1
|
Schardt JS, Walseng E, Le K, Yang C, Shah P, Fu Y, Alam K, Kelton CR, Gu Y, Huang F, Lin J, Liu W, Dippel A, Zhang H, Mulgrew K, Pryts S, Chennupati V, Chen HC, Denham J, Chen X, Pradhan P, Wu Y, Hardman C, Zhao C, Kierny M, Song Y, Dovedi SJ, Cemerski S, Mazor Y. IL-2-armored peptide-major histocompatibility class I bispecific antibodies redirect antiviral effector memory CD8+ T cells to induce potent anti-cancer cytotoxic activity with limited cytokine release. MAbs 2024; 16:2395499. [PMID: 39205483 PMCID: PMC11364066 DOI: 10.1080/19420862.2024.2395499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
T cell engagers (TCEs) are becoming an integral class of biological therapeutic owing to their highly potent ability to eradicate cancer cells. Nevertheless, the widespread utility of classical CD3-targeted TCEs has been limited by narrow therapeutic index (TI) linked to systemic CD4+ T cell activation and aberrant cytokine release. One attractive approach to circumvent the systemic activation of pan CD3+ T cells and reduce the risk of cytokine release syndrome is to redirect specific subsets of T cells. A promising strategy is the use of peptide-major histocompatibility class I bispecific antibodies (pMHC-IgGs), which have emerged as an intriguing modality of TCE, based on their ability to selectively redirect highly reactive viral-specific effector memory cytotoxic CD8+ T cells to eliminate cancer cells. However, the relatively low frequency of these effector memory cells in human peripheral blood mononuclear cells (PBMCs) may hamper their redirection as effector cells for clinical applications. To mitigate this potential limitation, we report here the generation of a pMHC-IgG derivative known as guided-pMHC-staging (GPS) carrying a covalent fusion of a monovalent interleukin-2 (IL-2) mutein (H16A, F42A). Using an anti-epidermal growth factor receptor (EGFR) arm as a proof-of-concept, tumor-associated antigen paired with a single-chain HLA-A *02:01/CMVpp65 pMHC fusion moiety, we demonstrate in vitro that the IL-2-armored GPS modality robustly expands CMVpp65-specific CD8+ effector memory T cells and induces potent cytotoxic activity against target cancer cells. Similar to GPS, IL-2-armored GPS molecules induce modulated T cell activation and reduced cytokine release profile compared to an analogous CD3-targeted TCE. In vivo we show that IL-2-armored GPS, but not the corresponding GPS, effectively expands grafted CMVpp65 CD8+ T cells from unstimulated human PBMCs in an NSG mouse model. Lastly, we demonstrate that the IL-2-armored GPS modality exhibits a favorable developability profile and monoclonal antibody-like pharmacokinetic properties in human neonatal Fc receptor transgenic mice. Overall, IL-2-armored GPS represents an attractive approach for treating cancer with the potential for inducing vaccine-like antiviral T cell expansion, immune cell redirection as a TCE, and significantly widened TI due to reduced cytokine release.
Collapse
Affiliation(s)
- John S. Schardt
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Even Walseng
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Kim Le
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Chunning Yang
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Pooja Shah
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Ying Fu
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Kausar Alam
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | | | - Yu Gu
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Fengying Huang
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Jia Lin
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Wenhai Liu
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Andrew Dippel
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Hanzhi Zhang
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | | | - Stacy Pryts
- Oncology ICC, AstraZeneca, Gaithersburg, MD, USA
| | | | - Hung-Chang Chen
- Data Science and Advanced Analytics, AstraZeneca, Gaithersburg, MD, USA
| | | | | | | | - Yuling Wu
- Oncology ICC, AstraZeneca, Cambridge, UK
| | - Colin Hardman
- Discovery Bioanalysis, Clinical Pharmacology & Safety Sciences (CPSS), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Chihao Zhao
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Michael Kierny
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Yang Song
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Simon J. Dovedi
- Data Science and Advanced Analytics, AstraZeneca, Gaithersburg, MD, USA
| | | | - Yariv Mazor
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
2
|
Koh CH, Lee S, Kwak M, Kim BS, Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med 2023; 55:2287-2299. [PMID: 37907738 PMCID: PMC10689838 DOI: 10.1038/s12276-023-01105-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
CD8 T cells play crucial roles in immune surveillance and defense against infections and cancer. After encountering antigenic stimulation, naïve CD8 T cells differentiate and acquire effector functions, enabling them to eliminate infected or malignant cells. Traditionally, cytotoxic T cells, characterized by their ability to produce effector cytokines and release cytotoxic granules to directly kill target cells, have been recognized as the constituents of the predominant effector T-cell subset. However, emerging evidence suggests distinct subsets of effector CD8 T cells that each exhibit unique effector functions and therapeutic potential. This review highlights recent advancements in our understanding of CD8 T-cell subsets and the contributions of these cells to various disease pathologies. Understanding the diverse roles and functions of effector CD8 T-cell subsets is crucial to discern the complex dynamics of immune responses in different disease settings. Furthermore, the development of immunotherapeutic approaches that specifically target and regulate the function of distinct CD8 T-cell subsets holds great promise for precision medicine.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyeong Kwak
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon, 25159, Republic of Korea.
| |
Collapse
|
3
|
Moioffer SJ, Berton RR, McGonagill PW, Jensen IJ, Griffith TS, Badovinac VP. Inefficient Recovery of Repeatedly Stimulated Memory CD8 T Cells after Polymicrobial Sepsis Induction Leads to Changes in Memory CD8 T Cell Pool Composition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:168-179. [PMID: 36480268 PMCID: PMC9840817 DOI: 10.4049/jimmunol.2200676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/09/2022] [Indexed: 01/03/2023]
Abstract
Long-lasting sepsis-induced immunoparalysis has been principally studied in primary (1°) memory CD8 T cells; however, the impact of sepsis on memory CD8 T cells with a history of repeated cognate Ag encounters is largely unknown but important in understanding the role of sepsis in shaping the pre-existing memory CD8 T cell compartment. Higher-order memory CD8 T cells are crucial in providing immunity against common pathogens that reinfect the host or are generated by repeated vaccination. In this study, we analyzed peripheral blood from septic patients and show that memory CD8 T cells with defined Ag specificity for recurring CMV infection proliferate less than bulk populations of central memory CD8 T cells. Using TCR-transgenic T cells to generate 1° and higher-order (quaternary [4°]) memory T cells within the same host, we demonstrate that the susceptibility and loss of both memory subsets are similar after sepsis induction, and sepsis diminished Ag-dependent and -independent (bystander) functions of these memory subsets equally. Both the 1° and 4° memory T cell populations proliferated in a sepsis-induced lymphopenic environment; however, due to the intrinsic differences in baseline proliferative capacity, expression of receptors (e.g., CD127/CD122), and responsiveness to homeostatic cytokines, 1° memory T cells become overrepresented over time in sepsis survivors. Finally, IL-7/anti-IL-7 mAb complex treatment early after sepsis induction preferentially rescued the proliferation and accumulation of 1° memory T cells, whereas recovery of 4° memory T cells was less pronounced. Thus, inefficient recovery of repeatedly stimulated memory cells after polymicrobial sepsis induction leads to changes in memory T cell pool composition, a notion with important implications in devising strategies to recover the number and function of pre-existing memory CD8 T cells in sepsis survivors.
