1
|
de Ligt LA, Gaartman AE, Konté K, Thakoerdin S, Fijnvandraat K, Kuijpers TW, van Bruggen R, Biemond BJ, Nur E. Plasma inflammatory and angiogenic protein profiling of patients with sickle cell disease. Br J Haematol 2025; 206:954-964. [PMID: 39743683 PMCID: PMC11886948 DOI: 10.1111/bjh.19970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
In this study, we aimed to explore the inflammatory and angiogenic pathways in sickle cell disease (SCD). We used proximity extension assay technology (Olink) to measure 92 plasma proteins involved in inflammation and angiogenesis. Plasma samples were collected from 57 SCD patients (sickle cell anaemia/HbS-β0 thalassaemia-thalassaemia) in steady-state and 13 healthy ethnicity-matched healthy controls (HCs). From 15 patients, paired samples were collected during both steady-state and vaso-occlusive episodes (VOEs) and from 23 SCD patients longitudinal samples were collected before and after treatment with either voxelotor (n = 10), hydroxyurea (n = 8) or allogeneic haematopoietic stem-cell transplantation (n = 5). Fifty plasma proteins were differentially expressed in steady-state SCD patients as compared to HC. These included proteins involved in angiogenesis (i.e. ANGPT1, ANGPT2 and VEGFA), the IL-18 signalling pathway (i.e. IL-6, IL-10, IL-18), T-cell activation (i.e. LAG3, PDCD1) and natural killer (NK)-cell activation (CD244, NCR1, GZMB). While proteins involved in angiogenesis and the IL-18 signalling pathway were further upregulated during VOE, levels of several proteins involved in the IL-18 pathway, T-cell and NK-cell activation and angiogenesis, restored towards levels detected in HCs after curative or disease-modifying treatment. These findings might contribute to a better understanding of SCD pathophysiology and identifying potential new targets for therapeutic interventions.
Collapse
Affiliation(s)
- L. A. de Ligt
- Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamthe Netherlands
- Department of HematologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Pediatric HematologyEmma Children's Hospital, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - A. E. Gaartman
- Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamthe Netherlands
- Department of HematologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - K. Konté
- Department of HematologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - S. Thakoerdin
- Department of HematologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - K. Fijnvandraat
- Department of Pediatric HematologyEmma Children's Hospital, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - T. W. Kuijpers
- Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamthe Netherlands
- Department of Pediatric ImmunologyEmma Children's Hospital, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - R. van Bruggen
- Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamthe Netherlands
| | - B. J. Biemond
- Department of HematologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - E. Nur
- Department of Molecular HematologySanquin Research and Landsteiner LaboratoryAmsterdamthe Netherlands
- Department of HematologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
2
|
Wang K, Olave N, Aggarwal S, Oh JY, Patel RP, Rahman AF, Lebensburger J, Alishlash AS. Biomarkers to Differentiate Acute Chest Syndrome From Vaso-Occlusive Crisis in Children With Sickle Cell Disease. Eur J Haematol 2025; 114:325-333. [PMID: 39498599 PMCID: PMC11710972 DOI: 10.1111/ejh.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/14/2024]
Abstract
BACKGROUND Acute Chest Syndrome (ACS) is the leading cause of death in children with sickle cell disease (SCD) in the US-about half of the children who develop ACS present initially with pain. METHODS Here, we studied biomarkers to differentiate ACS from vaso-occlusive crises (VOC) in children with SCD who presented with pain to the emergency department (ED). We conducted a prospective cohort study of consecutive patients who presented to the ED with pain and were discharged with ACS or VOC between March, 2017 and February, 2020. RESULTS We identified 7 patients with ACS and 19 patients with VOC. The two groups were comparable in age and sex. All patients with ACS had asthma versus 42% of the VOC group. The ACS group had lower weight and BMI z-scores. Patients with ACS compared to VOC had significantly higher respiratory rates, lower O2 saturation, and longer hospital stays. They also had higher white blood cell count, glucose level (> 99 mg/dL), anion gap (> 9 mEq/L), sPLA2 (> 7 pg/mL), IFN-γ (> 17.8 pg/mL), IL-10 (1.54 pg/mL), and IL-12 (> 0.5 pg/mL) levels. CONCLUSIONS We identified biomarkers associated with ACS development in children with SCD presenting with pain that allow for earlier ACS interventions to reduce mortality and morbidity.
