1
|
Xing J, Zhao X, Li X, Fang R, Sun M, Zhang Y, Song N. The recent advances in vaccine adjuvants. Front Immunol 2025; 16:1557415. [PMID: 40433383 PMCID: PMC12106398 DOI: 10.3389/fimmu.2025.1557415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Vaccine adjuvants, as key components in enhancing vaccine immunogenicity, play a vital role in modern vaccinology. This review systematically examines the historical evolution and mechanisms of vaccine adjuvants, with particular emphasis on innovative advancements in aluminum-based adjuvants, emulsion-based adjuvants, and nucleic acid adjuvants (e.g., CpG oligonucleotides). Specifically, aluminum adjuvants enhance immune responses through particle formation/antigen adsorption, inflammatory cascade activation, and T-cell stimulation. Emulsion adjuvants amplify immunogenicity via antigen depot effects and localized inflammation, while nucleic acid adjuvants like CpG oligonucleotides directly activate B cells and dendritic cells to promote Th1-type immune responses and memory T-cell generation. The article further explores the prospective applications of these novel adjuvants in combating emerging pathogens (including influenza and SARS-CoV-2), particularly highlighting their significance in improving vaccine potency and durability. Moreover, this review underscores the critical importance of adjuvant development in next-generation vaccine design and provides theoretical foundations for creating safer, effective adjuvant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Deng H, Ke Y, Weng S, Hu L, Zhang W, Sun Y, Yang L, Wang X, Feng M, Guo W, Zhong Z, Zhang D, He J, Zhou Y. A cytokine receptor domeless restrains mud crab reovirus infection via JAK-STAT signaling pathway in mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2025; 163:110402. [PMID: 40350104 DOI: 10.1016/j.fsi.2025.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/24/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
JAK/STAT signaling pathways are associated with the innate immune system and play important roles in mediating immune responses to virus infection. Domeless is a unique receptor involved in invertebrate JAK/STAT pathway. In this study, a Domeless gene from Scylla paramamosain, named SpDOME, was cloned and characterized. The full length of SpDOME mRNA contains a 475 bp 5'untranslated region (UTR), an open reading frame (ORF) of 4188 bp and a 3'UTR of 195 bp. The SpDOME protein contains twenty-four amino acid signal peptide and six characteristic Domeless domains. In addition, the SpDOME showed 13%-26% identity and 44%-60% similarity to other DOME protein domains, respectively. The mRNA of SpDOME was expressed in all tissues, with higher expression in brain, intestine and ganglion, and lowest expression in hepatopancreas. Moreover, expression of SpDOME was significantly responsive to challenges by mud crab reovirus (MCRV), Poly(I:C) and LPS. Subcellular localization revealed that SpDOME were localized in the cytoplasm. SpDOME could activate SpSTAT to translocate from the cytoplasm to the nucleus, and significantly increase the transcription activity of the wsv069 promoter under stimulus of Poly(I:C) and LPS. Additionally, silencing of SpDOME in vivo increased the mortality of MCRV infected mud crab and the viral load in tissues and down-regulated the expression of multiple components of apoptosis and JAK-STAT pathways and almost all the examined immune effector genes. These findings suggest that SpDOME activates the JAK/STAT pathway and plays an important role in antiviral immunity in mud crab.
Collapse
Affiliation(s)
- Hengwei Deng
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China; State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yetong Ke
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lei Hu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenfeng Zhang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yujia Sun
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, China
| | - Linwei Yang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuewen Wang
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Mingyang Feng
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Weiliang Guo
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Zhihong Zhong
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Dongdong Zhang
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yongcan Zhou
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China.
| |
Collapse
|
3
|
Skaličková M, Abramenko N, Charnavets T, Vellieux F, Leischner Fialová J, Kučnirová K, Kejík Z, Masařík M, Martásek P, Pacak K, Pacák T, Jakubek M. Interaction of Selected Anthracycline and Tetracycline Chemotherapeutics with Poly(I:C) Molecules. ACS OMEGA 2025; 10:15935-15946. [PMID: 40321536 PMCID: PMC12044458 DOI: 10.1021/acsomega.4c05483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 02/11/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025]
Abstract
Despite the natural ability of the immune system to recognize cancer and, in some patients, even to eliminate it, cancer cells have acquired numerous evading mechanisms. With the increasing knowledge and focus shifting from targeting rapidly proliferating cells with chemotherapy to modulating the immune system, there have been recent efforts to integrate (e.g., simultaneously or sequentially) various therapeutic approaches. Combining the oncolytic activity of some chemotherapeutics with immunostimulatory molecules, so-called chemoimmunotherapy, is an attractive strategy. An example of such an immunostimulatory molecule is polyinosinic:polycytidylic acid [Poly(I:C)], a synthetic analogue of double-stranded RNA characterized by rapid nuclease degradation hampering its biological activity. This study investigated the possible interactions of tetracycline and anthracycline chemotherapeutics with different commercial Poly(I:C) molecules and protection against nuclease degradation. Fluorescence spectroscopy and circular dichroism revealed an interaction of all of the selected chemotherapeutics with Poly(I:C)s and the ability of doxycycline and minocycline to prolong the resistance to RNase cleavage, respectively. The partial protection was observed in vitro as well.
Collapse
Affiliation(s)
- Markéta Skaličková
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| | - Nikita Abramenko
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| | - Tatsiana Charnavets
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, 252
50 Vestec, Czech
Republic
| | - Frédéric Vellieux
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| | | | - Kateřina Kučnirová
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625
00, Czech Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| | - Karel Pacak
- Section on
Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute
of Child Health and Human Development, National
Institutes of Health, Building 10, Room 1-3140, 10 Center Drive, Bethesda, Maryland 20892, United States
| | - Tomáš Pacák
- TumorSHOT, Italská 2581/67, Vinohrady,
Praha 2, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital, 120
00 Prague, Czech
Republic
| |
Collapse
|
4
|
Bone B, Griffith L, Jefferson M, Yamauchi Y, Wileman T, Powell PP. ATG16L1 WD domain and linker regulates lipid trafficking to maintain plasma membrane integrity to limit influenza virus infection. Autophagy 2025:1-16. [PMID: 40143422 DOI: 10.1080/15548627.2025.2482516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
The non-canonical functions of autophagy protein ATG16L1 are dependent on a C-terminal WD domain. Recent studies show that the WD domain is required for conjugation of LC3 to single membranes during endocytosis and phagocytosis, where it is thought to promote fusion with lysosomes. Studies in cells lacking the WD domain suggest additional roles in the regulation of cytokine receptor recycling and plasma membrane repair. The WD domain also protects mice against lethal influenza virus in vivo. Here, analysis of mice lacking the WD domain (ΔWD) shows enrichment of cholesterol in brain tissue suggesting a role for the WD domain in cholesterol transport. Brain tissue and cells from ΔWD mice showed reduced cholesterol and phosphatidylserine (PS) in the plasma membrane. Cells from ΔWD mice also showed an intracellular accumulation of cholesterol predominantly in late endosomes. Infection studies using IAV suggest that the loss of cholesterol and PS from the plasma membrane in cells from ΔWD mice results in increased endocytosis and nuclear delivery of IAV, as well as increased Ifnb/Ifnβ and Isg15 gene expression. Upregulation of Il6, Ifnb and Isg15 mRNA were observed in "ex vivo" precision cut lung slices from ΔWD mice both at rest and in response to IAV infection. Overall, we present evidence that regulation of lipid transport by the WD domain of ATG16L1 may have downstream implications in attenuating viral infection and limiting lethal cytokine signaling.Abbreviations: BMDM: bone marrow-derived macrophages, CASM: conjugation of ATG8 to single membranes, CCD: coil-coil domain, IAV: influenza virus A, IFIT1: interferon-induced protein with tetratricopeptide repeats 1, IFITM3: interferon induced transmembrane protein 3, IFN: interferon, ISG15: ISG15 ubiquitin-like modifier, LANDO: LC3-associated endocytosis, LAP: LC3-associated phagocytosis, LDL: low density lipoprotein, NP: nucleoprotein, PS: phosphatidylserine, WD: WD40-repeat-containing C-terminal domain, WT: wild type.