Collapse
Affiliation(s)
| | - Roger R. Berton
- Department of Pathology, University of Iowa, Iowa City, IA;,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Isaac J. Jensen
- Columbia University Irving Medical Center, University of Minnesota, Minneapolis, MN
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN,,Minneapolis Veterans Affairs Health Care System, Minneapolis, MN
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA;,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
4
|
Enhanced SARS-CoV-2-Specific CD4 + T Cell Activation and Multifunctionality in Late Convalescent COVID-19 Individuals. Viruses 2022; 14:v14030511. [PMID: 35336918 PMCID: PMC8954911 DOI: 10.3390/v14030511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Examination of CD4+ T cell responses during the natural course of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection offers useful information for the improvement of vaccination strategies against this virus and the protective effect of these T cells. Methods: We characterized the SARS-CoV-2-specific CD4+ T cell activation marker, multifunctional cytokine and cytotoxic marker expression in recovered coronavirus disease 2019 (COVID-19) individuals. Results: CD4+ T-cell responses in late convalescent (>6 months of diagnosis) individuals are characterized by elevated frequencies of activated as well as mono, dual- and multi-functional Th1 and Th17 CD4+ T cells in comparison to early convalescent (<1 month of diagnosis) individuals following stimulation with SARS-CoV-2-specific antigens. Similarly, the frequencies of cytotoxic marker expressing CD4+ T cells were also enhanced in late convalescent compared to early convalescent individuals. Conclusion: Our findings from a low-to middle-income country suggest protective adaptive immune responses following natural infection of SARS-CoV-2 are elevated even at six months following initial symptoms, indicating the CD4+ T cell mediated immune protection lasts for six months or more in natural infection.
Collapse
|
5
|
Ferri C, Arcangeletti MC, Caselli E, Zakrzewska K, Maccari C, Calderaro A, D'Accolti M, Soffritti I, Arvia R, Sighinolfi G, Artoni E, Giuggioli D. Insights into the knowledge of complex diseases: Environmental infectious/toxic agents as potential etiopathogenetic factors of systemic sclerosis. J Autoimmun 2021; 124:102727. [PMID: 34601207 DOI: 10.1016/j.jaut.2021.102727] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease secondary to three cardinal pathological features: immune-system alterations, diffuse microangiopathy, and fibrosis involving the skin and internal organs. The etiology of SSc remains quite obscure; it may encompass multiple host genetic and environmental -infectious/chemical-factors. The present review focused on the potential role of environmental agents in the etiopathogenesis of SSc based on epidemiological, clinical, and laboratory investigations previously published in the world literature. Among infectious agents, some viruses that may persist and reactivate in infected individuals, namely human cytomegalovirus (HCMV), human herpesvirus-6 (HHV-6), and parvovirus B19 (B19V), and retroviruses have been proposed as potential causative agents of SSc. These viruses share a number of biological activities and consequent pathological alterations, such as endothelial dysfunction and/or fibroblast activation. Moreover, the acute worsening of pre-existing interstitial lung involvement observed in SSc patients with symptomatic SARS-CoV-2 infection might suggest a potential role of this virus in the overall disease outcome. A variety of chemical/occupational agents might be regarded as putative etiological factors of SSc. In this setting, the SSc complicating silica dust exposure represents one of the most promising models of study. Considering the complexity of SSc pathogenesis, none of suggested causative factors may explain the appearance of the whole SSc; it is likely that the disease is the result of a multifactorial and multistep pathogenetic process. A variable combination of potential etiological factors may modulate the appearance of different clinical phenotypes detectable in individual scleroderma patients. The in-deep investigations on the SSc etiopathogenesis may provide useful insights in the broad field of human diseases characterized by diffuse microangiopathy or altered fibrogenesis.
Collapse
Affiliation(s)
- Clodoveo Ferri
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy; Rheumatology Unit, Casa di Cura Madonna dello Scoglio, Cotronei (KR), Italy.
| | | | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Krystyna Zakrzewska
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Clara Maccari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria D'Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianluca Sighinolfi
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy.
| | - Erica Artoni
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy
| | - Dilia Giuggioli
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy
| |
Collapse
|
6
|
Breton G, Mendoza P, Hägglöf T, Oliveira TY, Schaefer-Babajew D, Gaebler C, Turroja M, Hurley A, Caskey M, Nussenzweig MC. Persistent cellular immunity to SARS-CoV-2 infection. J Exp Med 2021; 218:211727. [PMID: 33533915 PMCID: PMC7845919 DOI: 10.1084/jem.20202515] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 is responsible for an ongoing pandemic that has affected millions of individuals around the globe. To gain further understanding of the immune response in recovered individuals, we measured T cell responses in paired samples obtained an average of 1.3 and 6.1 mo after infection from 41 individuals. The data indicate that recovered individuals show persistent polyfunctional SARS-CoV-2 antigen–specific memory that could contribute to rapid recall responses. Recovered individuals also show enduring alterations in relative overall numbers of CD4+ and CD8+ memory T cells, including expression of activation/exhaustion markers, and cell division.
Collapse
Affiliation(s)
- Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Thomas Hägglöf
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | | | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Arlene Hurley
- Hospital Program Direction, The Rockefeller University, New York, NY
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, Baltimore, MD
| |
Collapse
|
7
|
Breton G, Mendoza P, Hagglof T, Oliveira TY, Schaefer-Babajew D, Gaebler C, Turroja M, Hurley A, Caskey M, Nussenzweig MC. Persistent Cellular Immunity to SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.08.416636. [PMID: 33330867 PMCID: PMC7743071 DOI: 10.1101/2020.12.08.416636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SARS-CoV-2 is responsible for an ongoing pandemic that affected millions of individuals around the globe. To gain further understanding of the immune response in recovered individuals we measured T cell responses in paired samples obtained an average of 1.3 and 6.1 months after infection from 41 individuals. The data indicate that recovered individuals show persistent polyfunctional SARS-CoV-2 antigen specific memory that could contribute to rapid recall responses. In addition, recovered individuals show enduring immune alterations in relative numbers of CD4 + and CD8 + T cells, expression of activation/exhaustion markers, and cell division. SUMMARY We show that SARS-CoV-2 infection elicits broadly reactive and highly functional memory T cell responses that persist 6 months after infection. In addition, recovered individuals show enduring immune alterations in CD4 + and CD8 + T cells compartments.