Collapse
Affiliation(s)
- Karen Wang
- Heersink School of Medicine, University of Alabama at Birmingham; Birmingham, AL
| | - Nelida Olave
- Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham; Birmingham, AL
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University; Miami, FL
| | - Joo-Yeun Oh
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham; Birmingham, AL
| | - Rakesh P. Patel
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham; Birmingham, AL
| | - A.K.M. Fazlur Rahman
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham; Birmingham, AL
| | - Jeffrey Lebensburger
- Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham; Birmingham, AL
| | - Ammar Saadoon Alishlash
- Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham; Birmingham, AL
| |
Collapse
|
3
|
Anderson AR, Strouse JJ, Manwani D, Brandow AM, Vichinsky E, Campbell A, Leavey PJ, Nero A, Ibrahim IF, Field JJ, Baer A, Soto-Calderon H, Vincent L, Zhao Y, Santos JJS, Hensley SE, Mortier N, Lanzkron S, Neuberg D, Abrams CS. COVID-19 mRNA vaccination responses in individuals with sickle cell disease: an ASH RC Sickle Cell Research Network Study. Blood Adv 2024; 8:4549-4553. [PMID: 38991137 PMCID: PMC11399661 DOI: 10.1182/bloodadvances.2024013878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
ABSTRACT Children and adults with sickle cell disease (SCD) have increases in morbidity and mortality with COVID-19 infections. The American Society of Hematology Research Collaborative Sickle Cell Disease Research Network performed a prospective COVID-19 vaccine study to assess antibody responses and analyze whether messenger RNA (mRNA) vaccination precipitated any adverse effects unique to individuals with SCD. Forty-one participants received 2 doses of the Pfizer-BioNTech vaccine and provided baseline blood samples before vaccination and 2 months after the initial vaccination for analysis of immunoglobulin G (IgG) reactivity against the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 spike protein. Six-month IgG reactivity against the viral RBD was also available in 37 patients. Postvaccination reactogenicity was common and similar to the general population. There were no fevers that required inpatient admission. Vaso-occlusive pain within 2 to 3 days of first or second vaccination was reported by 5 participants (12%) including 4 (10%) who sought medical care. Twenty-seven participants (66%) were seropositive at baseline, and all 14 initially seronegative participants (34%) converted to seropositive after vaccination. Overall, mRNA vaccination had a good risk-benefit profile in individuals with SCD. This mRNA vaccine study also marks the first evaluation of vaccine safety and antibody response in very young children with SCD. This trial was registered at www.ClinicalTrials.gov as #NCT05139992.
Collapse
Affiliation(s)
- Alan R. Anderson
- PRISMA Health Comprehensive Sickle Cell Disease Program, Division of Pediatric Hematology-Oncology, University of South Carolina School of Medicine, Greenville, SC
| | - John J. Strouse
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Deepa Manwani
- Children's Hospital at Montefiore, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Amanda M. Brandow
- Department of Pediatrics, Section of Hematology/Oncology/Bone Marrow Transplantation, Medical College of Wisconsin and Children’s Research Institute of Children’s Wisconsin, Milwaukee, WI
| | - Elliott Vichinsky
- Benioff Children's Hospital Oakland, Department of Pediatrics, UCSF, Oakland, CA
| | - Andrew Campbell
- Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Patrick J. Leavey
- Simmons Comprehensive Cancer Center, Children's Medical Center, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Alecia Nero
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Ibrahim F. Ibrahim
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Joshua J. Field
- Department of Medicine, Medical College of Wisconsin, Versiti Blood Research Institute, Milwaukee, WI
| | - Amanda Baer
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Lauren Vincent
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yan Zhao
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | | | - Scott E. Hensley
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | | | - Sophie Lanzkron
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Charles S. Abrams
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Plaza-Florido A, Liem RI, Haddad F, Radom-Aizik S. Whole-blood transcriptome analysis reveals distinct gene expression signatures in paediatric patients with sickle cell anaemia before and after exercise. Br J Haematol 2024; 205:320-328. [PMID: 38768976 PMCID: PMC11245363 DOI: 10.1111/bjh.19533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Sickle cell anaemia (SCA) patients display elevated levels of circulating pro-inflammatory cytokines and endothelial activation markers compared to healthy peers. The impact of exercise on the pro-inflammatory state in SCA remains unclear. This study aimed to characterize the whole-blood transcriptome profile in response to an acute bout of exercise in paediatric SCA patients. Twenty-three SCA participants (13 ± 3 years, 52% girls) and 17 healthy controls (14 ± 3 years, 29% girls) performed eight 2-min bouts of cycle ergometry interspersed with 1-min rest intervals. Whole-blood transcriptome profile (RNA-seq) was performed before and after exercise. At baseline, gene pathways associated with gas transport in erythrocytes were up-regulated in SCA patients compared to controls. Following exercise, gene pathways associated with innate immunity were altered in both groups. Interaction analyses revealed 160 annotated genes (101 up- and 59 down-regulated) that differentially altered by exercise in SCA patients. Moreover, genes that exhibited a blunted response to exercise in SCA patients were enriched in the IL-17 signalling pathway, suggesting an impaired innate immune response to exercise. This data will contribute to the development of evidence-based exercise prescription guidelines for this patient population.
