1
|
Parashar B, Malviya R, Sridhar SB, Wadhwa T, Talath S, Shareef J. Eastern equine encephalitis virus: Pathogenesis, immune response, and clinical manifestations. INFECTIOUS MEDICINE 2025; 4:100167. [PMID: 40026316 PMCID: PMC11869868 DOI: 10.1016/j.imj.2025.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
Eastern equine encephalitis virus (EEEV) is a lethal Alphavirus transmitted by Culiseta melanura mosquitoes that primarily cycles between birds. Although rare, infections in humans and horses are associated with high mortality rates and severe neurological effects. Climate change appears to be increasing the spread of this virus. This study aims to provide a comprehensive analysis of EEEV, including its transmission dynamics, pathogenesis, induced host immune response, and long-term impacts on survivors. It also highlights the virus's unique immune evasion strategies that complicate disease management and contribute to severe clinical outcomes, such as encephalitis with fever, convulsions, and coma. Survivors often face chronic cognitive, motor, and psychosocial impairments. Despite these significant public health risks, gaps remain in understanding the molecular mechanisms underlying immune evasion and the long-term neurological sequelae in survivors. By collating current knowledge, this review underscores the urgent need for the development of targeted vaccines and therapeutic interventions to mitigate the growing threat of EEEV, particularly in the context of climate change-driven geographical expansion.
Collapse
Affiliation(s)
- Bhumika Parashar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, Uttar Pradesh, India
- Galgotias Multi-Disciplinary Research & Development Cell (G-MRDC), Galgotias University, Greater Noida 201308, Uttar Pradesh, India
| | - Sathvik Belagodu Sridhar
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Tarun Wadhwa
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Javedh Shareef
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| |
Collapse
|
2
|
Anderson EJ, Knight AC, Heise MT, Baxter VK. Effect of Viral Strain and Host Age on Clinical Disease and Viral Replication in Immunocompetent Mouse Models of Chikungunya Encephalomyelitis. Viruses 2023; 15:1057. [PMID: 37243143 PMCID: PMC10220978 DOI: 10.3390/v15051057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The alphavirus chikungunya virus (CHIKV) represents a reemerging public health threat as mosquito vectors spread and viruses acquire advantageous mutations. Although primarily arthritogenic in nature, CHIKV can produce neurological disease with long-lasting sequelae that are difficult to study in humans. We therefore evaluated immunocompetent mouse strains/stocks for their susceptibility to intracranial infection with three different CHIKV strains, the East/Central/South African (ECSA) lineage strain SL15649 and Asian lineage strains AF15561 and SM2013. In CD-1 mice, neurovirulence was age- and CHIKV strain-specific, with SM2013 inducing less severe disease than SL15649 and AF15561. In 4-6-week-old C57BL/6J mice, SL15649 induced more severe disease and increased viral brain and spinal cord titers compared to Asian lineage strains, further indicating that neurological disease severity is CHIKV-strain-dependent. Proinflammatory cytokine gene expression and CD4+ T cell infiltration in the brain were also increased with SL15649 infection, suggesting that like other encephalitic alphaviruses and with CHIKV-induced arthritis, the immune response contributes to CHIKV-induced neurological disease. Finally, this study helps overcome a current barrier in the alphavirus field by identifying both 4-6-week-old CD-1 and C57BL/6J mice as immunocompetent, neurodevelopmentally appropriate mouse models that can be used to examine CHIKV neuropathogenesis and immunopathogenesis following direct brain infection.
Collapse
Affiliation(s)
- Elizabeth J. Anderson
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Audrey C. Knight
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria K. Baxter
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
3
|
Geng T, Yang D, Lin T, Cahoon JG, Wang P. UBXN3B Controls Immunopathogenesis of Arthritogenic Alphaviruses by Maintaining Hematopoietic Homeostasis. mBio 2022; 13:e0268722. [PMID: 36377866 PMCID: PMC9765034 DOI: 10.1128/mbio.02687-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin regulatory X domain-containing proteins (UBXN) might be involved in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. We recently showed that UBXN3B positively regulated stimulator-of-interferon-genes (STING)-mediated innate immune responses to DNA viruses. Herein, we reported the essential role of UBXN3B in the control of infection and immunopathogenesis of two arthritogenic RNA viruses, Chikungunya (CHIKV) and O'nyong'nyong (ONNV) viruses. Ubxn3b deficient (Ubxn3b-/-) mice presented higher viral loads, more severe foot swelling and immune infiltrates, and slower clearance of viruses and resolution of inflammation than the Ubxn3b+/+ littermates. While the serum cytokine levels were intact, the virus-specific immunoglobulin G and neutralizing antibody levels were lower in the Ubxn3b-/- mice. The Ubxn3b-/- mice had more neutrophils and macrophages, but much fewer B cells in the ipsilateral feet. Of note, this immune dysregulation was also observed in the spleens and blood of uninfected Ubxn3b-/- mice. UBXN3B restricted CHIKV replication in a cell-intrinsic manner but independent of type I IFN signaling. These results demonstrated a dual role of UBXN3B in the maintenance of immune homeostasis and control of RNA virus replication. IMPORTANCE The human genome encodes 13 ubiquitin regulatory X (UBX) domain-containing proteins (UBXN) that might participate in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. Herein, we reported an essential role of UBXN3B in the control of infection and immunopathogenesis of arthritogenic alphaviruses, including Chikungunya virus (CHIKV), which causes acute and chronic crippling arthralgia, long-term neurological disorders, and poses a significant public health problem in the tropical and subtropical regions worldwide. However, there are no approved vaccines or specific antiviral drugs. This was partly due to a poor understanding of the protective and detrimental immune responses elicited by CHIKV. We showed that UBXN3B was critical for the control of CHIKV replication in a cell-intrinsic manner in the acute phase and persistent immunopathogenesis in the post-viremic stage. Mechanistically, UBXN3B was essential for the maintenance of hematopoietic homeostasis during viral infection and in steady-state.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jason G. Cahoon
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Rueda JC, Arcos-Burgos M, Santos AM, Martin-Arsanios D, Villota-Erazo C, Reyes V, Bernal-Macías S, Peláez-Ballestas I, Cardiel MH, Londono J. Human Genetic Host Factors and Its Role in the Pathogenesis of Chikungunya Virus Infection. Front Med (Lausanne) 2022; 9:654395. [PMID: 35252226 PMCID: PMC8888679 DOI: 10.3389/fmed.2022.654395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus from the Togaviridae family that causes acute arthropathy in humans. It is an arthropod-borne virus transmitted initially by the Aedes (Ae) aegypti and after 2006's epidemic in La Reunion by Ae albopictus due to an adaptive mutation of alanine for valine in the position 226 of the E1 glycoprotein genome (A226V). The first isolated cases of CHIKV were reported in Tanzania, however since its arrival to the Western Hemisphere in 2013, the infection became a pandemic. After a mosquito bite from an infected viremic patient the virus replicates eliciting viremia, fever, rash, myalgia, arthralgia, and arthritis. After the acute phase, CHIKV infection can progress to a chronic stage where rheumatic symptoms can last for several months to years. Although there is a great number of studies on the pathogenesis of CHIKV infection not only in humans but also in animal models, there still gaps in the proper understanding of the disease. To this date, it is unknown why a percentage of patients do not develop clinical symptoms despite having been exposed to the virus and developing an adaptive immune response. Also, controversy stills exist on the pathogenesis of chronic joint symptoms. It is known that host immune response to an infectious disease is reflected on patient's symptoms. At the same time, it is now well-established that host genetic variation is an important component of the varied onset, severity, and outcome of infectious disease. It is essential to understand the interaction between the aetiological agent and the host to know the chronic sequelae of the disease. The present review summarizes the current findings on human host genetics and its relationship with immune response in CHIKV infection.