Collapse
Affiliation(s)
- Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thomas Hagglof
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y. Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Arlene Hurley
- Hospital Program Direction, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute
| |
Collapse
|
8
|
Miller CJ, Veazey RS. T Cells in the Female Reproductive Tract Can Both Block and Facilitate HIV Transmission. ACTA ACUST UNITED AC 2019; 15:36-40. [PMID: 31431806 DOI: 10.2174/1573395514666180807113928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because HIV is sexually transmitted, there is considerable interest in defining the nature of anti-HIV immunity in the female reproductive tract (FRT) and in developing ways to elicit antiviral immunity in the FRT through vaccination. Although it is assumed that the mucosal immune system of the FRT is of central importance for protection against sexually transmitted diseases, including HIV, this arm of the immune system has only recently been studied. Here we provide a brief review of the role of T cells in the FRT in blocking and facilitating HIV transmission.
Collapse
Affiliation(s)
- Christopher J Miller
- Professor of Pathology, Microbiology, and Immunology, Center for Comparative Medicine.,California National Primate Research Center, University of California, Davis, Davis, Ca, 95616
| | - Ronald S Veazey
- Professor of Pathology and Laboratory Medicine, Tulane University School of Medicine.,Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| |
Collapse
|
9
|
Barnstorf I, Borsa M, Baumann N, Pallmer K, Yermanos A, Joller N, Spörri R, Welten SPM, Kräutler NJ, Oxenius A. Chronic virus infection compromises memory bystander T cell function in an IL-6/STAT1-dependent manner. J Exp Med 2019; 216:571-586. [PMID: 30745322 PMCID: PMC6400541 DOI: 10.1084/jem.20181589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/05/2018] [Accepted: 01/22/2019] [Indexed: 12/29/2022] Open
Abstract
Chronic viral infections are widespread among humans, with ∼8-12 chronic viral infections per individual, and there is epidemiological proof that these impair heterologous immunity. We studied the impact of chronic LCMV infection on the phenotype and function of memory bystander CD8+ T cells. Active chronic LCMV infection had a profound effect on total numbers, phenotype, and function of memory bystander T cells in mice. The phenotypic changes included up-regulation of markers commonly associated with effector and exhausted cells and were induced by IL-6 in a STAT1-dependent manner in the context of chronic virus infection. Furthermore, bystander CD8 T cell functions were reduced with respect to their ability to produce inflammatory cytokines and to undergo secondary expansion upon cognate antigen challenge with major cell-extrinsic contributions responsible for the diminished memory potential of bystander CD8+ T cells. These findings open new perspectives for immunity and vaccination during chronic viral infections.
Collapse
Affiliation(s)
| | - Mariana Borsa
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | | | | | - Nicole Joller
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Roman Spörri
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
10
|
Reddehase MJ, Lemmermann NAW. Mouse Model of Cytomegalovirus Disease and Immunotherapy in the Immunocompromised Host: Predictions for Medical Translation that Survived the "Test of Time". Viruses 2018; 10:v10120693. [PMID: 30563202 PMCID: PMC6315540 DOI: 10.3390/v10120693] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
Human Cytomegalovirus (hCMV), which is the prototype member of the β-subfamily of the herpesvirus family, is a pathogen of high clinical relevance in recipients of hematopoietic cell transplantation (HCT). hCMV causes multiple-organ disease and interstitial pneumonia in particular upon infection during the immunocompromised period before hematopoietic reconstitution restores antiviral immunity. Clinical investigation of pathomechanisms and of strategies for an immune intervention aimed at restoring antiviral immunity earlier than by hematopoietic reconstitution are limited in patients to observational studies mainly because of ethical issues including the imperative medical indication for chemotherapy with antivirals. Aimed experimental studies into mechanisms, thus, require animal models that match the human disease as close as possible. Any model for hCMV disease is, however, constrained by the strict host-species specificity of CMVs that prevents the study of hCMV in any animal model including non-human primates. During eons of co-speciation, CMVs each have evolved a set of "private genes" in adaptation to their specific mammalian host including genes that have no homolog in the CMV virus species of any other host species. With a focus on the mouse model of CD8 T cell-based immunotherapy of CMV disease after experimental HCT and infection with murine CMV (mCMV), we review data in support of the phenomenon of "biological convergence" in virus-host adaptation. This includes shared fundamental principles of immune control and immune evasion, which allows us to at least make reasoned predictions from the animal model as an experimental "proof of concept." The aim of a model primarily is to define questions to be addressed by clinical investigation for verification, falsification, or modification and the results can then give feedback to refine the experimental model for research from "bedside to bench".
Collapse
Affiliation(s)
- Matthias J Reddehase
- Institute for Virology, University Medical Center and Center for Immunotherapy of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Niels A W Lemmermann
- Institute for Virology, University Medical Center and Center for Immunotherapy of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
11
|
Arcangeletti MC, Maccari C, Vescovini R, Volpi R, Giuggioli D, Sighinolfi G, De Conto F, Chezzi C, Calderaro A, Ferri C. A Paradigmatic Interplay between Human Cytomegalovirus and Host Immune System: Possible Involvement of Viral Antigen-Driven CD8+ T Cell Responses in Systemic Sclerosis. Viruses 2018; 10:E508. [PMID: 30231575 PMCID: PMC6163388 DOI: 10.3390/v10090508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a highly prevalent opportunistic agent in the world population, which persists as a latent virus after a primary infection. Besides the well-established role of this agent causing severe diseases in immunocompromised individuals, more recently, HCMV has been evoked as a possible factor contributing to the pathogenesis of autoimmune diseases such as systemic sclerosis (SSc). The interplay between HCMV and immune surveillance is supposed to become unbalanced in SSc patients with expanded anti-HCMV immune responses, which are likely involved in the exacerbation of inflammatory processes. In this study, blood samples from a cohort of SSc patients vs. healthy subjects were tested for anti-HCMV immune responses (IgM, IgG antibodies, and T cells to peptide pools spanning the most immunogenic HCMV proteins). Statistically significant increase of HCMV-specific CD8+ T cell responses in SSc patients vs. healthy subjects was observed. Moreover, significantly greater HCMV-specific CD8+ T cell responses were found in SSc patients with a longer disease duration and those with higher modified Rodnan skin scores. Given the known importance of T cells in the development of SSc and that this virus may contribute to chronic inflammatory diseases, these data support a relevant role of HCMV-specific CD8+ T cell responses in SSc pathogenesis.