Collapse
Affiliation(s)
- Benjamin Bone
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Luke Griffith
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Matthew Jefferson
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Yohei Yamauchi
- Molecular Medicine Laboratory, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zurich, Zurich, Switzerland
- Department of Virology, Graduate School of Medicine, Nagoya University, Japan
| | - Thomas Wileman
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Penny P Powell
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| |
Collapse
|
5
|
Kato Y, Kumanogoh A. The immune memory of innate immune systems. Int Immunol 2025; 37:195-202. [PMID: 39588905 DOI: 10.1093/intimm/dxae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/24/2024] [Indexed: 11/27/2024] Open
Abstract
Immune memory has long been considered a function specific to adaptive immune systems; however, adaptive immune memory alone has not fully explained the mechanism by which vaccines exert their protective effects against nontarget pathogens. Recently, trained immunity, in which human monocytes vaccinated with bacillus Calmette-Guérin become highly responsive to pathogens other than Mycobacterium tuberculosis, has been reported. However, a phenomenon called endotoxin tolerance is also known, in which monocyte responsiveness is attenuated after the first lipopolysaccharide stimulation. These phenomena represent an altered innate immune response after the initial exposure to the stimulus, indicating that memories are formed in the innate immune system. In this review, we discuss trained immunity and endotoxin tolerance, known as innate immune memory, and innate immune memory formation by mRNA vaccines, which have been newly used in the coronavirus disease 2019 (COVID-19) pandemic and are considered important vaccine modalities in the future.
Collapse
Affiliation(s)
- Yasuhiro Kato
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Khan S, Simsek R, Fuentes JDB, Vohra I, Vohra S. Implication of Toll-Like Receptors in growth and management of health and diseases: Special focus as a promising druggable target to Prostate Cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189229. [PMID: 39608622 DOI: 10.1016/j.bbcan.2024.189229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Toll-like receptors (TLRs) are protein structures belonging to the pattern recognition receptors family. TLRs have the great potential that can directly recognize the specific molecular structures on the surface of pathogens, damaged senescent cells and apoptotic host cells. Available evidence suggests that TLRs have crucial roles in maintaining tissue homeostasis through control of the inflammatory and tissue repair responses during injury. TLRs are the player of first line of defense against different microbes and activate the signaling cascades which help to induce the immune system and inflammatory responses by affecting various signaling pathways, including nuclear factor-κB (NF-κB), interferon regulatory factors, and mitogen-activated protein kinases (MAPKs). TLRs have been identified to be over-expressed in different types of cancers and play an important role in control of health and management of diseases. The current review provides updated knowledge on the implication of TLRs in growth and management of cancers including prostate cancer.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Paramedical and Nursing College, Deoband, 247554 Saharanpur, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia.
| | - Rahime Simsek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe Unversity, 06100 Ankara, Turkey
| | - Javier David Benitez Fuentes
- Medical Oncology Department, Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain
| | - Isra Vohra
- University of Houston Clear Lake Graduated with bachelors Physiology, Houston, TX, USA
| | - Saeed Vohra
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Yang M, Zhou J, Lu L, Deng D, Huang J, Tang Z, Shi X, Lo P, Lovell JF, Zheng Y, Jin H. Tumor cell membrane-based vaccines: A potential boost for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230171. [PMID: 39713208 PMCID: PMC11655317 DOI: 10.1002/exp.20230171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Because therapeutic cancer vaccines can, in theory, eliminate tumor cells specifically with relatively low toxicity, they have long been considered for application in repressing cancer progression. Traditional cancer vaccines containing a single or a few discrete tumor epitopes have failed in the clinic, possibly due to challenges in epitope selection, target downregulation, cancer cell heterogeneity, tumor microenvironment immunosuppression, or a lack of vaccine immunogenicity. Whole cancer cell or cancer membrane vaccines, which provide a rich source of antigens, are emerging as viable alternatives. Autologous and allogenic cellular cancer vaccines have been evaluated as clinical treatments. Tumor cell membranes (TCMs) are an intriguing antigen source, as they provide membrane-accessible targets and, at the same time, serve as integrated carriers of vaccine adjuvants and other therapeutic agents. This review provides a summary of the properties and technologies for TCM cancer vaccines. Characteristics, categories, mechanisms, and preparation methods are discussed, as are the demonstrable additional benefits derived from combining TCM vaccines with chemotherapy, sonodynamic therapy, phototherapy, and oncolytic viruses. Further research in chemistry, biomedicine, cancer immunology, and bioinformatics to address current drawbacks could facilitate the clinical adoption of TCM vaccines.
Collapse
Affiliation(s)
- Muyang Yang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jie Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Liseng Lu
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deqiang Deng
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zijian Tang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Pui‐Chi Lo
- Department of Biomedical SciencesCity University of Hong KongKowloonHong KongChina
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNew YorkUSA
| | - Yongfa Zheng
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
8
|
He J, Xu P, Chen R, Chen M, Wang B, Xie Y, Yang Q, Sun D, Ji M. Exploiting the Zebrafish Model for Sepsis Research: Insights into Pathophysiology and Therapeutic Potentials. Drug Des Devel Ther 2024; 18:5333-5349. [PMID: 39600867 PMCID: PMC11590671 DOI: 10.2147/dddt.s500276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis, a severe condition instigated by infections, continues to be a primary global cause of death, typified by systemic inflammation and advancing immune dysfunction. Comprehending the complex pathological processes that underlie sepsis is integral to the creation of efficacious treatments. Despite the inability of animal models to entirely reproduce the clinical intricacies related to sepsis, they are invaluable instruments for the exploration and development of therapeutic approaches. Within this context, the zebrafish model is particularly noteworthy due to its genetic tractability, transparency, and appropriateness for high-throughput screening of genetic mutants and therapeutic compounds. This scholarly review emphasizes the crucial role that the zebrafish disease model plays in enhancing our comprehension of sepsis, by exploring its applications in deciphering immune and inflammatory responses, evaluating the consequences of genetic alterations, and examining novel therapeutic agents. The Insights derived from zebrafish research not only augment our understanding of the underlying mechanisms of sepsis, but also possess considerable potential for the transference of these discoveries into clinical therapies, thus potentially transforming the approach to sepsis management. The objective of this scholarly article is to underscore the importance of zebrafish in the realm of biomedical research pertaining to sepsis, and to delineate forthcoming opportunities for utilizing this model in clinical applications.
Collapse
Affiliation(s)
- Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Peiye Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, People’s Republic of China
| | - Mengyan Chen
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Yilun Xie
- Department of Hepatobiliary-Pancreatic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Mingxia Ji
- Department of Critical Care Medicine, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| |
Collapse
|
9
|
Ball AG, Morgaenko K, Anbaei P, Ewald SE, Pompano RR. Poly I:C vaccination drives transient CXCL9 expression near B cell follicles in the lymph node through type-I and type-II interferon signaling. Cytokine 2024; 183:156731. [PMID: 39168064 PMCID: PMC11428038 DOI: 10.1016/j.cyto.2024.156731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Subunit vaccines drive immune cell-cell interactions in the lymph node (LN), yet it remains unclear how distinct adjuvants influence the chemokines responsible for this interaction in the tissue. Here, we tested the hypothesis that classic Th1-polarizing vaccines elicit a unique chemokine signature in the LN compared to other adjuvants. Polyinosinic:polycytidylic acid (Poly I:C) vaccination resulted in dynamic upregulation of CXCL9 that was localized in the interfollicular region, a response not observed after vaccination with alum or a combination of alum and poly I:C. Experiments using in vivo mouse models and live ex vivo LN slices revealed that poly I:C vaccination resulted in a type-I IFN response in the LN that led to the secretion of IFNγ, and type-I IFN and IFNγ were required for CXCL9 expression in this context. CXCL9 expression in the LN was correlated with an IgG2c antibody polarization after vaccination; however, genetic depletion of the receptor for CXCL9 did not prevent the development of this polarization. Additionally, we measured secretion of CXCL9 from ex vivo LN slices after stimulation with a variety of adjuvants and confirmed that adjuvants that induced IFNγ responses also promoted CXCL9 expression. Taken together, these results identify a CXCL9 signature in a suite of Th1-polarizing adjuvants and determined the pathway involved in driving CXCL9 in the LN, opening avenues to target this chemokine pathway in future vaccines.