Collapse
Affiliation(s)
- Juan C. Rueda
- Faculty of Medicine and Engineering, Universidad de La Sabana, Chía, Colombia
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Faculty of Medicine, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia
| | - Ana M. Santos
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Daniel Martin-Arsanios
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Catalina Villota-Erazo
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | - Viviana Reyes
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | - Santiago Bernal-Macías
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | | | | | - John Londono
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
- *Correspondence: John Londono
| |
Collapse
|
5
|
Constant LEC, Rajsfus BF, Carneiro PH, Sisnande T, Mohana-Borges R, Allonso D. Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models. Front Microbiol 2021; 12:744164. [PMID: 34675908 PMCID: PMC8524093 DOI: 10.3389/fmicb.2021.744164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus (CHIKV) is currently one of the most relevant arboviruses to public health. It is a member of the Togaviridae family and alphavirus genus and causes an arthritogenic disease known as chikungunya fever (CHIKF). It is characterized by a multifaceted disease, which is distinguished from other arbovirus infections by the intense and debilitating arthralgia that can last for months or years in some individuals. Despite the great social and economic burden caused by CHIKV infection, there is no vaccine or specific antiviral drugs currently available. Recent outbreaks have shown a change in the severity profile of the disease in which atypical and severe manifestation lead to hundreds of deaths, reinforcing the necessity to understand the replication and pathogenesis processes. CHIKF is a complex disease resultant from the infection of a plethora of cell types. Although there are several in vivo models for studying CHIKV infection, none of them reproduces integrally the disease signature observed in humans, which is a challenge for vaccine and drug development. Therefore, understanding the potentials and limitations of the state-of-the-art experimental models is imperative to advance in the field. In this context, the present review outlines the present knowledge on CHIKV epidemiology, replication, pathogenesis, and immunity and also brings a critical perspective on the current in vitro and in vivo state-of-the-art experimental models of CHIKF.
Collapse
Affiliation(s)
- Larissa E. C. Constant
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bia F. Rajsfus
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. Carneiro
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diego Allonso
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Guerrero-Arguero I, Tellez-Freitas CM, Weber KS, Berges BK, Robison RA, Pickett BE. Alphaviruses: Host pathogenesis, immune response, and vaccine & treatment updates. J Gen Virol 2021; 102. [PMID: 34435944 DOI: 10.1099/jgv.0.001644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human pathogens belonging to the Alphavirus genus, in the Togaviridae family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|
7
|
Hibl BM, Dailey Garnes NJM, Kneubehl AR, Vogt MB, Spencer Clinton JL, Rico-Hesse RR. Mosquito-bite infection of humanized mice with chikungunya virus produces systemic disease with long-term effects. PLoS Negl Trop Dis 2021; 15:e0009427. [PMID: 34106915 PMCID: PMC8189471 DOI: 10.1371/journal.pntd.0009427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus responsible for acute to chronic arthralgias and neuropathies. Although it originated in central Africa, recent reports of disease have come from many parts of the world, including the Americas. While limiting human CHIKV cases through mosquito control has been used, it has not been entirely successful. There are currently no licensed vaccines or treatments specific for CHIKV disease, thus more work is needed to develop effective countermeasures. Current animal research on CHIKV is often not representative of human disease. Most models use CHIKV needle inoculation via unnatural routes to create immediate viremia and localized clinical signs; these methods neglect the natural route of transmission (the mosquito vector bite) and the associated human immune response. Since mosquito saliva has been shown to have a profound effect on viral pathogenesis, we evaluated a novel model of infection that included the natural vector, Aedes species mosquitoes, transmitting CHIKV to mice containing components of the human immune system. Humanized mice infected by 3-6 mosquito bites showed signs of systemic infection, with demonstrable viremia (by qRT-PCR and immunofluorescent antibody assay), mild to moderate clinical signs (by observation, histology, and immunohistochemistry), and immune responses consistent with human infection (by flow cytometry and IgM ELISA). This model should give a better understanding of human CHIKV disease and allow for more realistic evaluations of mechanisms of pathogenesis, prophylaxis, and treatments.
Collapse
Affiliation(s)
- Brianne M. Hibl
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Natalie J. M. Dailey Garnes
- Section of Infectious Disease, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Section of Pediatric Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander R. Kneubehl
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Megan B. Vogt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca R. Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
CXCL10 Signaling Contributes to the Pathogenesis of Arthritogenic Alphaviruses. Viruses 2020; 12:v12111252. [PMID: 33147869 PMCID: PMC7692144 DOI: 10.3390/v12111252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023] Open
Abstract
Emerging and re-emerging arthritogenic alphaviruses, such as Chikungunya virus (CHIKV) and O'nyong nyong virus, cause acute and chronic crippling arthralgia associated with inflammatory immune responses. Approximately 50% of CHIKV-infected patients suffer from rheumatic manifestations that last 6 months to years. However, the physiological functions of individual immune signaling pathways in the pathogenesis of alphaviral arthritis remain poorly understood. Here, we report that a deficiency in CXCL10, which is a chemoattractant for monocytes/macrophages/T cells, led to the same viremia as wild-type animals, but fewer immune infiltrates and lower viral loads in footpads at the peak of arthritic disease (6-8 days post infection). Macrophages constituted the largest immune cell population in footpads following infection, and were significantly reduced in Cxcl10-/- mice. The viral RNA loads in neutrophils and macrophages were reduced in Cxcl10-/- compared to wild-type mice. In summary, our results demonstrate that CXCL10 signaling promotes the pathogenesis of alphaviral disease and suggest that CXCL10 may be a therapeutic target for mitigating alphaviral arthritis.
Collapse
|
9
|
Yang L, Geng T, Yang G, Ma J, Wang L, Ketkar H, Yang D, Lin T, Hwang J, Zhu S, Wang Y, Dai J, You F, Cheng G, Vella AT, Flavell RA, Fikrig E, Wang P. Macrophage scavenger receptor 1 controls Chikungunya virus infection through autophagy in mice. Commun Biol 2020; 3:556. [PMID: 33033362 PMCID: PMC7545163 DOI: 10.1038/s42003-020-01285-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophage scavenger receptor 1 (MSR1) mediates the endocytosis of modified low-density lipoproteins and plays an important antiviral role. However, the molecular mechanism underlying MSR1 antiviral actions remains elusive. We report that MSR1 activates autophagy to restrict infection of Chikungunya virus (CHIKV), an arthritogenic alphavirus that causes acute and chronic crippling arthralgia. Msr1 expression was rapidly upregulated after CHIKV infection in mice. Msr1 knockout mice had elevated viral loads and increased susceptibility to CHIKV arthritis along with a normal type I IFN response. Induction of LC3 lipidation by CHIKV, a marker of autophagy, was reduced in Msr1-/- cells. Mechanistically, MSR1 interacted with ATG12 through its cytoplasmic tail and this interaction was enhanced by CHIKV nsP1 protein. MSR1 repressed CHIKV replication through ATG5-ATG12-ATG16L1 and this was dependent on the FIP200-and-WIPI2-binding domain, but not the WD40 domain of ATG16L1. Our results elucidate an antiviral role for MSR1 involving the autophagic function of ATG5-ATG12-ATG16L1.
