellular ROS levels, mitochondrial depolarization and activation of related signaling pathways were evaluated. RESULTS Berberine administration led to mitochondrial depolarization and AMP accumulation by promoting SIRT3 ubiquitination. We confirmed that AMP accumulation activated AMPK signaling and further promoted glucose uptake. Meanwhile, berberine reduced the activity of mitochondrial complex I in a dose-depended manner, but not that of mitochondrial complex II. Furthermore, intracellular ROS levels and the expression of mitochondrial apoptosis pathway related factors increased with berberine concentration. Berberine caused significant SIRT3 ubiquitination and degradation by activating the AMPK pathway and increasing intracellular ROS levels. Interestingly, berberine induced ubiquitination paralleled the increased FOXO3a phosphorylation and FOXO3a/Parkin pathway activation. CONCLUSIONS Berberine promotes glucose uptake and inhibits mitochondrial function by promoting SIRT3 ubiquitination, and is likely to regulate autophagy related function in ovarian cells by activating the AMPK pathway. These findings may provide novel insights into the development of drugs for the treatment of abnormal reproductive functions of the ovary.
Collapse
|
35
|
Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW. Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Front Pharmacol 2019; 10:805. [PMID: 31396083 PMCID: PMC6661542 DOI: 10.3389/fphar.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, especially type 2 diabetes mellitus (T2DM), has become a significant public health burden. Rhizoma coptidis (RC), known as Huang Lian, is widely used for treating diabetes in China. The bioactive compounds of RC, especially alkaloids, have the potential to suppress T2DM-induced lesions, including diabetic vascular dysfunction, diabetic heart disease, diabetic hyperlipidemia, diabetic nephropathy, diabetic encephalopathy, diabetic osteopathy, diabetic enteropathy, and diabetic retinopathy. This review summarizes the effects of RC and its bioactive compounds on T2DM and T2DM complications. Less research has been conducted on non-alkaloid fractions of RC, which may exert synergistic action with alkaloids. Moreover, we summarized the pharmacokinetic properties and structure-activity relationships of RC on T2DM with reference to extant literature and showed clearly that RC has potential therapeutic effect on T2DM.
Collapse
Affiliation(s)
- Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-bo Yang
- Ya’an Xun Kang Pharmaceutical Co., Ltd, Ya’an, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
36
|
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan ST, Šmejkal K, Malaník M, Sychrová A, Barreca D, Ziberna L, Mahomoodally MF, Zengin G, Xu S, Nabavi SM, Shen AZ. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019; 9:1923-1951. [PMID: 31037148 PMCID: PMC6485276 DOI: 10.7150/thno.30787] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMD) are the leading causes of death worldwide, underscoring the urgent necessity to develop new pharmacotherapies. Berberine (BBR) is an eminent component of traditional Chinese and Ayurvedic medicine for more than 2000 years. Recently, BBR has attracted much interest for its pharmacological actions in treating and/or managing CVMD. Recent discoveries of basic, translational and clinical studies have identified many novel molecular targets of BBR (such as AMPK, SIRT1, LDLR, PCSK9, and PTP1B) and provided novel evidences supporting the promising therapeutic potential of BBR to combat CVMD. Thus, this review provides a timely overview of the pharmacological properties and therapeutic application of BBR in CVMD, and underlines recent pharmacological advances which validate BBR as a promising lead drug against CVMD.
Collapse
|