Collapse
Affiliation(s)
- Alexander G Ball
- Department of Microbiology Cancer Biology and Immunology, University of Virginia, Charlottesville, VA 22903, USA; Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Katerina Morgaenko
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Charlottesville, VA 22904, USA
| | - Parastoo Anbaei
- Department of Chemistry, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | - Sarah E Ewald
- Department of Microbiology Cancer Biology and Immunology, University of Virginia, Charlottesville, VA 22903, USA; Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Rebecca R Pompano
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Charlottesville, VA 22904, USA; Department of Chemistry, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA; Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
10
|
Wang J, Yang J, Narang A, He J, Wolfgang C, Li K, Zheng L. Consensus, debate, and prospective on pancreatic cancer treatments. J Hematol Oncol 2024; 17:92. [PMID: 39390609 PMCID: PMC11468220 DOI: 10.1186/s13045-024-01613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer remains one of the most aggressive solid tumors. As a systemic disease, despite the improvement of multi-modality treatment strategies, the prognosis of pancreatic cancer was not improved dramatically. For resectable or borderline resectable patients, the surgical strategy centered on improving R0 resection rate is consensus; however, the role of neoadjuvant therapy in resectable patients and the optimal neoadjuvant therapy of chemotherapy with or without radiotherapy in borderline resectable patients were debated. Postoperative adjuvant chemotherapy of gemcitabine/capecitabine or mFOLFIRINOX is recommended regardless of the margin status. Chemotherapy as the first-line treatment strategy for advanced or metastatic patients included FOLFIRINOX, gemcitabine/nab-paclitaxel, or NALIRIFOX regimens whereas 5-FU plus liposomal irinotecan was the only standard of care second-line therapy. Immunotherapy is an innovative therapy although anti-PD-1 antibody is currently the only agent approved by for MSI-H, dMMR, or TMB-high solid tumors, which represent a very small subset of pancreatic cancers. Combination strategies to increase the immunogenicity and to overcome the immunosuppressive tumor microenvironment may sensitize pancreatic cancer to immunotherapy. Targeted therapies represented by PARP and KRAS inhibitors are also under investigation, showing benefits in improving progression-free survival and objective response rate. This review discusses the current treatment modalities and highlights innovative therapies for pancreatic cancer.
Collapse
Affiliation(s)
- Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jie Yang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Amol Narang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jin He
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Wolfgang
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans St, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
11
|
Malik S, Sureka N, Ahuja S, Aden D, Zaheer S, Zaheer S. Tumor-associated macrophages: A sentinel of innate immune system in tumor microenvironment gone haywire. Cell Biol Int 2024; 48:1406-1449. [PMID: 39054741 DOI: 10.1002/cbin.12226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The tumor microenvironment (TME) is a critical determinant in the initiation, progression, and treatment outcomes of various cancers. Comprising of cancer-associated fibroblasts (CAF), immune cells, blood vessels, and signaling molecules, the TME is often likened to the soil supporting the seed (tumor). Among its constituents, tumor-associated macrophages (TAMs) play a pivotal role, exhibiting a dual nature as both promoters and inhibitors of tumor growth. This review explores the intricate relationship between TAMs and the TME, emphasizing their diverse functions, from phagocytosis and tissue repair to modulating immune responses. The plasticity of TAMs is highlighted, showcasing their ability to adopt either protumorigenic or anti-tumorigenic phenotypes based on environmental cues. In the context of cancer, TAMs' pro-tumorigenic activities include promoting angiogenesis, inhibiting immune responses, and fostering metastasis. The manuscript delves into therapeutic strategies targeting TAMs, emphasizing the challenges faced in depleting or inhibiting TAMs due to their multifaceted roles. The focus shifts towards reprogramming TAMs to an anti-tumorigenic M1-like phenotype, exploring interventions such as interferons, immune checkpoint inhibitors, and small molecule modulators. Noteworthy advancements include the use of CSF1R inhibitors, CD40 agonists, and CD47 blockade, demonstrating promising results in preclinical and clinical settings. A significant section is dedicated to Chimeric Antigen Receptor (CAR) technology in macrophages (CAR-M cells). While CAR-T cells have shown success in hematological malignancies, their efficacy in solid tumors has been limited. CAR-M cells, engineered to infiltrate solid tumors, are presented as a potential breakthrough, with a focus on their development, challenges, and promising outcomes. The manuscript concludes with the exploration of third-generation CAR-M technology, offering insight into in-vivo reprogramming and nonviral vector approaches. In conclusion, understanding the complex and dynamic role of TAMs in cancer is crucial for developing effective therapeutic strategies. While early-stage TAM-targeted therapies show promise, further extensive research and larger clinical trials are warranted to optimize their targeting and improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaivy Malik
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| | - Durre Aden
- Department of Pathology, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi, New Delhi, India
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, New Delhi, India
| |
Collapse
|
12
|
Morishita M, Makabe M, Shinohara C, Fukumori A, Morita S, Terada Y, Miyai S, Katsumi H, Yamamoto A. Versatile functionalization of Bifidobacteria-derived extracellular vesicles using amino acid metabolic labeling and click chemistry for immunotherapy. Int J Pharm 2024; 661:124410. [PMID: 38954931 DOI: 10.1016/j.ijpharm.2024.124410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/02/2024] [Accepted: 06/29/2024] [Indexed: 07/04/2024]
Abstract
Extracellular vesicles (EVs) are nanoparticles secreted by various organisms. Methods for modifying EVs functionally have garnered attention for developing EV-based therapeutic systems. However, most technologies used to integrate these functions are limited to mammalian-derived EVs and a promising modification method for bacteria-derived EVs has not yet been developed. In this study, we propose a novel method for the versatile functionalization of immunostimulatory probiotic Bifidobacteria-derived EVs (B-EVs) using amino acid metabolic labeling and azide-alkyne click reaction. Azide D-alanine (ADA), a similar molecule to D-alanine in bacteria cell-wall peptidoglycan, was selected as an azide group-functionalized amino acid. Azide-modified B-EVs were isolated from Bifidobacteria incubated with ADA. The physicochemical and compositional characteristics, as well as adjuvanticity of B-EVs against immune cells were not affected by azide loading, demonstrating that this functionalization approach can retain the endogenous usefulness of B-EVs. By using the fluorescent B-EVs obtained by this method, the intracellular trafficking of B-EVs after uptake by immune cells was successfully observed. Furthermore, this method enabled the formulation of B-EVs for hydrogelation and enhanced adjuvanticity in the host. Our findings will be helpful for further development of EV-based immunotherapy.
Collapse
Affiliation(s)
- Masaki Morishita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan.
| | - Mizuho Makabe
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Chisa Shinohara
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Ami Fukumori
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Shiori Morita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Yuki Terada
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Syunsuke Miyai
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| |
Collapse
|
13
|
Tachizaki M, Sakamoto S, Kobori Y, Asano Y, Kawaguchi S, Seya K, Tanaka H, Morita E, Imaizumi T. Interferon-stimulated gene 56 positively regulates Toll-like receptor 3-mediated CXCL10 expression in human renal proximal tubular epithelial cells. FEBS Open Bio 2024; 14:1303-1319. [PMID: 38923445 PMCID: PMC11301256 DOI: 10.1002/2211-5463.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Viral infections in tubular epithelial cells lead to the production of inflammatory cytokines by innate immunity, causing tubulointerstitial nephritis. TLR3 recognizes viral infections and acts via the activation of interferon (IFN)/IFN-stimulated genes (ISGs). This study investigates the role of ISG56, a representative ISG, in TLR3 signaling in cultured human renal proximal tubular epithelial cells (hRPTECs). To this end, hRPTECs were stimulated by a synthetic TLR3 ligand, polyinosinic-polycytidylic acid (poly IC), recombinant human interferon-β [r(h)IFN-β] or Japanese encephalitis virus (JEV) infection and assayed for inflammatory cytokine mRNA expression by RT-qPCR, and protein expression via western blotting or ELISA. ISG56 was expressed by poly IC or r(h)IFN-β and IFN-β knockdown reduced poly IC-induced expression of ISG56 and CXCL10. Moreover, ISG56 knockdown reduced poly IC- or r(h)IFN-β-induced expression of CXCL10 at the same time as increasing JEV growth and reducing CXCL10 expression induced by JEV infection. Overall, TLR3 signaling induced IFN-β-dependent expression of ISG56 and CXCL10. We show that ISG56 possibly plays a critical role in antiviral immunity of hRPTECs by positive regulation of IFN-β-mediated CXCL10 expression downstream of TLR3.