Collapse
Affiliation(s)
- Abel Plaza-Florido
- Department of Pediatrics, School of Medicine, Pediatric Exercise and Genomics Research Center, University of California Irvine, Irvine, California, USA
| | - Robert I Liem
- Division of Hematology, Oncology & Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Fadia Haddad
- Department of Pediatrics, School of Medicine, Pediatric Exercise and Genomics Research Center, University of California Irvine, Irvine, California, USA
| | - Shlomit Radom-Aizik
- Department of Pediatrics, School of Medicine, Pediatric Exercise and Genomics Research Center, University of California Irvine, Irvine, California, USA
| |
Collapse
|
5
|
Aboderin FI, Oduola T, Davison GM, Oguntibeju OO. A Review of the Relationship between the Immune Response, Inflammation, Oxidative Stress, and the Pathogenesis of Sickle Cell Anaemia. Biomedicines 2023; 11:2413. [PMID: 37760854 PMCID: PMC10525295 DOI: 10.3390/biomedicines11092413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Sickle cell anaemia (SCD) is a life-threatening haematological disorder which is predominant in sub-Saharan Africa and is triggered by a genetic mutation of the β-chain haemoglobin gene resulting in the substitution of glutamic acid with valine. This mutation leads to the production of an abnormal haemoglobin molecule called haemoglobin S (HbS). When deoxygenated, haemoglobin S (HbS) polymerises and results in a sickle-shaped red blood cell which is rigid and has a significantly shortened life span. Various reports have shown a strong link between oxidative stress, inflammation, the immune response, and the pathogenesis of sickle cell disease. The consequence of these processes leads to the development of vasculopathy (disease of the blood vessels) and several other complications. The role of the immune system, particularly the innate immune system, in the pathogenesis of SCD has become increasingly clear in recent years of research; however, little is known about the roles of the adaptive immune system in this disease. This review examines the interaction between the immune system, inflammation, oxidative stress, blood transfusion, and their effects on the pathogenesis of sickle cell anaemia.
Collapse
Affiliation(s)
- Florence Ifechukwude Aboderin
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Taofeeq Oduola
- Department of Chemical Pathology, Usmanu Danfodiyo University, Sokoto 840004, Nigeria;
| | - Glenda Mary Davison
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| |
Collapse
|
6
|
Ismail AM, Mahmoud NMS, Ghazawy ER, Mousa SO. Prevalence of COVID-19 in Egyptian Children With Hemoglobinopathies and Inherited Anemias. J Pediatr Hematol Oncol 2022; 44:e954-e959. [PMID: 34486552 DOI: 10.1097/mph.0000000000002298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022]
Abstract
Since the World Health Organization (WHO) announced coronavirus disease-2019 (COVID-19) to be a pandemic, children's COVID-19 cases were generally less severe than adults. The aim of the study was to determine the prevalence of COVID-19 cases among children with hemoglobinopathies and other inherited anemias living in El-Minya Governorate, Egypt, who are at high risk of exposure to infection. This cross-sectional study evaluated data from 258 children with hemoglobinopathies and inherited anemias. A questionnaire was used to collect data about COVID-19 symptoms coupled with appropriate investigations (complete blood count, d-dimer, anti-COVID antibodies, chest computed tomography scans, and polymerase chain reaction). We found 38 of 258 (14.7%) children had mild to moderate COVID-19, while there were no cases with severe form of COVID-19. COVID-19 cases were significantly older (8.63±3.37 vs. 6.71±3.56 y, P =0.01), noncompliant to iron chelators (63.2% vs. 11.8%, P =0.01), had higher serum ferritin (2639.47±835.06 vs. 1038.95±629.87 ng/mL, P <0.0001) and serum iron levels (803.68±261.36 vs. 374.18±156.15 µg/dL, P <0.0001) and more frequently had undergone splenectomy (78.9% vs. 25.5%; P <0.0001) than non-COVID-19 cases. In conclusion, only 14.7% of children with hemoglobinopathies and inherited anemias were recorded to have contracted mild to moderate COVID-19, with no reported severe cases.