Collapse
Affiliation(s)
- Long Yang
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA
| | - Tingting Geng
- grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Guang Yang
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA ,grid.258164.c0000 0004 1790 3548Department of Parasitology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinzhu Ma
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA
| | - Leilei Wang
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA
| | - Harshada Ketkar
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA
| | - Duomeng Yang
- grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Tao Lin
- grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Jesse Hwang
- grid.47100.320000000419368710Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Shu Zhu
- grid.47100.320000000419368710Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 USA ,grid.59053.3a0000000121679639Present Address: Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 China
| | - Yanlin Wang
- grid.208078.50000000419370394Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Jianfeng Dai
- grid.263761.70000 0001 0198 0694Institutes of Biology and Medical Sciences, Soochow University, Jiangsu, China
| | - Fuping You
- grid.11135.370000 0001 2256 9319School of Basic Medical Sciences, Peking University, Beijing, China
| | - Gong Cheng
- grid.12527.330000 0001 0662 3178Department of Basic Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Anthony T. Vella
- grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Richard. A. Flavell
- grid.47100.320000000419368710Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Erol Fikrig
- grid.47100.320000000419368710Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520 USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Penghua Wang
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA ,grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| |
Collapse
|
10
|
Abstract
Chikungunya is a clinically and economically important arbovirus that has spread globally in the twenty-first century. While uncommonly fatal, infection with the virus can lead to incapacitating arthralgia that can persist for months to years. The adverse impacts of viral spread are most severe in developing low- and middle-income countries in which medical infrastructure is insufficient and manual labor is an economic driver. Unfortunately, no prophylactic or therapeutic treatments are approved for human use to combat the virus. Historically, vaccination has proven to be the most efficient and successful strategy for protecting populations and eradicating infectious disease. A large and diverse range of promising vaccination approaches for use against Chikungunya has emerged in recent years and been shown to safely elicit protective immune responses in animal models and humans. Importantly, many of these are based on technologies that have been clinically approved for use against other pathogens. Furthermore, clinical trials are currently ongoing for a subset of these. The purpose of this review is to provide a description of the relevant immunobiology of Chikungunya infection, to present immune-stimulating technologies that have been successfully employed to protect against infection, and discuss priorities and challenges regarding the future development of a vaccine for clinical use.
Collapse
|
11
|
Abstract
Alphaviruses are transmitted to humans via bites of infected mosquitoes. Although alphaviruses have caused a wide range of outbreaks and crippling disease, the availability of licensed vaccines or antiviral therapies remains limited. Mosquito vectors such as Aedes and Culex are the main culprits in the transmission of alphaviruses. This review explores how mosquito saliva may promote alphavirus infection. Identifying the roles of mosquito-derived factors in alphavirus pathogenesis will generate novel tools to circumvent and control mosquito-borne alphavirus infections in humans.
Collapse
|
12
|
Affiliation(s)
- Shefali Khanna Sharma
- Unit of Clinical Immunology and Rheumatology; Department of Internal Medicine; Postgraduate Institute of Medical Education and Research; Chandigarh India
| | - Sanjay Jain
- Unit of Clinical Immunology and Rheumatology; Department of Internal Medicine; Postgraduate Institute of Medical Education and Research; Chandigarh India
| |
Collapse
|
13
|
Abstract
Beginning in 2004, chikungunya virus (CHIKV) went from an endemic pathogen limited to Africa and Asia that caused periodic outbreaks to a global pathogen. Given that outbreaks caused by CHIKV have continued and expanded, serious consideration must be given to identifying potential options for vaccines and therapeutics. Currently, there are no licensed products in this realm, and control relies completely on the use of personal protective measures and integrated vector control, which are only minimally effective. Therefore, it is prudent to urgently examine further possibilities for control. Vaccines have been shown to be highly effective against vector-borne diseases. However, as CHIKV is known to rapidly spread and generate high attack rates, therapeutics would also be highly valuable. Several candidates are currently being developed; this review describes the multiple options under consideration for future development and assesses their relative advantages and disadvantages.
Collapse
|
14
|
Pingen M, Bryden SR, Pondeville E, Schnettler E, Kohl A, Merits A, Fazakerley JK, Graham GJ, McKimmie CS. Host Inflammatory Response to Mosquito Bites Enhances the Severity of Arbovirus Infection. Immunity 2017; 44:1455-69. [PMID: 27332734 PMCID: PMC4920956 DOI: 10.1016/j.immuni.2016.06.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
Abstract
Aedes aegypti mosquitoes are responsible for transmitting many medically important viruses such as those that cause Zika and dengue. The inoculation of viruses into mosquito bite sites is an important and common stage of all mosquito-borne virus infections. We show, using Semliki Forest virus and Bunyamwera virus, that these viruses use this inflammatory niche to aid their replication and dissemination in vivo. Mosquito bites were characterized by an edema that retained virus at the inoculation site and an inflammatory influx of neutrophils that coordinated a localized innate immune program that inadvertently facilitated virus infection by encouraging the entry and infection of virus-permissive myeloid cells. Neutrophil depletion and therapeutic blockade of inflammasome activity suppressed inflammation and abrogated the ability of the bite to promote infection. This study identifies facets of mosquito bite inflammation that are important determinants of the subsequent systemic course and clinical outcome of virus infection. Mosquito bites enhance virus replication and dissemination and increase host mortality Neutrophil-driven inflammation retains virus in skin to drive macrophage recruitment Recruited and resident myeloid cells become infected and replicate virus Blocking leukocyte recruitment to bite site inhibits viral infection
Collapse
Affiliation(s)
- Marieke Pingen
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK
| | - Steven R Bryden
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK; Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | | | - Gerard J Graham
- Institute of Infection, Immunology and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Clive S McKimmie
- Virus Host Interaction Team, Section of Infection and Immunity, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK.
| |
Collapse
|
15
|
Silva LA, Dermody TS. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest 2017; 127:737-749. [PMID: 28248203 PMCID: PMC5330729 DOI: 10.1172/jci84417] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research.