Collapse
Affiliation(s)
- Maria-Cristina Arcangeletti
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Clara Maccari
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Riccardo Volpi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Dilia Giuggioli
- Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, University-Hospital Policlinico of Modena, 41121 Modena, Italy.
| | - Gianluca Sighinolfi
- Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, University-Hospital Policlinico of Modena, 41121 Modena, Italy.
| | - Flora De Conto
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carlo Chezzi
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Adriana Calderaro
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Clodoveo Ferri
- Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, University-Hospital Policlinico of Modena, 41121 Modena, Italy.
| |
Collapse
|
12
|
Immunotherapies: Exploiting the Immune System for Cancer Treatment. J Immunol Res 2018; 2018:9585614. [PMID: 29725606 PMCID: PMC5872614 DOI: 10.1155/2018/9585614] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer is a condition that has plagued humanity for thousands of years, with the first depictions dating back to ancient Egyptian times. However, not until recent decades have biological therapeutics been developed and refined enough to safely and effectively combat cancer. Three unique immunotherapies have gained traction in recent decades: adoptive T cell transfer, checkpoint inhibitors, and bivalent antibodies. Each has led to clinically approved therapies, as well as to therapies in preclinical and ongoing clinical trials. In this review, we outline the method by which these 3 immunotherapies function as well as any major immunotherapeutic drugs developed for treating a variety of cancers.
Collapse
|
13
|
Tomov VT, Palko O, Lau CW, Pattekar A, Sun Y, Tacheva R, Bengsch B, Manne S, Cosma GL, Eisenlohr LC, Nice TJ, Virgin HW, Wherry EJ. Differentiation and Protective Capacity of Virus-Specific CD8 + T Cells Suggest Murine Norovirus Persistence in an Immune-Privileged Enteric Niche. Immunity 2017; 47:723-738.e5. [PMID: 29031786 DOI: 10.1016/j.immuni.2017.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 05/30/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Abstract
Noroviruses can establish chronic infections with active viral shedding in healthy humans but whether persistence is associated with adaptive immune dysfunction is unknown. We used genetically engineered strains of mouse norovirus (MNV) to investigate CD8+ T cell differentiation during chronic infection. We found that chronic infection drove MNV-specific tissue-resident memory (Trm) CD8+ T cells to a differentiation state resembling inflationary effector responses against latent cytomegalovirus with only limited evidence of exhaustion. These MNV-specific Trm cells remained highly functional yet appeared ignorant of ongoing viral replication. Pre-existing MNV-specific Trm cells provided partial protection against chronic infection but largely ceased to detect virus within 72 hours of challenge, demonstrating rapid sequestration of viral replication away from T cells. Our studies revealed a strategy of immune evasion by MNV via the induction of a CD8+ T cell program normally reserved for latent pathogens and persistence in an immune-privileged enteric niche.
Collapse
Affiliation(s)
- Vesselin T Tomov
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Olesya Palko
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chi Wai Lau
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ajinkya Pattekar
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yuhang Sun
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ralitza Tacheva
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bertram Bengsch
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Gabriela L Cosma
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Álvarez-Hernández L, Cuevas-Castillejos J, Cuevas-Castillejos H, Aboitiz-Rivera C, Blachman-Braun R. Different clinical manifestations in two siblings with cytomegalovirus infection. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2017. [DOI: 10.1016/j.hgmx.2016.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Khairallah C, Déchanet-Merville J, Capone M. γδ T Cell-Mediated Immunity to Cytomegalovirus Infection. Front Immunol 2017; 8:105. [PMID: 28232834 PMCID: PMC5298998 DOI: 10.3389/fimmu.2017.00105] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
γδ T lymphocytes are unconventional immune cells, which have both innate- and adaptive-like features allowing them to respond to a wide spectrum of pathogens. For many years, we and others have reported on the role of these cells in the immune response to human cytomegalovirus in transplant patients, pregnant women, neonates, immunodeficient children, and healthy people. Indeed, and as described for CD8+ T cells, CMV infection leaves a specific imprint on the γδ T cell compartment: (i) driving a long-lasting expansion of oligoclonal γδ T cells in the blood of seropositive individuals, (ii) inducing their differentiation into effector/memory cells expressing a TEMRA phenotype, and (iii) enhancing their antiviral effector functions (i.e., cytotoxicity and IFNγ production). Recently, two studies using murine CMV (MCMV) have corroborated and extended these observations. In particular, they have illustrated the ability of adoptively transferred MCMV-induced γδ T cells to protect immune-deficient mice against virus-induced death. In vivo, expansion of γδ T cells is associated with the clearance of CMV infection as well as with reduced cancer occurrence or leukemia relapse risk in kidney transplant patients and allogeneic stem cell recipients, respectively. Taken together, all these studies show that γδ T cells are important immune effectors against CMV and cancer, which are life-threatening diseases affecting transplant recipients. The ability of CMV-induced γδ T cells to act independently of other immune cells opens the door to the development of novel cellular immunotherapies that could be particularly beneficial for immunocompromised transplant recipients.
Collapse
Affiliation(s)
| | | | - Myriam Capone
- Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
| |
Collapse
|
16
|
Smith CJ, Quinn M, Snyder CM. CMV-Specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies. Front Immunol 2016; 7:352. [PMID: 27695453 PMCID: PMC5023669 DOI: 10.3389/fimmu.2016.00352] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous virus that causes chronic infection and, thus, is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8+ T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization, and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8+ T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8+ T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8+ T cell response. Finally, mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue-resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease.
Collapse
Affiliation(s)
- Corinne J Smith
- Department of Microbiology and Immunology, Thomas Jefferson University , Philadelphia, PA , USA
| | - Michael Quinn
- Department of Microbiology and Immunology, Thomas Jefferson University , Philadelphia, PA , USA
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Thomas Jefferson University , Philadelphia, PA , USA
| |
Collapse
|
17
|
Schmittnaegel M, Hoffmann E, Imhof-Jung S, Fischer C, Drabner G, Georges G, Klein C, Knoetgen H. A New Class of Bifunctional Major Histocompatibility Class I Antibody Fusion Molecules to Redirect CD8 T Cells. Mol Cancer Ther 2016; 15:2130-42. [PMID: 27353170 DOI: 10.1158/1535-7163.mct-16-0207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/17/2016] [Indexed: 11/16/2022]
Abstract
Bifunctional antibody fusion proteins engaging effector T cells for targeted elimination of tumor cells via CD3 binding have shown efficacy in both preclinical and clinical studies. Different from such a polyclonal T-cell recruitment, an alternative concept is to engage only antigen-specific T-cell subsets. Recruitment of specific subsets of T cells may be as potent but potentially lead to fewer side effects. Tumor-targeted peptide-MHC class I complexes (pMHCI-IgGs) bearing known antigenic peptides complexed with MHC class I molecules mark tumor cells as antigenic and utilize the physiologic way to interact with and activate T-cell receptors. If, for example, virus-specific CD8(+) T cells are addressed, the associated strong antigenicity and tight immune surveillance of the effector cells could lead to efficacious antitumor treatment in various tissues. However, peptide-MHC class I fusions are difficult to express recombinantly, especially when fused to entire antibody molecules. Consequently, current formats are largely limited to small antibody fragment fusions expressed in bacteria followed by refolding or chemical conjugation. Here, we describe a new molecular format bearing a single pMHCI complex per IgG fusion molecule characterized by enhanced stability and expression yields. This molecular format can be expressed in a full immunoglobulin format and can be designed as mono- or bivalent antibody binders. Mol Cancer Ther; 15(9); 2130-42. ©2016 AACR.