Collapse
Affiliation(s)
| | | | - Eman R Ghazawy
- Department of Public Health, Faculty of Medicine, Minia University, El-Minya, Egypt
| | | |
Collapse
|
7
|
Sesti-Costa R, Borges MD, Lanaro C, de Albuquerque DM, Saad STO, Costa FF. Inflammatory Dendritic Cells Contribute to Regulate the Immune Response in Sickle Cell Disease. Front Immunol 2021; 11:617962. [PMID: 33613546 PMCID: PMC7890087 DOI: 10.3389/fimmu.2020.617962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Sickle cell disease (SCD), one of the most common hemoglobinopathies worldwide, is characterized by a chronic inflammatory component, with systemic release of inflammatory cytokines, due to hemolysis and vaso-occlusive processes. Patients with SCD demonstrate dysfunctional T and B lymphocyte responses, and they are more susceptible to infection. Although dendritic cells (DCs) are the main component responsible for activating and polarizing lymphocytic function, and are able to produce pro-inflammatory cytokines found in the serum of patients with SCD, minimal studies have thus far been devoted to these cells. In the present study, we identified the subpopulations of circulating DCs in patients with SCD, and found that the bloodstream of the patients showed higher numbers and percentages of DCs than that of healthy individuals. Among all the main DCs subsets, inflammatory DCs (CD14+ DCs) were responsible for this rise and correlated with higher reticulocyte count. The patients had more activated monocyte-derived DCs (mo-DCs), which produced MCP-1, IL-6, and IL-8 in culture. We found that a CD14+ mo-DC subset present in culture from some of the patients was the more activated subset and was mainly responsible for cytokine production, and this subset was also responsible for IL-17 production in co-culture with T lymphocytes. Finally, we suggest an involvement of heme oxygenase in the upregulation of CD14 in mo-DCs from the patients, indicating a potential mechanism for inducing inflammatory DC differentiation from circulating monocytes in the patients, which correlated with inflammatory cytokine production, T lymphocyte response skewing, and reticulocyte count.
Collapse
Affiliation(s)
- Renata Sesti-Costa
- Hematology and Hemotherapy Center, University of Campinas, UNICAMP, Campinas, Brazil
| | | | - Carolina Lanaro
- Hematology and Hemotherapy Center, University of Campinas, UNICAMP, Campinas, Brazil
| | | | | | | |
Collapse
|
8
|
Youssef SR, Elsalakawy WA. First report of expansion of CD4 +/CD28 null T-helper lymphocytes in adult patients with idiopathic autoimmune hemolytic anemia. Hematol Transfus Cell Ther 2020; 43:396-401. [PMID: 32709527 PMCID: PMC8572999 DOI: 10.1016/j.htct.2020.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
CD28 null T helper (Th) cells are rare in healthy individuals, but they are increased in various inflammatory and immune-mediated diseases. In this study, we determined the size of the CD4+/CD28 null T lymphocyte compartment in the peripheral blood of 40 autoimmune hemolytic anemia (AIHA) patients (idiopathic and secondary) and 20 healthy control subjects, using tri-color flow cytometry. The frequency and absolute count of CD4+/CD28 null T helper (Th) cells was significantly higher in idiopathic AIHA patients, compared to healthy controls (p = 0.001 and 0.001, respectively) and to patients with secondary AIHA (p = 0.04 and 0.01, respectively). The percentage of CD4+/CD28 null Th cells was also negatively correlated to the hemoglobin (Hb) level (p = 0.03). These findings demonstrate, for the first time, the expansion of this phenotypically-defined population of T lymphocytes in patients with idiopathic AIHA and indicate that it likely plays an etiological role in the development of this disease. However, establishing the use of this marker for diagnosis or monitoring treatment of such patients needs further studies.