Collapse
|
16
|
Mathew AJ, Ganapati A, Kabeerdoss J, Nair A, Gupta N, Chebbi P, Mandal SK, Danda D. Chikungunya Infection: a Global Public Health Menace. Curr Allergy Asthma Rep 2017; 17:13. [PMID: 28233156 DOI: 10.1007/s11882-017-0680-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chikungunya virus (CHIKV) has been involved in epidemics in African and Asian subcontinents and, of late, has transcended to affect the Americas. Aedes aegypti and Aedes albopictus are the major vectors for CHIKV infection, which results in dissemination of virus to various vital organs. Entry of virus into these tissues causes infiltration of innate immune cells, monocytes, macrophages, neutrophils, natural killer cells, and adaptive immune cells. Macrophages bearing the replicating virus, in turn, secrete pro-inflammatory cytokines IL-1β, TNF-α, and IL-17. Together, this pro-inflammatory milieu induces osteoclastogenesis, bone loss, and erosion. CHIKV is characterized by fever, headache, myalgia, rash, and symmetric polyarthritis, which is generally self-limiting. In a subset of cases, however, musculoskeletal symptoms may persist for up to 3-5 years. Viral culture and isolation from blood cells of infected patients are the gold standards for diagnosis of CHIKV. In routine practice, however, assays for anti-CHIKV IgM antibodies are used for diagnosis, as elevated levels in blood of infected patients are noted from 10 days following infection for up to 3-6 months. Early diagnosis of CHIKV is possible by nucleic acid detection techniques. Treatment of acute CHIKV is mainly symptomatic, with analgesics, non-steroidal anti-inflammatory agents (NSAIDs), and low-dose steroids. No vaccines or anti-viral medicines have been approved for clinical therapy in CHIKV as yet. Hydroxychloroquine and methotrexate have been used in chronic CHIKV infection with variable success.
Collapse
Affiliation(s)
- A J Mathew
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - A Ganapati
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - J Kabeerdoss
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - A Nair
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - N Gupta
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - P Chebbi
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - S K Mandal
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India
| | - Debashish Danda
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, 632 004, India.
| |
Collapse
|
17
|
Goupil BA, McNulty MA, Martin MJ, McCracken MK, Christofferson RC, Mores CN. Novel Lesions of Bones and Joints Associated with Chikungunya Virus Infection in Two Mouse Models of Disease: New Insights into Disease Pathogenesis. PLoS One 2016; 11:e0155243. [PMID: 27182740 PMCID: PMC4868286 DOI: 10.1371/journal.pone.0155243] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/26/2016] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus is an arbovirus spread predominantly by Aedes aegypti and Ae. albopictus mosquitoes, and causes debilitating arthralgia and arthritis. While these are common manifestations during acute infection and it has been suggested they can recur in patients chronically, gaps in knowledge regarding the pathogenesis still exist. Two established mouse models were utilized (adult IRF 3/7 -/- -/- and wild-type C57BL/6J mice) to evaluate disease manifestations in bones and joints at various timepoints. Novel lesions in C57BL/6J mice consisted of periostitis (91%) and foci of cartilage of necrosis (50% of mice at 21 DPI). Additionally, at 21 DPI, 50% and 75% of mice exhibited periosteal bone proliferation affecting the metatarsal bones, apparent via histology and μCT, respectively. μCT analysis did not reveal any alterations in trabecular bone volume measurements in C57BL/6J mice. Novel lesions demonstrated in IRF 3/7 -/- -/- mice at 5 DPI included focal regions of cartilage necrosis (20%), periosteal necrosis (66%), and multifocal ischemic bone marrow necrosis (100%). Contralateral feet in 100% of mice of both strains had similar, though milder lesions. Additionally, comparison of control IRF 3/7 -/- -/- and wild-type C57BL/6J mice demonstrated differences in cortical bone. These experiments demonstrate novel manifestations of disease similar to those occurring in humans, adding insight into disease pathogenesis, and representing new potential targets for therapeutic interventions. Additionally, results demonstrate the utility of μCT in studies of bone and joint pathology and illustrate differences in bone dynamics between mouse strains.
Collapse
Affiliation(s)
- Brad A. Goupil
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| | - Margaret A. McNulty
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| | - Matthew J. Martin
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| | - Michael K. McCracken
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| | - Christopher N. Mores
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
18
|
Agarwal A, Joshi G, Nagar DP, Sharma AK, Sukumaran D, Pant SC, Parida MM, Dash PK. Mosquito saliva induced cutaneous events augment Chikungunya virus replication and disease progression. INFECTION GENETICS AND EVOLUTION 2016; 40:126-135. [PMID: 26925703 DOI: 10.1016/j.meegid.2016.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022]
Abstract
Chikungunya virus (CHIKV) is transmitted when infected mosquito probes the host skin. While probing, mosquito saliva is expectorated into host skin along with virus which contains cocktail of molecules having anti-hemostatic and immunomodulatory properties. As mosquito saliva is a critical factor during natural arboviral infection, therefore we investigated mosquito saliva induced cutaneous events that modulate CHIKV infection. The effect of mosquito saliva on CHIKV infection was examined through inoculation of suckling mice subcutaneously with either CHIKV alone or uninfected mosquito bite followed by CHIKV. Histopathological evaluation of skin revealed infiltration of transmigrated inflammatory cells. Dermal blood vessels were hyperemic and adnexa showed degenerating lesions. Severe hemorrhage was observed in dermis and hypodermis in mosquito bite+CHIKV group compared to CHIKV group. Analysis of cytokines in skin showed significant downregulation of inflammatory genes like TLR-3, IL-2, IFN-γ, TNF-α and IFN-β in mosquito bite+CHIKV group compared to CHIKV group. In contrast, significant upregulation of anti-inflammatory genes like IL-4 and IL-10 was observed. These early events might have been responsible for increased dissemination of CHIKV to serum and peripheral organs as demonstrated through >10-fold higher viremia, antigen localization, cellular infiltration and degenerative changes. Thus mosquito saliva induced early cellular infiltration and associated cytokines augment CHIKV pathogenesis in a mouse model. This mosquito improved CHIKV mouse model simulates the realistic conditions that occur naturally during infected mosquito bite to a host. It will lead to better understanding of CHIKV pathobiology and promote the evaluation of novel medical countermeasures against emerging CHIKV.
Collapse
Affiliation(s)
- Ankita Agarwal
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - Gaurav Joshi
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - Durga P Nagar
- Pharmacology and Toxicology Division, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - Ajay K Sharma
- Vector Management Division, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - D Sukumaran
- Vector Management Division, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - Satish C Pant
- Pharmacology and Toxicology Division, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - Man Mohan Parida
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India
| | - Paban Kumar Dash
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M. P., India.