Collapse
Affiliation(s)
- Mayuki Tachizaki
- Department of Vascular and Inflammatory MedicineHirosaki University Graduate School of MedicineJapan
| | - Sho Sakamoto
- Department of Biochemistry and Molecular BiologyHirosaki University Faculty of Agriculture and Life ScienceJapan
| | - Yuri Kobori
- Department of Respiratory MedicineHirosaki University Graduate School of MedicineJapan
| | - Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and HistologyHirosaki University Graduate School of MedicineJapan
| | - Shogo Kawaguchi
- Department of Vascular and Inflammatory MedicineHirosaki University Graduate School of MedicineJapan
| | - Kazuhiko Seya
- Department of Vascular and Inflammatory MedicineHirosaki University Graduate School of MedicineJapan
| | - Hiroshi Tanaka
- Department of School Health ScienceHirosaki University Faculty of EducationJapan
| | - Eiji Morita
- Department of Biochemistry and Molecular BiologyHirosaki University Faculty of Agriculture and Life ScienceJapan
| | - Tadaatsu Imaizumi
- Department of Vascular and Inflammatory MedicineHirosaki University Graduate School of MedicineJapan
| |
Collapse
|
14
|
Chen Q, Yang Z, Liu H, Man J, Oladejo AO, Ibrahim S, Wang S, Hao B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024; 16:674. [PMID: 38794336 PMCID: PMC11124876 DOI: 10.3390/pharmaceutics16050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The escalating demand for enhanced therapeutic efficacy and reduced adverse effects in the pharmaceutical domain has catalyzed a new frontier of innovation and research in the field of pharmacy: novel drug delivery systems. These systems are designed to address the limitations of conventional drug administration, such as abbreviated half-life, inadequate targeting, low solubility, and bioavailability. As the disciplines of pharmacy, materials science, and biomedicine continue to advance and converge, the development of efficient and safe drug delivery systems, including biopharmaceutical formulations, has garnered significant attention both domestically and internationally. This article presents an overview of the latest advancements in drug delivery systems, categorized into four primary areas: carrier-based and coupling-based targeted drug delivery systems, intelligent drug delivery systems, and drug delivery devices, based on their main objectives and methodologies. Additionally, it critically analyzes the technological bottlenecks, current research challenges, and future trends in the application of novel drug delivery systems.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Haoyu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Jingyuan Man
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Ayodele Olaolu Oladejo
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Health Technology, Oyo State College of Agriculture and Technology, Igboora 201003, Nigeria
| | - Sally Ibrahim
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, Dokki 12622, Egypt
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (Q.C.); (Z.Y.); (H.L.); (J.M.); (A.O.O.); (S.I.)
| |
Collapse
|
15
|
Chen YH, Wu KH, Wu HP. Unraveling the Complexities of Toll-like Receptors: From Molecular Mechanisms to Clinical Applications. Int J Mol Sci 2024; 25:5037. [PMID: 38732254 PMCID: PMC11084218 DOI: 10.3390/ijms25095037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Toll-like receptors (TLRs) are vital components of the innate immune system, serving as the first line of defense against pathogens by recognizing a wide array of molecular patterns. This review summarizes the critical roles of TLRs in immune surveillance and disease pathogenesis, focusing on their structure, signaling pathways, and implications in various disorders. We discuss the molecular intricacies of TLRs, including their ligand specificity, signaling cascades, and the functional consequences of their activation. The involvement of TLRs in infectious diseases, autoimmunity, chronic inflammation, and cancer is explored, highlighting their potential as therapeutic targets. We also examine recent advancements in TLR research, such as the development of specific agonists and antagonists, and their application in immunotherapy and vaccine development. Furthermore, we address the challenges and controversies surrounding TLR research and outline future directions, including the integration of computational modeling and personalized medicine approaches. In conclusion, TLRs represent a promising frontier in medical research, with the potential to significantly impact the development of novel therapeutic strategies for a wide range of diseases.
Collapse
Affiliation(s)
- Yi-Hsin Chen
- Department of Nephrology, Taichung Tzu Chi Hospital, Taichung 427, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Artificial Intelligence and Data Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
| |
Collapse
|
16
|
Adams CS, Kim H, Burtner AE, Lee DS, Dobbins C, Criswell C, Coventry B, Kim HM, King NP. De novo design of protein minibinder agonists of TLR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589973. [PMID: 38659926 PMCID: PMC11042314 DOI: 10.1101/2024.04.17.589973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multimeric forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.
Collapse
Affiliation(s)
- Chloe S. Adams
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Hyojin Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Abigail E. Burtner
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Dong Sun Lee
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Cameron Criswell
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Brian Coventry
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ho Min Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
17
|
Yeh CL, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Kuo TC, Yeh SL, Lin MT. Calcitriol attenuates poly(I:C)-induced lung injury in obese mice via modulating toll-like receptor 3- and renin-angiotensin system-associated signal pathways. Int Immunopharmacol 2024; 128:111522. [PMID: 38246004 DOI: 10.1016/j.intimp.2024.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
This study investigated the effects of calcitriol on polyinosinic-polycytidylic acid (poly(I:C))-induced acute lung injury (ALI) and its association with Toll-like receptor 3 (TLR3) and renin-angiotensin system (RAS) signal pathways in obese mice. Normal mice were fed a high-fat diet to induce obesity. Obese mice were divided into four groups: SS group, intratracheally instilled with saline and intravenous (IV) saline injection via tail vein; SD group, instilled with saline and IV calcitriol injection; PS group, instilled with poly(I:C) and IV saline injection; and PD group, instilled with poly(I:C) and IV calcitriol injection. All mice were sacrificed 12 or 24 h after poly(I:C) stimulation. The results showed that poly(I:C) instillation led to increased production of systemic inflammatory cytokines. In the lungs, the population of macrophages decreased, while more neutrophils were recruited. TLR3-associated genes including IRF3, nuclear factor-κB, interferon-β and phosphorylated IRF3 expression levels, were upregulated. The RAS-associated AT1R and ACE2 protein levels increased, whereas AT2R, Ang(1-7), and MasR levels decreased. Also, reduced tight junction (TJ) proteins and elevated lipid peroxide levels were observed 24 h after poly(I:C) stimulation. Compared to the PS group, the PD group exhibited reduced systemic and lung inflammatory cytokine levels, increased macrophage while decreased neutrophil percentages, downregulated TLR3-associated genes and phosphorylated IRF3, and polarized toward the RAS-AT2R/Ang(1-7)/MasR pathway in the lungs. Higher lung TJ levels and lower injury scores were also noted. These findings suggest that calcitriol treatment after poly(I:C) instillation alleviated ALI in obese mice possibly by downregulating TLR3 expression and tending toward the RAS-associated anti-inflammatory pathway.