Collapse
Affiliation(s)
- Soha R Youssef
- Departments of Clinical Pathology, faculty of medicine, Ain Shams University, Cairo; Egypt
| | - Walaa A Elsalakawy
- Internal Medicine department, Clinical Hematology and BMT unit (2), faculty of medicine, Ain Shams University, Cairo; Egypt.
| |
Collapse
|
9
|
Garcia NP, Júnior ALS, Soares GAS, Costa TCC, dos Santos APC, Costa AG, Tarragô AM, Martins RN, do Carmo Leão Pontes F, de Almeida EG, de Paula EV, Martins-Filho OA, Malheiro A. Sickle Cell Anemia Patients Display an Intricate Cellular and Serum Biomarker Network Highlighted by TCD4+CD69+ Lymphocytes, IL-17/MIP-1 β, IL-12/VEGF, and IL-10/IP-10 Axis. J Immunol Res 2020; 2020:4585704. [PMID: 32411797 PMCID: PMC7199620 DOI: 10.1155/2020/4585704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sickle cell anemia (SCA) is associated with a chronic proinflammatory state characterized by elevated leukocyte count, mortality from severe recurrent infections, and subsequent vasoocclusive complications with leukocyte adhesion to the endothelium and increased plasma levels of inflammatory cytokines. The immune system has a close connection with morbidity in SCA, but further studies are needed to uncover the involvement of innate and adaptive immunities in modulating the SCA physiopathology. We performed measurements of the frequency of innate and adaptive immunity cells, cytokines, chemokines, and growth factors and immunophenotyping of Toll-like receptor and adhesion molecule expression in the blood of SCA patients and healthy donors to evaluate the different profiles of these biomarkers, the relationship among them, and their correlation to laboratory records and death risk. Material and Methods. Immunophenotyping of cells, Toll-like receptors, and adhesion molecules were performed from peripheral blood samples of SCA patients and healthy donors by flow cytometry and cytokine/chemokine/growth factor measurement by the Luminex technique performed from the serum of the same subjects. RESULTS Cells of adaptive immunity such as IL-12, IL-17, and IL-10 cytokines; IL-8, IP-10, MIP-1α, MIP-1β, and RANTES chemokines; and VEGF, FGF-basic, and GM-CSF growth factors were higher in SCA patients than healthy donors regardless of any laboratorial and clinical condition. However, high death risk appears to have relevant biomarkers. CONCLUSION In the SCA pathophysiology at steady state, there is a broad immunological biomarker crosstalk highlighted by TCD4+CD69+ lymphocytes, IL-12 and IL-17 inflammatory and IL-10 regulatory cytokines, MIP-1α, MIP-1β, and IP-10 chemokines, and VEGF growth factor. High expression of TLR2 in monocytes and VLA-4 in TCD8+ lymphocytes and high levels of MIP-1β and RANTES appear to be relevant in high death risk conditions. The high reticulocytosis and high death risk conditions present common correlations, and there seems to be a balance by the Th2 profile.