| |
Collapse
|
19
|
Biacchesi S, Jouvion G, Mérour E, Boukadiri A, Desdouits M, Ozden S, Huerre M, Ceccaldi PE, Brémont M. Rainbow trout (Oncorhynchus mykiss) muscle satellite cells are targets of salmonid alphavirus infection. Vet Res 2016; 47:9. [PMID: 26743565 PMCID: PMC4705810 DOI: 10.1186/s13567-015-0301-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/24/2015] [Indexed: 11/21/2022] Open
Abstract
Sleeping disease in rainbow trout is characterized by an abnormal swimming behaviour of the fish which stay on their side at the bottom of the tanks. This sign is due to extensive necrosis and atrophy of red skeletal muscle induced by the sleeping disease virus (SDV), also called salmonid alphavirus 2. Infections of humans with arthritogenic alphaviruses, such as Chikungunya virus (CHIKV), are global causes of debilitating musculoskeletal diseases. The mechanisms by which the virus causes these pathologies are poorly understood due to the restrictive availability of animal models capable of reproducing the full spectrum of the disease. Nevertheless, it has been shown that CHIKV exhibits a particular tropism for muscle stem cells also known as satellite cells. Thus, SDV and its host constitute a relevant model to study in details the virus-induced muscle atrophy, the pathophysiological consequences of the infection of a particular cell-type in the skeletal muscle, and the regeneration of the muscle tissue in survivors together with the possible virus persistence. To study a putative SDV tropism for that particular cell type, we established an in vivo and ex vivo rainbow trout model of SDV-induced atrophy of the skeletal muscle. This experimental model allows reproducing the full panel of clinical signs observed during a natural infection since the transmission of the virus is arthropod-borne independent. The virus tropism in the muscle tissue was studied by immunohistochemistry together with the kinetics of the muscle atrophy, and the muscle regeneration post-infection was observed. In parallel, an ex vivo model of SDV infection of rainbow trout satellite cells was developed and virus replication and persistence in that particular cell type was followed up to 73 days post-infection. These results constitute the first observation of a specific SDV tropism for the muscle satellite cells.
Collapse
Affiliation(s)
- Stéphane Biacchesi
- INRA, Unité de Virologie et d'Immunologie Moléculaires, Jouy-en-Josas, France.
| | - Grégory Jouvion
- Institut Pasteur, Unité Histopathologie Humaine et Modèles Animaux, Paris, France.
| | - Emilie Mérour
- INRA, Unité de Virologie et d'Immunologie Moléculaires, Jouy-en-Josas, France.
| | - Abdelhak Boukadiri
- UMR INRA, Génétique Animale et Biologie Intégrative, Equipe Génétique Immunité et Santé, Jouy-en-Josas, France.
| | - Marion Desdouits
- Institut Pasteur, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France. .,CNRS UMR 3569, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.
| | - Simona Ozden
- Institut Pasteur, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France. .,CNRS UMR 3569, Paris, France.
| | - Michel Huerre
- Institut Pasteur, Unité Recherche et Expertise Histotechnologie et Pathologie, Paris, France.
| | - Pierre-Emmanuel Ceccaldi
- Institut Pasteur, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France. .,CNRS UMR 3569, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.
| | - Michel Brémont
- INRA, Unité de Virologie et d'Immunologie Moléculaires, Jouy-en-Josas, France.
| |
Collapse
|
20
|
Roosenhoff R, Anfasa F, Martina B. The pathogenesis of chronic chikungunya: evolving concepts. Future Virol 2016. [DOI: 10.2217/fvl.15.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chikungunya virus (CHIKV) re-emerged and caused an outbreak in the Caribbean and the Americas. CHIKV can cause incapacitating arthralgia, which may be evolved in chronic arthritis that is similar to rheumatoid arthritis that lasts for months or years. This review provides an overview of known and hypothesized mechanisms that CHIKV uses to promote chronic arthritis. We hypothesized that the chronic inflammatory response that is stimulated by persisting CHIKV replication in the joints results in the arthritic symptoms seen in patients. Most hypotheses proposed in this review need to be tested or confirmed, which may help in the development of new specific treatments and vaccines against CHIKV that will not only combat viral persistence but also prevent tissue damage.
Collapse
Affiliation(s)
- Rueshandra Roosenhoff
- ARTEMIS One Health Research Institute, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
- Curacao Biomedical & Health Research Institute, Curacao
| | - Fatih Anfasa
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Byron Martina
- ARTEMIS One Health Research Institute, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Bosco-Lauth AM, Nemeth NM, Kohler DJ, Bowen RA. Viremia in North American Mammals and Birds After Experimental Infection with Chikungunya Viruses. Am J Trop Med Hyg 2015; 94:504-6. [PMID: 26666699 DOI: 10.4269/ajtmh.15-0696] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/27/2015] [Indexed: 11/07/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus, which is known to cause severe disease only in humans. To investigate its potential zoonotic host range and evaluate reservoir competence among these hosts, experimental infections were performed on individuals from nine avian and 12 mammalian species representing both domestic and wild animals common to North America. Hamsters and inbred mice have previously been shown to develop viremia after inoculation with CHIKV and were used as positive controls for infection. Aside from big brown bats (Eptesicus fuscus), none of the mammals or birds developed detectable viremia or overt clinical disease. However, most mammals and a smaller proportion of birds developed neutralizing antibody responses to CHIKV. On the basis of these results, it seems unlikely that CHIKV poses a significant health threat to most domestic animals or wildlife and that the species examined do not likely contribute to natural transmission cycles. Additional studies should further evaluate bats and wild rodents as potential reservoir hosts for CHIKV transmission during human epidemics.
Collapse
Affiliation(s)
- Angela M Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada; United States Department of Agriculture/Animal and Plant Health Inspection Service/Wildlife Services/National Wildlife Disease Program, Fort Collins, Colorado
| | - Nicole M Nemeth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada; United States Department of Agriculture/Animal and Plant Health Inspection Service/Wildlife Services/National Wildlife Disease Program, Fort Collins, Colorado
| | - Dennis J Kohler
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada; United States Department of Agriculture/Animal and Plant Health Inspection Service/Wildlife Services/National Wildlife Disease Program, Fort Collins, Colorado
| | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada; United States Department of Agriculture/Animal and Plant Health Inspection Service/Wildlife Services/National Wildlife Disease Program, Fort Collins, Colorado
| |
Collapse
|
22
|
Lam S, Nyo M, Phuektes P, Yew CW, Tan YJ, Chu JJH. A potent neutralizing IgM mAb targeting the N218 epitope on E2 protein protects against Chikungunya virus pathogenesis. MAbs 2015; 7:1178-94. [PMID: 26305993 DOI: 10.1080/19420862.2015.1083664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Chikungunya virus (CHIKV) is a medically important human viral pathogen that causes Chikungunya fever accompanied with debilitating and persistent joint pain. Host-elicited or passively-transferred monoclonal antibodies (mAb) are essential mediators of CHIKV clearance. Therefore, this study aimed to generate and characterize a panel of mAbs for their neutralization efficacy against CHIKV infection in a cell-based and murine model. To evaluate their antigenicity and neutralization profile, indirect enzyme-linked immunosorbent assay (ELISA), an immunofluorescence assay (IFA) and a plaque reduction neutralization test were performed on mAbs of IgM isotype. CHIKV escape mutants against mAb 3E7b neutralization were generated, and reverse genetics techniques were then used to create an infectious CHIKV clone with a single mutation. 3E7b was also administered to neonate mice prior or after CHIKV infection. The survival rate, CHIKV burden in tissues and histopathology of the limb muscles were evaluated. Both IgM 3E7b and 8A2c bind strongly to native CHIKV surface and potently neutralize CHIKV replication. Further analyses of 3E7b binding and neutralization of CHIKV single-mutant clones revealed that N218 of CHIKV E2 protein is a potent neutralizing epitope. In a pre-binding neutralization assay, 3E7b blocks CHIKV attachment to permissive cells, possibly by binding to the surface-accessible E2-N218 residue. Prophylactic administration of 3E7b to neonate mice markedly reduced viremia and protected against CHIKV pathogenesis in various mice tissues. Given therapeutically at 4 h post-infection, 3E7b conferred 100% survival rate and similarly reduced CHIKV load in most mice tissues except the limb muscles. Collectively, these findings highlight the usefulness of 3E7b for future prophylactic or epitope-based vaccine design.