Collapse
Affiliation(s)
- Chiu-Li Yeh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
18
|
Corda PO, Bollen M, Ribeiro D, Fardilha M. Emerging roles of the Protein Phosphatase 1 (PP1) in the context of viral infections. Cell Commun Signal 2024; 22:65. [PMID: 38267954 PMCID: PMC10807198 DOI: 10.1186/s12964-023-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mathieu Bollen
- Department of Cellular and Molecular Medicine, Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit Leuven, Louvain, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
19
|
Liu X, Lu Y, Li X, Luo L, You J. Nanoplatform-enhanced photodynamic therapy for the induction of immunogenic cell death. J Control Release 2024; 365:1058-1073. [PMID: 38056695 DOI: 10.1016/j.jconrel.2023.11.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
As an efficient, non-invasive, low-side-effect, and highly selective cancer therapy, photodynamic therapy (PDT) is used to treat various malignant tumors. However, the inefficiency of dealing with deep tumors and metastatic lesions highly limits the use of PDT. Immunogenic cell death (ICD) is a particular form of tumor cell death that could elicit a tumor-special immune response, leading to a systemic anti-tumor effect and providing therapeutic benefits for metastatic lesions. In this regard, it is crucial to enhance the ability of PDT to induce ICD. Luckily, advanced nanotechnology created many promising ways to improve the immunogenicity of PDT and achieve photoimmunotherapy. This review summarizes the emerging strategies for triggering immunogenic cell death via nanoplatform-enhanced PDT, with particular emphasis on their advantages in photoimmunotherapy. We highlight the nanoplatforms classified according to the basic principles of photodynamic therapy and immunogenic cell death, which provides a valuable reference for the design of nanoplatform for photoimmunotherapy. In addition, we also discuss the current situation and prospect of nano-based photoimmunotherapy in clinical studies.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310006, P. R. China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| |
Collapse
|
20
|
Chu GE, Park JY, Park CH, Cho WG. Mitochondrial Reactive Oxygen Species in TRIF-Dependent Toll-like Receptor 3 Signaling in Bronchial Epithelial Cells against Viral Infection. Int J Mol Sci 2023; 25:226. [PMID: 38203397 PMCID: PMC10778811 DOI: 10.3390/ijms25010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Toll-like receptor 3 (TLR3) plays an important role in double-stranded RNA recognition and triggers the innate immune response by acting as a key receptor against viral infections. Intracellular reactive oxygen species (ROS) are involved in TLR3-induced inflammatory responses during viral infections; however, their relationship with mitochondrial ROS (mtROS) remains largely unknown. In this study, we show that polyinosinic-polycytidylic acid (poly(I:C)), a mimic of viral RNA, induced TLR3-mediated nuclear factor-kappa B (NF-κB) signaling pathway activation and enhanced mtROS generation, leading to inflammatory cytokine production. TLR3-targeted small interfering RNA (siRNA) and Mito-TEMPO inhibited inflammatory cytokine production in poly(I:C)-treated BEAS-2B cells. Poly(I:C) recruited the TLR3 adaptor molecule Toll/IL-1R domain-containing adaptor, inducing IFN (TRIF) and activated NF-κB signaling. Additionally, TLR3-induced mtROS generation suppression and siRNA-mediated TRIF downregulation attenuated mitochondrial antiviral signaling protein (MAVS) degradation. Our findings provide insights into the TLR3-TRIF signaling pathway and MAVS in viral infections, and suggest TLR3-mtROS as a therapeutic target for the treatment of airway inflammatory and viral infectious diseases.
Collapse
Affiliation(s)
- Ga Eul Chu
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea; (G.E.C.); (C.H.P.)
| | - Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Chan Ho Park
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea; (G.E.C.); (C.H.P.)
| | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea; (G.E.C.); (C.H.P.)
| |
Collapse
|
21
|
Lee SH, Choi YH, Kang SM, Lee MG, Debin A, Perouzel E, Hong SB, Kim DH. The Defined TLR3 Agonist, Nexavant, Exhibits Anti-Cancer Efficacy and Potentiates Anti-PD-1 Antibody Therapy by Enhancing Immune Cell Infiltration. Cancers (Basel) 2023; 15:5752. [PMID: 38136298 PMCID: PMC10741573 DOI: 10.3390/cancers15245752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Nexavant was reported as an alternative to the TLR3 agonist of Poly(I:C) and its derivatives. The physicochemical properties, signaling pathways, anti-cancer effects, and mechanisms of Nexavant were investigated. The distinctive characteristics of Nexavant compared to that of Poly(I:C) were demonstrated by precise quantification, enhanced thermostability, and increased resistance to RNase A. Unlike Poly(I:C), which activates TLR3, RIG-I, and MDA5, Nexavant stimulates signaling through TLR3 and RIG-I but not through MDA5. Compared to Poly(I:C), an intratumoral Nexavant treatment led to a unique immune response, immune cell infiltration, and suppression of tumor growth in various animal cancer models. Nexavant therapy outperformed anti-PD-1 antibody treatment in all the tested models and showed a synergistic effect in combinational therapy, especially in well-defined cold tumor models. The effect was similar to that of nivolumab in a humanized mouse model. Intranasal instillation of Nexavant led to the recruitment of immune cells (NK, CD4+ T, and CD8+ T) to the lungs, suppressing lung metastasis and improving animal survival. Our study highlighted Nexavant's defined nature for clinical use and unique signaling pathways and its potential as a standalone anti-cancer agent or in combination with anti-PD-1 antibodies.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Research and Development Center, NA Vaccine Institute, Seoul 05854, Republic of Korea; (S.-H.L.); (Y.-H.C.); (S.M.K.)
| | - Young-Ho Choi
- Research and Development Center, NA Vaccine Institute, Seoul 05854, Republic of Korea; (S.-H.L.); (Y.-H.C.); (S.M.K.)
| | - Soon Myung Kang
- Research and Development Center, NA Vaccine Institute, Seoul 05854, Republic of Korea; (S.-H.L.); (Y.-H.C.); (S.M.K.)
| | - Min-Gyu Lee
- Research and Development Center, NA Vaccine Institute, Seoul 05854, Republic of Korea; (S.-H.L.); (Y.-H.C.); (S.M.K.)
| | - Arnaud Debin
- InvivoGen SAS, 5 Rue Jean Rodier, 31400 Toulouse, France
| | - Eric Perouzel
- InvivoGen Ltd., Hong Kong Science and Technology Parks, Unit 307, 8W, Hong Kong, China
| | - Seung-Beom Hong
- Research and Development Center, NA Vaccine Institute, Seoul 05854, Republic of Korea; (S.-H.L.); (Y.-H.C.); (S.M.K.)
| | - Dong-Ho Kim
- Research and Development Center, NA Vaccine Institute, Seoul 05854, Republic of Korea; (S.-H.L.); (Y.-H.C.); (S.M.K.)
| |
Collapse
|
22
|
Son M, Wang AG, Keisham B, Tay S. Processing stimulus dynamics by the NF-κB network in single cells. Exp Mol Med 2023; 55:2531-2540. [PMID: 38040923 PMCID: PMC10766959 DOI: 10.1038/s12276-023-01133-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 12/03/2023] Open
Abstract
Cells at the site of an infection experience numerous biochemical signals that vary in amplitude, space, and time. Despite the diversity of dynamic signals produced by pathogens and sentinel cells, information-processing pathways converge on a limited number of central signaling nodes to ultimately control cellular responses. In particular, the NF-κB pathway responds to dozens of signals from pathogens and self, and plays a vital role in processing proinflammatory inputs. Studies addressing the influence of stimulus dynamics on NF-κB signaling are rare due to technical limitations with live-cell measurements. However, recent advances in microfluidics, automation, and image analysis have enabled investigations that yield high temporal resolution at the single-cell level. Here, we summarize the recent research which measures and models the NF-κB response to pulsatile and fluctuating stimulus concentrations, as well as different combinations and sequences of signaling molecules. Collectively, these studies show that the NF-κB network integrates external inflammatory signals and translates these into downstream transcriptional responses.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
23
|
Das R, Halabi EA, Fredrich IR, Oh J, Peterson HM, Ge X, Scott E, Kohler RH, Garris CS, Weissleder R. Hybrid LNP Prime Dendritic Cells for Nucleotide Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303576. [PMID: 37814359 PMCID: PMC10667837 DOI: 10.1002/advs.202303576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/22/2023] [Indexed: 10/11/2023]
Abstract
The efficient activation of professional antigen-presenting cells-such as dendritic cells (DC)-in tumors and lymph nodes is critical for the design of next-generation cancer vaccines and may be able to provide anti-tumor effects by itself through immune stimulation. The challenge is to stimulate these cells without causing excessive toxicity. It is hypothesized that a multi-pronged combinatorial approach to DC stimulation would allow dose reductions of innate immune receptor-stimulating TLR3 agonists while enhancing drug efficacy. Here, a hybrid lipid nanoparticle (LNP) platform is developed and tested for double-stranded RNA (polyinosinic:polycytidylic acid for TLR3 agonism) and immune modulator (L-CANDI) delivery. This study shows that the ≈120 nm hybrid nanoparticles-in-nanoparticles effectively eradicate tumors by themselves and generate long-lasting, durable anti-tumor immunity in mouse models.