Collapse
Affiliation(s)
| | - Eike Hoffmann
- Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Sabine Imhof-Jung
- Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Cornelia Fischer
- Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Georg Drabner
- Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Guy Georges
- Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Christian Klein
- Discovery Oncology, Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Hendrik Knoetgen
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
18
|
Abstract
Human cytomegalovirus (HCMV) establishes a latent infection that generally remains asymptomatic in immune-competent hosts for decades but can cause serious illness in immune-compromised individuals. The long-term control of CMV requires considerable effort from the host immune system and has a lasting impact on the profile of the immune system. One hallmark of CMV infection is the maintenance of large populations of CMV-specific memory CD8(+) T cells - a phenomenon termed memory inflation - and emerging data suggest that memory inflation is associated with impaired immunity in the elderly. In this Review, we discuss the molecular triggers that promote memory inflation, the idea that memory inflation could be considered a natural pathway of T cell maturation that could be harnessed in vaccination, and the broader implications of CMV infection and the T cell responses it elicits.
Collapse
|
19
|
Bayard C, Lepetitcorps H, Roux A, Larsen M, Fastenackels S, Salle V, Vieillard V, Marchant A, Stern M, Boddaert J, Bajolle F, Appay V, Sauce D. Coordinated expansion of both memory T cells and NK cells in response to CMV infection in humans. Eur J Immunol 2016; 46:1168-79. [DOI: 10.1002/eji.201546179] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/28/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Charles Bayard
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Sorbonne Universités; DHU FAST, CR7, UPMC Univ Paris 06 Paris France
- INSERM, U1135; CIMI-Paris; Paris France
| | - Hélène Lepetitcorps
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Sorbonne Universités; DHU FAST, CR7, UPMC Univ Paris 06 Paris France
- INSERM, U1135; CIMI-Paris; Paris France
| | - Antoine Roux
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Sorbonne Universités; DHU FAST, CR7, UPMC Univ Paris 06 Paris France
- INSERM, U1135; CIMI-Paris; Paris France
- AP-HP, Service de pneumologie; Hôpital Foch; Suresnes France
| | - Martin Larsen
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Sorbonne Universités; DHU FAST, CR7, UPMC Univ Paris 06 Paris France
- INSERM, U1135; CIMI-Paris; Paris France
| | - Solène Fastenackels
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Sorbonne Universités; DHU FAST, CR7, UPMC Univ Paris 06 Paris France
- INSERM, U1135; CIMI-Paris; Paris France
| | - Virginie Salle
- AP-HP; Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique/ M3C; Hôpital Necker enfants malades; Paris France
| | - Vincent Vieillard
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Sorbonne Universités; DHU FAST, CR7, UPMC Univ Paris 06 Paris France
- INSERM, U1135; CIMI-Paris; Paris France
| | - Arnaud Marchant
- Institute for Medical Immunology; Université Libre de Bruxelles; Charleroi Belgium
| | - Marc Stern
- AP-HP, Service de pneumologie; Hôpital Foch; Suresnes France
| | - Jacques Boddaert
- AP-HP; Service de gériatrie; Hôpital Pitié-Salpêtrière; Paris France
| | - Fanny Bajolle
- AP-HP; Unité Médico-Chirurgicale de Cardiologie Congénitale et Pédiatrique/ M3C; Hôpital Necker enfants malades; Paris France
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Sorbonne Universités; DHU FAST, CR7, UPMC Univ Paris 06 Paris France
- INSERM, U1135; CIMI-Paris; Paris France
| | - Delphine Sauce
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Sorbonne Universités; DHU FAST, CR7, UPMC Univ Paris 06 Paris France
- INSERM, U1135; CIMI-Paris; Paris France
| |
Collapse
|
20
|
Ciáurriz M, Zabalza A, Beloki L, Mansilla C, Pérez-Valderrama E, Lachén M, Bandrés E, Olavarría E, Ramírez N. The immune response to cytomegalovirus in allogeneic hematopoietic stem cell transplant recipients. Cell Mol Life Sci 2015; 72:4049-62. [PMID: 26174234 PMCID: PMC11113937 DOI: 10.1007/s00018-015-1986-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/22/2015] [Accepted: 07/03/2015] [Indexed: 02/08/2023]
Abstract
Approximately, up to 70 % of the human population is infected with cytomegalovirus (CMV) that persists for life in a latent state. In healthy people, CMV reactivation induces the expansion of CMV-specific T cells up to 10 % of the entire T cell repertoire. On the contrary, CMV infection is a major opportunistic viral pathogen that remains a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Due to the delayed CMV-specific immune recovery, the incidence of CMV reactivation during post-transplant period is very high. Several methods are currently available for the monitoring of CMV-specific responses that help in clinical monitoring. In this review, essential aspects in the immune recovery against CMV are discussed to improve the better understanding of the immune system relying on CMV infection and, thereby, helping the avoidance of CMV disease or reactivation following hematopoietic stem cell transplantation with severe consequences for the transplanted patients.
Collapse
Affiliation(s)
- Miriam Ciáurriz
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hematology Department, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
| | - Lorea Beloki
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Cristina Mansilla
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Estela Pérez-Valderrama
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Mercedes Lachén
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Eva Bandrés
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hematology Department, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
- Immunity Unit, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
| | - Eduardo Olavarría
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hammersmith Hospital-Imperial College Healthcare NHS, London, UK
| | - Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain.
| |
Collapse
|
21
|
Interleukin-2 from Adaptive T Cells Enhances Natural Killer Cell Activity against Human Cytomegalovirus-Infected Macrophages. J Virol 2015; 89:6435-41. [PMID: 25855747 DOI: 10.1128/jvi.00435-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/02/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Control of human cytomegalovirus (HCMV) requires a continuous immune surveillance, thus HCMV is the most important viral pathogen in severely immunocompromised individuals. Both innate and adaptive immunity contribute to the control of HCMV. Here, we report that peripheral blood natural killer cells (PBNKs) from HCMV-seropositive donors showed an enhanced activity toward HCMV-infected autologous macrophages. However, this enhanced response was abolished when purified NK cells were applied as effectors. We demonstrate that this enhanced PBNK activity was dependent on the interleukin-2 (IL-2) secretion of CD4(+) T cells when reexposed to the virus. Purified T cells enhanced the activity of purified NK cells in response to HCMV-infected macrophages. This effect could be suppressed by IL-2 blocking. Our findings not only extend the knowledge on the immune surveillance in HCMV-namely, that NK cell-mediated innate immunity can be enhanced by a preexisting T cell antiviral immunity-but also indicate a potential clinical implication for patients at risk for severe HCMV manifestations due to immunosuppressive drugs, which mainly suppress IL-2 production and T cell responsiveness. IMPORTANCE Human cytomegalovirus (HCMV) is never cleared by the host after primary infection but instead establishes a lifelong latent infection with possible reactivations when the host's immunity becomes suppressed. Both innate immunity and adaptive immunity are important for the control of viral infections. Natural killer (NK) cells are main innate effectors providing a rapid response to virus-infected cells. Virus-specific T cells are the main adaptive effectors that are critical for the control of the latent infection and limitation of reinfection. In this study, we found that IL-2 secreted by adaptive CD4(+) T cells after reexposure to HCMV enhances the activity of NK cells in response to HCMV-infected target cells. This is the first direct evidence that the adaptive T cells can help NK cells to act against HCMV infection.