Collapse
Affiliation(s)
- Shirley Lam
- a Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore
| | - Min Nyo
- a Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore
| | - Patchara Phuektes
- a Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore
| | - Chow Wenn Yew
- b Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research) ; Singapore
| | - Yee Joo Tan
- b Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research) ; Singapore.,c Hepatitis Viruses and Newly Emerging Viruses; Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore
| | - Justin Jang Hann Chu
- a Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore.,b Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research) ; Singapore
| |
Collapse
|
23
|
Limitations of Current in Vivo Mouse Models for the Study of Chikungunya Virus Pathogenesis. Med Sci (Basel) 2015; 3:64-77. [PMID: 29083392 PMCID: PMC5635755 DOI: 10.3390/medsci3030064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes febrile chikungunya fever (CHIKF) in humans. This disease is debilitating and characterized by acute fever onset and chronic incapacitating polyarthralgia. CHIKF pathogenesis remains poorly defined with no approved vaccines and therapies. Recent outbreaks in the Caribbean islands have elevated concerns over the possibility of a global pandemic. Tremendous efforts have been made to develop relevant mouse models to enable the study of infection and immunity against this viral disease. Among them, the more common C57BL/6 mouse model demonstrated the ability to recapitulate the symptoms shown in infected humans, including self-limiting arthritis, myositis, and tenosynovitis. This has facilitated the unraveling of some key factors involved in disease pathogenesis of CHIKF. However, the stark differences in immune response between humans and mouse models necessitate the development of an animal model with an immune system that is more genetically similar to the human system for a better representation. In this paper, we aim to uncover the limitations of the C57BL/6 model and discuss alternative mouse models for CHIKV research.
Collapse
|
24
|
Couderc T, Lecuit M. Chikungunya virus pathogenesis: From bedside to bench. Antiviral Res 2015; 121:120-31. [PMID: 26159730 DOI: 10.1016/j.antiviral.2015.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/04/2015] [Indexed: 11/28/2022]
Abstract
Chikungunya virus (CHIKV) is an arbovirus transmitted to humans by mosquito bite. A decade ago, the virus caused a major outbreak in the islands of the Indian Ocean, then reached India and Southeast Asia. More recently, CHIKV has emerged in the Americas, first reaching the Caribbean and now extending to Central, South and North America. It is therefore considered a major public health and economic threat. CHIKV causes febrile illness typically associated with debilitating joint pains. In rare cases, it may also cause central nervous system disease, notably in neonates. Joint symptoms may persist for months to years, and lead to arthritis. This review focuses on the spectrum of signs and symptoms associated with CHIKV infection in humans. It also illustrates how the analysis of clinical and biological data from human cohorts and the development of animal and cellular models of infection has helped to identify the tissue and cell tropisms of the virus and to decipher host responses in benign, severe or persistent disease. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World".
Collapse
Affiliation(s)
- Thérèse Couderc
- Institut Pasteur, Biology of Infection Unit, Paris, France; Inserm U1117, Paris, France.
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France; Inserm U1117, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Institut Imagine, Paris, France; Global Virus Network.
| |
Collapse
|
25
|
Bosco-Lauth AM, Han S, Hartwig A, Bowen RA. Development of a Hamster Model for Chikungunya Virus Infection and Pathogenesis. PLoS One 2015; 10:e0130150. [PMID: 26070211 PMCID: PMC4466543 DOI: 10.1371/journal.pone.0130150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 05/17/2015] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus is transmitted by mosquitoes and causes severe, debilitating infectious arthritis in humans. The need for an animal model to study the disease process and evaluate potential treatments is imminent as the virus continues its spread into novel geographic locations. Golden hamsters (Mesocricetus auratus) are often used as outbred laboratory animal models for arboviral diseases. Here we demonstrate that hamsters inoculated with chikungunya virus developed viremia and histopathologic lesions in their limbs and joints similar to those seen in human patients. The virus disseminated rapidly and was found in every major organ, including brain, within a few days of infection. Hamsters did not manifest overt clinical signs, and the virus was generally cleared within 4 days, followed by a strong neutralizing antibody response. These results indicate that hamsters are highly susceptible to chikungunya virus infection and develop myositis and tenosynovitis similar to human patients followed by a complete recovery. This animal model may be useful for testing antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Angela M. Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Sushan Han
- Diagnostic Medicine Laboratory and Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Airn Hartwig
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
26
|
Weber C, Büchner SM, Schnierle BS. A small antigenic determinant of the Chikungunya virus E2 protein is sufficient to induce neutralizing antibodies which are partially protective in mice. PLoS Negl Trop Dis 2015; 9:e0003684. [PMID: 25905779 PMCID: PMC4407984 DOI: 10.1371/journal.pntd.0003684] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 03/06/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The mosquito-borne Chikungunya virus (CHIKV) causes high fever and severe joint pain in humans. It is expected to spread in the future to Europe and has recently reached the USA due to globalization, climate change and vector switch. Despite this, little is known about the virus life cycle and, so far, there is no specific treatment or vaccination against Chikungunya infections. We aimed here to identify small antigenic determinants of the CHIKV E2 protein able to induce neutralizing immune responses. METHODOLOGY/PRINCIPAL FINDINGS E2 enables attachment of the virus to target cells and a humoral immune response against E2 should protect from CHIKV infections. Seven recombinant proteins derived from E2 and consisting of linear and/or structural antigens were created, and were expressed in and purified from E. coli. BALB/c mice were vaccinated with these recombinant proteins and the mouse sera were screened for neutralizing antibodies. Whereas a linear N-terminally exposed peptide (L) and surface-exposed parts of the E2 domain A (sA) alone did not induce neutralizing antibodies, a construct containing domain B and a part of the β-ribbon (called B+) was sufficient to induce neutralizing antibodies. Furthermore, domain sA fused to B+ (sAB+) induced the highest amount of neutralizing antibodies. Therefore, the construct sAB+ was used to generate a recombinant modified vaccinia virus Ankara (MVA), MVA-CHIKV-sAB+. Mice were vaccinated with MVA-CHIKV-sAB+ and/or the recombinant protein sAB+ and were subsequently challenged with wild-type CHIKV. Whereas four vaccinations with MVA-CHIKV-sAB+ were not sufficient to protect mice from a CHIKV infection, protein vaccination with sAB+ markedly reduced the viral titers of vaccinated mice. CONCLUSIONS/SIGNIFICANCE The recombinant protein sAB+ contains important structural antigens for a neutralizing antibody response in mice and its formulation with appropriate adjuvants might lead to a future CHIKV vaccine.