Collapse
Affiliation(s)
- Riddha Das
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Elias A. Halabi
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Ina R. Fredrich
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Juhyun Oh
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Hannah M. Peterson
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Xinying Ge
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Ella Scott
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Rainer H. Kohler
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Christopher S. Garris
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of PathologyMassachusetts General HospitalBostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of RadiologyMassachusetts General HospitalBostonMA02114USA
- Department of Systems BiologyHarvard Medical School200 Longwood AveBostonMA02115USA
| |
Collapse
|
24
|
Seya T, Shingai M, Kawakita T, Matsumoto M. Two Modes of Th1 Polarization Induced by Dendritic-Cell-Priming Adjuvant in Vaccination. Cells 2023; 12:1504. [PMID: 37296625 PMCID: PMC10252737 DOI: 10.3390/cells12111504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Viral infections are usually accompanied by systemic cytokinemia. Vaccines need not necessarily mimic infection by inducing cytokinemia, but must induce antiviral-acquired immunity. Virus-derived nucleic acids are potential immune-enhancers and particularly good candidates as adjuvants in vaccines in mouse models. The most important nucleic-acid-sensing process involves the dendritic cell (DC) Toll-like receptor (TLR), which participates in the pattern recognition of foreign DNA/RNA structures. Human CD141+ DCs preferentially express TLR3 in endosomes and recognize double-stranded RNA. Antigen cross-presentation occurs preferentially in this subset of DCs (cDCs) via the TLR3-TICAM-1-IRF3 axis. Another subset, plasmacytoid DCs (pDCs), specifically expresses TLR7/9 in endosomes. They then recruit the MyD88 adaptor, and potently induce type I interferon (IFN-I) and proinflammatory cytokines to eliminate the virus. Notably, this inflammation leads to the secondary activation of antigen-presenting cDCs. Hence, the activation of cDCs via nucleic acids involves two modes: (i) with bystander effect of inflammation and (ii) without inflammation. In either case, the acquired immune response finally occurs with Th1 polarity. The level of inflammation and adverse events depend on the TLR repertoire and the mode of response to their agonists in the relevant DC subsets, and could be predicted by assessing the levels of cytokines/chemokines and T cell proliferation in vaccinated subjects. The main differences in the mode of vaccine sought in infectious diseases and cancer are defined by whether it is prophylactic or therapeutic, whether it can deliver sufficient antigens to cDCs, and how it behaves in the microenvironment of the lesion. Adjuvant can be selected on a case-to-case basis.
Collapse
Affiliation(s)
- Tsukasa Seya
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
| | - Masashi Shingai
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
- Division of Biologics Development, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Tomomi Kawakita
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Misako Matsumoto
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
| |
Collapse
|
25
|
Khan E, Khan M, Khan S, Lohani M, Bushara NZA, Marouf HAA, Punnoose K, Ahmad IZ. Computational modeling of cyanobacterial phytoconstituents against toll-like receptors of skin cancer. J Biomol Struct Dyn 2023; 41:12292-12304. [PMID: 36744519 DOI: 10.1080/07391102.2023.2174600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/01/2023] [Indexed: 02/07/2023]
Abstract
Melanoma is an extremely dangerous disease. The diagnosis and treatment of it may be difficult because of its diversity and complexity. More than 90% of the marine biomass (microflora and microalgae) constitutes the natural biodiversity reserves. TLR-related research developments indicate possible cancer therapeutic possibilities. In addition to its significant function in innate immunity, TLR activation is connected to the start of pyroptosis, apoptosis, or autophagy in malignance cells. For these reasons, TLR agonists are appealing candidates for the production of cancer medications. From the web databases, the ternary structures of the receptors (TLR3 and TLR4) and ligands are extracted. Sixty-nine compounds were subjected to a drug likeness filter, but only twenty-two were screened further for evaluating ADMET criteria, in which only seven compounds satisfied the pharmacological properties. These compounds are further analyzed for docking parameters against TLRs (TLR3 and TLR4) and molecular simulation investigation of the best cluster to evaluate the complex stability. Molecular docking methodology discovered that Scytonmein has a significant binding potential energy of -5.21 and -7.92 kcal/mol against TLR3 and TLR4, respectively, in comparison to the redock co-crystal structure (-3.98 and -4.30 kcal/mol, respectively). The simulation analysis demonstrates the significant stability of the Scytonemin and TLR4 complexes in terms of average RMSD and RMSF compared to the redock complex, while criteria like solvent-accessible surface area (SASA), gyration (Rg) and hydrogen bonding have further supported the significant interaction and stability of the conformations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elhan Khan
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Mahvish Khan
- Department of Biology, College of Science, Ha'il University, Ha'il, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | | | - Nashwa Zaki Ali Bushara
- Department of Preventive Dental Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Hussein Abdul Aziz Marouf
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Kurian Punnoose
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia
| | - Iffat Zareen Ahmad
- Natural Products Laboratory, Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
26
|
Liu S, Li M, Sun F, Zhang J, Liu F. Enhancing the immune effect of oHSV-1 therapy through TLR3 signaling in uveal melanoma. J Cancer Res Clin Oncol 2023; 149:901-912. [PMID: 36030435 DOI: 10.1007/s00432-022-04272-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Uveal melanoma (UM) is the most common primary intraocular malignant tumor in adults, with patients having a low overall survival rate. Oncolytic viruses (OVs) have been shown effective as monotherapy or combined with immunotherapy in the treatment of UM. Oncolytic herpes simplex type I virus (oHSV-1) was found to alter gene expression and immune function in UMs. We investigated whether a combination treatment would be more effective in treating UM and reactive immune cells. METHODS RNA sequencing analysis were used to identify the effect of oHSV-1 infection in UM cells and protein changes were validated by western blot. Cell viability assays were performed through UM cell lines (MUM2B, 92.1, and MP41) and retinal pigment epithelial cell line (ARPE-19) to identify the efficacy and safety of the combination treatment. Western blot, qRT-PCR, cell viability assay and immunocytochemistry were performed to discover the reactivation of immune cells (U937 and HMC3). RESULTS Through RNA sequencing analysis and in vitro molecular biology assays, this study tested the ability of oHSV-1 combined with the TLR3 agonist poly(I:C) to re-activate the TLR3 meditated NF-ƙB signaling pathway and further increase the anti-tumor activity of UM cells and macrophages, including the stimulation of macrophage polarization and proliferation. CONCLUSIONS These findings indicate that the treatment of UM with a combination of oHSV-1 and poly(I:C) generates immune responses and enhances anti-tumoral activity, suggesting the need for further investigations and clinical trials of this combination.
Collapse
Affiliation(s)
- Sisi Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Dongjiao Minxiang 1, Dongcheng District, Beijing, 100730, China
| | - Mingxin Li
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China
| | - Fengqiao Sun
- Department of Neurosurgery, Peking University International Hospital, Peking University Health Science Center, Peking University, Shengming Kexueyuan 1, Changping District, Beijing, 102206, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China.
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Laboratory of Biomedical Materials, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, No. 119 Nansihuan West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
27
|
Han S, Chen X, Li Z. Innate Immune Program in Formation of Tumor-Initiating Cells from Cells-of-Origin of Breast, Prostate, and Ovarian Cancers. Cancers (Basel) 2023; 15:757. [PMID: 36765715 PMCID: PMC9913549 DOI: 10.3390/cancers15030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Tumor-initiating cells (TICs), also known as cancer stem cells (CSCs), are cancer cells that can initiate a tumor, possess self-renewal capacity, and can contribute to tumor heterogeneity. TICs/CSCs are developed from their cells-of-origin. In breast, prostate, and ovarian cancers, progenitor cells for mammary alveolar cells, prostate luminal (secretory) cells, and fallopian tube secretory cells are the preferred cellular origins for their corresponding cancer types. These luminal progenitors (LPs) express common innate immune program (e.g., Toll-like receptor (TLR) signaling)-related genes. Microbes such as bacteria are now found in breast, prostate, and fallopian tube tissues and their corresponding cancer types, raising the possibility that their LPs may sense the presence of microbes and trigger their innate immune/TLR pathways, leading to an inflammatory microenvironment. Crosstalk between immune cells (e.g., macrophages) and affected epithelial cells (e.g., LPs) may eventually contribute to formation of TICs/CSCs from their corresponding LPs, in part via STAT3 and/or NFκB pathways. As such, TICs/CSCs can inherit expression of innate-immunity/TLR-pathway-related genes from their cells-of-origin; the innate immune program may also represent their unique vulnerability, which can be explored therapeutically (e.g., by enhancing immunotherapy via augmenting TLR signaling).