Collapse
|
22
|
Schmittnaegel M, Levitsky V, Hoffmann E, Georges G, Mundigl O, Klein C, Knoetgen H. Committing Cytomegalovirus-Specific CD8 T Cells to Eliminate Tumor Cells by Bifunctional Major Histocompatibility Class I Antibody Fusion Molecules. Cancer Immunol Res 2015; 3:764-76. [PMID: 25691327 DOI: 10.1158/2326-6066.cir-15-0037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 11/16/2022]
Abstract
Tumor cells escape immune eradication through multiple mechanisms, including loss of antigenicity and local suppression of effector lymphocytes. To counteract these obstacles, we aimed to direct the unique cytomegalovirus (CMV)-specific immune surveillance against tumor cells. We developed a novel generation of fusion proteins composed of a tumor antigen-specific full immunoglobulin connected to a single major histocompatibility class I complex bearing a covalently linked virus-derived peptide (pMHCI-IgG). Here, we show that tumor antigen-expressing cancer cells, which are decorated with pMHCI-IgGs containing a HLA-A*0201 molecule associated with a CMV-derived peptide, are specifically eliminated through engagement of antigen-specific CD8(+) T cells isolated from peripheral blood mononuclear cell preparations of CMV-infected humans. These CD8(+) T cells act without additional expansion, preactivation, or provision of costimulatory signals. Elimination of tumor cells is induced at similar concentrations and with similar time kinetics as those seen with bispecific T-cell engagers (BiTE). However, while BiTE-like reagents indiscriminately activate T cells through binding to the T-cell receptor complex, pMHCI-IgGs selectively engage antigen-specific, constantly renewable, differentiated effector cytotoxic T lymphocytes to tumor cells, thereby representing a novel class of anticancer immunotherapeutics with potentially improved safety and efficacy profiles.
Collapse
Affiliation(s)
- Martina Schmittnaegel
- Large Molecule Research, Roche Innovation Center Penzberg, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Victor Levitsky
- Discovery Oncology, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Zurich, Switzerland
| | - Eike Hoffmann
- Large Molecule Research, Roche Innovation Center Penzberg, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Guy Georges
- Large Molecule Research, Roche Innovation Center Penzberg, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Olaf Mundigl
- Large Molecule Research, Roche Innovation Center Penzberg, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Christian Klein
- Discovery Oncology, Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Zurich, Switzerland
| | - Hendrik Knoetgen
- Large Molecule Research, Roche Innovation Center Penzberg, Roche Pharma Research and Early Development, Penzberg, Germany.
| |
Collapse
|
23
|
Quinn M, Turula H, Tandon M, Deslouches B, Moghbeli T, Snyder CM. Memory T cells specific for murine cytomegalovirus re-emerge after multiple challenges and recapitulate immunity in various adoptive transfer scenarios. THE JOURNAL OF IMMUNOLOGY 2015; 194:1726-1736. [PMID: 25595792 DOI: 10.4049/jimmunol.1402757] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reconstitution of CMV-specific immunity after transplant remains a primary clinical objective to prevent CMV disease, and adoptive immunotherapy of CMV-specific T cells can be an effective therapeutic approach. Because of viral persistence, most CMV-specific CD8(+) T cells become terminally differentiated effector phenotype CD8(+) T cells (TEFF). A minor subset retains a memory-like phenotype (memory phenotype CD8(+) T cells [TM]), but it is unknown whether these cells retain memory function or persist over time. Interestingly, recent studies suggest that CMV-specific CD8(+) T cells with different phenotypes have different abilities to reconstitute sustained immunity after transfer. The immunology of human CMV infections is reflected in the murine CMV (MCMV) model. We found that human CMV- and MCMV-specific T cells displayed shared genetic programs, validating the MCMV model for studies of CMV-specific T cells in vivo. The MCMV-specific TM population was stable over time and retained a proliferative capacity that was vastly superior to TEFF. Strikingly, after transfer, TM established sustained and diverse T cell populations even after multiple challenges. Although both TEFF and TM could protect Rag(-/-) mice, only TM persisted after transfer into immune replete, latently infected recipients and responded if recipient immunity was lost. Interestingly, transferred TM did not expand until recipient immunity was lost, supporting that competition limits the Ag stimulation of TM. Ultimately, these data show that CMV-specific TM retain memory function during MCMV infection and can re-establish CMV immunity when necessary. Thus, TM may be a critical component for consistent, long-term adoptive immunotherapy success.
Collapse
Affiliation(s)
- Michael Quinn
- Department of Immunology and Microbial Pathogenesis, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Holly Turula
- Department of Immunology and Microbial Pathogenesis, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Mayank Tandon
- Department of Immunology and Microbial Pathogenesis, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Berthony Deslouches
- Department of Immunology and Microbial Pathogenesis, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Toktam Moghbeli
- Department of Immunology and Microbial Pathogenesis, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Christopher M Snyder
- Department of Immunology and Microbial Pathogenesis, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
24
|
Clonal evolution of CD8+ T cell responses against latent viruses: relationship among phenotype, localization, and function. J Virol 2014; 89:568-80. [PMID: 25339770 DOI: 10.1128/jvi.02003-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (hCMV) infection is characterized by a vast expansion of resting effector-type virus-specific T cells in the circulation. In mice, interleukin-7 receptor α (IL-7Rα)-expressing cells contain the precursors for long-lived antigen-experienced CD8(+) T cells, but it is unclear if similar mechanisms operate to maintain these pools in humans. Here, we studied whether IL-7Rα-expressing cells obtained from peripheral blood (PB) or lymph nodes (LNs) sustain the circulating effector-type hCMV-specific pool. Using flow cytometry and functional assays, we found that the IL-7Rα(+) hCMV-specific T cell population comprises cells that have a memory phenotype and lack effector features. We used next-generation sequencing of the T cell receptor to compare the clonal repertoires of IL-7Rα(+) and IL-7Rα(-) subsets. We observed limited overlap of clones between these subsets during acute infection and after 1 year. When we compared the hCMV-specific repertoire between PB and paired LNs, we found many identical clones but also clones that were exclusively found in either compartment. New clones that were found in PB during antigenic recall were only rarely identical to the unique LN clones. Thus, although PB IL-7Rα-expressing and LN hCMV-specific CD8(+) T cells show typical traits of memory-type cells, these populations do not seem to contain the precursors for the novel hCMV-specific CD8(+) T cell pool during latency or upon antigen recall. IL-7Rα(+) PB and LN hCMV-specific memory cells form separate virus-specific compartments, and precursors for these novel PB hCMV-specific CD8(+) effector-type T cells are possibly located in other secondary lymphoid tissues or are being recruited from the naive CD8(+) T cell pool. IMPORTANCE Insight into the self-renewal properties of long-lived memory CD8(+) T cells and their location is crucial for the development of both passive and active vaccination strategies. Human CMV infection is characterized by a vast expansion of resting effector-type cells. It is, however, not known how this population is maintained. We here investigated two possible compartments for effector-type cell precursors: circulating acute-phase IL-7Rα-expressing hCMV-specific CD8(+) T cells and lymph node (LN)-residing hCMV-specific (central) memory cells. We show that new clones that appear after primary hCMV infection or during hCMV reactivation seldom originate from either compartment. Thus, although identical clones may be maintained by either memory population, the precursors of the novel clones are probably located in other (secondary) lymphoid tissues or are recruited from the naive CD8(+) T cell pool.