Collapse
|
27
|
|
28
|
Chikungunya virus exploits miR-146a to regulate NF-κB pathway in human synovial fibroblasts. PLoS One 2014; 9:e103624. [PMID: 25083878 PMCID: PMC4118904 DOI: 10.1371/journal.pone.0103624] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/03/2014] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Chikungunya virus causes chronic infection with manifestations of joint pain. Human synovial fibroblasts get infected with CHIKV and could lead to pro-inflammatory responses. MicroRNAs have potentials to regulate the gene expression of various anti-viral and pro-inflammatory genes. The study aims to investigate the role of miR-146a in modulation of inflammatory responses of human synovial fibroblasts by Chikungunya virus. METHODS To study the role of miR-146a in CHIKV pathogenesis in human synovial cells and underlying inflammatory manifestations, we performed CHIKV infection in primary human synovial fibroblasts. Western blotting, real-time PCR, luciferase reporter assay, overexpression and knockdown of cellular miR-146a strategies have been employed to validate the role of miR-146a in regulation of pro-inflammatory NF-κB pathway. RESULTS CHIKV infection induced the expression of cellular miR-146a, which resulted into down-regulation of TRAF6, IRAK1, IRAK2 and increased replication of CHIKV in human synovial fibroblasts. Exogenous expression of miR-146a in human synovial fibroblasts led to decreased expression of TRAF6, IRAK1, IRAK2 and decreased replication of CHIKV. Inhibition of cellular miR-146a by anti-miR-146a restored the expression levels of TRAF6, IRAK1 and IRAK2. Downregulation of TRAF6, IRAK1 and IRAK2 led to downstream decreased NF-κB activation through negative feedback loop. CONCLUSION This study demonstrated the mechanism of exploitation of cellular miR-146a by CHIKV in modulating the host antiviral immune response in primary human synovial fibroblasts.
Collapse
|
29
|
Rozen-Gagnon K, Stapleford KA, Mongelli V, Blanc H, Failloux AB, Saleh MC, Vignuzzi M. Alphavirus mutator variants present host-specific defects and attenuation in mammalian and insect models. PLoS Pathog 2014; 10:e1003877. [PMID: 24453971 PMCID: PMC3894214 DOI: 10.1371/journal.ppat.1003877] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/25/2013] [Indexed: 01/26/2023] Open
Abstract
Arboviruses cycle through both vertebrates and invertebrates, which requires them to adapt to disparate hosts while maintaining genetic integrity during genome replication. To study the genetic mechanisms and determinants of these processes, we use chikungunya virus (CHIKV), a re-emerging human pathogen transmitted by the Aedes mosquito. We previously isolated a high fidelity (or antimutator) polymerase variant, C483Y, which had decreased fitness in both mammalian and mosquito hosts, suggesting this residue may be a key molecular determinant. To further investigate effects of position 483 on RNA-dependent RNA-polymerase (RdRp) fidelity, we substituted every amino acid at this position. We isolated novel mutators with decreased replication fidelity and higher mutation frequencies, allowing us to examine the fitness of error-prone arbovirus variants. Although CHIKV mutators displayed no major replication defects in mammalian cell culture, they had reduced specific infectivity and were attenuated in vivo. Unexpectedly, mutator phenotypes were suppressed in mosquito cells and the variants exhibited significant defects in RNA synthesis. Consequently, these replication defects resulted in strong selection for reversion during infection of mosquitoes. Since residue 483 is conserved among alphaviruses, we examined the analogous mutations in Sindbis virus (SINV), which also reduced polymerase fidelity and generated replication defects in mosquito cells. However, replication defects were mosquito cell-specific and were not observed in Drosophila S2 cells, allowing us to evaluate the potential attenuation of mutators in insect models where pressure for reversion was absent. Indeed, the SINV mutator variant was attenuated in fruit flies. These findings confirm that residue 483 is a determinant regulating alphavirus polymerase fidelity and demonstrate proof of principle that arboviruses can be attenuated in mammalian and insect hosts by reducing fidelity. Chikungunya (CHIKV) is a re-emerging mosquito-borne virus that constitutes a major and growing human health burden. Like all RNA viruses, during viral replication CHIKV copies its genome using a polymerase that makes an average of one mistake per replication cycle. Therefore, a single virus generates millions of viral progeny that carry a multitude of distinct mutations in their genomes. In this study, we isolated CHIKV mutators (strains that make more errors than the wildtype virus), to study how higher mutation rates affect fitness in arthropod-borne viruses (arboviruses). CHIKV mutators have reduced virulence in mice and severe replication defects in Aedes mosquito cells. However, these replication defects result in selective pressure for reversion of mutators to a wildtype polymerase in mosquito hosts. To examine how mutators would behave in an insect model in absence of this genetic instability, we isolated mutators of a related virus, Sindbis virus (SINV). SINV mutators had no replication defect in fruit fly (Drosophila) cells, and a SINV mutator strain was stable and attenuated in fruit flies. This work shows proof of principle that arbovirus mutators can exhibit attenuation in both mammalian and insect hosts, and may remain a viable vaccine strategy.
Collapse
Affiliation(s)
- Kathryn Rozen-Gagnon
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
- University Paris Diderot, Sorbonne Paris Cite, Cellule Pasteur, Paris, France
| | | | - Vanesa Mongelli
- Institut Pasteur, Viruses and RNA Interference, UMR 3569, Paris, France
| | - Hervé Blanc
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
| | | | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference, UMR 3569, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
- * E-mail:
| |
Collapse
|
30
|
A novel poxvirus-based vaccine, MVA-CHIKV, is highly immunogenic and protects mice against chikungunya infection. J Virol 2014; 88:3527-47. [PMID: 24403588 DOI: 10.1128/jvi.03418-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED There is a need to develop a single and highly effective vaccine against the emerging chikungunya virus (CHIKV), which causes a severe disease in humans. Here, we have generated and characterized the immunogenicity profile and the efficacy of a novel CHIKV vaccine candidate based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the CHIKV C, E3, E2, 6K, and E1 structural genes (termed MVA-CHIKV). MVA-CHIKV was stable in cell culture, expressed the CHIKV structural proteins, and triggered the cytoplasmic accumulation of Golgi apparatus-derived membranes in infected human cells. Furthermore, MVA-CHIKV elicited robust innate immune responses in human macrophages and monocyte-derived dendritic cells, with production of beta interferon (IFN-β), proinflammatory cytokines, and chemokines. After immunization of C57BL/6 mice with a homologous protocol (MVA-CHIKV/MVA-CHIKV), strong, broad, polyfunctional, and durable CHIKV-specific CD8(+) T cell responses were elicited. The CHIKV-specific CD8(+) T cells were preferentially directed against E1 and E2 proteins and, to a lesser extent, against C protein. CHIKV-specific CD8(+) memory T cells of a mainly effector memory phenotype were also induced. The humoral arm of the immune system was significantly induced, as MVA-CHIKV elicited high titers of neutralizing antibodies against CHIKV. Remarkably, a single dose of MVA-CHIKV protected all mice after a high-dose challenge with CHIKV. In summary, MVA-CHIKV is an effective vaccine against chikungunya virus infection that induced strong, broad, highly polyfunctional, and long-lasting CHIKV-specific CD8(+) T cell responses, together with neutralizing antibodies against CHIKV. These results support the consideration of MVA-CHIKV as a potential vaccine candidate against CHIKV. IMPORTANCE We have developed a novel vaccine candidate against chikungunya virus (CHIKV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the CHIKV C, E3, E2, 6K, and E1 structural genes (termed MVA-CHIKV). Our findings revealed that MVA-CHIKV is a highly effective vaccine against chikungunya virus, with a single dose of the vaccine protecting all mice after a high-dose challenge with CHIKV. Furthermore, MVA-CHIKV is highly immunogenic, inducing strong innate responses: high, broad, polyfunctional, and long-lasting CHIKV-specific CD8(+) T cell responses, together with neutralizing antibodies against CHIKV. This work provides a potential vaccine candidate against CHIKV.