Collapse
Affiliation(s)
- Sen Han
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Xueqing Chen
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
28
|
Ko KH, Cha SB, Lee SH, Bae HS, Ham CS, Lee MG, Kim DH, Han SH. A novel defined TLR3 agonist as an effective vaccine adjuvant. Front Immunol 2023; 14:1075291. [PMID: 36761735 PMCID: PMC9902914 DOI: 10.3389/fimmu.2023.1075291] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023] Open
Abstract
Synthetic double-stranded RNA analogs recognized by Toll-like receptor 3 (TLR3) are an attractive adjuvant candidate for vaccines, especially against intracellular pathogens or tumors, because of their ability to enhance T cell and antibody responses. Although poly(I:C) is a representative dsRNA with potent adjuvanticity, its clinical application has been limited due to heterogeneous molecular size, inconsistent activity, poor stability, and toxicity. To overcome these limitations, we developed a novel dsRNA-based TLR3 agonist named NexaVant (NVT) by using PCR-coupled bidirectional in vitro transcription. Agarose gel electrophoresis and reverse phase-HPLC analysis demonstrated that NVT is a single 275-kDa homogeneous molecule. NVT appears to be stable since its appearance, concentration, and molecular size were unaffected under 6 months of accelerated storage conditions. Moreover, preclinical evaluation of toxicity under good laboratory practices showed that NVT is a safe substance without any signs of serious toxicity. NVT stimulated TLR3 and increased the expression of viral nucleic acid sensors TLR3, MDA-5, and RIG-1. When intramuscularly injected into C57BL/6 mice, ovalbumin (OVA) plus NVT highly increased the migration of dendritic cells (DCs), macrophages, and neutrophils into inguinal lymph node (iLN) compared with OVA alone. In addition, NVT substantially induced the phenotypic markers of DC maturation and activation including MHC-II, CD40, CD80, and CD86 together with IFN-β production. Furthermore, NVT exhibited an appropriate adjuvanticity because it elevated OVA-specific IgG, in particular, higher levels of IgG2c (Th1-type) but lower IgG1 (Th2-type). Concomitantly, NVT increased the levels of Th1-type T cells such as IFN-γ+CD4+ and IFN-γ+CD8+ cells in response to OVA stimulation. Collectively, we suggest that NVT with appropriate safety and effectiveness is a novel and promising adjuvant for vaccines, especially those requiring T cell mediated immunity such as viral and cancer vaccines.
Collapse
Affiliation(s)
- Kwang Hyun Ko
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea.,Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Bin Cha
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Hyun Shik Bae
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Chul Soo Ham
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Min-Gyu Lee
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Dong-Ho Kim
- Research and Development Center, NA Vaccine Institute, Seoul, Republic of Korea
| | - Seung Hyun Han
- Interdisciplinary Program in Genetic Engineering, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Guo C, Ye JZ, Song M, Peng XX, Li H. Poly I:C promotes malate to enhance innate immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:172-180. [PMID: 36210004 DOI: 10.1016/j.fsi.2022.09.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Polyinosinic-polycytidylic acid (poly I:C) is a synthetic analog of double-stranded RNA (dsRNA) that activates anti-infective innate immunity. The underlying mechanisms are identified as targeting pattern recognition receptors and Th1-inducing. However, whether poly I:C manipulates metabolism to implement this anti-infective function is unknown. Here, GC-MS based metabolomics was used to characterize metabolic profiles induced by different doses of poly I:C. Analysis on the dose-dependent metabolomes shows that elevation of the TCA cycle and malate with the increasing dose of ploy I:C forms the most characteristic feature of the poly I:C stimulation. Exogenous malate activates the TCA cycle and elevates survival of zebrafish infected with Vibrio alginolyticus, which is related to the elevated expression of il-1b, il-6, il-8, tnf-a, and c3b. These results reveal a previously unknown regulation of poly I:C that boosts the TCA cycle to enhance innate immunity against bacterial infection.
Collapse
Affiliation(s)
- Chang Guo
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China; School of Life Sciences, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan, 364012, China
| | - Jing-Zhou Ye
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China
| | - Min Song
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China
| | - Xuan-Xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, University City, Guangzhou, 510006, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
30
|
Kwak HW, Hong SH, Park HJ, Park HJ, Bang YJ, Kim JY, Lee YS, Bae SH, Yoon H, Nam JH. Adjuvant effect of IRES-based single-stranded RNA on melanoma immunotherapy. BMC Cancer 2022; 22:1041. [PMID: 36199130 PMCID: PMC9533600 DOI: 10.1186/s12885-022-10140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Background Adjuvant therapies such as radiation therapy, chemotherapy, and immunotherapy are usually given after cancer surgery to improve the survival of cancer patients. However, despite advances in several adjuvant therapies, they are still limited in the prevention of recurrences. Methods We evaluated the immunological effects of RNA-based adjuvants in a murine melanoma model. Single-stranded RNA (ssRNA) were constructed based on the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Populations of immune cells in bone marrow cells and lymph node cells following immunization with CrPVIRES-ssRNA were determined using flow cytometry. Activated cytokine levels were measured using ELISA and ELISpot. The tumor protection efficacy of CrPVIRES-ssRNA was analyzed based on any reduction in tumor size or weight, and overall survival. Results CrPVIRES-ssRNA treatment stimulated antigen-presenting cells in the drain lymph nodes associated with activated antigen-specific dendritic cells. Next, we evaluated the expression of CD40, CD86, and XCR1, showing that immunization with CrPVIRES-ssRNA enhanced antigen presentation by CD8a+ conventional dendritic cell 1 (cDC1), as well as activated antigen-specific CD8 T cells. In addition, CrPVIRES-ssRNA treatment markedly increased the frequency of antigen-specific CD8 T cells and interferon-gamma (IFN-γ) producing cells, which promoted immune responses and reduced tumor burden in melanoma-bearing mice. Conclusions This study provides evidence that the CrPVIRES-ssRNA adjuvant has potential for use in therapeutic cancer vaccines. Moreover, CrPVIRES-ssRNA possesses protective effects on various cancer cell models. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10140-2.
Collapse
Affiliation(s)
- Hye Won Kwak
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hyeong-Jun Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - Yoo-Jin Bang
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - Jae-Yong Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Seo-Hyeon Bae
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hyunho Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea. .,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea. .,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea. .,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea.
| |
Collapse
|
31
|
Sarsenova M, Kim Y, Raziyeva K, Kazybay B, Ogay V, Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front Immunol 2022; 13:1010399. [PMID: 36211399 PMCID: PMC9537745 DOI: 10.3389/fimmu.2022.1010399] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Considering the unique therapeutic potential of mesenchymal stem cells (MSCs), including their immunosuppressive and immunomodulatory properties as well as their ability to improve tissue regeneration, these cells have attracted the attention of scientists and clinicians for the treatment of different inflammatory and immune system mediated disorders. However, various clinical trials using MSCs for the therapeutic purpose are conflicting and differ from the results of promising preclinical studies. This inconsistency is caused by several factors such as poor migration and homing capacities, low survival rate, low level of proliferation and differentiation, and donor-dependent variation of the cells. Enhancement and retention of persistent therapeutic effects of the cells remain a challenge to overcome in MSC-based therapy. In this review, we summarized various approaches to enhance the clinical outcomes of MSC-based therapy as well as revised current and future perspectives for the creation of cellular products with improved potential for diverse clinical applications.