Collapse
|
25
|
Rosendahl Huber S, van Beek J, de Jonge J, Luytjes W, van Baarle D. T cell responses to viral infections - opportunities for Peptide vaccination. Front Immunol 2014; 5:171. [PMID: 24795718 PMCID: PMC3997009 DOI: 10.3389/fimmu.2014.00171] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/31/2014] [Indexed: 12/22/2022] Open
Abstract
An effective immune response against viral infections depends on the activation of cytotoxic T cells that can clear infection by killing virus-infected cells. Proper activation of these T cells depends on professional antigen-presenting cells, such as dendritic cells (DCs). In this review, we will discuss the potential of peptide-based vaccines for prevention and treatment of viral diseases. We will describe features of an effective response against both acute and chronic infections, such as an appropriate magnitude, breadth, and quality and discuss requirements for inducing such an effective antiviral immune response. We will address modifications that affect presentation of vaccine components by DCs, including choice of antigen, adjuvants, and formulation. Furthermore, we will describe differences in design between preventive and therapeutic peptide-based vaccines. The ultimate goal in the design of preventive vaccines is to develop a universal vaccine that cross-protects against multiple strains of the virus. For therapeutic vaccines, cross-protection is of less importance, but enhancing existing T cell responses is essential. Although peptide vaccination is successful in inducing responses in human papillomavirus (HPV) infected patients, there are still several challenges such as choosing the right target epitopes, choosing safe adjuvants that improve immunogenicity of these epitopes, and steering the immune response in the desired direction. We will conclude with an overview of the current status of peptide vaccination, hurdles to overcome, and prospects for the future.
Collapse
Affiliation(s)
- Sietske Rosendahl Huber
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
26
|
Noncanonical expression of a murine cytomegalovirus early protein CD8 T-cell epitope as an immediate early epitope based on transcription from an upstream gene. Viruses 2014; 6:808-31. [PMID: 24535000 PMCID: PMC3939483 DOI: 10.3390/v6020808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/17/2014] [Accepted: 01/26/2014] [Indexed: 11/23/2022] Open
Abstract
Viral CD8 T-cell epitopes, represented by viral peptides bound to major histocompatibility complex class-I (MHC-I) glycoproteins, are often identified by “reverse immunology”, a strategy not requiring biochemical and structural knowledge of the actual viral protein from which they are derived by antigen processing. Instead, bioinformatic algorithms predicting the probability of C-terminal cleavage in the proteasome, as well as binding affinity to the presenting MHC-I molecules, are applied to amino acid sequences deduced from predicted open reading frames (ORFs) based on the genomic sequence. If the protein corresponding to an antigenic ORF is known, it is usually inferred that the kinetic class of the protein also defines the phase in the viral replicative cycle during which the respective antigenic peptide is presented for recognition by CD8 T cells. We have previously identified a nonapeptide from the predicted ORFm164 of murine cytomegalovirus that is presented by the MHC-I allomorph H-2 Dd and that is immunodominant in BALB/c (H-2d haplotype) mice. Surprisingly, although the ORFm164 protein gp36.5 is expressed as an Early (E) phase protein, the m164 epitope is presented already during the Immediate Early (IE) phase, based on the expression of an upstream mRNA starting within ORFm167 and encompassing ORFm164.
Collapse
|
27
|
CMV-specific CD8+ T-cell function is not impaired in chronic lymphocytic leukemia. Blood 2013; 123:717-24. [PMID: 24246502 DOI: 10.1182/blood-2013-08-518183] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), CD8(+) T cells exhibit features of exhaustion and impaired functionality. Yet, reactivations of latent viruses such as cytomegalovirus (CMV) are uncommon in untreated CLL, suggesting that antiviral responses are uncompromised. We analyzed phenotypical and functional characteristics of CMV-specific CD8(+) T cells in CLL patients in comparison with age-matched healthy controls (HCs). Despite increased expression of the inhibitory receptors PD1, CD160, and CD244 on total CD8(+) T cells in CLL, expression levels of these markers were decreased on CMV-tetramer(+)CD8(+) T cells. Second, cytokine production upon stimulation with both phorbol 12-myristate 13-acetate/ionomycin and CMV-peptide-loaded antigen-presenting cells was intact in CMV-tetramer(+)CD8(+) T cells. Third, CMV-tetramer(+)CD8(+) T cells of CLL patients and HCs were equally effective in killing CMV-peptide-loaded target cells. Finally, quantitative imaging flow cytometry revealed that the proportion of CD8(+) T cells forming immunologic synapses with CMV-peptide-loaded B cells was intact. In conclusion, despite evidence for global T-cell dysfunction in CLL, we show here that CLL-derived CMV-specific CD8(+) T cells display lower expression of exhaustion markers and are functionally intact. These data indicate that the changes in the T-cell compartment in CLL may be more heterogeneous than presently assumed.
Collapse
|
28
|
Kralickova P, Mala E, Vokurkova D, Krcmova I, Pliskova L, Stepanova V, Bartos V, Koblizek V, Tacheci I, Bures J, Brozik J, Litzman J. Cytomegalovirus disease in patients with common variable immunodeficiency: three case reports. Int Arch Allergy Immunol 2013; 163:69-74. [PMID: 24247002 DOI: 10.1159/000355957] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 09/23/2013] [Indexed: 01/15/2023] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent clinically relevant primary immunodeficiency and shows enormous heterogeneity in clinical presentation. Despite clinical immunodeficiency, opportunistic infections are not a typical manifestation of CVID. A retrospective study of 32 patients followed up for 335 patient-years was performed to determine the frequency of cytomegalovirus (CMV) disease. Symptomatic CMV infection was documented in 3 CVID patients. Patients No. 1 and 2 suffered from CMV pneumonia, with complications due to atypical mycobacteriosis in patient No. 1. Patient No. 3 suffered from CMV enteritis. A history of cancer and chronic hepatitis C infection (patient No. 1), immunosuppressive therapy for interstitial lung disease (patient No. 2) and serious enteropathy complicated with malnutrition (patient No. 3) may have contributed to the complications despite only mild abnormalities in T-cell subpopulations. The direct detection of CMV in bronchoalveolar lavage, stool or tissue samples was the most beneficial diagnostic laboratory method, whereas the detection of CMV DNA in blood did not produce positive results. Adequate treatment of CMV disease led to significant clinical improvement in all 3 patients. The frequency of CMV disease appears to be higher than previously described. In our experience, the probability of opportunistic infections in CVID patients increases with secondary comorbidities and their management.