Collapse
|
31
|
Novel attenuated Chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice. J Virol 2013; 88:2858-66. [PMID: 24371047 DOI: 10.1128/jvi.03453-13] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that has caused severe epidemics in Africa and Asia and occasionally in Europe. As of today, there is no licensed vaccine available to prevent CHIKV infection. Here we describe the development and evaluation of novel CHIKV vaccine candidates that were attenuated by deleting a large part of the gene encoding nsP3 or the entire gene encoding 6K and were administered as viral particles or infectious genomes launched by DNA. The resulting attenuated mutants were genetically stable and elicited high magnitudes of binding and neutralizing antibodies as well as strong T cell responses after a single immunization in C57BL/6 mice. Subsequent challenge with a high dose of CHIKV demonstrated that the induced antibody responses protected the animals from viremia and joint swelling. The protective antibody response was long-lived, and a second homologous immunization further enhanced immune responses. In summary, this report demonstrates a straightforward means of constructing stable and efficient attenuated CHIKV vaccine candidates that can be administered either as viral particles or as infectious genomes launched by DNA. IMPORTANCE Similar to other infectious diseases, the best means of preventing CHIKV infection would be by vaccination using an attenuated vaccine platform which preferably raises protective immunity after a single immunization. However, the attenuated CHIKV vaccine candidates developed to date rely on a small number of attenuating point mutations and are at risk of being unstable or even sensitive to reversion. We report here the construction and preclinical evaluation of novel CHIKV vaccine candidates that have been attenuated by introducing large deletions. The resulting mutants proved to be genetically stable, attenuated, highly immunogenic, and able to confer durable immunity after a single immunization. Moreover, these mutants can be administered either as viral particles or as DNA-launched infectious genomes, enabling evaluation of the most feasible vaccine modality for a certain setting. These CHIKV mutants could represent stable and efficient vaccine candidates against CHIKV.
Collapse
|
32
|
Thiberville SD, Moyen N, Dupuis-Maguiraga L, Nougairede A, Gould EA, Roques P, de Lamballerie X. Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res 2013; 99:345-70. [PMID: 23811281 PMCID: PMC7114207 DOI: 10.1016/j.antiviral.2013.06.009] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/21/2013] [Accepted: 06/18/2013] [Indexed: 12/11/2022]
Abstract
Chikungunya fever is caused by a mosquito-borne alphavirus originating in East Africa. During the past 7 years, the disease has spread to islands of the Indian Ocean, Asia and Europe. Its spread has been facilitated by a mutation favouring replication in the mosquito Ae. albopictus. No vaccines or antiviral drugs are available to prevent or treat chikungunya fever. This paper provides an extensive review of the virus and disease, including Supplementary Tables.
Chikungunya virus (CHIKV) is the aetiological agent of the mosquito-borne disease chikungunya fever, a debilitating arthritic disease that, during the past 7 years, has caused immeasurable morbidity and some mortality in humans, including newborn babies, following its emergence and dispersal out of Africa to the Indian Ocean islands and Asia. Since the first reports of its existence in Africa in the 1950s, more than 1500 scientific publications on the different aspects of the disease and its causative agent have been produced. Analysis of these publications shows that, following a number of studies in the 1960s and 1970s, and in the absence of autochthonous cases in developed countries, the interest of the scientific community remained low. However, in 2005 chikungunya fever unexpectedly re-emerged in the form of devastating epidemics in and around the Indian Ocean. These outbreaks were associated with mutations in the viral genome that facilitated the replication of the virus in Aedes albopictus mosquitoes. Since then, nearly 1000 publications on chikungunya fever have been referenced in the PubMed database. This article provides a comprehensive review of chikungunya fever and CHIKV, including clinical data, epidemiological reports, therapeutic aspects and data relating to animal models for in vivo laboratory studies. It includes Supplementary Tables of all WHO outbreak bulletins, ProMED Mail alerts, viral sequences available on GenBank, and PubMed reports of clinical cases and seroprevalence studies.
Collapse
Affiliation(s)
- Simon-Djamel Thiberville
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France; University Hospital Institute for Infectious Disease and Tropical Medicine, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lum FM, Teo TH, Lee WWL, Kam YW, Rénia L, Ng LFP. An essential role of antibodies in the control of Chikungunya virus infection. THE JOURNAL OF IMMUNOLOGY 2013; 190:6295-302. [PMID: 23670192 DOI: 10.4049/jimmunol.1300304] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, Chikungunya virus (CHIKV) was responsible for epidemic outbreaks in intertropical regions. Although acquired immunity has been shown to be crucial during CHIKV infection in both humans and mice, their exact role in the control of CHIKV infection remains unclear. In this study, wild-type (WT), CD4(-/-), and B cell (μMT) knockout mice were infected with CHIKV. Sera were taken at different days postinfection and measured for anti-CHIKV Ab levels. Isotype and neutralizing capacity of these Abs were assessed in vitro, and specific linear epitopes were mapped. Viremia in CHIKV-infected μMT mice persisted for more than a year, indicating a direct role for B cells in mediating CHIKV clearance. These animals exhibited a more severe disease than WT mice during the acute phase. Characterization of CHIKV-specific Abs revealed that anti-CHIKV Abs were elicited early and targeted epitopes mainly at the C terminus of the virus E2 glycoprotein. Furthermore, CD4(-/-) mice could still control CHIKV infection despite having lower anti-CHIKV Ab levels with reduced neutralizing capacity. Lastly, pre-existing natural Abs in the sera of normal WT mice recognized CHIKV and were able to partially inhibit CHIKV. Taken together, natural and CHIKV infection-induced specific Abs are essential for controlling CHIKV infections.
Collapse
Affiliation(s)
- Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore 138648
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
As the threat of exposure to emerging and reemerging viruses within a naive population increases, it is vital that the basic mechanisms of pathogenesis and immune response be thoroughly investigated. By using animal models in this endeavor, the response to viruses can be studied in a more natural context to identify novel drug targets, and assess the efficacy and safety of new products. This is especially true in the advent of the Food and Drug Administration's animal rule. Although no one animal model is able to recapitulate all the aspects of human disease, understanding the current limitations allows for a more targeted experimental design. Important facets to be considered before an animal study are the route of challenge, species of animals, biomarkers of disease, and a humane endpoint. This chapter covers the current animal models for medically important human viruses, and demonstrates where the gaps in knowledge exist.
Collapse
|