Collapse
Affiliation(s)
- Madina Sarsenova
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Yevgeniy Kim
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bexultan Kazybay
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vyacheslav Ogay
- Laboratory of Stem Cells, National Center for Biotechnology, Nur-Sultan, Kazakhstan
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
- *Correspondence: Arman Saparov,
| |
Collapse
|
32
|
Badia R, Garcia-Vidal E, Ballana E. Viral-Host Dependency Factors as Therapeutic Targets to Overcome Antiviral Drug-Resistance: A Focus on Innate Immune Modulation. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.935933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The development of antiviral drugs, has provided enormous achievements in our recent history in the fight against viral infections. To date, most of the approved antiviral drugs target virus-encoded proteins to achieve direct antiviral activity. Nonetheless, the inherent idiosyncrasy of viral mutations during their replication cycle, enable many viruses to adapt to the new barriers, becoming resistant to therapies, therefore, representing an ever-present menace and prompting the scientific community towards the development of novel therapeutic strategies. Taking advantage of the increasing knowledge of virus-host cell interactions, the targeting of cellular factors or pathways essential for virus survival turns into an alternative strategy to intervene in almost every step of viral replication cycle. Since host factors are evolutionary conserved, viral evasion to host-directed therapies (HDT) would impose a higher genetic barrier to the emergence of resistant strains. Thus, targeting host factors has long been considered an alternative strategy to overcome viral resistance. Nevertheless, targeting host factors or pathways potentially hints undesired off targets effects, and therefore, a critical risk-benefit evaluation is required. The present review discusses the current state-of-the-art on the identification of viral host dependency factors (HDF) and the workflow required for the development of HDT as antivirals. Then, we focus on the feasibility of using a specific class of host factors, those involved in innate immune modulation, as broad-spectrum antiviral therapeutic strategies. Finally, a brief summary of major roadblocks derived from targeting host cellular proteins and putative future strategies to overcome its major limitations is proposed.
Collapse
|
33
|
Semple SL, Au SKW, Jacob RA, Mossman KL, DeWitte-Orr SJ. Discovery and Use of Long dsRNA Mediated RNA Interference to Stimulate Antiviral Protection in Interferon Competent Mammalian Cells. Front Immunol 2022; 13:859749. [PMID: 35603190 PMCID: PMC9120774 DOI: 10.3389/fimmu.2022.859749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
In invertebrate cells, RNA interference (RNAi) acts as a powerful immune defense that stimulates viral gene knockdown thereby preventing infection. With this pathway, virally produced long dsRNA (dsRNA) is cleaved into short interfering RNA (siRNA) by Dicer and loaded into the RNA-induced silencing complex (RISC) which can then destroy/disrupt complementary viral mRNA sequences. Comparatively, in mammalian cells it is believed that the type I interferon (IFN) pathway is the cornerstone of the innate antiviral response. In these cells, dsRNA acts as a potent inducer of the IFN system, which is dependent on dsRNA length, but not sequence, to stimulate an antiviral state. Although the cellular machinery for RNAi is intact and functioning in mammalian cells, its role to trigger an antiviral response using long dsRNA (dsRNAi) remains controversial. Here we show that dsRNAi is not only functional but has a significant antiviral effect in IFN competent mammalian cells. We found that pre-soaking mammalian cells with concentrations of sequence specific dsRNA too low to induce IFN production could significantly inhibit vesicular stomatitis virus expressing green fluorescent protein (VSV-GFP), and the human coronaviruses (CoV) HCoV-229E and SARS-CoV-2 replication. This phenomenon was shown to be dependent on dsRNA length, was comparable in effect to transfected siRNAs, and could knockdown multiple sequences at once. Additionally, knockout cell lines revealed that functional Dicer was required for viral inhibition, revealing that the RNAi pathway was indeed responsible. These results provide the first evidence that soaking with gene-specific long dsRNA can generate viral knockdown in mammalian cells. We believe that this novel discovery provides an explanation as to why the mammalian lineage retained its RNAi machinery and why vertebrate viruses have evolved methods to suppress RNAi. Furthermore, demonstrating RNAi below the threshold of IFN induction has uses as a novel therapeutic platform, both antiviral and gene targeting in nature.
Collapse
Affiliation(s)
- Shawna L. Semple
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Sarah K. W. Au
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Rajesh A. Jacob
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Karen L. Mossman
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Stephanie J. DeWitte-Orr
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- *Correspondence: Stephanie J. DeWitte-Orr,
| |
Collapse
|
34
|
Titanium Surface Characteristics Induce the Specific Reprogramming of Toll-like Receptor Signaling in Macrophages. Int J Mol Sci 2022; 23:ijms23084285. [PMID: 35457102 PMCID: PMC9030374 DOI: 10.3390/ijms23084285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Most of the research on titanium-based dental implants (Ti-discs) is focused on how they are able to stimulate the formation of new tissue and/or cytotoxic studies, with very scarce data on their effects on functional responses by immunocompetent cells. In particular, the link between the rewiring of innate immune responses and surface biomaterials properties is poorly understood. To address this, we characterize the functional response of macrophage cultures to four different dental titanium surfaces (MA: mechanical abrasion; SB + AE: sandblasting plus etching; SB: sandblasting; AE: acid etching). We use different Toll-like receptor (TLR) ligands towards cell surface receptors (bacterial lipopolysaccharide LPS for TLR4; imiquimod for TLR7; synthetic bacterial triacylated lipoprotein for TLR2/TLR1) and endosomal membrane receptor (poly I:C for TLR3) to simulate bacterial (cell wall bacterial components) or viral infections (dsRNA and ssRNA). The extracellular and total LDH levels indicate that exposure to the different Ti-surfaces is not cytotoxic for macrophages under resting or TLR-stimulated conditions, although there is a tendency towards an impairment in macrophage proliferation, viability or adhesion under TLR4, TLR3 and TLR2/1 stimulations in SB discs cultures. The secreted IL-6 and IL-10 levels are not modified upon resting macrophage exposure to the Ti-surfaces studied as well as steady state levels of iNos or ArgI mRNA. However, macrophage exposure to MA Ti-surface do display an enhanced immune response to TLR4, TLR7 or TLR2/1 compared to other Ti-surfaces in terms of soluble immune mediators secreted and M1/M2 gene expression profiling. This change of characteristics in cellular phenotype might be related to changes in cellular morphology. Remarkably, the gene expression of Tlr3 is the only TLR that is differentially affected by distinct Ti-surface exposure. These results highlight the relevance of patterned substrates in dental implants to achieve a smart manipulation of the immune responses in the context of personalized medicine, cell-based therapies, preferential lineage commitment of precursor cells or control of tissue architecture in oral biology.
Collapse
|
35
|
Yang JX, Tseng JC, Yu GY, Luo Y, Huang CYF, Hong YR, Chuang TH. Recent Advances in the Development of Toll-like Receptor Agonist-Based Vaccine Adjuvants for Infectious Diseases. Pharmaceutics 2022; 14:pharmaceutics14020423. [PMID: 35214155 PMCID: PMC8878135 DOI: 10.3390/pharmaceutics14020423] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Vaccines are powerful tools for controlling microbial infections and preventing epidemic diseases. Efficient inactive, subunit, or viral-like particle vaccines usually rely on a safe and potent adjuvant to boost the immune response to the antigen. After a slow start, over the last decade there has been increased developments on adjuvants for human vaccines. The development of adjuvants has paralleled our increased understanding of the molecular mechanisms for the pattern recognition receptor (PRR)-mediated activation of immune responses. Toll-like receptors (TLRs) are a group of PRRs that recognize microbial pathogens to initiate a host’s response to infection. Activation of TLRs triggers potent and immediate innate immune responses, which leads to subsequent adaptive immune responses. Therefore, these TLRs are ideal targets for the development of effective adjuvants. To date, TLR agonists such as monophosphoryl lipid A (MPL) and CpG-1018 have been formulated in licensed vaccines for their adjuvant activity, and other TLR agonists are being developed for this purpose. The COVID-19 pandemic has also accelerated clinical research of vaccines containing TLR agonist-based adjuvants. In this paper, we reviewed the agonists for TLR activation and the molecular mechanisms associated with the adjuvants’ effects on TLR activation, emphasizing recent advances in the development of TLR agonist-based vaccine adjuvants for infectious diseases.
Collapse
Affiliation(s)
- Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
- Department of Life Sciences, National Central University, Taoyuan City 32001, Taiwan
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-37-246166 (ext. 37611)
| |
Collapse
|