Collapse
Affiliation(s)
- Nadja Pinto Garcia
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), 69077-000 Manaus, AM, Brazil
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
| | - Alexander Leonardo S. Júnior
- Programa de Pós-Graduação em Ciências Aplicadas a Hematologia, Universidade Estadual do Amazonas (PPCAH/UEA), 69065-001 Manaus, AM, Brazil
| | - Geyse Adriana S. Soares
- Programa de Apoio a Iniciação Científica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
| | - Thainá Cristina C. Costa
- Programa de Pós-Graduação em Ciências Aplicadas a Hematologia, Universidade Estadual do Amazonas (PPCAH/UEA), 69065-001 Manaus, AM, Brazil
| | - Alicia Patrine C. dos Santos
- Programa de Apoio a Iniciação Científica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), 69077-000 Manaus, AM, Brazil
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas a Hematologia, Universidade Estadual do Amazonas (PPCAH/UEA), 69065-001 Manaus, AM, Brazil
| | - Andréa Monteiro Tarragô
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
| | - Rejane Nina Martins
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
| | - Flávia do Carmo Leão Pontes
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
| | - Emerson Garcia de Almeida
- Programa de Pós-Graduação em Ciências Aplicadas a Hematologia, Universidade Estadual do Amazonas (PPCAH/UEA), 69065-001 Manaus, AM, Brazil
| | - Erich Vinícius de Paula
- Programa de Pós-Graduação em Ciências Aplicadas a Hematologia, Universidade Estadual do Amazonas (PPCAH/UEA), 69065-001 Manaus, AM, Brazil
- Departamento de Clínica Médica da Faculdade de Ciências Médicas da UNICAMP, 13083-970 Campinas, SP, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou/Fiocruz Minas, 30190-002 Belo Horizonte, MG, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), 69077-000 Manaus, AM, Brazil
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), 69050-001 Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas a Hematologia, Universidade Estadual do Amazonas (PPCAH/UEA), 69065-001 Manaus, AM, Brazil
| |
Collapse
|
10
|
Mycobacterium Avium Complex Presenting as Pulmonary Nodules in a Child With Sickle Cell Disease. J Pediatr Hematol Oncol 2019; 41:e409-e412. [PMID: 30933021 DOI: 10.1097/mph.0000000000001458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The case of a 10-year-old child with sickle cell disease with pulmonary nodules and prolonged fevers is reported here. The child was first diagnosed with sarcoidosis based on lung biopsy, but unresponsiveness to therapy led to a second lung biopsy, which revealed the true diagnosis of mycobacterium avium complex disease. Multiple possible explanations for why the patient became infected exist. The patient was baseline immunocompromised due to her sickle cell disease, was exposed to invasive procedures, was taking medications that may predispose to this type of infection, and was found to have a congenital immunodeficiency.
Collapse
|
11
|
Patel DA, Akinsete AM, Connelly JA, Kassim AA. T-cell deplete versus T-cell replete haploidentical hematopoietic stem cell transplantation for sickle cell disease: where are we? Expert Rev Hematol 2019; 12:733-752. [DOI: 10.1080/17474086.2019.1642103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dilan A. Patel
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Meharry Center for Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adeseye M. Akinsete
- College of Medicine, Division of Pediatric Hematology & Oncology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - James A. Connelly
- Department of Pediatrics, Pediatric Hematopoietic Cell Transplant, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adetola A. Kassim
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Meharry Center for Excellence in Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Tavares AHJ, Benites BD, Fertrin KY. Myocardial Iron Overload in Sickle Cell Disease: A Rare But Potentially Fatal Complication of Transfusion. Transfus Med Rev 2019; 33:170-175. [PMID: 31153715 DOI: 10.1016/j.tmrv.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 02/02/2023]
Abstract
Sickle cell disease (SCD) is a frequent indication for chronic transfusion, which can cause iron overload. Excess iron often affects the liver, but not the heart in SCD. Magnetic resonance (MR) is recommended to detect myocardial iron overload (MIO) but its elevated cost requires optimized indication. We aimed to compile all published data on MIO in SCD upon the description of a fatal case of severe MIO in our institution, and to determine associated risk factors. We performed a systematic review using the PRISMA guidelines in two databases (PubMed and Web of Science). Inclusion criteria were publication in English, patients diagnosed with SCD, and reporting ferritin and MIO by MR. Twenty publications reported on 865 SCD adult and pediatric patients, with at least 10 other cases of MIO. The prevalence of MIO in chronically transfused SCD patients can be estimated to be 3% or less, and is associated with high transfusion burden, top-up transfusions, and low adherence to iron chelation. Cardiac siderosis in SCD is rarely reported, and increased awareness with better use of the available screening tools are necessary. Prospective studies should define the recommended chelation regimens depending on the severity of MIO.
Collapse
Affiliation(s)
| | | | - Kleber Yotsumoto Fertrin
- Hematology and Hemotherapy Center, University of Campinas - UNICAMP, Campinas, Brazil; Division of Hematology, University of Washington, Seattle, WA.
| |
Collapse
|