Collapse
Affiliation(s)
- Pavlina Kralickova
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Faculty of Medicine, Charles University in Prague, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Morrow MP, Yan J, Sardesai NY. Human papillomavirus therapeutic vaccines: targeting viral antigens as immunotherapy for precancerous disease and cancer. Expert Rev Vaccines 2013; 12:271-83. [PMID: 23496667 DOI: 10.1586/erv.13.23] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections with oncogenic HPV types have the potential to lead to the induction of several types of cancer, notably cervical, vulvar, anal, and head and neck cancer. While prophylactic vaccines are currently available and show high efficacy against the establishment of HPV infection, low rates of initiation and lower rates of completion of the vaccination regimen, as well as the lack of an opportunity to be vaccinated prior to infection, has lead to the development of a patient population for whom no immune-based therapy for infection is available. In the current review the authors examine clinical approaches to HPV-targeted immune therapies, the bulk of which target the regulatory proteins E6 and E7 that are constitutively expressed in HPV-associated cancer cells. Early studies demonstrate a correlation between induction of T-cell responses and clearance of HPV-associated precancerous lesions. The clinical data corroborates these findings and highlight the importance of Th1 skewing. Improvements in our understanding of tumor immunology and development of more potent Th1-directed vaccine platforms make it feasible to foresee a HPV therapeutic vaccine in the coming years.
Collapse
Affiliation(s)
- Matthew P Morrow
- Inovio Pharmaceuticals, Inc., 1787 Sentry Parkway West, Blue Bell, PA 19422, USA
| | | | | |
Collapse
|
30
|
Abstract
The immune cells that reside at the interface between the placenta and uterus are thought to play many important roles in pregnancy. Recent work has revealed that the composition and function of these cells are locally controlled by the specialized uterine stroma (the decidua) that surrounds the implanted conceptus. Here, I discuss how key immune cell types (natural killer cells, macrophages, dendritic cells, and T cells) are either enriched or excluded from the decidua, how their function is regulated within the decidua, and how they variously contribute to pregnancy success or failure. The discussion emphasizes the relationship between human and mouse studies. Deeper understanding of the immunology of the maternal-fetal interface promises to yield significant insight into the pathogenesis of many human pregnancy complications, including preeclampsia, intrauterine growth restriction, spontaneous abortion, preterm birth, and congenital infection.
Collapse
Affiliation(s)
- Adrian Erlebacher
- Department of Pathology and NYU Cancer Institute, NYU School of Medicine, NYU Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
31
|
Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions. Med Microbiol Immunol 2012; 201:497-512. [PMID: 22961127 DOI: 10.1007/s00430-012-0257-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 12/15/2022]
Abstract
Medical interest in cytomegalovirus (CMV) is based on lifelong neurological sequelae, such as sensorineural hearing loss and mental retardation, resulting from congenital infection of the fetus in utero, as well as on CMV disease with multiple organ manifestations and graft loss in recipients of hematopoietic cell transplantation or solid organ transplantation. CMV infection of transplantation recipients occurs consequent to reactivation of virus harbored in a latent state in the transplanted donor cells and tissues, or in the tissues of the transplantation recipient herself or himself. Hence, CMV infection is a paradigm for a viral infection that causes disease primarily in the immunocompromised host, while infection of the immunocompetent host is associated with only mild and nonspecific symptoms so that it usually goes unnoticed. Thus, CMV is kept under strict immune surveillance. These medical facts are in apparent conflict with the notion that CMVs in general, human CMV as well as animal CMVs, are masters of 'immune evasion', which during virus-host co-speciation have convergently evolved sophisticated mechanisms to avoid their recognition by innate and adaptive immunity of their respective host species, with viral genes apparently dedicated to serve just this purpose (Reddehase in Nat Rev Immunol 2:831-844, 2002). With focus on viral interference with antigen presentation to CD8 T cells in the preclinical model of murine CMV infection, we try here to shed some more light on the in vivo balance between host immune surveillance of CMV infection and viral 'immune evasion' strategies.
Collapse
|
32
|
Wiesel M, Oxenius A. From crucial to negligible: functional CD8⁺ T-cell responses and their dependence on CD4⁺ T-cell help. Eur J Immunol 2012; 42:1080-8. [PMID: 22539281 DOI: 10.1002/eji.201142205] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CD8(+) T cells play an important role in controlling pathogenic infections and are therefore key players in the immune response. It has been shown that among other factors CD4(+) T cells can shape the magnitude as well as the quality of primary and/or secondary CD8(+) T-cell responses. However, due to the complexity and the differences among diverse immunization or infection models, the overall requirement, the time points, as well as the specific mechanism(s) of CD4(+) T-cell help may differ substantially. Here, we summarize current knowledge about the differential requirement of CD4(+) T-cell help in promoting primary CD8(+) T-cell responses as well as establishing functional memory CD8(+) T cells in various experimental settings.
Collapse
Affiliation(s)
- Melanie Wiesel
- Institute for Microbiology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
33
|
Torti N, Oxenius A. T cell memory in the context of persistent herpes viral infections. Viruses 2012; 4:1116-43. [PMID: 22852044 PMCID: PMC3407898 DOI: 10.3390/v4071116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 12/16/2022] Open
Abstract
The generation of a functional memory T cell pool upon primary encounter with an infectious pathogen is, in combination with humoral immunity, an essential process to confer protective immunity against reencounters with the same pathogen. A prerequisite for the generation and maintenance of long-lived memory T cells is the clearance of antigen after infection, which is fulfilled upon resolution of acute viral infections. Memory T cells play also a fundamental role during persistent viral infections by contributing to relative control and immuosurveillance of active replication or viral reactivation, respectively. However, the dynamics, the phenotype, the mechanisms of maintenance and the functionality of memory T cells which develop upon acute/resolved infection as opposed to chronic/latent infection differ substantially. In this review we summarize current knowledge about memory CD8 T cell responses elicited during α-, β-, and γ-herpes viral infections with major emphasis on the induction, maintenance and function of virus-specific memory CD8 T cells during viral latency and we discuss how the peculiar features of these memory CD8 T cell responses are related to the biology of these persistently infecting viruses.
Collapse
Affiliation(s)
- Nicole Torti
- Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | |
Collapse
|